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Abstract

The decision making of a suitable heating, ventilating and air conditioning system’s set-
point temperature is an energy and environmental challenge in our society. In the present
paper, a general framework to define such temperature based on a dynamic adaptive comfort
algorithm is proposed. Due to the fact that the thermal comfort of the occupants of a building
has different ranges of acceptability, this method is applied to learn such comfort temperature
with respect to the running mean temperature and therefore to decide the suitable range of
indoor temperature. It is demonstrated that this solution allows to dynamically build an
adaptive comfort algorithm, an algorithm based on the human being’s thermal adaptability,
without applying the traditional theory. The proposed methodology based on the K-Nearest-
Neighbour algorithm was tested and compared with data from an experimental thermal
comfort field study carried out in a mixed mode building in the south-western area of Spain
and with the Support Vector Machine method. The results show that K-Nearest-Neighbour
algorithm represents the pattern of thermal comfort data better than the traditional solution
and that it is a suitable method to learn the thermal comfort area of a building and to define
the set-point temperature for a heating, ventilating and air-conditioning system.

Keywords Adaptive comfort - K-Nearest Neighbour - Algorithm - Buildings - HVAC - SVM

1 Introduction

Systems based on a fixed set-point temperature is the simplest way to control indoor tem-
perature. The major limitation in those systems is that the user has to manually readjust
the set-point depending on the variations in external temperature conditions. The thermostat
compares the temperature set by the user with the temperature of the room. If the temperature
in the room achieves the temperature set by the user, it disconnects the power to the actuator
which closes the circuit(s). The first solution to face such limitation is the installation of
thermostatically-controlled electrothermic actuators, where the system would automatically
make a decision about the set-point (Aparicio-Ruiz et al. 2018). In heating, ventilating and
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air conditioning systems, energy consumption is directly related to high (low) set-point tem-
peratures when the heating, ventilating and air conditioning system (HVAC) is working in
the heating mode (or in the cooling mode). Due to this fact, the decision making regarding
the mode of operation of HVAC systems is a research area with an important growth during
the last years (Rupp et al. 2015). So, currently, one of the main missions or objectives that
has been launched around the world is optimising such set-point temperatures (Tuohy et al.
2010; Si et al. 2015).

Particularly in Spain, the existing regulation (Royal Decree 486/1997) proposes an indoor
temperature which ranges from 17 to 27 °C for buildings where sedentary work takes place
and from 14 to 25 °C for buildings where light physical work takes place. It also establishes
that this criteria should be applied taking into account the limitations or conditions resulting
from the particular characteristics of the workplace, the processes that take place and the
climate where the building is located. Moreover, the Royal Decree 1826/2009 proposes a
maximum and a minimum temperature for administrative, commercial and public buildings:
26 °C maximum for refrigerated spaces and 21 °C minimum for heated enclosures ones.
Generally speaking, the recent standards ISO 15251 (ISO Standard 2008) and other refer-
ences, e.g., the guide CIBSE (2015) and ASHRAE (2013) remark that the users’ behaviour
regarding the comfort temperatures is dynamic and the concept of comfort varies over the
year because users adapt to fluctuations in outside temperatures. Therefore the energy con-
sumption is influenced by meteorological conditions. The temperature pattern is one of the
main factors of energy usage, so electric companies analyse the weather conditions in their
models, which quantified the relationship between temperature and energy sales. In (Valor
et al. 2001) the relationship between electricity load and daily air temperature in Spain is
analysed.

Many HVAC systems are designed based on a fixed set-point temperature although it is
not the most efficient energy policy. The main objective in the area of thermal comfort and
energy consumption is finding a solution which balances the energy consumption without
compromising the comforts of the buildings’ occupants. Initially, most authors based their
studies on the predicted mean vote (PMV) index and predicted percentage dissatisfied (PPD)
index (Hussein and Rahman 2009) for doing that. Nevertheless, during the last decades
there has been a growing number of thermal comfort studies based on the adaptive comfort
theory, which highlights that the thermal history and other contextual factors change the
occupant’s thermal expectations and preferences (de Dear et al. 1998). The adaptive comfort
tries to soften the barriers between indoor and outdoor comfort through the definition of an
adaptive control algorithm (ACA) which relates the comfort temperature of the occupants
of a building with the daily outdoor temperature. Based on the adaptive comfort theory,
differences in weather conditions, seasons and cultural aspects have been taken into account
(Barbadilla-Martin et al. 2017) as well as types of buildings: naturally ventilated (NV), fully
air-conditioned (AC) or hybrid (mixed mode, NV + AC) (de Dear et al. 1998).

In environmental control systems the building’s occupants play little or no role regarding
the indoor comfort conditions, but the green building movement tries to reverse this ten-
dency with an improvement of comfort based on designing priorities in orientation, building
mass, flues, operable windows, etc. There has also been a tendency to deploy mixed-mode
approaches where the occupants use the passive solution to obtain their comfort and when
these solutions are not enough, they use automated technologies like HVAC due to the fact
that the interaction between the inhabitants and architecture can lead to important energy
and carbon reductions (Cole et al. 2010). In hybrid or mixed mode buildings, occupants are
more directly involved with building systems and operations through closing/opening doors
or windows, turning on-off lights or thermostats, shading devices, vents and other man-
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ual controls. Regarding thermal comfort, the PLEA manifesto (Cole et al. 2010) highlights
two essential directives: “Buildings should provide their inhabitants with multiple adaptive
opportunities optimizing health, satisfaction and productivity” and “Inhabitants should be
responsible to take an ‘active’ role for the provision of relative comfort using robust ‘pas-
sive and low-energy’ strategies”. Although the adaptive thermal comfort theory proposes
the definition of an adaptive control algorithm which depends on the outdoor temperature,
it does not depend dynamically on the occupants nor learns their opinion continuously. The
present paper exposes a methodology to develop a dynamic adaptive comfort system (DACS)
for defining the comfort temperature based on the outdoor temperature and the occupants’
thermal sensation. This DACS would have influence on the energy consumption and it is
a feasible solution to define a specific adaptive comfort zone for each building. In Ahmad
et al. (2016), a complete review of computational intelligence techniques for HVAC systems
is shown. The review reveals that the minimisation of energy consumption, the optimisation
of thermal comfort, indoor air quality and occupant preferences are the main research areas,
and a classification of computational techniques is shown, where different techniques are
used for prediction, optimization, control and diagnosis. In the case of prediction, the prin-
cipal techniques are artificial neural networks and Support Vector Machine (SVM) but the
adaptive comfort is not considered in such review. Others studies in the field of class predic-
tions dynamically, it have focused on finding the neighborhood of a new data instance and
choosing the most competent classifier(s) to make the prediction (Yasar Saglam and Street
2018). So, in this paper, K-Nearest Neighbour is applied with the aim of defining a set-point
temperature in order to obtain thermal comfort of the occupants of buildings based on the
principles of the adaptive comfort theory.

In Bermejo et al. (2012), a system capable of adapting to the user’s thermal preferences
based on the PMV index and the application of the Fuzzy Logic is shown. The limitations
of this model are based on the definition of the PMV itself, which considers six parameters:
clothing insulation and metabolic rate (generally fixed values based on an assumption),
the air temperature, the mean radiant temperature, the air speed and the relative humidity.
Moreover, fuzzy logic based HVAC control and fault detection systems have been proposed
in Ahmad et al. (2016) and in Kang et al. (2015), where the application of fuzzy logic based
on an on-off controller to maintain a set-point temperature taking into account a solar energy
compensation method is exposed. Regarding machine learning methods and thermal comfort,
they have been applied to learn occupants’ behaviour in order to infer real-time set-point
temperature for a room (Peng et al. 2018), and to reduce the need of human intervention
into the control system. In Kim et al. 2018 machine learning in personal comfort models
(predicting individuals’ thermal preference using occupant behaviour) is analysed, but there
are no previous studies in the current literature which consider machine learning as well as
thermal comfort. So, the present paper proposes a methodology in order to analyse and predict
dynamically the comfort temperature of the occupants of buildings, based on the principles
of the adaptive comfort theory but carrying out the K-Nearest Neighbour (KNN) method.
Due to the fact that our current modeling approach is based on the thermal preferences of the
occupants of a building collected through a survey, the size of this dataset, that is, the number
of responses to the survey would limit the performance of the model. In order to avoid it, the
proposed methodology is based on previous studies (Kim et al. 2018) which suggest online
machine learning to dynamically adapt new patterns in the data and automatically update
a model as needed. The paper is structured as follows. In Sect. 2, the traditional adaptive
thermal comfort theory is shown. In Sect. 3, the proposed dynamic adaptive comfort system,
based on the K-Nearest Neighbour algorithm as pattern recognition to predict the comfort,
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is exposed. Section 4 focuses on the KNN method and finally, the experiments and results
are shown in Sects. 5 and 6 respectively and conclusions in Sect. 7.

2 Traditional methodology

To determine the indoor comfort temperature of a building, the traditional adaptive comfort
methodology assumes an adaptive approach of their occupants. In Nicol (2011), is high-
lighted that “if a change occurs, such as to produce discomfort, people react in ways which
tend to restore their comfort”. Particularly, for mixed mode buildings the adaptive comfort
opportunities range from opening or closing windows and turning on the HVAC system to
changes in clothing. The traditional methodology is based on a field study, for collecting the
thermal sensation of the occupants of a building and the environmental variables through
sensors, and on a linear regression analysis in which the mean comfort temperature for a
group of occupants (or single) is adjusted contrasted with an outdoor environment variable.
For that, the subjects’ thermal sensation is analysed by the question “How do you feel just
now?” whose answer is declared in the form of a comfort vote based on a 7-point thermal
sensation scale. This comfort vote is called TSV (Thermal Sensation Vote) and it is based
on the ASHRAE scale (hot, warm, slightly warm, neutral, slightly cool, cool and cold). To
predict the comfort temperature (T¢op for¢) from the mean thermal sensation vote (TSV) and
the globe temperature (Tg;0p.) the equation defined in Formula 1 is used (Griffiths 1990).

TSV
Tcomfort = Tglobe - T (l)

where G is the Griffiths constant, a single standard value.

The dynamism of the concept of comfort and the adaptability of users is expressed based
on the average external temperatures of the last days. The influence of the days has different
weights, where the weight (alpha,o) of the nearest days is greater. Weights are reduced as a
function of time, thus reflecting the concept of “forget”. A weighted running mean outdoor
temperature 7}, is calculated as follows:

Tim=a T+ 1—0a) Toa-1 ()

« is a constant between 0 and 1 which defines the speed at which the running mean responds
to outdoor temperature, T,4_1 is the daily mean outdoor temperature (°C) for the previous
day and 7, is the running mean outdoor temperature (°C) for the day before.

After defining the 7, the relationship between the comfort temperature and the outdoor
temperature is calculated as follows:

Tcumfort =m-Tyy+c (3)

where the slope (m) and the constant (c¢) of this Formula are obtained by a linear regression
analysis. Such expression is the so called adaptive control algorithm (ACA) and allows the
definition of the daily indoor comfort temperature.

Figure 1 shows the process to define and implement an experimental ACA for a sample
building provided with an HVAC system. Such process is defined as follows: firstly, the
information obtained from the building’s sensors (every 15min) is stored in a server (in this
case) and at the same time, the data from a weather station installed in the building (external
sensors) is stored while the information regarding the occupants of the building is obtained
from surveys. The building behaviour data should be stored for at least one year in order to
include a winter season and a summer season.
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Fig.1 A traditional system to define and implement an ACA for a sample building

Secondly, a regression analysis is performed with the main objective to obtain the m and
c constants (function 3) and therefore an experimental ACA.

Thirdly, such ACA is implemented into the control system of the sample building in order
to define the set-point temperature, but taking into account the occupants’ thermal comfort.

3 Dynamic adaptive comfort system (DACS)

The traditional adaptive comfort methodology explained in Sect. 2 is based on an ACA,
which is obtained after an experimentation field study and on m and c¢ values which don’t
change. Figure 2 shows the alternative methodology proposed in the present paper in order to
define an ACA but based on the participation of the occupants and a dynamic and continuous
learning of the building, the climate and the comfort algorithm itself.

The dynamic adaptive comfort system proposed, as the traditional system, stores on a
server the information obtained from the sensors of the sample building, the outdoor temper-
ature and the answers of the occupants to the question “How do you feel just now?”. Based
on such information and the K-NN method (which will be explained in Sect. 4) the proposed
system would dynamically and continuously learn the comfort of the building, that is, every
moment the system is learning a comfort temperature.

So, although a regression analysis for defining the comfort temperature (as the adaptive
thermal comfort theory proposes) is not required, the learning process carried out based
on the KNN method allows knowing such temperature as well as the comfort ranges for a
certain 7,,,. Therefore, the proposed methodology could be included in an operating Building
Automation and Control Networks (BACnet) based HVAC control system (Song et al. 2007)
in order to define the set point temperature and moreover, additional decision criteria, such
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Fig.2 The proposed system for a sample building: DACS

as consumption per temperature degree, the time of day, trends in the interior, peak hours in
consumption, etc. could also be taken into account to define it.

4 K-Nearest Neighbour

K-Nearest Neighbour (KNN) proposes an attractively straightforward classification solution.
Itis based on classifying a certain point of data taking into account its nearest neighbours and
achieves competitive results when enough information is available to carry out the learning
process.

The classical KNN method is an algorithm based on the following idea: firstly, a necessary
set of learning data is defined where the points (reference of knowledge) describe each class.
The set of numerical features and the selection of a metric (e.g., Euclidean distance) is used
to measure the similarity of data points based on all features. After that, in order to analyse
a target point, the K closest points in training samples (based on the similarity metric) are
found and the target point is assigned to a class by majority vote of its neighbours.

The pseudocode of such algorithm is presented in Table 1. Figure 3 shows a simple case
to understand it in which two classes are defined (circles and squares) in order to analyse
the scenario and to find out the class of the element represented by a star (either a circle
or a square). The K value in the KNN algorithm is the number of the nearest neighbours
to be analysed by the system to define the class of the element. In Fig. 3, K = 3, hence, a
circle around the star, centred on this point, is defined just as big as to enclose only three
data-points on the plane. In this case, the choice is obvious as all three classes from the closest
neighbour were squares. The choice of the parameter K has a high importance or influence
in the algorithm and their effects. All the training observation remains constant, with a given
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Table 1 Pseudocode for KNN algorithm

The KNN algorithm

Suppose
D =training set consisting of samples (x1, y1), (X2, ¥2), ..., (Xn, Yn)
Z =unknown set consisting in incoming test example (x/, 1), ..., (X ¥)

k =number of the nearest neighbourhood

for all i in Z (unknown samples):
for all j in D (known samples):
compute the distance between sample i and sample j
end for
find the k smallest distances (select the k closest training examples)
locate the corresponding samples jy, ..., ji
assign i to the class which appears more frequently
end for

O O /O E]\\
1 \
x o D G B
O B L
© o - e o
X X

Fig.3 KNN example

K value, and it defines the boundaries of each class. These boundaries will segregate in
different classes. Organizing data into sensible groupings arises naturally in many scientific
fields, therefore, it is not surprising the increasing popularity of data clustering during the
last years (Jain 2010).

K-Nearest-Neighbour method is a non-parametric method used for classification and
regression (Altman 1992) and it is especially successful when decision boundaries are irreg-
ular, so in the present study such method is the proposed one as an alternative to analyse the
comfort zone, despite its simplicity. The limits of the thermal comfort area have a difficult
classification, due to the fact that they are inherently vague and cannot be categorized by a
simple model, so the KNN method represents a feasible solution to analyse them. Different
metrics exist to develop this analysis, the distance function for completing the KNN is closely
related to the scale of the values of characteristics presented. To avoid characteristics with
a large range of outweighing characteristics of relatively lower magnitude and thus causing
unnecessary weight bias (Shalabi et al. 2006), all the features are in the same range. The
distance metric in the KNN classification has a significant impact on the performance, both
in accuracy as in time and space complexity. In this study, the Minkowski distance function is
selected to evaluate the similarity between the data sets (training and testing). In the analysis,
the test data has certain closeness or similarity with the criteria is computed from the training
data used to learn the pattern (Cover and Hart 1967). The decision is made to the test data by
gauging the output of these functions, based on the class of the training data of the highest
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proximity. The Minkowski distance is defined by two points:
X =(x1,x2,...,xp)and Y = (y1, 2, ..., yn) €N

where 1

(Z lxi — i |> p @
i=1

p is usually equal to 1 (Manhattan distance) or to 2 (Euclidean distance). And in the limit
case of p reaching infinity the Chebyshev distance is obtained (Cunningham and Delany
2007).

5 Experiment

The following subsections expose the way the experimental data were obtained and the
methodology proposed was carried out in order to obtain a dynamic adaptive comfort system
(DACS) based on KNN methods.

5.1 Data acquisition

It is necessary to have an appropriate data base in order to test the adaptive comfort system
and to obtain more accuracy and efficient solutions.

Particularly, the methodology proposed in the present paper was based on real data
obtained from a field study which was carried out in three buildings of the tertiary sec-
tor in the city of Seville, south of Spain. For that, 11 offices’ rooms were monitored and 59
occupants (all adults) were asked about their thermal sensation votes through a web-survey
and using the thermal sensation scale proposed by the EN-15251 standard and translated
into Spanish. In Barbadilla-Martin et al. (2017), the comfort field study is shown based on
environmental measurements (obtained by sensors) and thermal sensation votes (obtained
from more than 4.000 longitudinal questionnaires) collected during the one-year study. This
is the data set used for the evaluation, in training set and testing in the present methodology.
The training data set is shown in Figs. 4d and 5d, where green colour is the comfort vote of
the occupants and the rest of the data (blue and red) define situations in wich the users feel
cool and warm temperature.

5.2 Application of the KNN methodology

The application of the proposed methodology is mainly based on knowing and checking
which is the Tiopfors for a certain Tjygoor and T. It also allows the definition of the
comfort temperature in which the occupants would feel comfortable and the classification
of the discomfort areas, so an adaptive comfort area could be built, similar to the traditional
one defined by the adaptive comfort theory.

In the KNN method implemented in the present paper, the distance function Minkowski
with p = 2 (Euclidean distance) was considered. The number of neighbours to use was
analysed and it is shown in Figs. 4f and 5f, considering a uniform weight function (where all
points in each neighbourhood are weighted equally). Analysing the relation between comfort
temperature and indoor temperature (Fig. 4f) the best value is K = 10 and analysing the
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relation between comfort temperature and running mean temperature (Fig. 5f) the best value
is K = 8.

Apart from the uniform weight function, the distance weight function (where the points
have different weight by the inverse of their distance) was also analysed and in both cases, the
solution had high quality (Figs. 4d and 5d show the score with uniform weight).It has been
decided to choose a uniform weight, due to the subjective aspect of the human response to
comfort. In this case, if there is an isolated situation, it should not prevail only the closest, but
for situations or areas with little data, proximity can be important to choose distance weight.
However, it is expected that, as in this case, there will be enough data to delimit the comfort
frontier.

The DACS is based on a non-generalizing machine learning method, so the whole training
data is remembered and transformed into a fast indexing structure such as a Ball-Tree or KD-
Tree (spatial methods have been proposed and tested as a way of alleviating the computational
cost of such statistics without resorting to approximate answers).

KD-Tree (Freidman et al. 1977) and the Ball-Tree (Liu et al. 2006) are the most commonly
algorithm for KNN methods and they are based on the questions: “What are the K Nearest
Neighbours?”, “How many of the K Nearest Neighbours are from the positive class?” and
“Are at least t of the K Nearest Neighbours from the positive class?”. Both of them were
tested in the present paper and the one with the best fitness and the best performance was
selected.

In the analysis, the real data obtained is represented in the Figs. 4d and 5d. This is the
real data, and it is compared to the Test solution after the application of KNN prediction.
The quality of the solution obtained is represented by the score variable, and in this case, the
values 0.96 and 0.89 show that in 96% and 89% of the classifications of the data used for the
test, the solution obtained by the proposed methodology is the same as the real classification.
If the value of the R? in the regression analysis of the comfort temperature based on the
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traditional method is observed [the values are around 0.41 (Barbadilla-Martin et al. 2017)], it
could be concluded that the application of the proposed methodology would be very positive.

6 Results
6.1 The results of KNN in the field study data

The answer to the question “How do you feel just now?” is considered the expression of the
subjects’ thermal sensation and for field studies in the area of thermal comfort it is usually
represented through a Thermal Sensation Vote (TSV) based on a seven-point scale (hot,
warm, slightly warm, neutral, slightly cool, cool and cold), the ASHRAE scale.

In the present studio, three classes were defined for the KNN method based on such thermal
sensation scale: warm (including warm and hot), comfort (including slightly warm, neutral
and slightly cool) and cool (including cool and cold). Previous studies have already considered
similar classifications, demonstrating that, “slightly warm” and “slightly cool” could be
considered as “comfort” without bias in the results (Humphreys et al. 2015). Moreover, to
predict the comfort temperature T¢op fors based on the thermal sensation votes (TSV) and the
globe temperature Tg/ope, the equation defined in Formula 1 was used with a Griffith constant
G equal to 0.5.

Figure 4d shows the training data set, based on the answers of the occupants of the
sample building collected in the field study through a thermal comfort survey and Fig. 4a—c
show the comfort temperature compared to the indoor temperature, classified into the three
categories previously exposed (warm, comfort and cool). In Fig. 4a, the temperature space
for which the indoor temperature is below the comfort range for the users of the building is
defined. Figure 4b shows the area in which the users felt “comfort” (central purple band in the
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figure) and the membership relation is also represented with different colours (range of color
defined in the right of the figure). The purple area defines spaces where the occupants could
also feel “comfort” (Fig. 4b), feel “cold or cool” (Fig. 4a) or feel “warm or hot” (Fig. 4c).
As the proposed methodology is based on data from a survey to train the system, it must be
considered that the complete area of discomfort cannot be analysed. That is the reason why a
space considered as neutral could be identified in the upper left and this is because of the lack
of data that generates learning in such area. This occurs because such situation would never
take place, and if it did, the discomfort responses of the users would repair the learning area.
Finally, Fig. 4c shows situations in which the indoor temperature is above the comfort
temperature, and therefore users would feel “heat”. Whereas Fig. 4a—c represent the basic
adaptive relationship between the comfort temperature and the indoor temperature. Figure Sa—
c show the relationship between the comfort temperature and the running mean temperature,
that is, the relationship between the adaptive comfort temperature and the outdoor temperature
taking into account the previous days (the running mean temperature). Such running mean
temperature is based on Formula 2 with a recommended value of « equal to 0.8, which
defines higher weights or influence to the outdoor temperatures in recent days. Considering the
comfort temperature and the running mean temperature, the same three categories previously
explained are defined. Figure 5a represents comfort temperatures for occupants who felt
“cold”, which would generate a situation of overheating in the building. Figure 5c shows just
the opposite situation, a comfortable temperature that would generate an overcooling situation
is represented. Figure 5b shows the comfort temperature range regarding the running mean
temperature based on the proposed methodology. Such range temperature is defined in a
dynamic way and using a KNN method. Moreover, in Fig. Sa—c the relationship between
daily comfort temperature and outdoor temperature based on the thermal adaptive theory
(Barbadilla-Martin et al. 2017) (dash black line), is also represented (Formula 5).

Teomfort = 0.24 - Ty +19.3 (35)

The slope (m) and the constant (c¢) of this Formula are obtained by a linear regression
analysis (traditional methodology). The adaptive thermal comfort assumes that people would
feel comfortable in a range of temperature no more than 2° from the comfort temperature (red
dash lines), and if the difference between the indoor temperature and the comfort temperature
was more than 2°, the discomfort would increase (Nicol and Humphreys 2007).

Tcomfort-max =024-T,,+213 (6)
Tcomfort-min =024-Tp, +17.3 (@)

Comparing the comfort range based on the principles of the adaptive comfort theory (red
dash lines) with the comfort range based on the proposed methodology, it could be observed
that the solution exposed in the present paper defines a more flexible and wider comfort area
and that a range of acceptance could be identified. It would allow defining different indoor
temperatures depending on the moment of the day (for example, one temperature for noon
and another one for night).

In Fig. 6a is shown the real data used for training, inputs of regression, KNN and SVM
methods. In Fig. 6¢ is shown the real data used for test in the regression, KNN and SVM
methods. In the case of regression, the solution of the traditional regression model is applied
to this data in the Fig. 6b, d. The real data used for test may be compared with the solution
of KNN method in Fig. Se and the solution of SVM method in Fig. 7e.

The solution highlights that the proposed methodology generates its own knowledge of
the building and its response is an indicator of the quality of comfort. The system, once the
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Fig. 6 a Training data, b traditional solution with ACA applied to training data, ¢ test data, d traditional
solution with ACA applied to test data

Table 2 Comparative table Regression KNN SVM-RBF

95% CI (0.683,0.743) (0.874,0.915) (0.863, 0.905)
Kappa 0.197 0.338 0.161

T:m was known, would obtain a comfort probability space (Fig. Sa—c) and moreover, for
a certain indoor temperature, the level of comfort could also be known (Fig. 4a—c). These
values would allow to define a set-point temperature for buildings in a dynamic way based
on changes in the weather, the buildings and occupants’ behaviour, unlike the classic range.

6.2 Comparative results

The traditional regression method based on the adaptive comfort theory was exposed in Sect. 2
and its results were shown in Fig. 6. The methodology proposed in the present paper based
on the K-Nearest Neighbour method was explained in Sect. 4 and its results were shown in
Fig. 5. In this section, an alternative method, the Support Vector Machine (SVM) (Vapnik
and Vapnik 1998; Wang et al. 2010; Camelo et al. 2015) is considered and compared to the
techniques previously exposed: the regression analysis defined in Formula 5 and the KNN
method with K = 8. Regarding the SVM method, linear SVMs is generally used for linear
problems but in the present paper it is not shown because of the solution was poor. Otherwise,
in non-linear problems the Radial Basis Function kernel (RBF-kernel) is used and its solution
is shown in Fig. 7. Table 2 shows the analysis of the test data considering a 95% confidence
interval, in which KNN and SVM methods identify the best solutions.

As the objective is finding a model to minimise the number of errors, the Kappa index
test, or statistical Kappa, was used to evaluate the responses to comfort. Kappa statistic is
a metric based on a threshold and a qualitative understanding of error and it is commonly
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Table 3 Confusion matrix of the techniques

Regression KNN SVM-RBF
C N w C N W C N w
Actual
C 30 33 2 16 49 0 4 61 0
N 112 575 93 14 758 8 6 765 9
w 0 12 22 0 22 12 0 26 8
ACC 0.83 0.72 0.88 0.93 0.89 0.97 0.93 0.89 0.96
AUC 0.66 0.64 0.77 0.67 0.55 0.61 0.5 0.5 0.5
PLR 3.35 1.62 5.76 14.31 1.36 37.28 8.35 1.12 22.0915

C cool, N neutral, W warm

used in direct applications of classifiers. Moreover, Cohen’s kappa is generally thought to be
a more robust measure than a simple assessment (Cohen 1960).

Regarding the Kappa measurement, Landis and Koch (1977) and Altman (1990) suggested
considering a value 0.01-0.20 as slight or poor and 0.21-0.40 as fair. Based on that and
according to the data shown in Table 2, Cohen’s kappa measure shows that the KNN method
has fair agreement with the test results.

In Table 3 the confusion matrix is shown. It can be observed that the accuracy (ACC) is
good, specially for the KNN method. In the analysis of the area under the roc curve (AUC) the
solution is fair in the case of the regression and the KNN method, but poor in the SVM. And
in the positive likelihood ratio (PLR), the result is poor for the regression technique, good
for the KNN method considering the analysis of ‘cool’ and ‘warm’ and good considering the
analysis of ‘warm’ for the SVM method.

7 Conclusions

A methodological analysis based on the K-Nearest Neighbour algorithm was proposed, in
order to verify if a certain temperature is in the comfort area of a building and if the decision
on a change of temperature is acceptable. To validate such methodology, data set from a
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thermal comfort field study carried out in three buildings in the south-western area of Spain
was considered. Moreover, the relationship between indoor comfort temperature and outdoor
temperature (ACA) identified in such field study was compared to the results obtained with
the dynamic adaptive comfort system exposed in the present paper and based on the KNN
method.

The DACS system and its results represent an alternative solution to define a comfort
range for a building and its results also further question the validity of applying fixed set-
point temperatures to real working situations and the overuse of heating, ventilating and
air-conditioning systems.

It could also be highlighted that the proposed methodology is a flexible and dynamic
solution to make decisions as an alternative to the traditional solution one. So, it is concluded
that many buildings could apply the proposed methodology (or similar machine learning
methodologies) to learn the comfort area of their occupants and to use such information in a
decision support system that would define a suitable set point temperature and the limits of
the comfort range.
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