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Abstract
The United States Army can benefit from effectively utilizing cargo unmanned aerial vehi-
cles (CUAVs) to perform resupply operations in combat environments to reduce the use of
manned (ground and aerial) resupply that incurs risk to personnel. We formulate a Markov
decision process (MDP) model of an inventory routing problem (IRP) with vehicle loss and
direct delivery, which we label the military IRP (MILIRP). The objective of the MILIRP
is to determine CUAV dispatching and routing policies for the resupply of geographically
dispersed units operating in an austere, combat environment. The large size of the problem
instance motivating this research renders dynamic programming algorithms inappropriate,
so we utilize approximate dynamic programming (ADP) methods to attain improved policies
(relative to a benchmark policy) via an approximate policy iteration algorithmic strategy uti-
lizing least squares temporal differencing for policy evaluation. We examine a representative
problem instance motivated by resupply operations experienced by the United States Army
in Afghanistan both to demonstrate the applicability of our MDP model and to examine the
efficacy of our proposed ADP solution methodology. A designed computational experiment
enables the examination of selected problem features and algorithmic features vis-à-vis the
quality of solutions attained by our ADP policies. Results indicate that a 4-crew, 8-CUAVunit
is able to resupply 57% of the demand from an 800-person organization over a 3-month time
horizon when using the ADP policy, a notable improvement over the 18% attained using a
benchmark policy. Such results inform the development of procedures governing the design,
development, and utilization of CUAV assets for the resupply of dispersed ground combat
forces.
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1 Introduction

The United States (U.S.) Army utilizes vendor-managed inventory practices to direct resup-
ply operations when engaged in combat operations. Upper-echelon organizations monitor
the inventory levels of lower-echelon organizations and manage resupply efforts, deciding
when to conduct resupply operations and how to route the vehicles transporting supplies to
subordinate unit locations. At the tactical level for an infantry brigade combat team (IBCT)
consisting of approximately 4500 personnel, a subordinate brigade support battalion (BSB)
plans and conducts all resupply operations for combat outposts (COPs) within its area of
operations (AO). During combat operations in Afghanistan over the most recent decade, this
typically includes the support of as many as 16 COPs, each of which serves as an opera-
tional base for a company-sized infantry unit consisting of approximately 150 personnel, and
which requires approximately 25,000 pounds of supplies per day among the categories of
subsistence, construction items, ammunition, medical supplies, repair parts, and fuel (Gen-
eral Dynamics Information Technology 2010). The BSB is kept informed of inventory levels
at COPs through regular, automated and manual reporting. Thus, the relationship between
an IBCT and the COPs it supports parallels the supplier-to-customer relationships seen in
vendor-managed inventory replenishment practices.

Specific to our study, military resupply efforts supporting combat operations pose a signif-
icant risk to both personnel and the supplies being transported. The Army typically operates
in harsh, rugged environments that include mountains, deserts, and jungles. Resupply efforts
are heavily reliant on ground lines of communication (GLOC), and a lack of transportation
infrastructure in austere environments combinedwith attacks fromenemy forcesmakeGLOC
resupply inherently dangerous and difficult. Improvised explosive devices (IED) accounted
for 65% of U.S. deployed fatalities between November 2002 and March 2009, with 18%
occurring during sustainment operations (General Dynamics Information Technology 2010).
As an alternative to ground-based resupply, manned aircraft partially fulfill the resupply role
but also have risk-based limitations. Pilots cannot fly in hazardous weather conditions, and
helicopters are vulnerable to man-portable air defense systems (MANPADS), especially dur-
ing takeoff and landing at the COPs, closer to where more combat operations are likely
to occur. Although manned cargo aircraft may be escorted by armed aircraft to mitigate
the MANPADS risk, a high operational tempo of combat combined with limited air assets
may result in the prioritization of armed aircraft to support combat missions over resupply
missions, and a sufficiently high MANPADS risk may preclude the use manned resupply air-
craft, even with armed escort. Other factors that reduce the ability of manned cargo aircraft
to provision subordinate units include weather-induced hazardous flying conditions, crew
fatigue, and commander-driven operational restrictions (e.g., no nighttime aircraft resupply
missions).

The U.S. military is considering the use of rotary-wing cargo unmanned aerial vehicles
(CUAVs) to resupply subordinate units for the advantages they offer. Foremost, a dedicated
contingent of CUAVs for resupply can offset the demand for ground-based and/or manned
aerial resupply. In turn, this offset reduces the overall risk to personnel and avails manned
aircraft for combat mission support. Moreover, the CUAV’s higher flight ceiling compared
to manned helicopters and better performance in adverse conditions reduces MANPADS
threats to the resupply mission; provides a quicker, more reliable, and more flexible delivery
platform; and possibly allows for shorter supply routes.

A recent study by Williams (2010) examines the use of unmanned airlift at both the
theater and direct delivery levels in Department of Defense (DoD) applications, as motivated
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by frequent requests frommilitary units for unmanned aerial systems, and the study identifies
combat outpost support as an application for which CUAVs can make a noteworthy impact.
The DoD Unmanned System Integrated Roadmap outlines strategic and tactical unmanned
aircraft development and acquisition goals through 2028, and it identifies resupply as a
potential role for both aerial and ground unmanned systems (Department of Defense 2009).
The Army also sponsored a General Dynamics study on unmanned aircraft in resupply
roles (General Dynamics Information Technology 2010), resulting in a recommendation
to centrally manage CUAVs within operational environments to increase effectiveness in
accomplishing multiple, disparate missions. With a view toward operational testing, the U.S.
MarineCorps utilized threeLockheedMartinKamanK-MAX(LockheedMartin 2010, 2012)
CUAVs in Afghanistan between 2011 and 2014 (Lamothe 2014; LockheedMartin 2018); the
K-MAX met DoD requirements during testing and demonstrated its capability for use in a
combat zone. As the technical development of capable CUAVs progresses, so too does the
need to develop policies for their effective use.

However, CUAVs are not a panacea for subordinate unit resupply in a combat environment.
CUAVs remain vulnerable to hostile enemy action and can be lost during a resupply effort.
Whereas the loss of a CUAV is preferable to a manned resupply by ground or air, a fleet
of CUAVs is a finite commodity and must be managed to balance the priorities of current
and future supply operations. Moreover, the development of effective CUAV dispatching
and routing policies requires that scenario-specific challenges be addressed. Policies must
account for large supply quantity demands across an area of operations; the threat due to
enemies; the risk incurred by weather, terrain, and poor infrastructure; the availability of
distribution assets; and the flexibility to respond to changes in the operational environment.

A centralized BSB resupplying an IBCT’s COPs utilizing a finite set of CUAVs (that can
be destroyed) is an instantiation of a military-oriented inventory routing problem (IRP) with
vehicle loss and direct delivery (denoted as an MILIRP), which we formulate and examine
herein. In the MILIRP, the logistics decision-making authority must decide when to dispatch
and how to route CUAVs to the respective COPs that require supplies. Routed inventory is
not guaranteed to reach its destination; a BSB must consider the prospect of failed deliveries
and destroyed CUAVs under evolving threat conditions. Moreover, the long-term impact of
potential CUAV losses on future resupply capability must be considered when deciding to
send CUAVs on resupply missions.

Our research is informed in its modeling by published literature on the IRP and in its solu-
tion methodology by work on approximate dynamic programming (ADP) methods. The IRP
seeks to provide answers to three questions: (1) in which time periods should each customer
be served, (2) what amount of supplies should be delivered to each of these customers, and
(3) how should customers be combined into vehicle routes. Coelho et al. (2012) identify key
structural components of the IRP: time horizon, supplier-customer structure, vehicle routing,
inventory policy, fleet composition, fleet size, and demand type. Utilizing this taxonomy, the
MILIRP has the following characteristics: an infinite time horizon, one-to-many structure,
direct routing, homogeneous fleet composition, limited fleet size, deterministic demand, and
stochastic supply.

A particular nuance of the MILIRP is that vehicles can be destroyed while traveling to
and from the supplier, which imposes a stochastic nature on the supply. Vehicle routing
problems (VRPs) with vehicle breakdown have a similar complexity in a civilian context.
Mu et al. (2010) solve a variant of the VRP in which a new routing solution must be created
in the event of a vehicle breakdown. The authors develop two metaheuristics that focus on
rescheduling the route in an allotted time with a single extra vehicle available for use in the
event of a breakdown. However, the Mu et al. (2010) formulation differs fundamentally from
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the MILIRP in that the authors solve the re-optimization in only a single time period. The
MILIRP must be solved over an infinite time horizon.

Our methods to solve the MILIRP are informed by approximate dynamic programming
research. Inventory routing decisions must be made sequentially over time and under uncer-
tainty. Since such resupply decisions impact the capability of the sustainment system to
serve future demand, we must account for how current decisions affect the future state of
the system. As such, we formulate a Markov decision process (MDP) model of the MILIRP.
Unfortunately, due to the well-known curses of dimensionality, an optimal policy cannot be
identified using classical exact dynamic programming algorithms. Instead, we employ an
ADP solution methodology to solve the MILIRP. For an introduction to ADP, we refer the
reader to Powell (2011) and Bertsekas (2012, 2017).

Twogeneral algorithmic strategies exist for obtaining approximate solutions to our compu-
tational stochastic optimization problem: approximate value iteration (AVI) and approximate
policy iteration (API). The interested reader is referred to Bertsekas (2011) for a detailed dis-
cussion concerning API. We utilize an API algorithmic strategy to obtain a policy that maps
the system state (e.g., status of COP inventories, number of operational CUAVs remaining,
threat map) to a decision (e.g., dispatching a number of fully loaded CUAVs to deliver sup-
plies to COPs). API avoids some of the stability challenges that can accompany an AVI
approach. For example, AVI often results in a noisy update of the coefficient vector within
the approximation model. This noisy update impacts the stability of the computed policies
by inducing frequent and possibly large policy changes, which subsequently contribute to
further noise. API avoids this instability issue by performing batch updates after repeated
simulations of a fixed policy.

Powell (2012) discusses four classes of policies: myopic cost function approximation,
lookahead policies, policy function approximations, and policies based on value function
approximations. We construct improved routing policies (relative to a benchmark policy)
based on value function approximations. Our approximation strategy involves the design of
an appropriate set of basis functions for applicationwithin a linear architecture.Moreover, we
approximate the value function around the post-decision state. First introduced by Van Roy
et al. (1997), the post-decision state variable convention allows for modification of Bellman’s
equation to obtain an equivalent, deterministic expression, and it addresses the curse of
dimensionality with respect to the outcome space. Within the policy evaluation step of our
API algorithm, we update the value function approximation for a fixed policy utilizing least
squares temporal differencing (LSTD). Introduced by Bradtke and Barto (1996), LSTD is
a computationally efficient method for estimating the adjustable parameters when using a
linear architecture with fixed basis functions to approximate the value function for a fixed
policy. Lagoudakis and Parr (2003) extend the LSTD algorithm to include the consideration
of state-action pairs.

In the intersection of inventory routing problem models and approximate dynamic pro-
gramming solution methods are recent works by Kleywegt et al. (2002) and Kleywegt et al.
(2004). The authors’modeling and solutionmethods greatly informed the development of this
paper. Kleywegt et al. (2002) formulate a direct-delivery stochastic inventory routing problem
as an MDP. In particular, the states of the system are the inventory levels at each customer’s
location, and the action space includes the amount of inventory delivered to each customer.
The state of the system at a given decision epoch depends on the amount of inventory deliv-
ered, the probabilistic demand, and the supply capacity of the customer in the previous epoch.
Contributions are based on the traveling costs of the vehicles, shortage costs, holding costs,
and revenue. Given the large state space, Kleywegt et al. (2002) develop an ADP algorithm
to solve the IRP with direct delivery and stochastic demand for an infinite horizon problem
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with homogeneous vehicles and no backlogging. Kleywegt et al. (2004) extend the work of
Kleywegt et al. (2002) by removing the direct delivery constraint; a vehicle can make up to
three stops at different customers before returning to the supplier. Relaxation of the direct
delivery constraint requires the consideration of larger state and action spaces to account
for available routes and assignment of routes to each vehicle. Due to the large size of their
problem, an exact solution to the MDP is computationally intractable, so Kleywegt et al.
(2004) further develop the ADP from Kleywegt et al. (2002) to determine an approximate
policy.

This research makes the following contributions. We formulate an MDP model of the
MILIRP, a novel problemnot previously studied in the literature.We applyADP techniques to
attain improved routing policies (relative to a benchmark policy) to solve theMILIRP because
the high-dimensional state space of the MDP model renders classical dynamic programming
methods inappropriate. This ADP approach leverages an API algorithm that utilizes LSTD
for policy evaluation, and it constructs a set of basis functions within a linear architecture to
approximate the value function around the post-decision state. We demonstrate the applica-
bility of our MDP model and the efficacy of our proposed ADP solution methodology using
a synthetic, representative planning scenario for contingency operations in Afghanistan, for
which we conduct a designed computational experiment to determine how selected prob-
lem features and algorithmic features affect the quality of solutions attained by our ADP
policies.

The remainder of this paper is organized as follows. Section 2 describes the MDP model
formulation of the military inventory routing problem and presents our ADP approach. In
Sect. 3, we demonstrate the applicability of our model and examine the efficacy of our
proposed solution methodology to a representative instance, as well as the effect of selected
parameters on solution quality. In Sect. 4, we conclude the work and indicate directions in
which to extend the research.

2 Model formulation and solutionmethodology

This section describes the MDP model of the MILIRP, followed by the ADP methodology
we utilize to obtain improved solutions to the problem.

2.1 MDP formulation

An IBCT is responsible for the COPs within its AO. The IBCT contains a BSB, which
manages resupply efforts. The BSB manages a fleet of identical CUAVs to deliver supplies
to the COPs.

Figure 1 provides a geographic illustration. Each COP requires a deterministic amount of
supplies per time period, a demand that depends on the size of the unit at the COP.We assume
that each CUAV is fully loaded when conducting resupply missions. Only direct deliveries
are considered; each CUAV delivers to only one COP per resupply sortie. This formulation
reduces the complexity of the problem and reflects the fact that current rotary-wing assets
do not typically combine multiple deliveries. Given the austere combat environment, there is
a potential for delivery failure due to factors such as hostile actions by non-friendly forces,
mechanical failures, and extremeweather conditions.A set of threatmaps is created to capture
the inherent risk to resupply operations within the IBCT’s AO. TheMDPmodel is formulated
as follows.
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Fig. 1 Example instance wherein 12 COPs dispersed throughout southern Afghanistan require resupply from
the BSB located at Kandahar Airfield

Let T = {1, 2, . . .} be the set of decision epochs. A decision epoch occurs at the beginning
of a 6-h time period of resupply operations. During a single time period, a CUAV is fueled,
loaded with supplies, travels from the BSB to the COP, unloads its supplies, and returns to
the BSB. We assume that a fully loaded CUAV can serve any single COP within the AO and
return to the BSB during a single time period.

The state space includes three components: the inventory status of each COP, the number
of operational CUAVs, and the index corresponding to a given threat map, which represents
the current risk level for CUAV resupply operations due to weather and enemy threats. The
COP inventory status component is defined as

Rt = (Rti )i∈B ≡ (Rt1, Rt2, . . . , Rt B),

where B = {1, 2, . . . , B} is the set of all COPs (i.e., small, forward operating bases), Rti ∈{
1, 2, . . . , Rcap

i

}
is the number of tons of supplies at COP i ∈ B at time t , and Rcap

i ∈ N is the
inventory capacity of COP i ∈ B. The number of CUAVs able to perform resupply operations
at time t is defined as Vt ∈ {

0, 1, . . . , V init
}
, where V init ∈ N is the initial number of

operational CUAVs. The threat map index number at time t is defined as M̂t ∈ {1, 2, . . . , M},
where M ∈ N is the number of threat maps utilized to model the security situation in the
BCT’s AO. The threat map impacts the flight risks associated with successfully completing
sorties to (from) a COP from (to) the BSB. The threat information provided by M̂t is available
to the BSB at time t . However, the arrival of new information, M̂t+1, is unknown at time t .
Moreover, the threat map at time t + 1 is conditioned on the threat map at time t . Utilizing

these components, we define St =
(

Rt , Vt , M̂t

)
∈ S as the state of the system at time t ,

where S is the set of all possible states.
At each decision epoch t ∈ T , the BSB must decide how many fully loaded CUAVs to

dispatch and route to each COP. If a CUAV is destroyed by enemy combatants or otherwise
malfunctions, it is no longer available for resupply operations. As such, the BSB can only
route up to min {Vt , κ} CUAVs, where κ is the maximum number of CUAVs simultaneously
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controllable by the BSB in a single time period. This constraint is governed by the size
of the CUAV organizational element (i.e., ground station crew) within the BSB. A κ-crew
element is only able to control κ CUAVs simultaneously. Let xti ∈ N

0 be the number of
CUAVs dispatched from the BSB to COP i ∈ B at time t , and let xt = (xti )i∈B denote the
corresponding decision vector. We define the set of all feasible BSB decisions as

XSt =
{

xt :
∑

i∈B
xti ≤ min {Vt , κ}

}

, ∀St ∈ S, t ∈ T

where the constraint
∑

i∈B xti ≤ min {Vt , κ} ensures that the total number of CUAVs routed
does not exceed the number of operational CUAVs available and does not exceed the maxi-
mum number of CUAVs controllable due to CUAV ground station crew limitations.

The trajectory of the system is given by {(St , xt ) : t = 1, 2, . . .}. Transition functions
characterize how the system evolves fromone state to the next as a result of both decisions and
revealed information. The state transition function is defined as St+1 = SM (St , xt , Wt+1),
wherein Wt+1 = (V̂t+1, M̂t+1) represents the information (i.e., CUAV resupply mission
results and threat map) that becomes known at time t + 1. We let

V̂t+1 =
((

V̂ BSB
t+1,i (xti )

)
,
(

V̂ C O P
t+1,i (xti )

)
,
(

V̂ enroute
t+1,i (xti )

))
, i ∈ B,

denote the results of the CUAV routing decision, wherein V̂t+1 follows a multinomial dis-

tribution with parameters xti and

((
ψi,M̂t

)2
, ψi,M̂t

(
1 − ψi,M̂t

)
, 1 − ψi,M̂t

)
. The random

variable V̂ BSB
t+1,i (xti ) is a random variable representing the number of CUAV sorties that results

in a CUAV successfully delivering its load of supplies to COP i and then returning to the
BSB. The random variable V̂ BSB

t+1,i (xti ) follows a binomial distribution with parameters xti

and (ψi,M̂t
)2. The parameter ψi j denotes the one-way probability that a single CUAV suc-

cessfully travels from (to) the BSB to (from) COP i during threat conditions indicated by
map j = 1, 2, . . . , M . The random variable V̂ C O P

t+1,i (xti ) represents the number of CUAV
sorties that results in a CUAV successfully delivering its load of supplies to COP i but then
failing to return to the BSB. The random variable V̂ C O P

t+1,i (xti ) follows a binomial distribution

with parameters xti and ψi,M̂t
(1− ψi,M̂t

). The random variable V̂ enroute
t+1,i (xti ) represents the

number of CUAV sorties that results in a CUAV being destroyed (or lost due to inclement
weather ormechanical failure) enroute toCOP i and failing to deliver its supplies. The random
variable V̂ enroute

t+1,i (xti ) follows a binomial distribution with parameters xti and (1 − ψi,M̂t
).

The information modeled by these three random variables depends on the routing decision
xt since the number of CUAVs surviving their routes, by outcome type, depends on xti , i.e.,
the number of CUAVs the BSB decides to route to COP i .

We define the inventory status transition function as

Rt+1,i =
{

R
cap
i if Rti + η(V̂ BSB

t+1,i (xti ) + V̂ C O P
t+1,i (xti )) ≤ di

min
{

Rti − di + η(V̂ BSB
t+1,i (xti ) + V̂ C O P

t+1,i (xti )), R
cap
i

}
otherwise

.

The parameter η ∈ N represents the number of tons of supplies a fully loaded CUAV
carries. The parameter di ∈ N represents the deterministic single-period demand of COP
i . The first condition captures the transition when all remaining supplies at COP i will be
consumed because no resupply via CUAV is forthcoming. In such a situation, we assume
the BSB orders an immediate resupply operation via ground convoy, which results in the
COP receiving supplies up to its capacity Rcap

i . The second condition captures all other
transitions. COP i’s next inventory level, Rt+1,i , results from its single-period consumption
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of supplies, di , and the total delivery of supplies from CUAVs, η(V̂ BSB
t+1,i (xti ) + V̂ C O P

t+1,i (xti )).

Only CUAVs that successfully reach the COP (as indicated by V̂ BSB
t+1,i (xti ) and V̂ C O P

t+1,i (xti ))

are able to deliver supplies. Moreover, the COP’s inventory cannot exceed its capacity, Rcap
i .

We define the CUAV inventory transition function as

Vt+1 = Vt −
(
∑

i∈B
V̂ C O P

t+1,i (xti ) + V̂ enroute
t+1,i (xti )

)

,

where the number CUAVs available at time t + 1 is simply the number of CUAVs available
at time t less those that do not successfully return to the BSB, as captured by V̂ C O P

t+1,i (xti ) and

V̂ enroute
t+1,i (xti ). CUAVs that are lost cannot be used in future resupply efforts.
The threat conditions within the operational environment evolve in an uncontrolled,

stochastic manner over time. The m maps capture the threat conditions in the IBCT’s AO.
Whereas some maps represent a low threat environment with relatively higher ψi j -values,
other maps present a high threat environment with lower ψi j -values. In high threat maps,
delivery of supplies via CUAV becomes increasingly risky, and the BSB must balance cur-
rent resupply needs with the ability to perform future resupply operations via CUAV. The
map transition represents an ever changing threat environment within the AO. We assume
the next period’s threat map, M̂t+1(M̂t ), depends on the current period’s threat map. If the
threat environment is relatively static, the transition probabilities between different maps
would be relatively low whereas, if the operational environment changes rapidly between
high and low threats, the transition probabilities would be relatively high. It is conceivable
that the transition probabilities could be constructed in a variety of ways. For example, IBCT
intelligence teams working with operational and logistical personnel within the BSB would
conduct risk assessments to label subregions of the AO as high-, medium-, or low-risk based
on information such as enemy disposition, weather, and season (which affects the stability
of weather and both the frequency and intensity of combat operations). Information about
mechanical failures of the CUAVs or ground crew station equipment reliability may also
be captured in this risk assessment. Historical data from enemy engagements and weather
conditions could also be leveraged to inform the development of appropriate threat maps.

At each decision epoch t , the BSB obtains an expected immediate contribution (i.e.,
reward) as a result of its routing decision. We define this contribution as

Ĉ(St , xt , V̂t+1) =
∑

i∈B
min

{
Rcap

i − Rti + di , η(V̂ BSB
t+1,i (xt ) + V̂ C O P

t+1,i (xt ))
}

.

The BSB is rewarded for supplies delivered via air line of communication (ALOC). That is,
each ton of supplies delivered by CUAV provides a reward. The BSB is not rewarded if a
COP cannot receive the supplies delivered to it (i.e., a COP is at inventory capacity), nor
is the BSB is rewarded for delivering supplies via GLOC. We can express the contribution
function in terms of the current state and decision as follows

C(St , xt ) = E

[
∑

i∈B
min

{
Rcap

i − Rti + di , η(V̂ BSB
t+1,i (xt ) + V̂ C O P

t+1,i (xt ))
}
∣∣∣∣∣

St , xt

]

.

The objective is to determine the policy π∗ that maximizes the expected total discounted
reward and is expressed as

max
π∈�

E
π

[ ∞∑

t=1

γ t−1C(St , Xπ (St )))

]

.
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Let xt = Xπ (St ) represent the decision function, or policy, that returns decision xt given state
St . The π superscript emphasizes the fact that Xπ (St ) is one element in a family of functions,
�. To attain the optimal policy, we must determine a solution to the Bellman Equation

J (St ) = max
xt ∈XSt

(
C(St , xt ) + γE

[
J (St+1)|St , xt

])
, (1)

wherein γ ∈ [0, 1) is the discount factor. Unfortunately, attaining such a solution is computa-
tionally intractable utilizing classical dynamic programming algorithms (e.g., value iteration
and policy iteration). As such, we employ approximate dynamic programming methods to
attain sub-optimal, yet improved solutions relative to those attainable via a myopic, bench-
mark policy.

2.2 ADP formulation

We employ an API algorithmic strategy to construct improved CUAV resupply policies based
on value function approximations. To obtain such policies we must determine approximate
solutions to Eq. (1). We proceed by employing a modified version of the optimality equation
that uses a post-decision state variable convention. The post-decision state Sx

t refers to the
state of the system after being in state St and taking action xt . The post-decision state
variable provides tremendous computational advantages, as its use eliminates the embedded
expectation within the optimality equation (Powell 2011; Ruszczynski 2010). The value of
being in pre-decision state St is denoted by J (St ), and the value of being in post-decision
state Sx

t is denoted by J x (Sx
t ). The relationship between J (St ) and J x (Sx

t ) is given by

J x (Sx
t ) � E

[
J (St+1)| Sx

t

]
. (2)

The optimality equation in terms of the post-decision state variable is

J x (Sx
t−1) = E

[
max

xt ∈XSt

(
C(St , xt ) + γ J x (Sx

t )
)
∣∣∣∣ Sx

t−1

]
. (3)

Although utilization of the post-decision state variable convention provides a computa-
tional benefit, the optimality equation remains intractable due to dimensionality challenges.
We proceed by defining a fixed set of basis functions to approximate the post-decision state
value function, J x

t (Sx
t ). Let φ f (Sx

t ) be a basis function, where f ∈ F is a feature and F is
the set of features. Identification of features that are important to a particular problem can
be difficult but is important to obtaining an accurate approximation. Well-crafted features
can capture the dominant nonlinearities of the value function, and the linear combination of
the features can work well as an approximation architecture (Bertsekas 2011). Equation (4)
shows the linear approximation architecture we adopt. Let

J̄ x (Sx
t ) �

∑

f ∈F
θ f φ f (Sx

t ) = θ�φ(Sx
t ), (4)

wherein φ(Sx
t ) is a column vector with elements {φ f (Sx

t )} f ∈F , and θ is a column vector of
basis function weights. By substituting the value function approximation, Eq. (4), into the
modified optimality equation, Equation (3), we obtain the following expression for the value
function approximation

J̄ x (Sx
t−1) = E

[
max

xt ∈XSt

(
C(St , xt ) + γ J̄ x (Sx

t )
)
∣∣∣∣ Sx

t−1

]
. (5)
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We refer to the component of the optimality equation inside the expectation operator as
the inner maximization problem. In terms of the basis functions, we obtain the following
equivalent expression for the value function approximation

θ�φ(Sx
t−1) = E

[
C(St , Xπ (St |θ)) + γ θ�φ(Sx

t )

∣∣∣ Sx
t−1

]
, (6)

where, for a given θ -vector, the decision function is given by

Xπ (St |θ) = argmax
xt ∈XSt

(
C(St , xt ) + γ θ�φ(Sx

t )
)

. (7)

Selection of the set of basis functions is an important aspect of our ADP approach and
requires deliberate development as it directly impacts both the quality of the value function
approximation and the convexity properties of the inner maximization problem. Approximat-
ing high-dimensional value functions is fundamentally intractable. As we increase the order
of our value function approximation so as to obtain a higher-quality approximation, we must
estimate an increasing number of parameters. For example, if we desire an nth order value
function approximation with all interaction terms, we must estimate |S||S| θ -component
values. Moreover, the use of higher-order basis functions renders the inner maximization
problem nonconvex,making itmuchmore challenging to solve. Sincewemust solve the inner
maximization problem many times when implementing our API algorithm, it is desirable to
select basis functions that allow fast and efficient determination of a solution. Accordingly,
we utilize a set of first-order basis functions with interactions, excluding interaction terms
that result in a bilinear term in the objective function. This approximation approach allows
us to model the inner maximization problem as an integer linear program.

The first-order basis functions are as follows. The first basis function captures the inventory
level of each COP and is written as

φ1i (Sx
t ) = Rti , ∀i ∈ B.

The second basis function represents the number of remaining operational CUAVs and is
written as

φ2(Sx
t ) = Vt .

The third basis function indicates the current map, implicitly capturing the threat condition
level associated with the map, and is written as

φ3m(Sx
t ) =

{
1, if M̂t = m

0, otherwise.
, ∀ m ∈ {1, 2, . . . , M} .

The fourth basis function represents the action taken (i.e., the number of CUAVs deployed
to each COP) and is written as

φ4i (Sx
t ) = xti , ∀i ∈ B.

Having stipulated the policy (i.e., decision function) and the value function approximation
architecture upon which it is based, we proceed by discussing the manner in which the
value function approximation is updated. We employ an API algorithmic strategy similar
in structure to those utilized by Rettke et al. (2016), Davis et al. (2017), and Jenkins et al.
(2019). Within the policy evaluation step of our API algorithm, we update the value function
approximation for a fixed policy using LSTD. Introduced by Bradtke and Barto (1996),
LSTD is a computationally efficient method for estimating the adjustable parameters (e.g.,
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the θ -vector), when using a linear architecture with fixed basis functions to approximate the
value function for a fixed policy. The API algorithm we employ is shown in Algorithm 1.

Algorithm 1 Approximate Policy Iteration Algorithm
Initialize θ

for n=1 to N (Policy Improvement Loop) do
for k=1 to K (Policy Evaluation Loop) do

Simulate a random post-decision state, Sx
t−1,k

Record φ(Sx
t−1,k )

Simulate transition to next event, obtain pre-decision state St,k
Determine decision xt = Xπ (St,k |θ) using Eq. (7)
Record C(St,k , xt )
Record φ(Sx

t,k )

end
Apply LSTD
Compute θ̂ using either Eq. (8) or Eq. (9)
Update θ using Eq. (10) and Eq. (11)

end

The algorithm begins with an initial θ -vector, representing an initial base policy. The
performance evaluation of the current policy proceeds as follows. A post-decision state is
randomly sampled, and the basis function evaluation vector φ(Sx

t−1,k) is recorded. Next, we
simulate one event forward, determine the best decision as perEq. (7) (i.e., by solving the inner
maximization problem), and record both the associated expected contribution C(St,k, xt )

and the basis function evaluations of the post-decision state, φ(Sx
t,k). A total of K temporal

difference sample realizations are collected, where C(St,k, Xπ (St,k |θ)) + γ θ�φ(Sx
t,k) −

θ�φ(Sx
t−1,k) is the kth temporal difference, given the parameter vector θ .

After obtaining the K temporal difference sample realizations, we conduct the policy
improvement steps of theAPI algorithm.We compute θ̂ , a sample estimate of θ , by regressing
the k = 1, 2, . . . , K basis function evaluations of the post-decision states φ(Sx

t−1,k) and
φ(Sx

t,k) against the contributions C(St,k, xt ). We perform a least squares regression so that
the sum of the temporal differences over the K inner loop simulations (which approximates
the expectation) is equal to zero.

We test and compare twomethods for computing θ̂ in Sect. 3. The first method to compute
the parameter vector θ̂ uses the normal equation

θ̂ =
[
(
t−1 − γ
t )

� (
t−1 − γ
t )
]−1

(
t−1 − γ
t )
� Ct , (8)

wherein the basis function matrices and reward vectors are defined as


t−1 �

⎡

⎢
⎣

φ(Sx
t−1,1)

�
...

φ(Sx
t−1,K )�

⎤

⎥
⎦ , 
t �

⎡

⎢
⎣

φ(Sx
t,1)

�
...

φ(Sx
t,K )�

⎤

⎥
⎦ , Ct �

⎡

⎢
⎣

C(St,1, xt )
...

C(St,K , xt )

⎤

⎥
⎦ ,

and wherein the matrices 
t−1 and 
t consist of rows of basis function evaluations of the
sampled post-decision states, and Ct is the contribution vector for the sampled states.

Alternatively, Bradtke and Barto (1996) utilize instrumental variables while implementing
an approximate policy iteration algorithmic strategy. An instrumental variable is correlated
with the regressors, but uncorrelated with the errors in the regressors and the observations.
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An instrumental variables method makes it possible to obtain consistent estimators of the
regression parameters (i.e., the θ -vector). Bradtke and Barto (1996) suggest Söderström
and Stoica (1983) as an appropriate reference for the interested reader. When applying an
instrumental variables method, we compute the parameter vector θ̂ as follows.

θ̂ = [(
t−1)
�(
t−1 − γ
t )]−1(
�

t−1Ct ) (9)

The update equation for θ is given by

θ ← θ (1 − αn) + θ̂ (αn) . (10)

On the right hand side of Eq. (10), θ is the previous estimate and is based on information
from all previous outer loop iterations; θ̂ is our estimate from the current outer loop iteration.
As the number of iterations n increases, we place less emphasis on any single estimate and
more emphasis on the estimate based on information from the first n − 1 iterations.

A generalized harmonic stepsize rule is utilized to smooth in the new observation θ̂ with
the previous estimate θ . The stepsize rule is given by

αn = a

a + n − 1
. (11)

The stepsize rule αn greatly influences the rate of convergence of the API algorithm and
therefore impacts the attendant solutions. Increasing the stepsize parameter a slows the rate
at which the smoothing stepsize drops to zero. Selecting an appropriate value for a requires
understanding the rate of convergence of the application. Some problems allow convergence
to good solutions fairly quickly (i.e., tens to hundreds of iterations) whereas others require
much more effort (i.e., thousands of iterations). We observe that relatively lower a-values
work best in our application.

Upon obtaining an updated (and possibly smoothed) parameter vector θ , we have com-
pleted one policy improvement iteration of the algorithm. The parameters N and K are
tunable, where N is the number of policy improvement iterations completed and K is the
number of policy evaluation iterations completed.

3 Computational testing, results, and analysis

In this section, we demonstrate the applicability of ourMDPmodel to a problem of interest to
the military logistical planning community and examine the efficacy of our proposed solution
methodology. For the computational experiments, we utilize a dual Intel Xeon E5-2650v2
3.6 GHz processor having 192 GB of RAM and MATLAB’s parallel computing toolbox.

3.1 Representative scenario

We consider the parameterization of the MDP model that represents a MILIRP instance
of interest to the military logistical planning community. Time is discretized into 6-h time
periods. This discretization allows the day to be divided into four equal time periods. We
assume that any single direct delivery CUAV resupply mission to a COP can be completed
within a single period. In addition to travel time, a single CUAV resupply mission includes
maintenance, fueling, loading, and unloading actions.

We examine an instance of the MILIRP with a BSB supporting an infantry battalion-sized
element—approximately one-fourth of an IBCT—having 12 COPs requiring resupply. This
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number and size of COPs corresponds to the battalion operating in an area with maximum
dispersal of subordinate units, with a platoon consisting of approximately 50 personnel
operating at each COP. A platoon will typically consume 8000 pounds of supplies per day
during combat operations (General Dynamics Information Technology 2010) and, with four
periods in 1 day, 2000pounds (or one ton) of supplies per period are necessary for sustainment.
We conservatively assume that the COP’s capacity is three times the daily demand, bringing
COP capacity to 12 tons. We assume that the necessary supplies to resupply all COPs are
available at theBSB and that theBSBnever runs out of supplies; this assumption is reasonable
because the BSB is supplied via fixed wing airlift from a higher echelon of the organization,
having a more robust storage and warehousing capacity.

CUAV capabilities are increasing as research and development of the systems continue.
At present, Lockheed Martin’s K-MAX unmanned aircraft system helicopter has success-
fully transported payloads of three tons at sea level and two tons at 15,000 feet (Lockheed
Martin 2010). As recently as 2012, Lockheed Martin announced that the K-MAX routinely
transported 4,200 pound loads in combat conditions (Lockheed Martin 2012). As a conser-
vative estimate, we use the two-ton capacity of the K-MAX as the CUAVs’ capacity in the
computational experiments, and we restrict our supply increments to one-ton increments.

Parameterization of the number of CUAVs available is determined based on the Army’s
Tactical Unmanned Aircraft System (TUAS) platoon (Department of the Army 2010). The
organizational structure of the TUAS platoon in an IBCT continues to evolve and so, in this
study, we consider the organizational structure of the TUAS platoon as of 2010, parameteriz-
ing the number of TUAS crews at two and the number of CUAVs at four, where the number
of crews indicates the number of CUAVs that can be routed simultaneously.

Theψ-values represent the probability a CUAV successfully travels between the BSB and
a COP for a specific map. Ideally, an intelligence unit would subdivide (e.g., tessellate) the
AO into subregions and assign risk levels to each subregion. This subregion risk level would
take into account threats such as the probability of inclement weather, mechanical issues, and
hostile enemy actions. The least risky path for eachmap could then be found and the attendant
probability of successfully traveling the path utilized to parameterize ψ . (See McCormack
(2014) for an example that tessellates an AO and, using assigned risk levels, identifies a path
to maximize ψ for each COP, on each map.) For the computational experiments, we choose
to explore the case of m = 2 threat maps, one representing a low-threat environment and one
representing a high-threat environment.We create reasonableψ-values with higher values on
the low threat map and lower ψ-values on the higher threat map. The ψ-values are generated
from a continuous uniform distribution that is bounded between 0.8 and 1 for the high-
threat map and between 0.99 and 1 for the low-threat map. This parameterization balances
the possibility of failing to make a delivery with providing a realistic risk level at which a
commander would deploy a CUAV. Finally, we choose a discount factor of γ = 0.98 that
successfully balances future needs with present needs. The transition probabilities between
maps can be inferred based on seasons or fighting intensity; herein, we examine different
values of such probabilities in our designed experiment.

3.2 Experimental design

We create a set of experiments to assess the quality of solutions, computational effort, and
robustness (Barr et al. 1995) of our proposed ADP approach. To understand the effect of
parameterization on the performance of the ADP algorithm, we create a design of experi-
ments. Three response variables are considered: the number of tons delivered via ALOC (i.e.,
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via CUAV), the number of required resupply missions via GLOC, and the number of vehi-
cles that remain at the end of the simulation. It is important to note that the ALOC response
variable is reported in total tons whereas the GLOC response variable is reported in the total
number of missions. For each GLOC mission, up to 12 tons of supplies are delivered. We
also record computation times for the ADP to determine the computational effort required
to solve the MILIRP. Finally, we assess the robustness of the algorithm by experimenting
with both problem factors and algorithmic factors. To report these values, a simulation is
performed once the ADP policy has been created. We record the three response variables at
three different simulation lengths: 1-month, 2-month, and 3-month horizons, simulating for
100 replications per treatment.

To assess the quality of solutions attained by our solution methodology, we compare the
ADP policy to a benchmark policy, which is defined as follows

Xπbenchmark
(St ) = argmax

xt ∈XSt

C(St , xt ).

The benchmark policy is myopic in the sense that it does not account for the future state
of the system that may result due to its actions. Under the benchmark policy, the BSB
resupplies COPs that are relatively easier to reach (i.e., a CUAV has a higher likelihood of
successfully transiting to the COP) and have spare capacity to take delivery. However, under
the benchmark policy, the BSB also dispatches CUAVs for resupply even under relatively
difficult threat conditions (i.e., when a CUAVhas a lower likelihood of successfully transiting
to the COP).

Four problem characteristics are investigated: the number of COPs (B), the number of
CUAV vehicles initially available (v), and two parameters within the threat map transition
probability function governing the evolution of the threat condition in the area of operations.
The threat map transition probability function contains two problem factors: L and H . We
denote the probability of remaining in a low threat map as L , and the probability of remaining
in a high threat map as H . The probability of transitioning from a low threat map to a high
threat map is represented by 1 − L while the probability of transitioning from a high threat
map to a low threat map is 1 − H .

Each of the four problem factors are considered to be continuous variables. We conducted
preliminary experiments to determine the high and low factor levels for the number of COPs.
The results indicate that the upper limit of where the ADP policy outperforms the benchmark
policy in terms of supplies delivered via ALOC is 18 COPs. When we explore beyond this
bound to consider 27 COPs, we observed that the benchmark policy delivers three times the
supplies via ALOC than the ADP policy. Therefore, we set 9 as the low level and 15 as the
high level for the number of COPs. These factor level settings allow the center factor level,
12, to represent the typical number of platoons in a maximally-dispersed battalion that is not
augmented with additional units. For the number of CUAVs, we set 4 as the low level and 8
as the high level. The high factor level represents a situation in which two CUAV platoons are
present. Since CUAV units are organized in a 2:1 ratio of CUAVs to crews (Department of
the Army 2012), we parameterize the number of crews as half the number of CUAVS initially
available. The map probability transition function parameters, L and H , are explored at the
0.2 and 0.8 levels. The lower bound, 0.2, represents a low probability of returning to the
current threat map whereas the upper bound represents a high probability of returning to the
current threat map.

Four algorithmic features are also explored. The number of outer loops (N ) and inner
loops (K ) in the ADP algorithm are investigated. For the inner loop, K -values between 3000
and 7000 are considered. Initial experimentation revealed that the center value of 5000 was
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Table 1 Factor settings for factorial design

Description Factor Low (−) Center (0) High (+)

Problem factors Number of COPs B 9 12 15

Number of CUAVs v 4 6 8

Probability of remaining
in a low threat map

L 0.2 0.5 0.8

Probability of remaining
in a high threat map

H 0.2 0.5 0.8

Algorithmic factors Number of inner loops K 3000 5000 7000

Number of outer loops N 10 20 30

Instrumental variables I V Off (L1) – On (L2)

No smoothing SM Off (L1) – On (L2)

adequate for some parameterizations of the 12-COP problem instance; investigating smaller
and larger numbers of loops provides insight into how the performance of the ADP changes
for different computational efforts. For the outer loop, N -values between 10 and 30 are
considered. These bounds are chosen because initial experimentation indicated that N = 30
provided adequate results for the ADP as compared to the benchmark policy. By investigating
N -values lesser than 30, the performance of the ADP can be assessed for lower computation
times. The utilization of a least squares approach (i.e., use of Eq. (8)—indicated by (L1) in our
experimental results) or an instrumental variables approach (i.e., use of Eq. (9)—indicated
by (L2) in our experimental results) is also considered as a two-level categorical variable. We
denote this factor as IV. Finally, smoothing is also investigated by either applying smoothing
(L1) or by not applying smoothing (L2). This final algorithmic feature is also a categorical
variable and is denoted as SM. The problem and algorithmic factors and their associated
levels are shown in Table 1.

A fractional-factorial designwith center runs is implemented.We create a 28−2 resolution-
V design with a quarter fraction of eight factors in 64 runs. The resolution-V design dictates
that some two factor interactions are aliased with three factor interactions, an acceptable
structure. More importantly, the two-factor interactions are not aliased with one another,
and they are not aliased with the main, first order effects. We use an additional four center
points (each with one of four combinations of the two categorical variables), bringing the
total number of treatment runs to 68. Using this experimental design, we create ADP policies
by calculating the θ -coefficients for the basis functions. Once this is complete, we utilize
simulation to obtain the response variable statistics for both the ADP policy and the bench-
mark policy. We conduct the two simulations per treatment (one after determining an ADP
policy, and one utilizing the benchmark policy) over 100 replications. We consistently seed
the experiments in both the ADP algorithm and the simulation to achieve variance reduction.

3.3 Experimental results

The fractional-factorial design is used to identify the significant factors in the experiment and
provide a basis for analysis. Using this design,we estimate all eight single-factor terms aswell
as all 36 two-factor interaction terms and selected three-factor interaction terms. The results
of the experiment for each response variable at the end of the 3-month simulation are shown in
Tables 2 and 3. For each table, the first column indexes the run for subsequent discussion, and
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the second column, “Coded Factor Levels”, shows the pattern of factor levels for each factor in
the treatment, in the order they are presented in Table 1. The level for each factor, in sequence,
is indicated at its low (−), high (+), or center-run (0) values. The third column in Table 2
presents the required computational effort to run the ADP algorithm; overhead operations
and simulation times are not included. The next six columns tabulate the mean and standard
deviations for the ALOC, GLOC, and CUAV response variables, respectively for the ADP
policy and the benchmark policy after 360 time periods (i.e., 3 months). The final column in
Tables 2 and 3 presents the difference in the mean ALOC response variable between the ADP
and the benchmark policies, with a positive value indicating a better average performance by
the ADP policy. Because we are primarily interested in the policies’ respective effects on the
ALOC response variable, we also compare the policies’ responses using a one-sided t test
to determine whether the difference in the ALOC response variable values are significant
at the 0.05 level; runs for which the ADP policy outperforms the benchmark policy by a
statistically significant margin are indicated with an asterisk (*) in the final column, whereas
runs for which the benchmark policy’s ALOC response variable is significantly better are
annotated with a †-symbol.

By examining the results, a pattern is observed. Out of the 68 experimental runs, only 21
result in the ADP policy significantly outperforming the benchmark policy for the ALOC
response variable, about 31%. However, if we consider only experimental runs that use
smoothing and instrumental variables, this percentage increases to 76%, with 13 of the 17
values showing a significantly better response.Moreover, ifwe alsoonly consider experiments
performed with the low or center number of COPs as a factor setting, the percentage of runs
for which the ADP policy is significantly better than the benchmark policy with regard to the
ALOC response variable increases to 100% for all nine experiments. This result indicates
that several factors significantly impact the ADP policy’s performance as compared to the
benchmark policy.

Given the results of the designed experiment, we examine which problem and algorithmic
factors from Table 1 are statistically significant in affecting the ALOC response variable:
the number of tons that are delivered via CUAV over the 360-period simulation. Before
proceeding, we check selected assumptions; we verify the equal variance and normality
assumptions using the normal probability plot and a plot of the residuals versus predicted
values, neither of which is graphically depicted herein for the sake of brevity. The plots
confirm that the normality assumption is upheld, as is the constant variance assumption.
Plots of the residuals versus the factor values also confirms that constant variance in the
residuals is, for the most part, maintained.

We fit a metamodel to the first-, second-, and selected third-order effect factors and the
ALOC response variable, yielding a coefficient of determination (i.e., R2-value) indicating
that the model explains 95.5% of the variance in the ALOC response variable. An adjusted
R2

ad j value of 0.931 and the small difference between this value and R2 indicates that the
experimental factors of the metamodel are well chosen. Table 4 provides the significant
metamodel terms, their associated coefficient estimates with lower and upper bounds on a
95% confidence interval, and attendant p values, listed from increasing to decreasing levels
of significance. Herein, we analyze selected terms from which we derive insights into their
significance with respect to the ALOC response variable; we conducted similar analyses
for the other response variables, but we omit them from this analysis in order to focus the
discussion on the response variable of greatest importance.

The first term, IV, indicates that when the instrumental variables method is not used, the
average ALOC response decreases by 163 tons. Thus, utilizing the instrumental variables
method to update the θ -vector (instead of the normal equation) positively impacts the quality
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of solutions attained by our ADP algorithm. The second term, L , indicates that a 0.3 increase
in the value of L increases theALOC response by 116.2 tons. Thismeans that, when the prob-
ability of staying in a low threat map increases, the ALOC response variable also increases.
This result is intuitive, as the simulation will remain in a low threat map for longer amounts of
time allowing more CUAVs to make successful deliveries. The third term, I V · SM , indicates
that the interaction of smoothing and instrumental variables is also important. This trend can
also be observed by examining the four center runs in Table 2. All other factors held constant
at their mid-points, out of the four combinations of the I V and SM levels, the combination
that results in the highest ALOC response is the combination of instrumental variables and
smoothing.

The fourth term, I V · B, captures the interaction between using instrumental variables and
the number of COPs. Looking to the seventh term, B, we note that increasing the number of
COPs decreases the response variable. This parallels the results from initial testing conducted
on the number of COPs, which indicated that the ADP does not perform as well for problem
instanceswith a higher number ofCOPs.However, inspecting the fourth term I V ·B again,we
observe that, when the instrumental variables method is not utilized, an additional 3 COPs
actually increases the ALOC response variable by 99.7 tons. Taken together, the fourth
and seventh terms indicate that the instrumental variables method is less effective as the
number of COPs increases. This conclusion is an example of the difficulty in interpreting
metamodels with significant interaction terms. The fifth term, H , indicates that increasing
the probability of remaining in a high threat map by 0.3 decreases the ALOC response
variable by 97 tons. This makes sense, as remaining in the high-threat map is more risky
and results in fewer CUAVs being deployed and fewer successful deliveries. The sixth term,
smoothing, indicates that when smoothing is used, the average ALOC response increases
by 92.3 tons. Thus, utilizing smoothing when updating the θ -vector positively impacts the
quality of solutions attained by our ADP algorithm. The estimate for the eighth term, the
main factor v, indicates that increasing the number of vehicles by two increases the value of
the ALOC response by 88.6 tons. This also makes sense, as more initial CUAVs allows for
more potential deliveries.

Ten of the next 11 significant terms from Table 4 are two-factor interactions. Of note
is the fact that, when we consider interactions with B (i.e., terms 11, 14, and 16), all the
estimates for the terms are negative. This indicates that even a large number of CUAVs, a high
probability of staying in the low threatmap, or smoothing cannot overcome the negative effect
of resupplying a large number ofCOPs. The 18th term, K , is the lowest significantmain effect.
Increasing the number of inner loops results in an increasing ALOC value. This makes sense
as the higher number of inner loops should allow for the determination of improved solutions.

Terms 20 and 22 introduce the two significant three-factor interactions. It should be noted
that L · v · K is aliased with another three-factor interaction, I V · H · N . We choose L · v · K
as the significant factor because N is not found to be a significant factor in the metamodel.
Since additional experimentation is not performed within the scope of this paper, it is not
possible to verify this choice. The occurrence of significant three-factor interactions suggests
that interactions between the variables beyond the two-factor interactions are important.
Specifically, I V · H · SM (i.e., Term 20) indicates that the combination of smoothing,
instrumental variables, and probability of remaining in a low threat map are important in
combination. The only occurrence of N in the metamodel is found in the 23rd term, which
captures the two factor interaction of H · N . With a p value of 0.019, this term is significant,
but it is the least significant of those terms remaining in the metamodel.

Finally, we further investigate θ , the vector of weights for the basis functions, for two
particular treatments from the experiment to develop further insight into the ADP. We first
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Table 4 Coefficient estimates for ALOC response

# Term Estimate Lower 95% Upper 95% Prob>|t |
1 IV[L1] − 162.9 − 186.6 − 139.3 <0.0001

2 L 116.2 91.8 140.6 <0.0001

3 IV[L1]·SM[L1] − 100.4 − 124.1 − 76.8 < 0.0001

4 IV[L1]·B 99.7 75.3 124.1 <0.0001

5 H − 97.0 − 121.4 − 72.6 < 0.0001

6 SM[L1] 92.3 68.7 116.0 < 0.0001

7 B − 94.3 − 118.7 − 69.9 < 0.0001

8 v 88.6 64.2 112.9 < 0.0001

9 IV[L1]·L − 75.3 − 99.7 − 50.9 < 0.0001

10 L·v 61.6 37.2 86.0 < 0.0001

11 L·B − 61.3 − 85.7 − 36.9 < 0.0001

12 SM[L1]·v 58.3 33.9 82.7 < 0.0001

13 IV[L1]·v − 56.7 − 81.1 − 32.3 < 0.0001

14 B·v − 53.9 − 78.3 − 29.6 < 0.0001

15 L·SM[L1] 52.9 28.5 77.3 < 0.0001

16 SM[L1]·B − 49.6 − 74.0 − 25.2 0.0002

17 IV[L1]·H 47.9 23.5 72.3 0.0003

18 K 47.7 23.3 72.1 0.0003

19 IV[L1]·K − 41.8 − 66.2 − 17.4 0.0012

20 IV[L1]·H ·SM[L1] 32.6 8.2 57.0 0.0099

21 H ·SM[L1] − 31.9 − 56.3 − 7.5 0.0116

22 L·v·K − 29.5 − 53.8 − 5.1 0.0191

23 H ·N − 29.3 − 53.7 − 4.9 0.0196

consider the θ coefficients resulting from experimental Run 27, which produces the largest
ALOC response. By analyzing the θ -values for this particular run, insights into why the ADP
approach performed well are gained. First, by simply graphing the θ -values, it is evident that
there is a cutoff between values near zero and those that are not. Values that are near zero
indicate that the basis function corresponding to that value did not yield a change in the total
discounted reward. For example, the θ -value that corresponds with the current number of
vehicles remaining has a value of 48.65 for this particular experimental treatment. Thismeans
that, for each additional CUAV, there is an average increase in the total discounted reward of
48.65 tons with all the other variables held constant. Only 20 of the 166 basis functions have
corresponding θ -values above 1 or below−1, whichwe graph in Fig. 2. These 20 θ -values fall
into four categories of term types: the intercept, number of vehicles, actions, or map-action
interactions. The basis function that captures the current number of vehicles has a value of 48
and was discussed above. The basis function coefficients corresponding to the action taken at
each COP have values between 43.49 and 49.71. This indicates that deploying an additional
CUAV to a particular COP increases the total discounted reward by 43 to 50 tons. Finally,
the θ -values for the interactions between the current map and the action taken at each COP
varies between− 3.33 and− 17.9. Due to the fact that the current map is modeled as a binary
variable (for which the low risk map is ‘0’, and the high risk map is ‘1’), deploying CUAVs
when in the high risk map decreases the total expected reward between 3.33 and 17.9 tons,
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Fig. 2 θ -values for best and worst results

depending on the COP. This shows that the basis function is capturing the long-term effect
of dispatching CUAVs in the high risk threat map and potentially losing the assets.

We next consider a second set of θ -values determined by choosing the experimental
treatment that performed the worst, Run 6. Unlike the treatment considered for the best θ -
values, this run did not include instrumental variables or smoothing, algorithmic factors that
have been found to be important to the performance of the ADP. Examining the θ -values
obtained for this experimental run, it is readily identifiable that the magnitude of the values
is much smaller than the previous θ -values, varying between − 1.77 and 2.26. The poor
performance of this particular treatment makes sense, as the basis function is not producing
θ -values that address how the reward function changes. As the θ -values for theADP approach
zero, the ADP policy approaches the benchmark policy. For example, in the best case run we
observed a θ -value of 48.65 for the current number of vehicles. For the worst case run, we
obtain a value of 1.22 for the same parameter. Despite the small magnitudes of the θ -values
for the worst run, the largest θ -values in magnitude include the same three groupings of
basis functions: the number of vehicles remaining, the current action taken at each COP, and
the map-action interactions. This indicates that, despite the fact that the magnitudes of the
θ -values are low, the significant contributors to the total discounted reward remain the same.

It is challenging to succinctly portray ADP policy results for 68 problem instances that
involve up to a 17-dimension state space and a 15-dimension action space. Nonetheless,
inspection of the ADP policies reveals a general trend. Map-action combinations with larger
associated ψ-values (indicating the resupply of COPs during low threat conditions) are pre-
ferred; indeed, to conserve CUAV resources, a subset of high risk COPs are not serviced at
all due to their relatively smaller ψ-values. Alternative resupply delivery methods may be
warranted for such COPs.

4 Conclusions

This paper examines the MILIRP. The intent of the research is to determine policies that
improve the performance of a deployed military resupply system. Development of an MDP
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model of the MILIRP enables examination of many different military resupply planning
scenarios. However, solving the MDP for realistic-sized instances requires the design, devel-
opment, and implementation of an ADP algorithm.We develop an API algorithm that utilizes
LSTD learning for policy evaluation, defining a set of basis functions within a linear approx-
imation architecture to approximate the value function around the post-decision state. To
demonstrate the applicability of our MDP model and examine the efficacy of the policies
produced by our ADP algorithm, we construct a notional, representative military resupply
planning scenario based on contingency operations in Afghanistan.

This research provides the military with insight into the emerging field of unmanned
tactical airlift and, more specifically, CUAVs. With high casualty rates from ground resupply
efforts, the Army looks to unmanned aerial resupply vehicles as a resource that could be used
to supplement ground resupply efforts. Every ground convoy not conducted while supporting
subordinate units with other means provides an opportunity to save lives. The use of CUAVs
provides other benefits: the higher flight ceiling and better flight performance in adverse
weather conditions make unmanned helicopters less susceptible to man-portable air defense
systems, provide for greater maneuverability, and allow sorties to be scheduled in riskier
environments than their manned counterparts. Additionally, a more dedicated platform may
enable a more reliable, quicker, and more flexible resupply effort. The addition of a dedicated
CUAV unit would also free manned rotary assets for combat missions. However, the CUAVs’
key ability remains the potential to save lives by reducing the need for ground convoymissions
to resupply subordinate units in a combat environment.

We look to the K-MAX as a specific testament to the Army, Navy, and Air Force’s interest
in unmanned tactical airlift platforms. As part of a $45.8 million dollar contract, Lockheed
Martin and Kaman Aerospace Corporation successfully deployed three optionally manned
K-MAX helicopters to Afghanistan in 2011 (Lamothe 2014; LockheedMartin 2018). During
their 2-year deployment, the K-MAX helicopters were used by Marines in a tactical airlift
role to decrease the number of ground convoys necessary, especially in hazardous areas.
Over the duration of the deployment, the K-MAX was used by the Marines to deliver 4.5
million pounds of supplies, moving 15 tons per day over 1700 resupply missions in just 2
years of operation (Lockheed Martin 2018). The Washington Post (Lamothe 2014) reported
that “the Marines raved about [the K-MAX’s] utility and dependability” despite one of the
three helicopters crashing (with no injuries).

The K-MAX’s performance laid the groundwork for unmanned tactical airlift to become
a reality in today’s warfare. With this operational implementation, a capability gap exists
regarding how to best apply these CUAV assets in a combat environment. This research
sought to fill this gap by informing the development of tactics, techniques, and procedures
for optimal utilization of CUAV resources for commanders in the field. Proper utilization
of CUAVs will prolong the lifespan of the CUAV and increase its utility. By providing
procedures for sustaining units via CUAV, we provide decision makers with a potentially
lifesaving tool. Although no combat environment will perfectly match the computational
example provided in this paper, decision makers can create their own threat maps and inputs
to gain an understanding of a near-optimal policy for deployment of their CUAV resources.
Even if the policy is not followed exactly, it will provide a framework for understanding how
the CUAVs should be deployed and their expected lifespan, allowing these commanders to
better utilize their tactical airlift capabilities.

The ADP algorithm developed to solve the MILIRP with direct delivery provides a pol-
icy for the allocation of CUAV assets to resupply a battalion-sized Army unit. The ADP
policy was shown to be successful in outperforming the benchmark policy for categorical
levels of selected problem features. Experimentation on algorithmic features allowed for the
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conclusion that the ADP policy improves when high numbers of inner loops are utilized
with instrumental variables and smoothing. In terms of problem features, the ADP policy’s
performance decreases when a large number of COPs is involved, but the ADP approach is
robust to changes in other problem features. Specific combinations of inputs resulted in up
to 71% of supplies being delivered via air line of communication over a 1-month horizon,
65% over a 2-month horizon, and 57% over a 3-month horizon.

There are several areas for future research on the MILIRP. In terms of formulating the
problem, the addition of supply classes would increase the granularity of the problem and
more accurately represent the Army’s real-world resupply procedures. Additional insight
can be gained by modeling demand differently. In lieu of a deterministic consumption rate
of supply at each combat outpost, further study is warranted with demands of a stochastic
nature. Finally, we explore only a single ADP algorithm for determining a resupply policy;
exploration of alternative ADP algorithms may yield results that scale better than the results
gained from the API LSTD algorithm implemented herein.
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