
Vol.:(0123456789)

Annals of Operations Research (2022) 312:305–332
https://doi.org/10.1007/s10479-019-03483-w

1 3

S.I.: STATISTICAL RELIABILITY MODELING AND OPTIMIZATION

Joint optimization of software time‑to‑market and testing
duration using multi‑attribute utility theory

P. K. Kapur1 · Saurabh Panwar2 · Ompal Singh2 · Vivek Kumar2

Published online: 2 December 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
An optimal software release strategy is a well-investigated issue in software reliability lit-
erature. Comprehensive testing is expected before releasing the software into the market
to enhance the reliability and security of the software device. In recent years, few analysts
have recommended the scheme for software projects that support releasing the software
early in the market and continue the testing process for an added period in the field envi-
ronment even after the software is distributed. These studies are based on one common
assumption that the efficiency of the software engineers in detecting the faults occurs at a
consistent rate throughout the testing phase. However, bug-identification rate may experi-
ence discontinuity at the software release time. In software engineering, the time-point at
which fault detection rate changes is termed as change-point. Consequently, an alternative
software release policy is proposed in the present paper, which offers a generalized frame-
work for fault detection phenomenon using the unified approach. An extensive analysis of
software time-to-market and testing duration based on cost-efficiency and reliability meas-
ures is discussed by considering the change in tester’s fault detection rate. A multi-criteria
decision making technique known as multi-attribute utility theory is applied to optimize
the software release policy under field-testing (FT) and no field-testing (NFT) frameworks.
The relevance of the optimization problem is illustrated using a numerical example, com-
prising both the exponential and S-shaped bug-detection process.

Keywords Software reliability · Field-testing · Software reliability growth models
(SRGMs) · Change-point · Multi-attribute utility theory (MAUT) · Testing termination
point · Software distribution time · Bug-identification rate

 * P. K. Kapur
 pkkapur1@gmail.com

 Saurabh Panwar
 saurabhpanwar89@yahoo.com

 Ompal Singh
 drompalsingh1@gmail.com

 Vivek Kumar
 vivekrajput.du.aor@gmail.com

1 Amity Center for Interdisciplinary Research, Amity University, Noida, Uttar Pradesh, India
2 Department of Operational Research, University of Delhi, Delhi, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-019-03483-w&domain=pdf

306 Annals of Operations Research (2022) 312:305–332

1 3

1 Introduction

Software products are the most pervasive human generated equipment, which affects
our everyday activity. Software have become an indispensable part of enterprises and
are applied in various technologies such as electrical gadgets, automobiles, aircraft, tel-
ecommunication services, home appliances, etc. Due to the growing dependency of our
social system on software-based devices, there is a prerequisite for developing highly
reliable, secure, and good quality software. Reliability of software is achieved by the
continuous testing process before distributing the software. Testing process along with
debugging of the software systems are the primary function of the Software Develop-
ment Life Cycle (SDLC). The software companies spend about half of their overall
development cost on software testing (Myers 1976). Therefore, testing of the software is
acknowledged as one of the most substantial stages of SDLC. It assists in achieving the
desired reliability and in developing robust and high-quality software.

Software testing identifies errors that are underlying dormant in the software dur-
ing its development life cycle. Comprehensive testing removes these faults during the
debugging process and can escalate the quality of a product, which increases the client’s
trust in the product. Software testing also cuts down maintenance expenses both for the
users and for the analysts. Thus it results in a more reliable, dependable, and failure-free
software (Kapur et al. 2011b). Although no software can be perfect and completely free
from errors, the testing process can lower the risk of failure associated with the soft-
ware by reducing the number of bugs present in the software. In addition, the detected
faults can be utilized as means for feature improvement. Thus, testing can be viewed as
a corrective and innovative aspect of SDLC. During the testing phase, not only faults
are debugged, but also development cost and time-to-market of the software is kept in
check (Subburaj and Kapur 2014). Therefore, extensive testing by software engineers is
imperative to produce highly reliable software and ensure the delivery of the software
on time.

In practice, it is highly troublesome for the developers to control the reliability
and the quality of the software product. Therefore, the mathematical tools known as
software reliability growth models (SRGMs) are rigorously used in software reliabil-
ity engineering to measure the software reliability and to quantify the testing process
(Yamada 2014). These models provide aid for enhancing the reliability of the software
products. SRGMs facilitate software engineers to measure the fault levels, failure rates,
mean time between failures (MTBF), and accuracy during the coding and verification
process (Huang and Lyu 2011). SRGMs are based on the conjecture that the fault con-
tent in the software system is defined at the beginning of the testing process. Through
testing and debugging processes, these faults are removed from the device, and the reli-
ability of the system is improved at the end of the testing phase. Goel and Okumoto
(1979) suggested the initial software reliability model. They made use of Non-homo-
geneous Poisson Process (NHPP) to analyze the reliability of the software. Their model
is based on the assumption that fault detection curve is distributed exponentially over
time. To describe the S-shaped growth of fault detection process, Yamada et al. (1983)
proposed the modified SRGM to investigate S-shaped fault detection data. Soon after,
a series of NHPP-based SRGMs have been designed for the assessment of reliability
growth of software during software development handling (Musa and Okumoto 1983;
Ohba and Yamada 1984; Yamada and Osaki 1985; Kapur and Garg 1992; Pham et al.
1999; Huang et al. 2003; Huang 2005b; Kapur et al. 2008a, b, 2011a, 2012; Inoue et al.

307Annals of Operations Research (2022) 312:305–332

1 3

2016; Zhu and Pham 2018). NHPP models deal with the software failure process as an
arbitrary process and fault-observation phenomenon as a random variable. These are
widely accepted models due to their easy use and convenience in understanding.

A vast portion of the software literature also focuses on the software time-to-market
(Kapur et al. 1999; Zhang and Pham 2002). Specifically, an appropriate time to release
the software in the market remains a critical research topic for the software analysts. Test-
ing the system for a protracted period may impede the software release time. Moreover,
this may further result in excessively high development cost. On the other hand, releasing
software very quickly without sufficient amount of testing may result in user’s dissatisfac-
tion, which ultimately affects the advancement of the software device and the company’s
reputation in the global market. Therefore, the software reliability and availability predic-
tion hold vital importance to establish a trade-off between the quality of software prod-
uct, development cost and release time during the software development lifecycle. Owing
to the extreme usefulness of estimating the software time-to-market and testing duration,
the study of optimal release policy has gained tremendous importance in the software lit-
erature. In the past, researchers have used conventional SRGMs to model the optimiza-
tion problem for evaluating the most favorable software release time. The initial study was
conducted by Okumoto and Goel (1980). They have formed the unconstrained optimiza-
tion problems: cost minimization and reliability maximization based on the exponential
SRGM. Later, Dalal and Mallows (1988) examined the optimal testing stop time rule,
which is established by balancing the cost of continued testing and the probable losses due
to the bugs that still exist in the distributed system. Afterward, Yamada and Osaki (1987)
considered the constrained optimization problem to calculate the software time-to-market
using different SRGMs. Kapur and Garg (1991) further discussed the release time policy
using testing effort based SRGMs. They considered the maximization problem of the gain
function under failure intensity constraint. After that, Huang (2005a), and Huang and Lyu
(2005) determined the release time policies by assessing the testing effort expenditure.
Subsequently, many other studies were carried out to obtain the optimal testing stop time
and related release policies (Inoue and Yamada 2008; Chiu et al. 2009; Kapur et al. 2013,
2014; Singh et al. 2015; Minamino et al. 2016).

The underlying assumption of all the above-cited studies is that the testing process ter-
minates at the release time of the software system. Although, the reliability aspiration level
of the device governs the testing period but prolong testing without releasing the software
may cause the excessive development cost and loss in market share due to the competi-
tive environment. Therefore, testing stop time and software release time should be treated
essentially different time points (Arora et al. 2006). The software should be released early
to capture the market and testing must be continued for an added period until the definitive
reliability level is attained. Keeping this aspect in mind, few researchers have examined the
optimization problem by choosing testing termination time and software time-to-market
as two separate decision variables (Jiang et al. 2012; Majumdar et al. 2017; Kapur et al.
2017). These studies facilitate the post-testing phenomenon wherein both the develop-
ers and the users identify the bugs in the software system. The post-release testing is also
referred as field-testing in which users also address the problems they encounter and report
it to the testing team. Testers, on the other hand, will forward software patches to the cus-
tomers after they rectify the issue. Software companies are effectively using the user’s bug
reports to identify flaws and enhance the quality of the software system. Thus, customers
can play a prominent part in accelerating the reliability and security of the software device.

The drawback of previous studies incorporating post-release testing is that they have
considered the rate of failure-observation of the developers to be constant during the entire

308 Annals of Operations Research (2022) 312:305–332

1 3

testing period. However, in the testing phase after the software is released the efficiency of
the testing team may alter. When defective applications run in the field, many issues can
emerge, such as, high maintenance cost, user’s dissatisfaction, loss of firm’s goodwill and
eventually decline in market share. Therefore, to avoid failures at the user’s end, testers
update their testing strategy during the field-testing to intensify the fault detection process.
To incorporate this realistic phenomenon, the present paper provides an alternative release
time policy and optimal testing termination time using the concept of change-points.
Change-point specifies the testing-time at which the software failure-occurrence pattern
changes (Zhao 2003; Kapur et al. 2008a, b; Inoue et al. 2015; Tickoo et al. 2016). This
change occurs owing to the change in the testing environment, e.g., modification in the
testing-effort expenditures, variation in the fault target, the modification in resource alloca-
tion, and other random factors.

Another limitation of the previous studies on post-release testing is that their optimal
policies are based only on the exponential SRGM. No other failure-occurrence func-
tions such as S-shaped learning function are used. To address this limitation, the present
paper proposes an optimal policy using generalized distribution function. To the best
of our knowledge, the proposed study is the first attempt that jointly optimizes the soft-
ware release time and testing stop time for S-shaped bug-detection distribution functions
also. An NHPP based unification scheme has been applied to estimate the reliability and
availability of the software system. Furthermore, a release policy with field-testing (FT)
is developed that explicitly considers the phenomenon where developers continue to test
the software after its release for some specific period. Joint optimization of software time-
to-market and testing stop time is further solved using multi-criterion decision-making
(MCDM) technique known as multi-attribute utility theory (MAUT). The results of the
problem are compared with the release policy with no field-testing (NFT). This is a con-
ventional release time policy wherein in-house testing continues until the required reliabil-
ity aspiration level is achieved. After that, the testing process terminates, and software is
delivered in the market.

The remainder of the paper is organized as follows. In Sect. 2, the modeling frame-
work of fault occurrence phenomenon and various costs are formulated along with vari-
ous assumptions and notations on which the model is based. Following that, two optimal
release policies, specifically release policy with field-testing (FT) and with no field-testing
(NFT) are suggested in Sect. 3. Also, multi-criterion decision-making technique, known as
MAUT is applied to solve the optimization problem, which is also explained in Sect. 3. In
Sect. 4, the findings from the current research are illustrated using a numerical example,
and in Sect. 5, sensitivity analysis is further evaluated to understand the effects of the criti-
cal parameters on the optimal results. Finally, concluding remarks along with managerial
implications and direction for future studies is detailed in Sect. 6.

2 Model development

This section describes the reliability growth modeling using unification scheme. A gen-
eralized SRGM fault classification model is developed to measure the number of faults
identified during the software product lifecycle. The fault detection process is developed
under two scenarios. According to first scenario, software release time and testing duration
are considered two distinct time points. Second, when testing release time and testing stop
time coincides. Figure 1 pictorially describes the software lifecycle under two different

309Annals of Operations Research (2022) 312:305–332

1 3

scenarios. Figure 1a represent the scenario when software lifecycle is divided into three
phases: system testing phase or pre-release testing phase, field-testing phase or post-release
testing phase, and post-testing phase (after testing termination). In addition, Fig. 1b depicts
the situation when software lifecycle comprises of two phases: testing phase and opera-
tional phase.

2.1 Notations

a Total number of faults present in the software system before testing process
m

t1
(t) Expected number of faults observed by time t during pre-release testing phase [0, �)

m
t2
(t − �) Expected number of faults identified by testers during field-testing phase [�, T)

m
u1
(t − �) Expected number of faults observed by users during field-testing phase [�, T)

m
u2
(t − T) Expected number of faults discovered by users during post-testing phase [T , T

lc
]

� Software time-to-market, which also acts as a change-point for tester’s fault discovery rate
T Testing duration of the software product; T > 𝜏

T
lc

The total lifecycle of the software product
�
FT

Optimal software release time under field-testing release policy
T
FT

Optimal software testing duration under field-testing release policy
�
NFT

Optimal software time-to-market under no field-testing release policy
F
t1
(t) The cumulative fault detection distribution function of testers before change-point �

F
t2
(t) The cumulative fault detection distribution function of testers after change-point �

F
u
(t − �) The cumulative fault discovery distribution function of users

C1 Testing cost per unit time during the testing duration
C2 Market opportunity cost depending on the software release time
C3 Debugging cost of a single fault during pre-release testing phase (before change-point)
C4 Debugging cost of a fault detected by the tester during field-testing phase (after change-point)
C5 Debugging cost of a fault detected by users during field-testing
C6 Debugging cost of a fault detected by users during the post-testing period

Fig. 1 Different phases of failure
occurrence phenomenon under a
field-testing release policy and b
no field-testing release policy

0 Tτ =

Phase 1 Phase 2

Testing stops at the
release time

Tlc

0 τ
T

Phase 1 Phase 2 Phase 3

Software time-to-
market

Testing
termination time

Tlc

(a)

(b)

310 Annals of Operations Research (2022) 312:305–332

1 3

2.2 Assumptions

The growth models for fault detection phenomenon are based upon the following
assumptions:

1. Debugging process is modeled using a non-homogenous poison process (NHPP).
2. Every failure in the software is independently and identically distributed over the life-

cycle of the system with probability distribution F(t) = P(X ≤ t) = ∫ f (x)dx, where P(⋅)
denotes the cumulative probability of failure occurrence.

3. Faults causing failure are removed immediately, i.e., the fault correction time is negli-
gible.

4. The amount of initial faults in the software is finite and fixed.
5. When the fault is identified, it is removed perfectly without generating any additional

faults.
6. During field-testing, some portion of the faults lying dormant in the system is observed

by the developers, and the users discover the remaining faults.
7. After detecting the faults, customers immediately report it to the testing team. Testers

then send a patch to users once they rectify the problem.
8. Cost of providing a patch to the customers in the form of the software update is consid-

ered trivial.

2.3 Modeling framework under field‑testing (FT) release time policy

2.3.1 Phase 1: System‑testing or pre‑release testing period [0, �)

During the system-testing period, developers comprehensively debug faults to release
a reliable and dependable software device in the market. The expected number of faults
observed at any time is directly proportional to the number of faults remaining in the soft-
ware device at that time. Mathematically, the differential equation for fault identification at
any instant of time is given as:

where
ft1
(t)

1−Ft1
(t)

 is the hazard rate describing the conditional probability of fault detection at
time t given that no failure is occurred due to the respective fault before time t;

(
a − mt1

(t)
)

signifies the remaining number of faults to be removed at time t.
Equation (1) can be further solved using the initial condition at t = 0, mt1

(t) = 0, to
obtain the expected number of cumulative faults detected by time t:

where a is the initial fault content in the software. Besides, faults are immediately removed
as soon as they are identified.

From the past software error detection data, it has been established that the growth
curve of fault discovery process follows either concave or S-shaped pattern. Thus, there
are two principal categories of modeling software reliability growth process: exponential

(1)
dmt1

(t)

dt
=

ft1 (t)

1 − Ft1
(t)

(
a − mt1

(t)
)

(2)mt1
(t) = aFt1

(t); 0 ≤ t < 𝜏

311Annals of Operations Research (2022) 312:305–332

1 3

and S-shaped functions. Consequently, in software engineering literature, researchers
have developed different SRGMs by incorporating various testing and operational aspects
to depict these two growth curves accurately. In the present study, different non-decreas-
ing functions can be applied to model the fault-detection process. However, the current
research utilizes three distinguished and well-acknowledged SRGMs to demonstrate the
mean value function for phase 1. The concave fault-identification function is described
using Goel–Okumoto exponential intensity function (Goel and Okumoto 1979), and for
expressing an S-shaped learning process, Yamada delayed S-shaped (Yamada et al. 1983)
and Kapur–Garg logistic distribution (Kapur et al. 2011b) is applied.

• SRGM with exponential distribution function (Goel and Okumoto 1979)
 When NHPP based failure-observation follows an exponential distribution function,

i.e.Ft1
(t) = (1 − e−b1t), then the mean value function of fault identification in phase 1

takes the following form:

where a is the total faults at the start of the testing period and b1 is the fault identifica-
tion parameter during system testing (before change-point).

• SRGM with delayed S-shaped distribution function (Yamada et al. 1983)
 The NHPP model with delayed S-shaped growth curve for fault identification pro-

cess with distribution function Ft1
(t) =

(
1 − (1 + b1t)e

−b1t
)
 is expressed as:

where b1 is the rate parameter denoting the tester’s error detection rate before change-
point �.

• SRGM with logistic distribution function (Kapur et al. 2011b)
 Considering error detection phenomenon as an NHPP with logistic learning function

i.e. Ft1
(t) =

(
1−e−b1 t

1+�1e
−b1 t

)
, the expected fault detection during system testing becomes:

where b1 is the fault detection parameter and �1 is the learning parameter during system
testing (before change-point).

2.3.2 Phase 2: Field‑testing or post‑release testing period [�, T]

Although the software is released in the market at the time �, the testing of the software
continues for an added period to enhance the quality of the software product. During this
phase, both developers and customers identify the faults remaining in the system. Moreo-
ver, it is believed that the testing team modifies the testing efforts to debug the software
faults with more intensity after its release, which changes the fault detection rate of the
testers. Therefore, � also represents the change-point for the developers debugging process.

Now, after phase 1, aFt1
(�) faults have been removed by the testing team from the

software. Thus, the remaining faults after testing period is a − aFt1
(�) (or a(1 − Ft1

(�))).
Clearly, a(1 − Ft1

(�)) represents the total faults at the beginning of phase 2 (field-testing).
Now, out of these undetected faults, it is assumed that a fixed proportion say ‘λ’ will be
detected by the testers and remaining (1 − λ) will be identified by the users who then

(3)mt1
(t) = a

(
1 − e−b1t

)

(4)mt1
(t) = a

(
1 − (1 + b1t)e

−b1t
)

(5)mt1
(t) = a

(
1 − e−b1t

1 + �1e
−b1t

)

312 Annals of Operations Research (2022) 312:305–332

1 3

immediately report it to the developers for correcting it. Therefore, the expected number of
faults discovered by the testers at time t during the field-testing period is given by:

where
ft2
(t)

1−Ft2
(t)

 is the tester’s fault detection rate after change-point �. On further solving the
Eq. (6) by applying initial condition i.e. at t = �, mt2

(t − �) = 0 , the expected number of
faults detected by the testing team during phase 2 becomes:

Equation (7) represents the expected bugs detected by the testing team in time duration
(t − 𝜏), 𝜏 ≤ t < T , i.e. during post-release testing period.

Now, as the software enters the market, users also contribute in bug identification. Thus,
the expected number of bugs identified by the users of the software system at any instant of
time t during field-testing is:

where fu(t−�)

1−Fu(t−�)
 is hazard rate that denotes the combined fault identification rate of the users.

Note that the user’s origin point will be �. On further evaluating the Eq. (8) under the initial
condition that at t = �, mu1

(t − �) = 0, Fu(t − �) = 0, following analytical solution is
obtained:

where mu1
(t − �) express the expected number of bugs detected by the user during

field-testing.

• SRGM with exponential distribution function
 When fault observation phenomenon occurs with exponentially decreasing rate, then

the mean value function of fault identification for testers and users in phase 2 takes the
following respective form:

where b2 is the fault detection parameter for the testers during the field-testing (after
change-point)

where b3 is the fault detection parameter for the users.

• SRGM with delayed S-shaped distribution function
 The expected number of bugs identified by the testers and users respectively when

fault observation phenomenon follows delayed S-shaped curve is given as:

(6)
dmt2

(t − 𝜏)

dt
=

ft2 (t)

1 − Ft2
(t)

(
𝜆a(1 − Ft1

(𝜏)) − mt2
(t − 𝜏)

)
; 𝜏 < t ≤ T

(7)mt2
(t − 𝜏) = 𝜆a

(
1 − Ft1

(𝜏)
)[

1 −

(
1 − Ft2

(t)
)

(
1 − Ft2

(𝜏)
)
]
; 𝜏 < t ≤ T

(8)
dmu1

(t − 𝜏)

d(t − 𝜏)
=

fu(t − 𝜏)

1 − Fu(t − 𝜏)

(
(1 − 𝜆)a(1 − Ft1

(𝜏)) − mu1
(t − 𝜏)

)
; 𝜏 < t ≤ T

(9)mu1
(t − 𝜏) = (1 − 𝜆)a

(
1 − Ft1

(𝜏)
)
Fu(t − 𝜏); 𝜏 < t ≤ T

(10)mt2
(t − 𝜏) = 𝜆ae−b1𝜏

(
1 − e−b2(t−𝜏)

)
; 𝜏 < t ≤ T

(11)mu1
(t − 𝜏) = (1 − 𝜆)ae−b1𝜏

(
1 − e−b3(t−𝜏)

)
; 𝜏 < t ≤ T

313Annals of Operations Research (2022) 312:305–332

1 3

where b2 is the fault detection parameter for the testers during the field-testing (after
change-point)

where b3 is the users combined fault detection rate.

• SRGM with logistic distribution function
 When error identification follows logistic learning function, then mean value func-

tion for fault detection by the developers and users will be:

where b2 is the fault detection parameter and �2 is the learning parameter for the testers
during the field-testing (after change-point)

where b3 is the fault detection parameter and �3 is the learning parameter for the
customers.

2.3.3 Phase 3: Post‑testing period [T , T
lc
]

Software developers have to stop testing the system after a certain time, say T, when the
desired level of reliability has been attained. However, during this phase, customers can
encounter failure due to the bugs remaining in the system that was not identified in the
previous phases. Users will report the fault to the developers, who then rectify the bug and
send the patch to the users. This process of fault removal, therefore, continues until the end
of software’s lifecycle.

Let the remaining number of faults in the software that were undetected in previous
phases be Za Then, Za = a − mt1

(�) − mt2
(T − �) − mu1

(T − �), i.e.

Thus, the instantaneous rate of fault detection by the users in phase 3 is given as:

Equation (17) can be further solved under the condition, t = T , mu2
(t − T) = 0 to obtain

the following solution:

(12)mt2
(t − 𝜏) = 𝜆a(1 + b1𝜏)e

−b1𝜏

[
1 −

(
1 + b2t

1 + b2𝜏

)
e−b2(t−𝜏)

]
; 𝜏 < t ≤ T

(13)mu1
(t − 𝜏) = (1 − 𝜆)a(1 + b1𝜏)e

−b1𝜏
(
1 − (1 + b3(t − 𝜏))e−b3(t−𝜏)

)
; 𝜏 < t ≤ T

(14)mt2
(t − 𝜏) = 𝜆a

(
(1 + 𝛽1)e

−b1𝜏

1 + 𝛽1e
−b1𝜏

)[
1 −

(
1 + 𝛽2e

−b2𝜏

1 + 𝛽2e
−b2t

)
e−b2(t−𝜏)

]
; 𝜏 < t ≤ T

(15)mu1
(t − 𝜏) = (1 − 𝜆)a

(
(1 + 𝛽1)e

−b1𝜏

1 + 𝛽1e
−b1𝜏

)(
1 − e−b3(t−𝜏)

1 + 𝛽3e
−b3(t−𝜏)

)
; 𝜏 < t ≤ T

(16)Za = a(1 − Ft1
(�))

(
1 − �

{
1 −

(
1 − Ft2

(T)
)

(
1 − Ft2

(�)
)
}

− (1 − �)Fu(T − �)

)

(17)
dmu2

(t − T)

d(t − 𝜏)
=

fu(t − 𝜏)

1 − Fu(t − 𝜏)

(
Za − mu2

(t − T)
)
; T < t ≤ Tlc

314 Annals of Operations Research (2022) 312:305–332

1 3

After substituting the value of Za in Eq. (18), the expected number of faults observed dur-
ing this phase becomes:

Equation (19) represents the expected bugs removed by the testers in interval [T , Tlc]

• SRGM with exponential distribution function
 When fault observation phenomenon occurs with exponentially decreasing rate, then

the mean value function of fault identification for the users in phase 3 takes the follow-
ing respective form:

• SRGM with delayed S-shaped distribution function
 When fault observation phenomenon occurs with exponentially decreasing rate, then

the mean value function of fault identification for the users in phase 3 takes the follow-
ing respective form:

• SRGM with logistic distribution function
 When error identification follows logistic learning function, then mean value func-

tion of fault detection by the users becomes:

(18)mu2
(t − T) = Za

[
1 −

(
1 − Fu(t − 𝜏)

1 − Fu(T − 𝜏)

)]
; T < t ≤ Tlc

(19)
m

u2
(t − T) =a(1 − F

t1
(�))

(
1 − �

{
1 −

(
1 − F

t2
(T)

)
(
1 − F

t2
(�)

)
}

− (1 − �)F
u
(T − �)

)

[
1 −

(
1 − F

u
(t − �)

1 − F
u
(T − �)

)]

(20)

mu2
(t − T) = ae

−b1𝜏
(
1 − 𝜆

(
1 − e

−b2(T−𝜏)
)
− (1 − 𝜆)

(
1 − e

−b3(T−𝜏)
))(

1 − e
−b3(t−T)

)
; T < t ≤ Tlc.

(21)
m

u2
(t − T) =a(1 + b1𝜏)e

−b1𝜏

⎛⎜⎜⎝
1 − 𝜆

�
1 −

�
1 + b2T

1 + b2𝜏

�
e
−b2(T−𝜏)

�

−(1 − 𝜆)
�
1 − (1 + b3(T − 𝜏))e−b3(T−𝜏)

�
⎞⎟⎟⎠�

1 −

�
1 + b3(t − 𝜏)

1 + b3(T − 𝜏)

�
e
−b3(t−T)

�
; T < t ≤ T

lc
.

(22)
m

u2
(t − T) =a

�
(1 + 𝛽1)e

−b1𝜏

1 + 𝛽1e
−b1𝜏

�⎛⎜⎜⎜⎜⎝

1 − 𝜆

�
1 −

�
1 + 𝛽2e

−b2𝜏

1 + 𝛽2e
−b2T

�
e
−b2(T−𝜏)

�

−(1 − 𝜆)

�
1 − e−b3(T−𝜏)

1 + 𝛽3e
−b3(T−𝜏)

�
⎞⎟⎟⎟⎟⎠�

1 −

�
1 + 𝛽3e

−b3(T−𝜏)

1 + 𝛽3e
−b3(t−𝜏)

�
e
−b3(t−T)

�
; T < t ≤ T

lc
.

315Annals of Operations Research (2022) 312:305–332

1 3

2.4 Modeling framework under no field‑testing (NFT) release time policy

In the traditional modeling framework, the software lifecycle is separated into two phases,
specifically, testing phase (before software release time) and operational phase (after
release time). In such scenario, the release time and testing duration coincides, i.e. � = T .
Therefore, faults are detected only by the testers before release time and it is considered
that all the remaining faults after the software release is detected and reported by users,
which are then removed by the testing team. In the testing phase [0, �) the expected num-
ber of faults detected by the testers is given as:

As in the operational phase [�, Tlc], all the remaining faults will be detected by the users,
therefore, the mean value function of faults identified during this period will become:

2.5 Cost modeling

To perform joint optimization of the software distribution time and testing termination
time, the following cost components are involved:

(a) Testing cost
 Testing cost includes the efforts required to perform and execute the testing process.

According to the software engineering literature, the cost of testing linearly increases
with the testing duration (Pham and Zhang 1999). Therefore, if C1 is the testing cost
per unit time, then the overall testing cost for the entire testing duration is given as:

(b) Market opportunity cost
 The delay in software release may result in tangible and intangible losses to the firm.

These losses can be represented in the form of market opportunity cost. The opportu-
nity cost is an essential attribute to utilize limited resources such as time, labor, etc.
efficiently. This cost is assumed to expand non-linearly with an increase in release time.
This is because the delay in software distribution will raise the possibility that competi-
tors may manipulate the market. Specifically, the opportunity cost function is presumed
a power law form, which is comparatively flexible in representing the dependence of
cost over time (Chiu et al. 2009). As time in releasing software increases, the opportu-
nity cost also increases because of more loss of commercial opportunities. Therefore,
the following power law form is considered to model opportunity cost function:

where � is a parameter denoting the degree of opportunity loss in time and its value
can be achieved from the assessment of experts and prior empirical studies.

(23)mt1
(t) = aFt1

(t); 0 ≤ t < 𝜏

(24)mu(t − �) = a
(
1 − Ft1

(�)
)
Fu(t − �); � ≤ t ≤ Tlc.

(25)Ctesting(t) = C1T

(26)Cmarket_opp(t) = C2�
�

316 Annals of Operations Research (2022) 312:305–332

1 3

 In software engineering literature, a quadratic function is viewed as the most straight-
forward and appropriate functional form of opportunity cost. The study proposed by
Jiang and Sarkar (2003), Chiu et al. (2009), Jiang et al. (2012), and Yamada and
Yamaguchi (2016) have used quadratic function to describe market opportunity cost.
Therefore, to depict a benchmark scenario, the value of parameter � is drawn upon
from the past literature. Thus, the opportunity cost is assumed a quadratic function of
release time and therefore, the overall opportunity cost becomes:

(c) Faults debugging cost during pre-release testing period
 This cost comprises of the efforts required by the testing team to handle failures. In

software reliability literature, it is assumed to depend linearly on the expected number
of bugs identified during this phase (Okumoto and Goel 1980). Therefore, the error-
debugging cost in phase 1 will be:

(d) Faults debugging cost during field-testing period
 Debugging cost during field-testing is segregated into two components. Firstly, the

cost of debugging of the faults detected by the testers and secondly, the cost involved
in rectifying the errors identified by the users. This cost is considered as a linear func-
tion of the number of observed faults. Thus, the total cost of debugging during phase
2 will be:

(e) Faults debugging cost post-testing period
 This cost includes the debugging cost in operational phase when testing has termi-

nated. During this phase, faults reported by the users are corrected by the developers.
This cost depends on the expected number of faults identified by the customers in phase
3. Hence, the faults debugging cost during this phase will be:

Thus, the overall cost function is given as:

The above cost structure is when company continues to test the software after its release;
the firm has adopted the field-testing (FT) release time policy. Therefore, subscript FT denotes
the field-testing. Now, in the conventional approach the optimal testing termination time and
optimal time-to-market the software product are same. So under no field-testing (NFT) sce-
nario the cost structure becomes:

(27)Cmarket_opp(t) = C2�
2.

(28)CPhaseI(t) = C3mt1
(�).

(29)CPhaseII(t) = C4mt2
(T − �) + C5mu1

(T − �).

(30)CPhaseIII(t) = C6mu2
(Tlc − T).

(31)

C(�FT , TFT) = C1TFT + C2�
2

FT
+ C3mt1

(�FT) + C4mt2
(TFT − �FT) + C5mu1

(TFT − �FT)

+ C6mu2

(Tlc − TFT).

317Annals of Operations Research (2022) 312:305–332

1 3

3 Optimal policies using MAUT

In this section, two software policies, i.e. release policy with field-testing (FT) and policy with
no field-testing (NFT) are described. In FT policy, testing is allowed to continue for a fixed
period in the operational phase as well. In contrast, according to NFT policy, the testing stops
at the release of the software. For FT policy, a joint optimization problem is developed to cal-
culate software time-to-market and optimal testing stop time using a multi-criterion technique
known as MAUT. This technique is further applied for NFT policy to evaluate optimal testing
stop time, which is also a software distribution time under this policy.

3.1 Multi‑attribute utility theory

Multi-Attribute Utility Theory (MAUT) is a multi-criterion decision-making technique devel-
oped by Keeney (1971) to examine the tradeoffs among different objectives. This analysis is
a tool to evaluate the alternatives quantitatively. MAUT involves the following steps (Garma-
baki et al. 2012; Kapur et al. 2013):

1. Determining the appropriate attributes for the problem.
2. Formulating the Single Utility Attribute Function (SAUF).
3. Measuring the relative importance of utility functions.
4. Establishing the Multi-Attribute Utility Function (MAUF).

Step 1 Attributes determination
Two important attributes associated with the software system and decisively affects its mar-
ket entry time are reliability and cost. The functional form of these two critical factors are
provided below.

Reliability The reliability of a software device is an essential attribute for both the ven-
dors and the users. It is measured as a probability of failure-free operation performed by
the product with desirable output in a specific period of time under certain environmental
conditions (Yamada 2014). Reliability is thus an indicator of the quality of the product.
Therefore, during the debugging process, maximizing the software reliability is the crucial
issue for the testing team. The conditional reliability of software system in a specified time
interval [t, t + x] is given as:

The value of R(x|t) lies between 0 and 1, more close the value of R to 1, more will be
the reliability. Also, R(x|t) possesses following boundary conditions: R(x|0) = e−m(x) and
R(x|∞) = 1. So, the first attribute for the given multi-attribute utility problem, the reliability
function at the release time (�) and testing stop time of the software is given as (Kapur et al.
2017):

(32)C(�NFT) = C1�NFT + C2�
2

NFT
+ C3mt1

(�NFT) + C6mu(Tlc − �NFT).

(33)R(x|t) = e−[m(t+x)−m(t)]

318 Annals of Operations Research (2022) 312:305–332

1 3

Under field-testing (FT) policy:

where x1 and x2 are small time durations; �FT is the optimal software release time and TFT
optimal testing duration under FT policy Also as discussed above, the fault-identification
process before software release is done by the testers and after the release time �, it is
performed either by the testing team or users. Therefore, the mean value function of fault
detection by time (� + x1) is given by:

Thus, the number of faults detected in the small interval [�, � + x1] is given as:

Moreover, the mean value function of fault detection in small interval [T , T + x2] is
given as:

Under no field-testing (NFT) policy:

where �NFT is the optimal software release time under NFT policy, which is also the testing
stop time

In NFT policy, testers detect faults in the software till time �, the release time of the
software. After that, only users detect and report the faults to the testing team. Therefore,
the number of faults detected by time (� + x1) under no filed-testing policy is given as:

Cost components Cost is the most decisive attribute for the success of any enterprise. In
software engineering, the cost function is directly dependent on the testing duration. As
software testing increases, the cost also increases. Therefore, the primary objective of soft-
ware developers is to minimize the cost and debug the faults at the earliest. Moreover, the
software analysts ought to spend less than their cost budget. Thus, the second attribute
takes the following form:

(34)Maximize R(x|�,T) = e−[m(�FT+x1)−m(�FT)]−[m(TFT+x2)−m(TFT)]

(35)
m(� + x1) =aF1(�) + �a

(
1 − F

t1
(�)

)[
1 −

(
1 − F

t2
(� + x1)

1 − F
t2
(�)

)]

+ (1 − �)a
(
1 − F

t1
(�)

)
F
u
(� + x1 − �)

(36)

m(� + x1) − m(�) = �a
(
1 − Ft1

(�)
)[

1 −

(
1 − Ft2

(� + x1)

1 − Ft2
(�)

)]
+ (1 − �)a

(
1 − Ft1

(�)
)
Fu(� + x1 − �)

(37)

m(T + x2) − m(T) =a(1 − F
t1
(�)) ×

(
1 − �

{
1 −

(
1 − F

t2
(T)

)
(
1 − F

t2
(�)

)
}

− (1 − �)F
u
(T − �)

)

×

[
1 −

(
1 − F

u
(T + x2 − �)

1 − F
u
(T − �)

)]

(38)Maximize R(x|�) = e−[m(�NFT+x1)−m(�NFT)]

(39)m(� + x1 − �) = aFt1
(�) + a

(
1 − Ft1

(�)
)
Fu(� + x1 − �).

319Annals of Operations Research (2022) 312:305–332

1 3

Under field-testing (FT) policy:

where C(�
FT
, T

FT
) = C1TFT + C2�

2

FT
+ C3mt1

(�
FT
) + C4mt2

(T
FT

− �
FT
) + C5mu1

(T
FT

− �
FT
) + C6mu2

(T
lc
− T

FT
)

describe the software testing cost and debugging cost and Cb is the total budget available
with the developers.

Under no field-testing (NFT) policy:

where C(�NFT) = C1�NFT + C2�
2

NFT
+ C3mt1

(�NFT) + C6mu(Tlc − �NFT) is the total software
cost under NFT policy.

Step 2: SAUF formulation
In MAUT, the aspiration level of all attributes is illustrated using utility functions
(Li et al. 2012; Minamino et al. 2015). The functional form of these utility functions
is either linear, u(x) = l + mx or exponential, u(x) = l + mepx. The applicability of the
particular functional form for the problem is evaluated by interviews with the manag-
ers, surveys, and lottery (Kapur et al. 2013). For the proposed problem, linear form is
adopted for both the criteria, i.e.

Furthermore, each utility function is bounded with the best, u(xbest) = 1 and the worst,
u(xworst) = 0 values for every attribute. For the given problem, SAUF is based on the fol-
lowing management policies:

(a) At least 60% of the faults must be identified for the reliable software, and the
maximum aspiration level is 100%.

(b) At least 90% of the cost budget is consumed, and the maximum requirement is
100%.

Then, the minimum cost requirement is Cworst = 0.9 , and maximum cost requirement
is Cbest = 1. Similarly, the minimum reliability aspiration level is Rworst = 0.6 and maxi-
mum reliability aspiration level is Rbest = 1. Therefore, the SAUF for cost and reliability
attributes will be:

Step 3: Relative importance of attributes

The weight or relative importance to each attribute is assigned based on the man-
agement decision. These weights are also referred to as scaling constants (Garmabaki
et al. 2012). In the given problem, scaling constants are calculated by evaluating the
two choices. Management has given priority to the reliability attribute, the, i.e., weight
assigned to reliability is wR = 0.6. Moreover, the sum of the scaling constants is always
equal to 1. Therefore, the weight given to cost attribute will be wc = 0.4.

(40)Minimize C =
C(�FT , TFT)

Cb

(41)Minimize C =
C(�NFT)

Cb

(42)u(C) = lc + ucC and u(R) = lr + mrR

(43)U(C) = 10C − 9 and U(R) = 2.5R − 1.5

320 Annals of Operations Research (2022) 312:305–332

1 3

Step 4 MAUF formulation
On adding all the single utility functions by multiplying each with their respective
weights, MAUF is formed. For the given problem, the Multi-Attribute Utility Func-
tion with maximization objective is given as:

where wR + wc = 1

Here the managers intend to maximize the reliability R and minimize the cost C. There-
fore, the negative sign is multiplied with the cost-utility. With the help of the optimiza-
tion problem given in Eq. (44), the optimal software distribution time, �∗ and optimal
testing termination time, T∗ is evaluated. Using the values from the previous steps, the
MAUF takes the following form:

The maximization problem is also subjected to the following budgetary constraint:

4 Numerical analysis

The prediction accuracy and estimation efficiency of the SRGMs discussed in Sect. 2 is
evaluated using the actual failure data. In addition, the applicability of the optimization
problem developed in the previous section is exemplified using a numerical example. The
fault count data of Tandem computers collected during the system-testing period is used to
estimate the parameters of the developed SRGM model for phase 1. The cumulative failure
occurrence dataset of the first two releases of Tandem computers are obtained from (Wood
1996). The bug-detection behavior of Tandem computers Release-1 is distributed exponen-
tially, and Release-2 follows an S-shaped pattern. Therefore, exponential SRGM is fitted to
the Release-1 (DSI) and delayed S-shaped and logistic SRGMs are fitted to the Release-2
(DSII) of Tandem computers dataset. In Release-1, the software was tested for 20 weeks
wherein developers identified 100 faults and for Release-2, debugging process contin-
ues for 19 weeks wherein 120 faults were observed. To conduct the regression analysis
and parameter estimation, non-linear least square (NLLS) statistical procedure is applied
using Levenberg–Marquardt’s method (Marquardt 1963) that minimizes the overall sum of
squared errors.

The data analysis is performed using procedure SAS PROC MODEL in statistical
software known as SAS (SAS/ETS User’s Guide 2004). The values of four goodness-
of-fit measures: root mean squared error (RMSE), mean absolute error (MAE), coef-
ficient of determination (R-square) and, adjusted coefficient of determination (Adjusted
R-square) are summarized in Table 1 for both datasets. From the results, it can be inter-
preted that Logistic SRGM fit better to the dataset (DSII) than delayed S-shaped SRGM.

(44)Max U(R,C) = wRu(R) − wCu(C)

(45)Max U(R,C) = 0.6 × (2.5R − 1.5) − 0.4 × (10C − 9)

(46)

C(�FT , TFT) = C1TFT + C2�
2

FT
+ C3mt1

(�FT)

+ C4mt2
(TFT − �FT) + C5mu1

(TFT − �FT) + C6mu2

(Tlc − TFT) ≤ Cb (under FT policy)

(47)

C(�NFT) = C1�NFT + C2�
2

NFT
+ C3mt1

(�NFT) + C6mu2

(Tlc − �NFT) ≤ Cb (under NFT policy).

321Annals of Operations Research (2022) 312:305–332

1 3

Table 1 Performance measure
results

SRGM RMSE MAE R-Square Adj R2

DSI: Tandem computers I release
Exponential 3.5928 3.0647 0.9857 0.9849
DSII: Tandem computers II release
Delayed S-shaped 3.8325 2.40016 0.9900 0.9895
Logistic 2.6696 1.76753 0.9955 0.9949

Fig. 2 Goodness-of-fit curve for exponential SRGM for DSI

Fig. 3 Goodness-of-fit curve for delayed S-shaped SRGM for DSII

322 Annals of Operations Research (2022) 312:305–332

1 3

Further, comparison between the actual value of fault count and the predicted values
for three SRGMs are pictorially represented in Fig. 2, Figs. 3, and 4 respectively. In
addition, the estimated values of the parameters for exponential SRGM are a = 130.201,

b1 = 0.083, for Delayed S-shaped SRGM are a = 127.3989,b1 = 0.241689 and for logis-
tic SRGM are a = 124.445, b1 = 0.2535,�1 = 3.77849. Further, it is assumed that the
efficiency of testers in discovering the faults increases by 50% during the field-testing
period, i.e., after change-point, �, the intensity with which testers are detecting the
faults is escalated. Therefore, for exponential SRGM, parameters are set as: b2 = 0.124,
for Delayed S-shaped SRGM: b2 = 0.3625335 and for logistic SRGM: b2 = 0.38025,

�2 = 5.667735. Besides, the competency of the users in detecting the faults is con-
sidered 60% of that of testers. Therefore, for users, parameters are set as b3 = 0.0498
(for exponential distribution), b3 = 0.1450134 (for delayed S-shaped distribution), and
b3 = 0.1521,�3 = 2.267094 (for logistic distribution). The values of other parameters are
set based upon the prior empirical studies and experts evaluation:

It may be noted that the value of parameter � is assumed based on the assessment and pre-
diction of the software analysts. It is considered that the efficiency of professional testers in
identifying bugs is more as compared to the novice users. Therefore, it is assumed that the
60% (� = 0.6) of remaining faults from the software system is detected by the testing team
and remaining 40% of bugs are being detected by the users. Moreover, to analyze the sig-
nificance of parameter � on the optimal value of decision variables, the sensitivity analysis
of � is also performed.

Furthermore, using the estimated and assumed values of parameters, the optimization
problem described in Eq. (45) is evaluated for the discussed SRGMs. For the present study,
numeric computational software MAPLE is used for measuring and graphically represent-
ing the utility function. The prime objective of the optimization problem is to analyze and

C1 = $100, C2 = $16, C3 = $40, C4 = $70, C5 = $120, C6 = $150,

Cb = $23, 500, x1 = 2, x2 = 2, � = 0.6, and Tlc = 100 weeks

Fig. 4 The goodness-of-fit curve for logistic SRGM for DSII

323Annals of Operations Research (2022) 312:305–332

1 3

Table 2 Optimal results under field-testing (FT) policy

Model under FT policy U ∗ (� ∗
FT
,T ∗

FT
) � ∗

FT
 (in weeks) T ∗

FT
 (in weeks) (T ∗

FT
−� ∗

FT
)

Exponential SRGM 0.542 8.164 20.928 12.764
Delayed S-shaped SRGM 0.844 10.231 16.864 6.633
Logistic SRGM 0.916 10.478 16.041 5.563

Fig. 5 Concavity plot under FT policy for a exponential SRGM, b delayed S-shaped SRGM, and c logistic
SRGM

Table 3 Optimal results under no
field-testing (NFT) policy

Model under NFT policy U(�
NFT

) � ∗
NFT

 (in weeks)

Exponential SRGM 0.348 11.778
Delayed S-shaped SRGM 0.727 12.500
Logistic SRGM 0.813 12.835

324 Annals of Operations Research (2022) 312:305–332

1 3

compare the two different release time policies. The results of the optimization problem
under FT release time policy are summarized in Table 2. The three-dimensional picto-
rial representation of the concavity of the utility function under FT policy is depicted in
Fig. 5a–c for exponential, delayed S-shaped and logistic SRGM, respectively. In addition,
the optimal results under NFT policy, wherein it is considered that testing stops at the soft-
ware release time are listed in Table 3. The combined utility function of reliability and cost
attribute under NFT policy is strictly concave, which is shown in Fig. 6a–c for the three
SRGMs respectively.

Under FT policy, the optimal market entry time is 8.16 weeks and testing stop time is
20.93 weeks (for Release-1) with the total utility of 54.2% when fault-debugging process
follows an exponential SRGM. For release 2, the optimal time-to-market is 10.23 weeks,
testing duration is 16.86 weeks with 84.4% overall utility when fault-debugging process
follows a delayed S-shaped function, and for logistic distribution, optimal software release
time is 10.48 weeks and testing stop time is 16.04 weeks with 91.6% utility. Under NFT,
only 34.8% of utility is achieved when software (Release 1) is released after 11.78 weeks
of testing. For release 2, 72.7% of utility is obtained for delayed S-shaped SRGM with
�NFT = 12.5 weeks and when logistic distribution function is utilized to illustrate the fault-
debugging process, 89.9% of utility is attained with �NFt = 12.83 weeks. Thus, from the

Fig. 6 Concavity plot under NFT policy for a exponential SRGM, b delayed S-shaped SRGM, and c logis-
tic SRGM

325Annals of Operations Research (2022) 312:305–332

1 3

joint optimization of testing termination time and software release time, it can be construed
that the maximum utility can be achieved when software is released early and testing con-
tinues for an added period in operational phase. The maximum reliability and minimum
cost consumption can prominently be attained when field-testing is conducted. When both
testing-stop time and software distribution time coincides, the utility function decreases.
Without post-release testing, the release of the software has to be delayed to meet the relia-
bility criterion, which will ultimately increase the market opportunity cost. Thus, by releas-
ing the software early, substantial market share can be captured. Moreover, by continuing
the testing process after the software release in the market, the maximum reliability of the
system can be accomplished, thereby gaining the client’s trust. Moreover, from the results
summarized in Tables 2 and 3, it can be inferred that the maximum utility in both the
release time policy is obtained when bug-detection behavior follows a logistic distribution
function.

5 Sensitivity analysis

This section examines the impact of strategic parameters on the optimal solution under
FT policy. Sensitivity analysis is done by changing the values of a specific parameter and
keeping the values of other parameters fixed.

Table 4 Sensitivity analysis on
the parameter � for exponential
SRGM

� U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

0.3 0.399 9.845 18.124 8.279
0.4 0.441 9.300 19.349 10.049
0.5 0.489 8.743 20.249 11.506
0.6 0.542 8.164 20.928 12.764
0.7 0.598 7.553 21.439 13.886

Table 5 Sensitivity analysis
on the parameter � for delayed
S-shaped SRGM

� U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

0.3 0.762 11.526 15.793 4.267
0.4 0.775 11.280 16.113 4.833
0.5 0.807 10.759 16.595 5.836
0.6 0.844 10.231 16.864 6.633
0.7 0.885 9.661 16.984 7.323

Table 6 Sensitivity analysis
on the parameter � for logistic
SRGM

� U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

0.3 0.834 11.960 14.940 2.980
0.4 0.848 11.647 15.320 3.673
0.5 0.884 10.992 15.843 4.851
0.6 0.916 10.478 16.041 5.563
0.7 0.953 9.905 16.116 6.211

326 Annals of Operations Research (2022) 312:305–332

1 3

(a) Impact of �—the fraction of bugs detected by developers during the field-testing period

When � increases, i.e., when the testers are identifying a higher proportion of unde-
tected faults during field-testing, then the optimal software release time (� ∗FT) decreases.
However, the optimal testing stop time (T ∗FT) and the optimal duration of field-testing
(T ∗FT −� ∗FT) increases. The results for the three distribution functions are summarized
in Tables 4, 5 and 6 respectively. As software release time acts as a change-point, i.e., the
effectiveness of the tester for fault-detection increases after the release of the software, it
is optimal to lower the release time. Besides, the testing time and the field-testing period
will increase. This is because the software is released early in the market, so more number
of faults that are left undetected in the system-testing period. Therefore, it is optimal to
increase the field-testing duration to reduce the risk of failure.

(b) Impact of a—The eventual number of faults to be detected

When the initial quantity of bugs in the software is more, either due to system com-
plexity or due to flaws in the development phase, then it is optimal to extend the software

Table 7 Sensitivity analysis on
the parameter a for exponential
SRGM

a U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

120.201 0.667 7.761 20.104 12.343
125.201 0.604 7.965 20.524 12.559
130.201 0.542 8.164 20.928 12.764
135.201 0.479 8.358 21.318 12.960
140.201 0.418 8.547 21.694 13.147

Table 8 Sensitivity analysis
on the parameter a for delayed
S-shaped SRGM

a U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

117.3989 0.946 9.880 16.440 6.560
127.3989 0.844 10.231 16.864 6.633
137.3989 0.744 10.554 17.255 6.701
147.3989 0.646 10.855 17.616 6.761
157.3989 0.549 11.135 17.953 6.818

Table 9 Sensitivity analysis
on the parameter a for logistic
SRGM

a U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

119.445 0.965 10.301 15.857 5.556
124.445 0.916 10.478 16.041 5.563
134.445 0.820 10.808 16.385 5.577
144.445 0.725 11.109 16.701 5.592
154.445 0.632 11.386 16.995 5.609

327Annals of Operations Research (2022) 312:305–332

1 3

release time (� ∗FT) , testing termination time (T ∗FT) and optimal field-testing duration
(T ∗FT −� ∗FT) (Tables 7, 8, and 9). This is because for more number of faults, more test-
ing is required before delivering the software to lower the risk of failure in the operational
phase. Also, it will take a longer testing period to debug the number of undetected faults to
meet the reliability requirement.

(c) Impact of C1—Software per unit testing cost

The influence of variation in testing cost on the decision variables is contradictory to
the consequence of the parameter a. When testing cost escalates, it is optimal to deliver
the software quickly and to end the testing process relatively early, i.e., both release
time (� ∗FT) and testing termination time (T ∗FT) shortens. Additionally, the duration of
field-testing (T ∗FT −� ∗FT) will also decrease. The results for three distribution func-
tions are listed in Tables 10, 11, and 12 respectively.

(d) Impact of C2—Market opportunity cost

Again, when market opportunity cost increases, both release time (� ∗FT) and test-
ing termination time (T ∗FT) reduces. The impact of C2 on decision variable (� ∗FT) is

Table 10 Sensitivity analysis on
the parameter C1 for exponential
SRGM

C1(in $) U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

80 0.616 8.246 23.004 14.758
90 0.578 8.205 21.905 13.700
100 0.542 8.164 20.928 12.764
110 0.507 8.122 20.049 11.927
120 0.473 8.078 19.251 11.173

Table 11 Sensitivity analysis
on the parameter C1 for delayed
S-shaped SRGM

C1 (in $) U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

80 0.903 10.274 17.864 7.590
90 0.873 10.253 17.332 7.079
100 0.844 10.231 16.864 6.633
110 0.816 10.206 16.447 6.241
120 0.788 10.179 16.070 5.891

Table 12 Sensitivity analysis
on the parameter C1 for logistic
SRGM

C1 (in $) U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

80 0.972 10.531 16.839 6.308
90 0.944 10.506 16.413 5.907
100 0.916 10.478 16.041 5.563
110 0.889 10.449 15.708 5.259
120 0.863 10.418 15.408 4.990

328 Annals of Operations Research (2022) 312:305–332

1 3

very significant because the overall market opportunity cost is quadratic increasing with
the increase in release time. However, the effect of C2 on the field-testing duration is
opposite to that of � ∗FT and T ∗FT , i.e. (T ∗FT −� ∗FT) increases with increase in market
opportunity cost. This is because as software is released early, the number of undetected
faults will be higher after its release and therefore, to reduce the risk of failure in opera-
tional phase, relatively lengthy field-testing is required (Tables 13, 14, 15).

6 Conclusion, managerial insights, and future research direction

In today’s software-driven market, reliability and security of software devices are
becoming increasingly significant. Since the cost associated with the failures are mount-
ing and errors are continuously affecting the firm’s performance, determination of the
failure-occurrence phenomenon is growing into exceedingly necessary tasks for soft-
ware analysts. It yields highly useful and relevant information to the management
team, which help them to optimize their decisions concerning software release time
and testing duration. Thus, to increase software reliability and dependability, an effec-
tive software reliability engineering techniques are required that will improve business

Table 13 Sensitivity analysis
on parameter C2 for exponential
SRGM

C2(in $) U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

12 0.595 9.574 21.262 11.688
14 0.566 8.804 21.078 12.274
16 0.542 8.164 20.928 12.764
18 0.520 7.621 20.802 13.181
20 0.502 7.154 20.695 13.541

Table 14 Sensitivity analysis
on parameter C2 for delayed
S-shaped SRGM

C2 (in $) U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

12 0.923 11.393 17.105 5.712
14 0.882 10.772 16.972 6.200
16 0.844 10.231 16.864 6.633
18 0.810 9.751 16.775 7.024
20 0.779 9.320 16.700 7.380

Table 15 Sensitivity analysis on
parameter C2 for logistic SRGM

C2 (in $) U(� ∗
FT
,T ∗

FT
) � ∗

FT
T ∗

FT

(
T ∗

FT
−� ∗

FT

)

12 0.999 11.600 16.326 4.726
14 0.956 11.007 16.171 5.164
16 0.916 10.478 16.041 5.563
18 0.881 9.996 15.929 5.933
20 0.848 9.551 15.832 6.281

329Annals of Operations Research (2022) 312:305–332

1 3

performance and reduce software development cost and introduce software on time in
the market.

In this paper, a new fault-discovery paradigm for software products is proposed. The
current framework studies the bug-detection process in three phases, namely, pre-release
testing phase, field-testing phase, and post-testing phase. In pre-release testing phase,
developers meticulously observe the errors, while in the field-testing phase both the testing
team and users discover the faults. In the post-testing phase, failures are observed only by
the customers. However, in all the phases, bugs are removed immediately from the system
after their discovery only by the testing team. It is assumed that the software is distributed
in the market early and the testing process continues for some fixed duration in an opera-
tional phase as well.

Moreover, it is considered that the developers intensify the fault observation process
after the release of the software. Otherwise, software failure during the operational phase
may cause the loss of reputation of the firm and their position in the global platform. As a
result, software engineers try to identify the bugs quickly to avoid failures at the user’s end.
Thus, the change-point occurs in the bug-detection behavior at the release time of the soft-
ware. A unified approach is implemented to model the fault-detection process in different
phases. This approach provides a flexible environment as it can model both an exponential
NHPP and an S-shaped fault detection pattern.

An optimal release policy with consideration to field-testing (FT) is formulated. Two
conflicting attributes, specifically, software reliability and software failure cost are consid-
ered, and a trade-off between them is achieved using multi-attribute utility theory (MAUT).
The problem aims to maximize the utility of software reliability and to minimize the utility
for the cost of software failure. The developed model can assist managers in decision-mak-
ing about optimal software time-to-market and testing duration. In addition, the results of
the proposed release policy are compared with the conventional release policy wherein no
field-testing is conducted (NFT). From the findings, it can be concluded that the maximum
utility for software reliability and minimum cost of software failures can only be achieved
when software is delivered in advance and testing persists for a longer duration until the
desired level of reliability is reached. Although the expected number of undiscovered faults
is greater at the software release time under FT policy, the mean number of failures in
the operational phase is reduced considerably under FT policy. Thus, the results of the
proposed research provide vital managerial insights and support managers in regulating
the decisive factors associated with the software products. The findings of the sensitivity
analysis can provide an aid to the project managers in analyzing the influence of critical
parameters on the release policy. With an early release of the software, managers are cap-
turing higher market share, and with a longer testing duration, they are minimizing the risk
of software failure in the field. Furthermore, longer testing duration also helps software
engineers to offer highly dependable software that improves customer’s satisfaction.

Besides, the formulated release policy laid a foundation for future research by incorpo-
rating various dimensions to cater different software aspects. Firms continuously update
their software products to include a range of features and then release different versions of
the software in the market. Therefore, the proposed release policy can be extended into the
multi-release framework. Secondly, the developed SRGM has ignored the random fluctua-
tions in the bug-observation behavior. Therefore, in future, stochastic SRGMs can be used
to optimize software release time and testing stop time. Moreover, the model is based on
the assumption that faults are removed as soon as they are discovered. However, in a realis-
tic scenario, there exists a definite time lag between the software detection and their correc-
tion. Thus, the proposed optimization problem can be further formulated using two-stage

330 Annals of Operations Research (2022) 312:305–332

1 3

SRGMs. Another fundamental assumption on which the SRGMs is based on is that the
faults are removed perfectly without causing any further defects in the software system.
Therefore, this assumption can be further relaxed by incorporating the concept of imperfect
debugging into the modeling framework.

References

Arora, A., Caulkins, J. P., & Telang, R. (2006). Research note—Sell first, fix later: Impact of patching on
software quality. Management Science, 52(3), 465–471.

Chiu, K. C., Ho, J. W., & Huang, Y. S. (2009). Bayesian updating of optimal release time for software sys-
tems. Software Quality Journal, 17(1), 99.

Dalal, S. R., & Mallows, C. L. (1988). When should one stop testing software? Journal of the American
Statistical Association, 83(403), 872–879.

Garmabaki, A. H., Aggarwal, A. G., Kapur, P. K., & Yadavali, V. S. S. (2012). Modeling two-dimensional
software multi-upgradation and related release problem (a multi-attribute utility approach). Interna-
tional Journal of Reliability, Quality and Safety Engineering, 19(03), 1250012.

Goel, A. L., & Okumoto, K. (1979). Time-dependent error-detection rate model for software reliability and
other performance measures. IEEE Transactions on Reliability, 28(3), 206–211.

Huang, C. Y. (2005a). Cost-reliability-optimal release policy for software reliability models incorporating
improvements in testing efficiency. Journal of Systems and Software, 77(2), 139–155.

Huang, C. Y. (2005b). Performance analysis of software reliability growth models with testing-effort and
change-point. Journal of Systems and Software, 76(2), 181–194.

Huang, C. Y., & Lyu, M. R. (2005). Optimal release time for software systems considering cost, testing-
effort, and test efficiency. IEEE Transactions on Reliability, 54(4), 583–591.

Huang, C. Y., & Lyu, M. R. (2011). Estimation and analysis of some generalized multiple change-point soft-
ware reliability models. IEEE Transactions on Reliability, 60(2), 498–514.

Huang, C. Y., Lyu, M. R., & Kuo, S. Y. (2003). A unified scheme of some non-homogenous poisson pro-
cess models for software reliability estimation. IEEE Transactions on Software Engineering, 29(3),
261–269.

Inoue, S., Ikeda, J., & Yamada, S. (2016). Bivariate change-point modeling for software reliability assess-
ment with uncertainty of testing-environment factor. Annals of Operations Research, 244(1), 209–220.

Inoue, S., Taniguchi, S., & Yamada, S. (2015). An all-stage truncated multiple change point model for
software reliability assessment. International Journal of Reliability, Quality and Safety Engineer-
ing, 22(04), 1550017.

Inoue, S., & Yamada, S. (2008, December). Optimal software release policy with change-point. In IEEE
international conference on Industrial engineering and engineering management, 2008. IEEM
2008 (pp. 531–535). IEEE.

Jiang, Z., & Sarkar, S. (2003, December). Optimal software release time with patching considered. In
Workshop on Information Technologies and Systems, Seattle, WA, USA.

Jiang, Z., Sarkar, S., & Jacob, V. S. (2012). Postrelease testing and software release policy for enter-
prise-level systems. Information Systems Research, 23(31), 635–657.

Kapur, P. K., & Garg, R. B. (1991). Optimal release policies for software systems with testing effort.
International Journal of Systems Science, 22(9), 1563–1571.

Kapur, P. K., & Garg, R. B. (1992). A software reliability growth model for an error-removal phenom-
enon. Software Engineering Journal, 7(4), 291–294.

Kapur, P. K., Goswami, D. N., Bardhan, A., & Singh, O. (2008a). Flexible software reliability growth
model with testing effort dependent learning process. Applied Mathematical Modelling, 32(7),
1298–1307.

Kapur, P. K., Khatri, S. K., Tickoo, A., & Shatnawi, O. (2014). Release time determination depending on
number of test runs using multi attribute utility theory. International Journal of System Assurance
Engineering and Management, 5(2), 186–194.

Kapur, P. K., Kumar, S., & Garg, R. B. (1999). Contributions to hardware and software reliability (Vol.
3). Singapore: World Scientific.

Kapur, P. K., Pham, H., Aggarwal, A. G., & Kaur, G. (2012). Two dimensional multi-release software reli-
ability modeling and optimal release planning. IEEE Transactions on Reliability, 61(3), 758–768.

331Annals of Operations Research (2022) 312:305–332

1 3

Kapur, P. K., Pham, H., Anand, S., & Yadav, K. (2011a). A unified approach for developing software
reliability growth models in the presence of imperfect debugging and error generation. IEEE Trans-
actions on Reliability, 60(1), 331–340.

Kapur, P. K., Pham, H., Gupta, A., & Jha, P. C. (2011b). Software reliability assessment with OR appli-
cations. London: Springer.

Kapur, P. K., Shrivastava, A. K., & Singh, O. (2017). When to release and stop testing of a software.
Journal of the Indian Society for Probability and Statistics, 18(1), 19–37.

Kapur, P. K., Singh, V. B., Anand, S., & Yadavalli, V. S. S. (2008b). Software reliability growth model
with change-point and effort control using a power function of the testing time. International Jour-
nal of Production Research, 46(3), 771–787.

Kapur, P. K., Singh, V. B., Singh, O., & Singh, J. N. (2013). Software release time based on different
multi-attribute utility functions. International Journal of Reliability, Quality and Safety Engineer-
ing, 20(04), 1350012.

Keeney, R. L. (1971). Utility independence and preferences for multi attributed consequences. Opera-
tions Research, 19(4), 875–893.

Li, X., Xie, M., & Ng, S. H. (2012). Multi-objective optimization approaches to software release time
determination. Asia-Pacific Journal of Operational Research, 29(03), 1240019.

Majumdar, R., Shrivastava, A. K., Kapur, P. K., & Khatri, S. K. (2017). Release and testing stop time of a
software using multi-attribute utility theory. Life Cycle Reliability and Safety Engineering, 6(1), 47–55.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of
the Society for Industrial and Applied Mathematics, 11(2), 431–441.

Minamino, Y., Inoue, S., & Yamada, S. (2015). Multi-attribute utility theory for estimation of optimal
release time and change-point. International Journal of Reliability, Quality and Safety Engineer-
ing, 22(04), 1550019.

Minamino, Y., Inoue, S., & Yamada, S. (2016). NHPP-based change-point modeling for software reli-
ability assessment and its application to software development management. Annals of Operations
Research, 244(1), 85–101.

Musa, J. D., & Okumoto, K. (1983). Software reliability models: concepts, classification, comparisons, and
practice. In J. K. Skwirzynski (Ed.), Electronic systems effectiveness and life cycle costing (pp. 395–
423). Berlin: Springer.

Myers, G. J. (1976). Softwear reliability: Principles and practices. New York: Wiley.
Ohba, M., & Yamada, S. (1984). S-shaped software reliability growth models. In International collo-

quium on reliability and maintainability, 4th, Tregastel, France (pp. 430–436).
Okumoto, K., & Goel, A. L. (1980). Optimum release time for software systems based on reliability and

cost criteria. Journal of Systems and Software, 1(4), 315–318.
Pham, H., Nordmann, L., & Zhang, Z. (1999). A general imperfect-software-debugging model with

S-shaped fault-detection rate. IEEE Transactions on Reliability, 48(2), 169–175.
Pham, H., & Zhang, X. (1999). Software release policies with gain in reliability justifying the costs. Annals

of Software Engineering, 8(1–4), 147–166.
SAS, S. (2004). STAT User guide, Version 9.1.2.. Cary, NC: SAS Institute Inc.
Singh, O., Kapur, P. K., Shrivastava, A. K., & Kumar, V. (2015). Release time problem with multiple con-

straints. International Journal of System Assurance Engineering and Management, 6(1), 83–91.
Subburaj, R., & Kapur, P. K. (2014). Two practical software reliability growth models for software project

management. In P. K. Kapur, et al. (Eds.), Quality, reliability and Infocomm technology and industrial
technological management. I.K: International Publishing House Pvt. Ltd.

Tickoo, A., Verma, A. K., Khatri, S. K., & Kapur, P. K. (2016). Modeling Two-Dimensional Framework for
Multi-Upgradations of a Software with Change Point. International Journal of Reliability, Quality and
Safety Engineering, 23(06), 1640008.

Wood, A. (1996). Predicting software reliability. Computer, 29(11), 69–77.
Yamada, S. (2014). Software reliability modeling: Fundamentals and applications (Vol. 5). Tokyo: Springer.
Yamada, S., Ohba, M., & Osaki, S. (1983). S-shaped reliability growth modeling for software error detec-

tion. IEEE Transactions on Reliability, 32(5), 475–484.
Yamada, S., & Osaki, S. (1985). Software reliability growth modeling: Models and applications. IEEE

Transactions on Software Engineering, 12, 1431–1437.
Yamada, S., & Osaki, S. (1987). Optimal software release policies with simultaneous cost and reliability

requirements. European Journal of Operational Research, 31(1), 46–51.

332 Annals of Operations Research (2022) 312:305–332

1 3

Yamada, S., & Yamaguchi, M. (2016). A method of statistical process control for successful open source
software projects and its application to determining the development period. International Journal of
Reliability, Quality and Safety Engineering, 23(05), 1650018.

Zhang, X., & Pham, H. (2002). Predicting operational software availability and its applications to telecom-
munication systems. International Journal of Systems Science, 33(11), 923–930.

Zhao, M. (2003). Statistical reliability change-point estimation models. In H. Pham (Ed.), Handbook of
Reliability Engineering (pp. 157–163). London: Springer.

Zhu, M., & Pham, H. (2018). A multi-release software reliability modeling for open source software incor-
porating dependent fault detection process. Annals of Operations Research, 269, 773–790.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Joint optimization of software time-to-market and testing duration using multi-attribute utility theory
	Abstract
	1 Introduction
	2 Model development
	2.1 Notations
	2.2 Assumptions
	2.3 Modeling framework under field-testing (FT) release time policy
	2.3.1 Phase 1: System-testing or pre-release testing period
	2.3.2 Phase 2: Field-testing or post-release testing period
	2.3.3 Phase 3: Post-testing period

	2.4 Modeling framework under no field-testing (NFT) release time policy
	2.5 Cost modeling

	3 Optimal policies using MAUT
	3.1 Multi-attribute utility theory

	4 Numerical analysis
	5 Sensitivity analysis
	6 Conclusion, managerial insights, and future research direction
	References

