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Abstract
This work proposes a binary nonlinear bi-objective optimization model for the problem
of planning the sustainable cultivation of crops. The solution to the problem is a planting
schedule for crops to be cultivated in predefined plots, in order to minimize the possibility of
pest proliferation and maximize the profit of this process. Biological constraints were also
considered. Exact methods, based on the nonlinear model and on a linearization of that model
were proposed to generate Pareto optimal solutions for the problem of sustainable cultivation,
along with a metaheuristic approach for the problem based on a genetic algorithm and on
constructive heuristics. The methods were tested using semi-randomly generated instances
to simulate real situations. According to the experimental results, the exact methodologies
performed favorably for small and medium size instances. The heuristic method was able to
potentially determine Pareto optimal solutions of good quality, in a reduced computational
time, even for high dimension instances. Therefore, themathematicalmodels and themethods
proposed may support a powerful methodology for this complex decision-making problem.

Keywords Multi-objective optimization · Genetic algorithm · Constructive heuristics and
sustainability

1 Introduction

In the current context of sustainable development, the cultivation practices favoring mini-
mization of environmental degradation through alternative ways that avoid the intensive use
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of chemical products to combat pests besides increasing soil usage are being intensively
studied. These practices, if adopted, can prevent an environmental crisis on the planet and
make agricultural products healthier.

In this sense, one of the central focuses in crop production discussed of late is the use of
measures designed to target sustainable and ecological planning, in the light of environmen-
tal degradation that has occurred in recent years. For this reason, the planning of agriculture
activities, such as crop rotation, has been gaining prominence in the studies aimed at sustain-
able cultivation, since it is one of the means of cultivation whose practical principles facilitate
ecological and productive agriculture. This practice, once conducted by the rural farmers,
brings numerous benefits, since the control of pests, pathogens and weeds are performed
biologically, thus decreasing the harmful effects of pesticides to the environment and leading
to actions promoting soil recovery, thus making it forever fertile, as stated by Snapp et al.
(2005).

In this paper, we present a nonlinear, more specifically, a bi-objective binary quadratic
optimizationmodel inspired by Santos et al. (2010), Santos et al. (2011), Santos et al. (2015a)
and Aliano Filho et al. (2014). The first three papers referred to presented versions of an
integer linear programming model, considering binary variables, constraints of demand,
adjacent plots, green manure and fallow, whose aim was to maximize a single objective
function (representing the total time of occupation for the planting area or the total profit
of the plantation). These papers were focussed on exact methodologies based on branch-
and-bound and column generation. In the fourth paper, a different approach was employed.
The authors proposed several metaheuristics (evolutionary algorithms, simulated annealing
and hybrids) to solve the crop rotation problems presented in Santos et al. (2010), Santos
et al. (2011). The objective function, to maximize, represents the total profit in the planning
horizon. One of the main features of this paper is to consider a formulation inspired on those
works, but here we consider two conflicting objective functions.

The mathematical model considered in this paper deals with two conflicting objectives.
The first one, of environmental nature, is defined to minimize the possibility of pest dis-
semination among the crops in the planting area, along the planning horizon. A quadratic
function is proposed to measure the proliferation of pests which depends, essentially, of the
crops’ botanical families and of the distance between the respective plots. This minimization
ensures a decrease in the use of chemical pesticides to combat pests and weeds. Moreover,
the maintenance of several crops in the same farm maintains the soil fertile, with high con-
centration of nitrogen and organic matter, thus reducing the amount of artificial fertilizers.
The second objective is purely economic and is defined to maximize the total profit of the
plantation along the planning horizon.

To determine Pareto optimal solutions for the bi-objective binary quadratic optimization
problem, the weighted summethod was used. The mono-objective problems of this approach
were initially solved using an integer quadratic programming solver. In a second phase, a
linearization strategy for the original model was applied, thus obtaining a mixed binary linear
programming formulation. The respective mono-objective problems were solved using an
integer linear programming solver. The high number of integer variables and the computa-
tional difficulties arising when running the solvers caused the authors to develop a genetic
algorithm (GA) to solve the mono-objective problems of the weighted sum method. Two
constructive heuristics were used, with the purpose of improving the performance of the
GA. Computational results have shown that this methodology is efficient, in the sense that it
obtains potentially Pareto optimal solutions for the bi-objective problem in a CPU time below
the exact methods, specially for the high dimension instances. This enables us to assume that
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the developed heuristic algorithm is an excellent tool for supporting decision-making in this
field.

This work introduces the following innovative aspects:

• The adaptation of a bi-objective binarymathematical programmingmodel for sustainable
cultivation;

• A comparative computational study between integer quadratic and linear versions of a
mono-objective problem used to determine Pareto optimal solutions for the problem of
sustainable cultivation;

• The development and computational testing of a GA, embedding two constructive heuris-
tics which determines potentially Pareto optimal solutions for the problem of sustainable
cultivation.

The remainder of this paper is organized as follows. Section 2 briefly presents the problem
of sustainable cultivation and correlated studies in the operational research area. Section 3
presents the mathematical modeling of the problem, including a quadratic and a linearized
model, all employed to obtain Pareto optimal solutions for the problem. Section 4 describes
the GA proposed, including the constructive heuristics necessary for this algorithm. In Sect.
5, 27 real-size instances are also introduced to computationally validate the metaheuristic
and the mathematical models. Finally, Sect. 6 describes the conclusions of this work.

2 Sustainable agriculture and crop rotation

According to Tilman et al. (2002), the global demand for food in 2052 will double its figures
in 2002. As predicted by these authors, food production designed to guarantee sustainability
is a huge challenge for agro-industrial management. New studies and new incentives are
required to find a way to improve food production, while preserving environmental integrity
and public health.

Parra (2002) presented a work that clarifies the advantages of using the crop rotation tech-
nique and shows the benefits of this technique to the natural control of pests, soil protection
and water resources. As stated by this author, a sustainable agriculture committed to the envi-
ronment and natural resources must intensively use crops planted sequentially in the same
field. It is an important practice for any sustainable agricultural system because different
crops improve the physical, chemical, and biological characteristics of the soil. This practice
retains soil fertility and prevents the appearance of disease, insect infestation, and weeds.

According toHavlin et al. (1990),West andPost (2002) andCosta et al. (2014),maintaining
and increasing soil productivity depends, essentially, on the management practices of the
crops. Usually, they cultivate organic leaf matter and increase nitrogen and carbon fixation
by the atmosphere in the soil, all vital components in good production. In this context, crop
rotation is an excellent technique to increase soil productivity.

Planning a rotation with diverse crops is not an easy task. Mathematical modeling with
operational research techniques can be useful tools in decision-making. Santos et al. (2010)
considered the problem of crop rotation in which one must meet known crop demands while
respecting ecologically-based production constraints. The authors proposed a binary linear
optimization model, where each variable is associated with a feasible crop rotation plan.
Due to the large number of variables of the model, a column generation method was used
to solve it. Santos et al. (2011) proposed a binary linear optimization model to determine a
schedule of crop rotation for each plot, thus maximizing land occupation time. In addition to
the restrictions considered in the previous work, planting constraints for adjacent plots and
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for crop sequences in the rotations were included. The authors proposed a column generation
heuristic to deal with the large number of model variables. In Santos et al. (2015b) a binary
programming formulation for this last problem. but considering decisions on plot sizes and
schedules was proposed. A branch-price-and-cut algorithm was developed and extensive
computational experiments over a set of instances based on real-life data were performed.

Alfandari et al. (2011) proposed a Mixed-Integer Linear Programming model for a multi-
period crop rotation optimization problems with demand constraints and incompatibility
constraints between cultivation and fallow state on a plot. The model, whose objective was
maximize the control agricultural space, was applied to a case study on Madagascan farms.

Frequently, optimization is based on a single monetary criterion, for instance profit maxi-
mization. Some authors, as Dury et al. (2012), pointed out the limitations of an approach that
focuses exclusively on maximizing returns. Therefore, the growing environmental concerns
led researchers to explicitly segment other objectives beyond profitability, such as minimiza-
tion of total labor, the equipment employed, herbicide usage, losses, pesticide exposure,
erosion; and maximization of irrigated areas, organic matters’ rate of change, gross margin,
among others.

In this new perspective, models with multiple objectives have increasingly been used in
agriculture applications, as mentioned by Huang et al. (2011). The multi-objective method-
ologies are becoming popular due to the flexibility that allows decision-makers to consider all
the criteria and objectives simultaneously (Kumar et al. 2017). Dogliotti et al. (2005) devel-
oped an approach to support farmers with temporal complex interactions in crop rotations
and spatial heterogeneity, revealing a trade-off between the economic and environmental
objectives. These authors proposed a mixed integer linear programming model to allocate
production activities at a farm with land units differing in soil quality, while minimizing the
socioeconomic and environmental objectives, subject to constraints at the farm level.

Hayashi (2000) presented a review of multicriteria analysis applied to agricultural
resource management. Methods for selecting multi-attribute discrete alternatives and solving
multi-objective planning problems are revised. Annetts and Audsley (2002) proposed multi-
objective linear programming models that consider a wide range of farming situations, which
permits optimization of profit or environmental outcome, or in fact both. The objective is
to identify the best cropping and machinery options which are both profitable and result in
improvements to the environment.

The recent paper by Boyabatlı et al. (2019) examines crop rotation in a sustainable context
taking into account revenue uncertainty and allocation of multiple crops to the plots. The
authors have shown that the cultivation of unique crop over the entire planning horizon, as
employed in industrial agriculture, leads to a considerable profit loss and soil wear. The paper
by Nechi et al. (2019) develops a model of goal programming with several criteria, where
stakeholders’ preferences are explicitly integrated within a group decision-making process
based on consensus and tradeoffs.

In the last 15 years, evolutionary algorithms have been used to support multi-objective
cropping plan decisions. Aliano Filho et al. (2014) addressed a crop rotation problem, mod-
eled as a binary linear programming problem. The objective is to maximize the profit from
rotation, while incorporating the same ecological constraints of themodel presented in Santos
et al. (2015b). The authors proposed metaheuristics to solve the problem, as well as greedy
constructive heuristics, which inspired the methods presented in this paper.

According to Rossing and Hammer (2006), the main advantage of using genetic algo-
rithms is to produce a set of compromise solutions along the Pareto frontier entailing a low
computation effort. These authors used a multi-objective evolutionary algorithm to solve
a crop choice model, and applied it in North East Australia. The concept of sustainability

123



Annals of Operations Research (2022) 314:347–376 351

of the cultivating systems is considered in terms of resources used besides other economic
aspects, but does not take into account the total profit of the agricultural activity. Sarker and
Ray (2009) formulated a crop-planning problem as a multi-objective optimization model
and provided useful insights into solutions that are generated by using three different evo-
lutionary strategies. The authors also considered a bi-objective formulation with continuous
variables for crop rotation, where the first objective is to maximize the total gross margin
(from cultivated plus imported crops) in a single crop year. The second one is to minimize
the total working capital required. These are two conflicting economic objectives.

In our paper, we highlight some innovative aspects, such as the adaptation of a crop
programmingmodel [inspired in theworksSantos et al. (2010, 2011, 2015b) andAlianoFilho
et al. (2014)] and introduce two objective functions to balance sustainability and profit. The
term “sustainability” is employed in this context because the mathematical model promotes
the choice of crops to entry in the planting schedule taking into account environmental
degradation, through reduction in intensive pesticide use and the maintenance of soil natural
resources.

The methodologies developed provide the manager with a set of several solutions and
correspond to distinct scenarios that facilitate his decision-making. We will show that the
multi-objective optimization tool enables one to analyze a reduction in environmental impact,
along with a modest decrease in profits.

In addition, linked to computational difficulties of the proposedmono-objective (quadratic
and linear) models for the weighted sum method, a comparative computational study with
different weights given to each function, is performed. To complete this analysis, we con-
ducted a comparison between the exact and heuristic solution methodologies. These aspects
show that this study addresses some points that were not covered by the specific literature of
this field.

The problem of sustainable cultivation studied can encompass two distinct production
scenarios. In the first scenario—cereal cultivation applied in areas of high production—
where there are fewer varieties, we highlight soybeans, corn, wheat, rice, and beans as the
most common crops. In the second situation, small farmers cultivate on a small scale, in
response to a demand from the region, whose focus is placed on vegetables. In this case,
the number of cultivated varieties (N ) and plots (K ) are larger (N can vary from 10 to 20
varieties and K varies from 10 to 15 plots), and the varieties are lettuces, potatoes, tomatoes,
peppers, watermelons, and pumpkins, among others.

In summarizing, the problem of sustainable cultivation consists in determining efficient
solutions or Pareto optimal solutions to the bi-objective problem of scheduling different vari-
eties of plants/crops in a given set of plots. The planting schedule is characterized by the crops
that should be cultivated, the dates and plots where they should be planted, with the purpose
of minimizing the possibility of pest proliferation among the crops in the whole planting area
and to maximize the profit obtainable in a specified planning horizon. Constraints for crop
planting of the same botanical family in alternated plots, for non-overlapping planting and
forcing all the plots to share the same cycle duration are also considered.

3 Mathematical modeling

This section is devoted to the quadratic and the linear bi-objective binary mathematical
programming models developed for the problem of sustainable cultivation. The constraints
associated with non-overlapping of planting constraints and cultivating consecutive plants in
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the same plot, were inspired by Santos et al. (2010, 2011, 2015b). The objective function
regarding the possibility of pest proliferation is originally proposed by the authors in this
paper. The additional components of the formulation considered in this work are based on
Aliano Filho et al. (2014).
The indexes and parameters for the models are defined as follows:

Indexes

• i and ī : related to the crops/cultures;
• j and j̄ : related to the plots;
• t : related to the planning horizon periods;
• p: related to the botanical family of plants.

Parameters

• N : number of crops available for planting (N ≥ 2);
• K : number of available plots;
• T : duration of the planning horizon;
• N f : number of botanical families of plants (N f ≥ 2);
• Fp: set of crops belonging to the family p, p = 1, . . . , N f ;
• Ci : duration of crop life cycle i ;
• li : profitability of crop i per hectare;
• area j : area of plot j in hectares;
• Piī : probability of pest infestations between the crops i and ī . Pest infestation has a

higher probability for similar crops and lower probability when the crops are botanically
different. Therefore, we propose the following probability of infestation:

Piī =
⎧
⎨

⎩

0.9, if i and ī are from the same botanical families,
0.5, if i and ī are from botanical families of degree between 2 and 3,
0.1, if i and ī are botanical families with degree equal greater than 4,

where the degree between two crops i and ī (i �= ī) is defined as the difference (in
module) in the index of the botanical families to which they belong. The decision about
three distinct and spaced values for the probability of pest proliferation between two
crops came from previous computational experiments performedwith the aim of strongly
penalizing plantation of similar crops in nearby plots, thus promoting the cultivation of
very distinct crops in nearby plots.

• Vj j̄ : the probability of pest infestation from plot j to plot j̄ , j �= j̄ , and vice-versa. We
propose the following formula to calculate Vj j̄ :

Vj j̄ = 1

1 + d j j̄
,

in which d j j̄ is the shortest distance between plots j and j̄ . Note that, if d j j̄ → 0 then
Vj j̄ → 1; if d j j̄ → ∞ then Vj j̄ → 0. This means that neighboring plots are more likely
to be simultaneously infected.

The decision variables are defined as follows:

xi j t =
{
1, if crop i is planted in plot j in the period t,
0, otherwise,

for all i = 1, . . . , N , j = 1, . . . , K and t = 1, . . . , T .
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A bi-objective quadratic binary formulation for the problem of sustainable cultivation is
presented as follows:

minimize z1 =
N∑

i=1

N∑

ī=1

K−1∑

j=1

K∑

j̄= j+1

T∑

t=1

Piī · Vj j̄ ·
⎛

⎝
Ci−1∑

r=0

xi j(t−r)

⎞

⎠ ·
⎛

⎝

Cī−1
∑

r=0

xī j̄(t−r)

⎞

⎠ (1)

maximize z2 =
N∑

i=1

K∑

j=1

T∑

t=1

li · area j · xi j t (2)

subject to
N∑

i=1

Ci−1∑

r=0

xi j(t−r) ≤ 1, j = 1, . . . , K , t = 1, . . . , T (3)

∑

i∈Fp

Ci∑

r=0

xi j(t−r) ≤ 1, p = 1, . . . , N f , j = 1, . . . , K , t = 1, . . . , T (4)

N∑

i=1

T∑

t=1

Ci · xi j t = T , j = 1, . . . , K (5)

xi j t ∈ {0, 1}, i = 1, . . . , N , j = 1, . . . , K , t = 1, . . . , T , (6)

where t − r ≤ 0 is replaced by t − r + T .
The objective function (1), to be minimized, represents the possibility of pest proliferation

throughout the planting area, when considering the whole planning horizon. The closer the
crops of the same botanical family of plants are, the greater the proliferation. Maximization
of objective function (2) aims to optimize the profit of the planting schedule. Note that these
objectives conflict with each other. On the one hand, if this last function is maximized, only
the crops that provide greater profit will be selected for planting. Hence, the variability of
the crops chosen to be planted will be reduced. On the other hand, if only z1 is minimized,
crops of different botanical families offering a lower profit should be chosen, thus resulting
in a lower overall profit.

Constraints (3) prevent planting overlapping, that is, constraints which enable a new crop
to be inserted in a plot before concluding theCi periods of cultivation of the previous crop (i)
in the plot. Constraints (4) prevent crops of the same botanical family from being cultivated
in the same plot in consecutive periods. Constraints (5) ensure that all the T periods of the
planning horizon are used in each plot. Finally, constraints (6) impose the domain of all the
decision variables of this model.

It is important to note that some previous papers, such as Santos et al. (2010, 2011, 2015b)
and Aliano Filho et al. (2014), consider fallow practice as an important requirement in the
elaboration of a crop rotation schedule. However, we do not require this practice. From the
economic point of view, it is of no interest for farmers to leave an area fallow for a certain
period, but rather to always ensure it is occupied with a profitable crop.

To obtain Pareto optimal solutions for this bi-objective problem, we balanced z1 and z2
by attributing weights to these functions and minimizing the resulting sum. In this way we
solved the mono-objective problem:

minimize z = λ · β1 ·z1 + (1 − λ) · β2 ·(−z2)
subject to constraints (3)–(6),

(7)

where λ ∈ [0, 1]. According to Miettinen (2012), for each value of λ > 0, the solution to
this mono-objective problem is efficient for the problem (1)–(6). The constants β1 and β2
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selected in the range [0, 1] normalize the objectives. Such constants may be determined by
solving the problems:

x∗
1 = arg min{z1 : s.t. (3)–(6)} and x∗

2 = arg max{z2 : s.t. (3)–(6)}, (8)

and, calculating:

β1 = 1

z1(x∗
2) − z1(x∗

1)
and β2 = 1

z2(x∗
1) − z2(x∗

2)
. (9)

As observed, the models (1)–(6) and (7) are nonlinear. More precisely, the function z1
is a quadratic one. The inconvenience of these models is that there is no guarantee that
they are convex, thus causing difficulties for the integer quadratic programming solvers.
In an attempt to circumvent this problem, we adopted an integer programming modeling

technique to linearize the models, which consists in replacing the product
(∑Ci−1

r=0 xi j(t−r)

)
·

(∑Cī−1
r=0 xī j̄(t−r)

)
by zi ī j j̄ t and imposing the linear constraints:

Ci−1∑

r=0

xi j(t−r) +
Cī−1
∑

r=0

xī j̄(t−r) − zi ī j j̄ t ≤ 1, (10)

zi ī j j̄ t ≤
Ci−1∑

r=0

xi j(t−r), (11)

zi ī j j̄ t ≤
Cī−1
∑

r=0

xī j̄(t−r), (12)

for all i = 1, . . . , N , ī = 1, . . . , N , j = 1, . . . , K − 1, j̄ = j + 1, . . . , K , t = 1, . . . , T
where zi ī j j̄ t ≥ 0 are the new variables.

The linearized version of model (1)–(6) is presented below:

minimize zl1 =
N∑

i=1

N∑

ī=1

K−1∑

j=1

K∑

j̄= j+1

T∑

t=1

Piī · Vj j̄ · zi ī j j̄ t (13)

maximize z2 =
N∑

i=1

K∑

j=1

T∑

t=1

li · area j · xi j t (14)

subject to
N∑

i=1

Ci−1∑

r=0

xi j(t−r) ≤ 1, j = 1, . . . , K , t = 1, . . . , T (15)

∑

i∈Fp

Ci∑

r=0

xi j(t−r) ≤1, p=1, . . . , N f , j =1, . . . , K , t=1, . . . , T (16)

N∑

i=1

T∑

t=1

Ci · xi j t = T , j = 1, . . . , K (17)

constraints (10)–(12) (18)

xi j t ∈ {0, 1}, zi ī j j̄ t ≥ 0, (19)

i = 1, . . . , N , ī = 1, . . . , N , j = 1, . . . , K − 1,

j̄ = j + 1, . . . K , t = 1, . . . , T , (20)
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where zl1 is z1 linearized and t − r ≤ 0 is replaced by t − r + T . The linear reformulation
of the weighted sum model is given by:

minimize z = λ · β1 ·zl1 + (1 − λ) · β2 ·(−z2)
subject to constraints (15)–(20).

(21)

In Sect. 5, we compare the performance of standard software applied to Problem (7) and
its linearized version (21) using three values ofλ. The processing time of these exact methods
corresponding to each of these weights is verified. The Pareto optimal solutions determined
are also commented on. However, these exact methods were unable to tackle large instances.
In fact, for several instances, the solver did not even find a feasible integer solution to the
quadratic Problem (7) and to the linear Problem (21), in one hour’s execution.

4 The genetic algorithm

In this section a genetic algorithm (GA) with two constructive heuristics for the problem
of sustainable cultivation is presented. We opted for the metaheuristic GA because it is
simple to implement, it has incurred low computational costs and provided good results for
combinatorial problems according toHan andKim (2000), Deb (2001), Rossing andHammer
(2006), Sarker and Ray (2009) and de Oliveira Florentino et al. (2018), among other studies.

The core features of the proposedGAare the solution encoding andmainly the constructive
heuristics developed for the initial population, all presented with additional details of this
method in the following subsections.

4.1 Solution encoding

In theGAfor the problemstudied in thiswork, an individual corresponds to a solution, feasible
or otherwise, to the problem. The strategy of encoding that follows was inspired in Aliano
Filho et al. (2014) and de Oliveira Florentino et al. (2018). Each individual I = (ikt ) ∈ N

K×T

is a matrix, and its entry ikt ∈ {1, . . . , N } represents the crop index that is planted in lot k
and in period t , k = 1, . . . , K and t = 1, . . . , T . This codification has the advantage of
being simple to implement and provides all the information required. To facilitate ones
understanding of solution encoding, we present an illustrative example.

Example 1 (Illustration of a feasible solution) The data for the crops are shown in
“Appendix”, Table 11. Let N = 20, K = 9 and T = 12. A possible solution to this
problem could be given by the matrix I ∈ N

9×12 below:

I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

11 6 6 8 8 18 18 15 15 17 17 11
8 16 1 1 13 13 13 9 9 9 20 8
7 7 17 17 11 11 2 2 2 4 4 7
18 13 13 13 6 6 11 11 4 4 20 18
8 19 19 19 7 7 7 6 6 10 20 8
20 11 11 8 8 5 5 18 18 4 4 16
9 9 9 4 4 13 13 13 6 6 10 20
9 2 2 2 6 6 16 10 15 15 9 9
15 11 11 4 4 1 1 7 7 7 20 15

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In this solution, the planting of crop i = 6 is programmed in plot k = 1 in period t = 2
and it stays in this plot until it is harvested in the period t = 3, when the crop i = 8 enters
in period t = 4 and remains until period t = 5. Finally, in period t = 12, crop i = 11 is
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planted and occupies the space until its planting period has expired, that is, at t = 13 (which
corresponds to the first period, according to the mathematical formulation).

4.2 Initial population

The initial population of the GA is carefully created. The basic idea consists in generating
individuals with enough diversity to allow the algorithm to combine the varied characteristics
of the individuals and produce diverse potentially Pareto optimal solutions to the problem.

This initial population is generated by two different heuristics, named MINPEST and
MAXPROFIT.We try to create solutions with distinct characteristics in order to optimize the
two conflicting functions, z1 and z2. One of the constructive heuristic attempts to produce
solutions that have a lowprobability of pest proliferation among the crops, bymixing different
plants. The other constructive heuristic attempts to obtain high profit-making solutions, by
forcing only the more profitable crops to enter the schedule. These two ways of building
solutions are necessary for thisGA, because the objectives conflictwith each other.According
to the weight λ given to the objective z1, the GA will determine a good solution with respect
to the function z = λ · β1 ·z1 + (1 − λ) · β2 ·z2.

Let n be the total number of individuals of this population 1. It is calculated as follows:

• n
2 by the MINPEST heuristic;

• n
2 by the MAXPROFIT heuristic.

The two constructive heuristics, MINPEST and MAXPROFIT, are presented in the fol-
lowing subsections.

4.2.1 MINPEST heuristic

This heuristic is based on the heuristic in Aliano Filho et al. (2014), which builds a solution to
Problem (21) with λ = 0.0. This heuristic aims to ensure the sequential insertion of different
botanical families in the same plot. Each individual satisfies the constraints of the problem,
except the period continuity at t = T and t = 1. It is possible that the crops of these periods
may belong to the same family. Should that happen and a shift of elements (in the same lot)
is performed, then this inadmissibility may occur in intermediate periods of the planning
horizon. Later, we will consider a way to overcome this drawback.

The pseudocode of this heuristic is in Algorithm 4.1. Initially, for each lot k we sort a
permutationPk of crops’ indexes. We define the sequence of crops vk containing the planting
schedule for plot k and start to run along vector Pk and seek the first element whose crop
i is not from the same botanical family of the last crop inserted in vk . This ensures that the
constraints of consecutive planting are always respected. After finding one such crop, it will
be inserted in the schedule and vk is updated. The construction is made until the period of
the new crop to be inserted in vk , added to the number of periods of the crops that were
already inserted in vk is equal to T . Should any crop in Pk satisfy this, a new permutation is
generated.

With the indexes of the crops to be planted in plot k in the T periods, we perform the
procedure referred to as prolongation, described as follows. Let the row k of the individual
I be denoted by Ik . This row is built from the vector vk . Each crop i is repeated as many
times as the duration of its period of cultivation, Ci . This is done until all the crops of vk

1 The number n must be a multiple of 2, because n/2 needs to be integer.
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are considered. In the end, Ik has length T . Therefore, the final individual I is the string
concatenation (in rows) of Ik .

This heuristic produces solutions that always start their cultivation in period t = 1 and end
in period t = T . In general, the solution does not necessarily possess this characteristic, which
can be seen in individual I from Example 1. To produce greater variability in the population
solutions, we perform a procedure named shift in each row Ik of I, with a probability of 70%.
If it occurs, we shift the elements of Ik in a positions to the right of their original positions.
Here, a is an integer randomly generated from 1 to T (uniform distribution).

Example 2 (Construction of an individual with the MINPEST heuristic) We will build
the scheduling for lot k = 1, I1, considering the data of the crops displayed in Table 11,
N = 10 and T = 12.

Step 1 We randomly generated P1 = (5, 10, 8, 7, 1, 9, 2, 6, 4, 3).
Step 2 Let i = 5 be the first crop to be inserted in the schedule. The calendar for planting

crop 5 has C5 = 2 duration periods.
Step 3 Let i = 10 be the second crop of the permutation. It is inserted in the schedule as it

is not from the same botanical family of the previous inserted crop. Then, we are in
period C5 + C10 = 2 + 1 = 3.

Step 4 The crop i = 8 is the third crop inserted in this plot.We already haveC5+C10+C8 =
2 + 1 + 2 = 5 periods occupied.

Step 5 The next crop of the permutation is i = 7. It cannot be inserted in the current period
as the last crop planted belongs to the same family. The next crop analyzed is i = 1,
which is not from the same botanical family. Then, the period occupied is updated
to C5 + C10 + C8 + C1 = 2 + 1 + 2 + 2 = 7.

Step 6 We analyze crop i = 9, and it is introduced into the schedule. The current planting
period is C5 + C10 + C8 + C1 + C9 = 2 + 1 + 2 + 2 + 3 = 10.

Step 7 Analysis of the next crop, i = 2, tells us it cannot be inserted in the schedule, because
the duration of its cycle is greater than the number of periods needed to complete
the cycle, T = 12. In sequence, we analyze crop i = 6 which possesses precisely
the 2 periods required to finish the schedule.

Step 8 Using the prolongation operator, we have the vector I1:

I1 = [
5 5 10 8 8 1 1 9 9 9 6 6

]
.

(Note that it corresponds to an unfeasible solution, since the first and the last crops
of the schedule are both from family 3).

Step 9 If the operator shift acts in this vector with a = 3 positions, we have a new (unfea-
sible) schedule for this plot given by:

I1 = [
9 6 6 5 5 10 8 8 1 1 9 9

]
.

4.2.2 MAXPROFIT Heuristic

This is a constructive heuristic we have developed in this study. It is specialized in producing
solutions with higher profitability. A parameter α is introduced to control the “strength” and
“pressure” that one wants to ascribe to the profit of a planting schedule.

Consider a set of crops that the agriculture decision-maker wants to insert in the schedule
of plot k, with cardinality α ≥ 2 (if α < 2, there is no a feasible solution regarding the
continuity constraints). The more profitable crops from different botanical families must be
chosen to compose this set and they are randomly permuted, thus producing the sequence
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of crops Ck . Then, the MINPEST heuristic is employed to generate an individual of the GA,
i.e., we use the set Ck instead of Pk for each plot. A smaller value of α produces a solution
with a greater profit. In the same way, we apply the shift and prolongation operators to each
plot. The idea supporting this heuristic is the production of more profitable solutions (which
also implies an increase in pest infestations) and, consequently, the introduction of diversity
in the population of the GA.

Example 3 (Construction of an individual with theMAXPROFITheuristic) Suppose that
α = 4, and that the most profitable crops from Table 11, belonging to families 1 and 2, are
used to build the planting schedule in K = 5 plots. We will only illustrate the construction
of one plot. Let the sequence of these crops be C1 = (3, 1, 2, 4).

Algorithm 4.1 MINPEST heuristic
1: Input: crop data
2: for k = 1, · · · , K do
3: vk = ∅

4: duration = 0
5: Generate a random permutation Pk of N crops.
6: while duration < T do
7: for i ∈ Pk do
8: if the last crop inserted in vk is not from the same family as crop i then
9: if Ci ≤ T − duration then
10: Insert i in the sequence vk
11: duration = duration + Ci
12: if duration = T then
13: break
14: end if
15: end if
16: end if
17: end for
18: if duration �= T then
19: got to step 7
20: end if
21: Apply the prolongation operator with vector Ik with the sequence vk
22: Apply the shift procedure
23: I = I ∪ Ik (row concatenation)
24: end while
25: end for
26: Output: I, a solution (feasible or not) for the sustainable cultivation problem

Step 1 crop i = 3 is inserted in the schedule followed by crop i = 1. The next crop, i = 2,
cannot be planted, because it is from the same botanical family as the previous
one. Then, crop i = 4 is inserted. The sum of periods of the three crops results in
5 < 12 = T periods.

Step 2 The insertion of crops continues, starting with the first element of C1, which in
turn cannot be inserted at this moment. The crops i = 1 and i = 4 are the next
to be allocated to this schedule. The duration of the planting cycle at this stage is
9 < 12 = T .

Step 3 Starting the scanning once more through the sequence, crops i = 1 and i = 3 are
the last crops to be inserted. Following application of the prolongation operator,
we have the vector I1:

I1 = [
3 1 1 4 4 1 1 4 4 1 1 3

]
,
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which is unfeasible, because crop 3 is planted in sequence (periods 1 and 12).
Step 4 Using the shift operator with a = 4, we have the following schedule of this plot:

I1 = [
4 1 1 3 3 1 1 4 4 1 1 4

]
,

which is unfeasible for the problem, due to the planting of crop 3.

For the construction of the remaining plots using set C1, we consider other random permuta-
tions of the elements from C1. Our concern is to always examine the feasibility of consecutive
crops in the intermediate periods, that is, if they are from different families.

The pseudocode of this procedure is similar to the Algorithm 4.1, except for line 5, where
the list of crops to be inserted is Ck .

4.3 Fitness evaluation

The fitness f (I) of each individual I in the population is given by

f (I) = λ · β1 ·z1 + (1 − λ) · β2 ·(−z2) + 103 · v(I), (22)

where β1 and β2 are calculated through the Expression (8), 0.0 < λ < 1.0.
The function v(I) provides the number of violations that corresponds to I, with regard to

the constraints of consecutive planting. Violations occur because the MINPEST and MAX-
PROFIT heuristics can determine unfeasible solutions as to consecutive planting. The first
and last crop of the schedule can be from the same botanical family. Also, following the
action of shift operator, this inadmissibility can be passed on to intermediate periods. The
number of plots in which this occurs is the number of violations v(I) to be considered in the
fitness of the individual. Therefore, a feasible individual I has a null violation, v(I) = 0, and
an unfeasible one has v(I) > 0 and tends to be extinct from the population in subsequent
generations.

4.4 Selection

The process of selecting the individuals in the population consists of choosingwhich elements
will generate descendants for the next generation. Therefore, 
γ1 ·n� individuals are separated
to perform the crossover, another genetic operator of this method. The parameter γ1, called
the selection rate, is defined by the user. The selection consists of performing tournaments
with two randomly chosen elements of the population, and the one with the lowest fitness
is chosen (the best one). The procedure ends when the 
γ1 ·n� individuals are chosen, thus
building, the intermediate population.

4.5 Crossover

The main objective of this operator is to produce new solutions from the previously built
ones, by exploring the feasible space of the problem and finding more promising solutions
with respect to fitness value, i.e., solutions with lower fitness value. This operator randomly
chooses 
γ1 ·n�/2 pairs of individuals from the intermediate population. Each pair (F,M)

is considered a pair of parents father and a mother, respectively, and their genes (the rows of
the respective matrix) are swapped between the two parents thus resulting in two offspring
(C1 and C2), each bearing some genetic information from both F and M. In the crossover,
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Fig. 1 Illustration of the uniform crossover

a random binary vector b = (bk) of length K is considered. If bk = 0, then the child C1

has its kth row copied from the father. If bk = 1, then the kth row comes from the mother.
The child C2 is built inversely, that is, if bk = 0 the information comes from the mother and,
otherwise, it comes from the father. This strategy, besides incurring low computational cost,
is able to generate different and promising solutions to the problem.

Figure 1 schematically illustrates this uniform operator.

4.6 Mutation

The mutation acts on 
γ2 ·n� (where γ2 is the mutation rate) randomly choosing individuals
of the population. The mutation avoids the premature convergence of the algorithm. The
following function represents the probability for this operator to act in a given generation g
of the GA

φ(g) = 1

1 + 20e−g/40 . (23)

When g → G (whereG is the maximum number of generations),φ(g) → 1. This means that
mutation occurs more strongly in the final generations of the GA, when the individuals of the
population tend to be similar. For each individual I that mutates, we consider a probability of
50% to replace each row Ik of I. If the replacement occurs, the MINPEST heuristic generates
another schedule for Ik .

4.7 Migration

Similar to the mutation process, we proposed an operator called migration. The purpose
is again to ensure diversity in the population, and, consequently, to determine the most
promising solutions. A mechanism to replace the 
γ3 ·n� elements of the population (where
γ3 is a given parameter) is used in three moments throughout the course of the GA, more
precisely, in generations g = 0.5G, g = 0.7G and g = 0.9G. In these generations, 50% of
the new individuals (immigrants) are generated by theMINPEST heuristic and the remaining
50% by the MAXPROFIT heuristic.
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4.8 Update and Elitism

After the selection, crossover,mutation, andmigration, the population increases by the factor
of 1+ γ1. All the individuals are evaluated, according to Expression (22), and the n best are
taken to the next generation. Elitism consists in preserving the best element (called Elite and
denoted by E) before the operators act. E is included in the population before updating at the
end of any generation, and constantly updated at each generation. This means that the GA, at
least, preserves the best solution achieved in previous generations. Should a better individual
than current E appear in the population, the elite individual is updated. The GA method ends
its search after G generations.

It is important to note that this GA determines one solution for the problem according
to the weight λ given to the objective function z1 (and 1 − λ given to z2). This means
that the method determines a potentially Pareto optimal solution of Problem (1)–(6). The
approximation of all Pareto optimal solutions would be a computationally expensive task,
since the problem can have a large number of such solutions. In the next section, we will
demonstrate that each solution demands moderate to high CPU time.

Consequently, we propose to determine only three of these solutions that will give a
reasonable representation of different solutions for the Problem (1)–(6). For two of the three
solutions, we individually optimize the objectives, thus obtaining the so-called potentially
lexicographic solutions (Miettinen 2012), when λ = 0.0 and λ = 1.0. The third one is
obtained by using a combination of the same weight for the objectives (the so called mixed
potentially Pareto optimal solution, when λ = 0.5). The three well-spaced values for λ show
the conflicting character of the objectives of our problem. A similar procedure was followed
in de Oliveira Florentino et al. (2018) with an algorithm whose characteristics, in terms of
computational requirements, are similar.

The GA’s pseudocode is presented in Algorithm 4.2.

Algorithm 4.2 The GA for Problem (21)
1: Input: problem data, n, G, γ1, γ2, γ3
2: Build the initial population, P .
3: g = 0
4: while g ≤ G do
5: Evaluate n individuals of P and identify E
6: Select γ1 ·n elements from P (the intermediate population)
7: Apply the crossover with individuals from the intermediate population, generating 
γ1 ·n� children (set

C)
8: P = P ∪ C
9: Apply the mutation operator, with probability φ(g) on 
γ2 ·n� individuals from P and update P
10: if g = 0.5G ∨ g = 0.7G ∨ g = 0.9G then
11: Apply the migration operator on 
γ3 ·n� individuals from P
12: end if
13: Evaluate the new individuals obtained from the crossover, mutation and migration operators
14: Let Ē be the best new individual in P
15: if f (Ē) < f (E) then
16: E = Ē
17: end if
18: Update the population with the n best elements from P ∪ C ∪ {E}
19: g = g + 1
20: end while
21: Output: E
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In the following section, we present the computational results performed to validate the
mathematical models with the corresponding exact methodologies, and the heuristic solution
method proposed.

5 Computational experiments

The computational experiments were implemented in the MATLAB (2017) software version
2017 in an Intel Core i7with 8GB of RAM. For comparison purposes, the exactmethodswere
implemented with IBM ILOG CPLEX version 12.8 (CPLEX 2017). Table 9 in the Appendix
presents some real characteristics of the 27 instances generated to validate themethodologies.
Such instances were semi-randomly generated by combining different values of N , K and
T , many of which correspond to real situations. In the same table, we present the number of
variables and constraints of the quadratic model (1)–(6) and for its linearized version (13)–
(20). The performance of the CPLEX solvers running with these two formulations will be
presented in the next tables. The GA parameters, presented in Table 10, were determined by
preliminary computational experiments and they were the best cost-benefit choices.

The shape of the plots is illustrated in Fig. 6. Each plot is a square whose sides are 200
meters in length. Therefore, the distance between the plots 1 and 3 is 200meters, and between
plots 5 and 7 is zero, because they are adjacent. For instances with K < 12 plots the K first
plots were considered, as shown in Fig. 6. The remaining data of the crops, such as planting
cycle duration (in periods), the botanical family to which the plant belongs and profitability
(per m2) are presented in Table 11.

5.1 Results

As mentioned above, in the experiments we used three distinct values for the weight in the
function z1: λ = 1.0, λ = 0.5 and λ = 0.0. With each of the 27 instances considered, the
GA was run 20 times.

Tables 1, 2, 3, 4, 5 and 6, indicate the values of the objective functions determined for
the quadratic and linear cases for each λ value, along with all the 27 instances generated
(zCPLEX ). In addition, we provided the average, maximum and minimum values of the GA
objective values in the 20 runs. The relative Gap (in %) between the objective values from
CPLEX and GA, was measured by using the average values of the GA figures. Hence, this
gap was calculated on the basis of the averages of the objective value obtained in GA runs
(z̄GA) as follows:

Gap = z̄GA − zCPLEX

z̄GA
× 100.

We imposed a time limit of 3600 seconds for CPLEX to determine the optimal solution to
Problem (7) (quadratic formulation) or Problem (21) (linearized formulation). The symbol
(*) indicates that CPLEX did not determine any feasible integer solution in 3600 seconds.

Table 1 displays the z1 figures obtained with λ = 1.0. CPLEX determined a solution
for only seven instances with the linearized formulation. With the quadratic formulation, the
CPLEX determined a solution for 24 instances and did not find any feasible integer solution
for three large instances. Note that, with the non-convex quadratic function (1), the CPLEX
solver can stop in a local optimum or in the global optimum.
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Table 1 Computational results of the z1 objective function using λ = 1.0

Instance CPLEX GA Gap to
linear (%)

Gap to
quadratic (%)

Linear Quadratic Avg. Max. Min.

1 0.113 0.119 0.113 0.113 0.113 0.000 −4.966

2 0.249 0.286 0.256 1.119 0.163 3.018 −10.521

3 3.112 5.730 3.486 7.835 3.226 12.018 −39.162

4 0.294 0.316 0.297 0.301 0.294 1.054 −5.981

5 4.755 4.910 4.807 5.472 4.514 1.094 −2.098

6 * 17.260 10.820 16.630 9.110 * −37.312

7 0.536 0.525 0.504 0.508 0.501 −5.989 −3.982

8 * 7.803 6.735 10.665 4.528 * −13.692

9 * 20.350 20.750 29.320 16.890 * 1.966

10 0.079 0.105 0.040 0.050 0.020 −49.495 −61.905

11 * 0.697 0.550 1.400 0.240 * −21.045

12 * 0.754 0.904 0.702 1.970 * 19.973

13 * 0.227 0.134 0.284 0.090 * −40.977

14 * 0.979 0.875 1.569 0.400 * −10.621

15 * 6.587 5.554 9.114 4.360 * −15.685

16 * 0.783 0.175 0.217 0.135 * −77.606

17 * 8.183 2.810 4.300 1.290 * −65.662

18 * 19.210 17.020 21.290 13.040 * −11.400

19 * 0.039 0.029 0.048 0.009 * −24.870

20 * 0.517 0.449 1.314 0.130 * −13.203

21 * * 2.290 3.700 1.640 * *

22 * 0.410 0.133 0.260 0.075 * −67.537

23 * 1.868 1.054 1.700 0.618 * −43.570

24 * * 5.700 7.320 4.550 * *

25 * 0.207 0.206 0.326 0.102 * −0.435

26 * 8.930 1.710 2.290 1.000 * −80.850

27 * * 9.060 10.760 8.020 * *

The GA solved all the 27 instances. For most instances, this method produced a better
solutionwith respect to the objective z1 as comparedwithCPLEX. For example,with instance
10, the GA provided a solution with a 49% and 61% lower proliferation on average, with
regard to those determined by CPLEX with the linearized and the quadratic formulations,
respectively.

As for the difference, for instance, among the instances and the z1 value determined,
we should highlight certain observations. In the column that presents the results from the
GA, note that the differences among instances 1, 10 and 19 consist in the number of crops
N , respectively, equal to 5, 10 and 20. As for the z1 values observed, they decrease as N
decreases. This is accountable as there is a greater variability among the crops which leads
to more freedom in combining them in the same planting area. On the other hand, if the
instances 1, 2 and 3 are compared, we see that they differ only in the number of periods,
and the z1 values increase with/by T . The same happens when K is modified. Note that in
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Table 2 Computational results of the z1 objective function using λ = 0.5

Instance CPLEX GA Gap to
linear (%)

Gap to
quadratic (%)

Linear Quadratic Avg. Max. Min.

1 2.373 1.518 1.990 2.520 1.896 −16.140 31.137

2 15.810 8.004 8.870 9.880 7.490 −43.896 10.820

3 12.800 8.960 11.770 11.992 11.365 −8.047 31.362

4 14.240 10.910 8.202 9.758 6.729 −42.400 −24.819

5 14.235 10.340 12.895 13.540 11.008 −9.413 24.710

6 * 17.120 22.712 23.569 21.950 * 32.664

7 24.660 18.296 12.730 14.040 11.870 −48.378 −30.422

8 * 24.119 17.900 21.140 17.170 * −25.784

9 * 23.350 26.356 28.641 23.989 * 12.874

10 2.924 4.560 0.220 0.460 0.101 −92.477 −95.175

11 * 4.173 4.870 5.420 4.210 * 16.708

12 * 8.565 10.890 12.698 9.325 * 27.147

13 * 3.635 0.623 1.117 0.275 * −82.853

14 * 7.083 8.300 8.660 8.215 * 17.179

15 * 28.132 23.950 33.790 21.900 * −14.865

16 * 6.462 1.134 2.167 0.619 * −82.453

17 * 15.290 13.080 15.170 10.440 * −14.453

18 * 46.190 35.720 46.980 31.840 * −22.667

19 * 2.243 0.480 0.540 0.300 * −78.601

20 * 3.696 0.697 1.200 0.356 * −81.140

21 * * 5.140 8.460 3.210 * *

22 * 2.340 0.830 1.130 0.550 * −64.531

23 * 7.722 2.420 2.980 1.580 * −68.659

24 * * 11.610 14.460 9.930 * *

25 * 3.956 1.510 2.550 0.830 * −61.833

26 * 12.331 4.950 6.050 3.530 * −59.857

27 * * 19.740 24.180 16.240 * *

instance 9, with N = 5 crops, K = 12 plots, T = 24 periods, the highest z1 value was
attained.

Table 2 illustrates the z1 values with λ = 0.5. This means that the (normalized) total
profit carries 50% weight in the approximation of the Pareto optimal solutions. The linear
and quadratic formulations were solved once more for seven and 24 instances, respectively.

In inserting an objective that is diametrically opposed to minimization of z1, the values of
this function increase. For example, in the case of instance 26, this increase was 38% with
respect to the quadratic formulation (from 8.930 to 12.331). GA performed well considering
the average of its objective values as compared to those determined from the linear formu-
lation. For 15 out of the 23 instances solved by CPLEX with the quadratic formulation, the
gap was also negative. This means that the GA can generate more promising solutions for
this problem with larger dimension instances, where the exact methods fail.
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Table 3 Computational results of the objective function z1 using λ = 0.0

Instance CPLEX GA Gap to
linear (%)

Gap to
quadratic (%)

Linear Quadratic Avg. Max. Min.

1 9.962 8.710 9.962 9.962 9.962 0.000 14.369

2 19.920 20.000 19.920 19.820 19.920 0.000 −0.400

3 39.840 39.840 39.840 39.840 39.840 0.000 0.000

4 17.220 17.220 17.220 17.220 17.220 0.000 0.000

5 34.440 34.440 34.440 34.440 34.440 0.000 0.000

6 * 69.060 68.880 68.880 68.880 * −0.261

7 24.560 24.615 24.590 24.630 25.560 0.122 −0.102

8 * 49.244 49.130 49.130 49.130 * −0.232

9 * 98.530 98.310 98.380 98.270 * −0.223

10 8.562 8.480 9.960 9.960 9.960 16.328 17.453

11 * 19.125 19.920 19.920 19.920 * 4.157

12 * 38.426 39.840 39.840 39.840 * 3.680

13 * 18.095 17.220 17.260 17.220 * −4.836

14 * 36.874 34.440 34.440 34.440 * −6.601

15 * 62.382 68.900 69.060 68.880 * 10.449

16 * 21.720 24.593 24.629 24.569 * 13.227

17 * 43.440 49.150 49.190 49.130 * 13.145

18 * 96.880 98.340 98.510 98.270 * 1.507

19 * 8.562 9.150 11.450 6.880 * 6.868

20 * 19.125 19.920 19.920 19.920 * 4.157

21 * 38.249 39.840 39.840 39.840 * 4.160

22 * 11.895 14.020 18.570 9.720 * 17.865

23 * 36.126 34.440 34.440 34.440 * −4.667

24 * * 68.880 68.880 68.880 * *

25 * 31.720 20.550 25.340 16.460 * −35.214

26 * 43.440 49.140 49.190 49.130 * 13.122

27 * * 98.320 98.450 98.270 * *

Table 3 indicates the z1 values with λ = 0.0, that is, only the total profit was optimized. In
this way, pest dissemination in those solutions is expected to be greater than in the previous
cases. When considering the solutions of the instance 10 produced by GA, the possibility
of pest dissemination leaps from 0.04 (λ = 1.0) to 0.22 (λ = 0.5) and, ultimately to 9.96
(λ = 0.0), on average. The same instances that were not solved with λ = 1.0 and λ = 0.5
by the CPLEX, when considering the linear formulation, are not solved with the aim of
optimizing z2, λ = 0.0. The main justification factor, characteristic of these instances, is
the dimension. As for the quadratic formulation, the CPLEX solved 25 instances within
the processing time limit. However, the GA did not achieve the same performance in this
objective when compared to the results obtained with a greater λ. Our metaheuristic was
worse in two of the seven instances solved by CPLEX using the linear formulation, and in
13 out of 25 solved with the quadratic formulation.

Table 4 presents the z2 ×10−3 values obtained with λ = 1.0. Here the profit was not opti-
mized. The GA was worse for all instances solved by CPLEX, using the linear formulation,
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Table 4 Computational results of the objective function z2 × 10−3 using λ = 1.0

Instance CPLEX GA Gap to
linear (%)

Gap to
quadratic (%)

Linear Quadratic Avg. Max. Min.

1 1.193 1.193 1.193 1.193 1.193 0.000 0.000

2 2.360 2.478 2.027 2.120 1.964 14.131 18.220

3 4.544 5.020 4.519 4.805 4.216 0.557 9.986

4 1.900 1.788 1.789 1.789 1.788 5.853 -0.045

5 3.472 3.779 3.179 3.635 2.956 8.439 15.877

6 * 7.574 6.510 7.160 6.130 * 14.048

7 2.385 2.385 2.385 2.385 2.385 0.000 0.000

8 * 5.005 4.148 4.352 3.938 * 17.126

9 * 9.970 8.894 9.589 8.395 * 10.788

10 1.291 1.252 0.770 0.777 0.760 40.352 38.489

11 * 2.621 2.020 2.040 2.000 * 22.930

12 * 4.850 4.300 4.390 4.210 * 11.348

13 * 1.872 1.162 1.194 1.140 * 37.931

14 * 3.580 3.030 3.050 3.010 * 15.363

15 * 7.717 6.410 6.540 6.290 * 16.937

16 * 2.576 1.562 1.590 1.535 * 39.383

17 * 6.077 4.060 4.120 4.030 * 33.190

18 * 11.490 8.620 8.710 8.540 * 24.978

19 * 1.217 0.730 0.780 0.760 * 40.021

20 * 2.510 1.668 1.761 1.608 * 33.546

21 * * 3.880 4.020 3.730 * *

22 * 1.903 1.160 1.170 1.140 * 39.056

23 * 3.798 2.530 2.630 2.480 * 33.390

24 * * 5.843 5.963 5.701 * *

25 * 2.488 1.550 1.580 1.530 * 37.708

26 * 6.298 3.440 3.580 3.230 * 45.379

27 * * 7.910 8.120 7.710 * *

and overcame CPLEX only once, for an instance with a quadratic formulation. As can be
observed, on average, the z2 value obtained by the CPLEX is higher than the one determined
by GA.

Table 5 shows the z2 × 10−3 values for λ = 0.5. As expected, a relative increase is noted
in this function, compared with the results shown in Table 4. The GA was able to solve all
the instances but its solutions continue to be worse with regard to z2 , when compared with
the solutions from CPLEX.

Table 6 displays the results for the z2 × 10−3 values with λ = 0.0. CPLEX solved seven
and 25 instances using the quadratic and linear formulations respectively. Regardless of the
objective optimized, the dimension of the problem has a preponderant role. We also note
that GA, in the 20 runs, generated solutions with little or no significant difference as to
the minimum and maximum values. The potentially Pareto optimal solutions determined to
assure maximum profit use an alternation of only a few more profitable crops, thus resulting
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Table 5 Computational results of the objective function z2 × 10−3 using λ = 0.5

Instance CPLEX GA Gap to
linear (%)

Gap to
quadratic (%)

Linear Quadratic Avg. Max. Min.

1 1.480 1.518 1.462 1.478 1.455 1.216 3.657

2 3.250 2.783 2.760 2.840 2.740 15.077 0.826

3 6.348 5.250 5.690 5.690 5.690 10.365 −8.381

4 2.410 2.356 2.189 2.200 2.176 9.170 7.088

5 5.038 3.987 4.190 4.320 4.160 16.824 −5.092

6 * 7.683 8.450 8.490 8.410 * −9.983

7 3.420 3.195 2.910 2.930 2.900 14.912 8.926

8 * 5.503 5.560 5.580 5.490 * −1.032

9 * 10.760 11.413 11.518 11.298 * −6.069

10 2.083 2.370 1.280 1.340 1.260 38.547 45.992

11 * 3.772 2.790 2.810 2.770 * 26.026

12 * 7.502 5.710 5.780 5.670 * 23.883

13 * 2.769 1.926 1.984 1.901 * 30.444

14 * 5.610 4.170 4.230 4.150 * 25.668

15 * 13.643 8.500 8.530 8.480 * 37.697

16 * 3.958 2.573 5.592 2.553 * 34.985

17 * 8.236 5.580 5.660 5.550 * 32.252

18 * 18.790 11.380 11.450 11.350 * 39.436

19 * 1.994 1.380 1.390 1.370 * 30.789

20 * 3.680 2.640 2.650 2.610 * 28.261

21 * * 5.540 5.590 5.510 * *

22 * 2.616 2.040 2.060 2.030 * 22.018

23 * 5.825 3.980 4.110 3.940 * 31.670

24 * * 8.310 8.400 8.260 * *

25 * 3.560 2.720 2.750 2.710 * 23.598

26 * 7.729 5.320 5.390 5.280 * 31.168

27 * * 11.140 11.220 11.080 * *

in high pest infestation. From a heuristic perspective, the composition of a solution involving
a high profit becomes difficult to obtain and computationally expensive. In that case it is more
convenient to determine these solutions by employing the exact methods, in cases when they
are successful.

Table 7 shows the CPU computational times (in seconds) of each method, for all instances
and for the threeλ values. CPLEX,when appliedwith the linear formulation and the objective
of minimizing pest dissemination, took one hour for five of the seven instances. In addition,
these are feasible or local optima solutions, because CPLEX finalized the search before
attaining a stopping criterium different from the time limit. When applied to the quadratic
formulation, we have a shorter CPU time, despite having determined only local optimum
solutions (known by comparing quadratic CPLEX with GA z values in Table 4). Instances
23 and 26 were the only ones for which CPLEX used the maximum allowed processing
time. When λ is equal to 0.5, the CPLEX with the quadratic formulation found local optimal
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Table 6 Computational results of the objective function z2 × 10−3 using λ = 0.0

Instance CPLEX GA Gap to
linear (%)

Gap to
quadratic (%)

Linear Quadratic Avg. Max. Min.

1 1.710 1.710 1.710 1.710 1.710 0.000 0.000

2 3.420 3.420 3.420 3.420 3.420 0.000 0.000

3 6.840 6.840 6.840 6.840 6.840 0.000 0.000

4 2.560 2.565 2.560 2.560 2.560 0.000 0.002

5 5.134 5.130 5.130 5.130 5.130 0.078 0.000

6 * 10.260 10.260 10.260 10.260 * 0.000

7 3.420 3.420 3.420 3.420 3.420 0.000 0.000

8 * 6.840 6.840 6.840 6.840 * 0.000

9 * 13.800 13.680 13.680 13.680 * 0.870

10 2.370 2.654 1.760 1.760 1.760 25.738 33.685

11 * 4.740 3.520 3.520 3.520 * 25.738

12 * 9.874 7.040 7.040 7.040 * 28.702

13 * 3.654 2.640 2.640 2.640 * 27.750

14 * 7.002 5.280 5.280 5.280 * 24.593

15 * 14.220 10.560 10.560 10.560 * 25.738

16 * 4.540 3.520 3.520 3.520 * 22.467

17 * 9.380 7.040 7.040 7.040 * 24.947

18 * 18.960 14.080 14.080 14.080 * 25.738

19 * 2.544 1.970 2.010 1.900 * 22.554

20 * 5.087 3.560 3.560 3.560 * 30.018

21 * 8.144 7.120 7.120 7.120 * 14.380

22 * 3.816 2.900 3.010 1.840 * 23.994

23 * 7.632 5.340 5.340 5.340 * 30.023

24 * * 10.680 10.680 10.680 * *

25 * 5.087 3.870 9.980 3.750 * 23.930

26 * 10.175 7.120 7.120 7.120 * 30.025

27 * * 14.240 14.240 14.240 * *

solutions in a relatively low computational time, when compared to the linearized version
(with two global optima corresponding to instances 1 and 4). In the case of λ = 0.0, this
difference in processing time between the linear and the quadratic version is more noticeable.
Therefore, the computational difficulty in determining Pareto optimal solutions by the exact
methodologies for this problem depends strongly on the weight of the objective functions
involved.

As for the GA algorithm, we did not note any interference in its performance with λ—only
when N , K or T change. The CPU time is practically proportional to these three parameters.
A comparative analysis between CPLEX and GA, shows that the exact methods surpass
the metaheuristic with the z2 objective but lose their efficacy when λ increases. For large
instances, GA found potentially Pareto optimal solutions about ten times faster, on average,
than CPLEX.
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Table 7 Computational CPU time (in seconds) of the CPLEX and GA (on average) to solve each instance

Instance Linear formulation Quadratic formulation Genetic algorithm

λ = 0.0 λ = 0.5 λ = 1.0 λ = 0.0 λ = 0.5 λ = 1.0 λ = 0 λ = 0.5 λ = 1.0

1 0.7 106.0 345.9 0.1 12.0 13.0 27.2 18.7 26.4

2 1.9 104.0 3600.0 0.2 35.0 43.0 45.0 31.0 44.0

3 10.0 112.0 3600.0 16.0 107.0 124.0 78.0 53.0 76.0

4 4.8 465.0 899.2 17.6 28.8 32.9 40.0 30.0 42.0

5 23.0 107.0 3600.0 43.9 94.4 118.8 71.0 49.0 67.8

6 * * * 252.0 434.0 481.0 180.0 118.0 168.0

7 62.0 156.0 3600.0 10.7 30.7 28.4 67.0 46.0 59.0

8 * * * 114.5 250.4 301.7 100.0 71.0 97.0

9 * * * 711.0 1630.0 1103.0 354.0 210.0 325.0

10 6.0 97.0 3600.0 0.4 30.0 31.0 28.0 18.0 26.0

11 * * * 7.0 412.0 408.0 44.0 31.0 43.0

12 * * * 12.0 862.0 808.0 78.0 55.0 79.0

13 * * * 6.0 313.0 326.0 43.0 30.0 38.0

14 * * * 18.0 1037.0 984.0 93.0 50.0 89.0

15 * * * 29.3 987.0 1030.0 163.0 104.0 160.0

16 * * * 26.5 753.0 788.0 91.6 59.2 84.7

17 * * * 62.2 1100.0 1070.0 220.0 141.0 210.0

18 * * * 209.0 1880.0 1848.0 641.0 421.0 628.0

19 * * * 2.6 350.0 346.0 39.3 24.0 35.0

20 * * * 14.0 1028.0 1017.0 69.0 44.0 67.0

21 * * * 1094.0 * * 189.0 116.0 187.0

22 * * * 16.0 982.0 1008.0 65.0 40.0 55.0

23 * * * 228.0 3600.0 3600.0 134.0 85.0 129.0

24 * * * * * * 397.0 247.0 391.0

25 * * * 135.0 1437.0 1477.0 98.0 61.0 84.0

26 * * * 1405.0 3600.0 3600.0 105.0 70.0 98.0

27 * * * * * * 347.0 222.0 335.0

Table 8 shows the average total number of different crops used in the planting schedule
throughout the planning horizon. For λ = 0.0, the exact methods determined solutions
with the two most profitable crops, alternating them with each other (see figures in this
table). When increasing λ, there is a greater opportunity to insert different crops to minimize
pest infestation, thus enriching the variability of species in the schedule. The GA algorithm
determines a planting calendar with a greater crop variability. This justifies why this method
determines solutions with less likelihood of pest proliferation compared with CPLEX. For
example, the instance 26 has N = 20 available crops, from which only six were used in the
solution provided by CPLEX while the GA adopted 17.40 different crops, on average, for
solutions to this instance.

In the next subsection, we analyze the characteristics of the typical solutions fromCPLEX
and GA in function of λ, taking an example from instance 23.
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Table 8 Number of different crops used in the planting schedule (on average)

Classe Exact (linear) Exact (quadratic) Genetic algorithmu

λ = 0.0 λ = 0.5 λ = 1.0 λ = 0.0 λ = 0.5 λ = 1.0 λ = 0.0 λ = 0.5 λ = 1.0

1 2.00 4.00 3.00 2.00 3.00 3.00 2.00 4.00 3.00

2 2.00 4.00 3.00 2.00 4.00 3.00 2.00 4.20 4.40

3 2.00 5.00 5.00 2.00 5.00 5.00 2.00 3.00 4.20

4 2.00 4.00 4.00 2.00 2.00 3.00 2.00 4.00 3.00

5 2.00 3.00 5.00 2.00 4.00 3.00 2.00 3.90 4.60

6 * * * 2.00 4.00 5.00 2.00 3.50 4.90

7 2.00 2.00 5.00 2.00 2.00 3.00 2.00 4.30 3.00

8 * * * 2.00 4.00 4.00 2.00 3.00 4.80

9 * * * 2.00 2.00 5.00 2.00 3.60 5.00

10 2.00 5.00 7.00 2.00 2.00 3.00 2.00 6.10 2.80

11 * * * 2.00 3.00 5.00 2.00 8.80 8.60

12 * * * 2.00 4.00 6.00 2.00 9.70 9.80

13 * * * 2.00 3.00 3.00 2.00 7.70 2.90

14 * * * 2.00 4.00 4.00 2.00 8.90 9.00

15 * * * 2.00 3.00 6.00 2.00 9.70 10.00

16 * * * 2.00 3.00 3.00 2.00 8.20 2.00

17 * * * 2.00 3.00 5.00 2.00 9.20 9.30

18 * * * 2.00 2.00 4.00 2.00 9.80 10.00

19 * * * 2.00 3.17 3.00 2.00 10.90 6.00

20 * * * 2.00 5.00 6.00 2.00 7.60 10.80

21 * * * 2.00 * * 2.00 18.40 18.30

22 * * * 2.00 4.00 5.00 2.00 13.30 7.70

23 * * * 2.00 5.00 5.00 2.00 15.20 13.60

24 * * * * * * 2.00 19.20 19.40

25 * * * 2.00 3.00 3.00 2.00 14.80 9.20

26 * * * 2.00 6.00 7.00 2.00 17.40 15.30

27 * * * * * * 2.00 19.90 20.00

5.2 Analysis of different potentially Pareto optimal solutions

In Figs. 2, 3 and 4 we present potentially Pareto optimal solutions for this problem obtained
from CPLEX and GA. The crop data are from instance 23. The numbers presented in these
mosaics are the indexes of the crops scheduled to be planted (see Table 11). For example, in
Fig. 2a, crop 2 whose duration C2 is 3 periods, is planted in plot 1 in periods 2 to 4.

Figure 2 presents two typical solutions when trying to minimize z1. Figure 2a shows a typ-
ical solution from GA, whose associated objective vector is (z1, z2) = (1.1674, 2476.40)T .
Fig. 2b is the solution from CPLEX (obtained from the quadratic formulation with 4000 sec-
onds of running time) whose objective vector is (z1, z2) = (1.845, 3654.50)T . The solution
from GA compared with the solution from CPLEX is 58% better with respect to z1 but 47%
worse with respect to z2.

These solutions have a different structure. Note that the GA solution used only one crop
of 1 period ’s duration (crop 20), while the CPLEX solution used crops 3, 10, 16, 20, all
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(a) (b)

Fig. 2 Solutions obtained by CPLEX and by GA using λ = 1.0

(a) (b)

Fig. 3 Solutions obtained by CPLEX and GA using λ = 0.0

(a) (b)

Fig. 4 Solutions obtained by CPLEX and GA using λ = 0.5

involving 7 periods of duration. Crop 14 is the one that has the longest duration period
among the 20 crops and was planted six times and once, respectively, in the solutions from
GA and CPLEX. To minimize z1, GA uses the strategy of planting longer duration crops,
while CPLEX uses shorter period ones.

Figure 3 presents the solutions using λ = 0.0. Figure 3a shows a typical solution provided
by the GA, with an objective vector of (z1, z2) = (34.44, 5340.40)T . Figure 3b shows a
solution obtained by CPLEX, whose objective vector is (z1, z2) = (36.12, 7631.50)T . An
analysis and comparison of these solutions led us to observe that the CPLEX solution is
43% better with respect to objective z2, but is 4.8% worse with respect to objective z1. It is
interesting to note that both solutions use two crops alternately in all plots. However, the GA
opts to choose crops 1 and 3 (which provide greater profit and are not from the same family)
while the CPLEX determined a solution that uses crops 3 and 10. Although crop 1 ensures a
greater profit, its duration is longer when compared to crop 10. CPLEX seeks to plant crops
that have a higher per period profit, while GA tries to use the crops with a higher total profit.
In considering the CPLEX solutions obtained from two different cultivating strategies (with
λ = 1.0 and λ = 0.0) we notice that the profit doubles, but pest proliferation increases
almost 20 times.

Figure 4 shows typical solutions with λ = 0.5. Figures 4a, b are associated with the
solutions of GA and CPLEX in which the associated objective vectors are (z1, z2) =
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(a) (b)

Fig. 5 Other non-dominated points determined for instance 23

(2.534, 4102.00)T and (z1, z2) = (7.722, 5825.00)T , respectively. GA produces a solu-
tion which is 67% with respect to objective z1, but 42% worse compared with objective z2.
A remarkable characteristic of the CPLEX solution is the fact that it only uses alternatively
crops 3, 10 and 16. GA mixes 16 different types of crops, and this explains the smaller value
of the solution from GA for pest proliferation.

In CPLEX solutions, the number of equal crops per period is considerable. For example,
in period 1, crop 10 is cultivated in five different plots, while crops 3 and 16 are cultivated in
two plots each. Something different occurs with the GA solution. Notably, we have a greater
mixture of different crops. Moreover, in analyzing the CPLEX solutions with λ = 1.0 and
λ = 0.5, we note that, in the second case the profit is 60% greater than with λ = 1.0.
However, the value for pest proliferation quadruples.

It is important to highlight that itwould be possible to obtain other Pareto optimal solutions,
for instance, using multi-objective exact methods of scalarization. A simple way consists in
assigning other weights to the objective functions. An alternative method consists in using
the ε-constraint method.

To apply the ε-constraint method, firstly, we find the lexicographic solutions, thus deter-
mining the range of z2 function in the objective space. Let z2 ∈ [z−2 , z+2 ], where z−2 and z+2
are, respectively, the minimum and maximum profit determined. The next step is to solve
the problem of minimizing the possibility of pest proliferation, by imposing a minimal profit
of ε in the range [z−2 , z+2 ]. When we solve this problem, a Pareto optimal solution can be
determined along with the respective non-dominated point (in the objective space). The ε

values can be attributions of the agricultural manager and decision-maker. Figure 5 shows
some additional aspects of the Pareto frontier of this problem, by considering instance 23 and
performing five and 10 assignments for ε. In these experiments, the ε values were equally
distributed in the range [z−2 , z+2 ] = [3654.00, 7631.50], while bearing in mind the quadratic
formulation solved by CPLEX. We emphasize in black the non-dominated points already
determined with λ = 0.0, 0.5 and 1.0. The number of Pareto optimal solutions provided
depends on the data of the instance and the CPU time made available by the manager.

These experiments clearly demonstrate that the methodologies, both the heuristic and the
exact ones, employed to solve the problem of sustainable cultivation are powerful tools to
assist decision-making addressing complex problems such as this one.
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6 Conclusions

This work proposes a bi-objective quadratic mathematical programming model to schedule
crop cultivation, using a crop rotation approach and constraints to sustainable cultivation.
Methods to solve the problem and assist agricultural managers in their decision-making are
presented and implemented. The mathematical models with binary variables (the quadratic
and linearized version) determine a calendar of crop cultivation in each plot and within a pre-
specified planning horizon. Two conflicting objectives are taken into account: (1) minimize
the possibility of pest proliferation among the crops and (2) maximize the total profit of the
planting schedule. Therefore, these objectives can be balanced, to produce different Pareto
optimal solutions that establish a compromise between these twoobjectives.Amulti-objective
analysis enables several scenarios of cultivation schedules and safer decision-making.

The paper presents exact techniques ofmathematical programming (based on the quadratic
model and on the linearized version) to determine Pareto (local) optimal solutions for this
problem. We illustrate, through computational tests with semi-random instances of real
dimensions, that the exact methods have a limited application. Out of the 27 instances con-
sidered, CPLEX solved only seven instances when considering the linearized version, and
24 with the quadratic one, by imposing a maximum limit on the computation time (one hour
at the most, as proposed by the agricultural managers). In addition, since the quadratic objec-
tive function is not convex, CPLEX may end its search in a local optimum, thus providing a
Pareto sub-optimal solution.

To overcome these unfavorable aspects and solve large dimension instances, this work
proposes a genetic algorithm. Two constructive heuristics, together with this algorithm are
also presented. The experiments showed that this metaheuristic can determine good quality
potentially Pareto optimal solutions at a low computational time. Tests with the largest dimen-
sion instances (where the exact methods failed to find even a feasible solution) were solved
by this algorithm in a computational time below 2 minutes per instance. The results showed
that GA determined solutions with a value as to possible pest dissemination 74% lower than
the value provided by CPLEX, besides using, on average, one-fifth of the computational time.

In short, the bi-objective methodologies presented aim to establish strategies for different
sustainable vegetable production. They preserve a compromise with the economic factor
and are therefore applicable in real situations. Consequently, the methodologies can be used
to assist the decision-makers in choosing different alternatives of agricultural production
for their farms. Finally, this study contributes to the advance of knowledge in the field of
Operational Research in a sustainable environment.
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Appendix

Table 9 presents the characteristics of all instances used.
Table 10 presents the values of the parameters used by the proposed GA to solve the

problem.
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Table 9 Characteristics of the instances: values for the parameters, number of variables and constraints for
models (1)–(6) and (13)–(20)

Instance Parameters Linear formulation Quadratic formulation

N K T # Variables # Constraints # Variables # Constraints

1 5 6 6 2430 2400 180 150

2 5 6 12 4860 4794 360 294

3 5 6 24 9720 9582 720 582

4 5 9 6 5670 3825 270 225

5 5 9 12 11,340 7641 540 441

6 5 9 24 22,680 15,273 1080 873

7 5 12 6 10,260 5250 360 300

8 5 12 12 20,520 10,488 720 588

9 5 12 24 41,040 20,964 1440 1164

10 10 6 6 9360 9222 360 222

11 10 6 12 18,720 18,438 720 438

12 10 6 24 37,440 36,870 1440 870

13 10 9 6 22,140 14,733 540 333

14 10 9 12 44,280 29,457 1080 657

15 10 9 24 88,560 58,905 2160 1305

16 10 12 6 40,320 20,244 720 444

17 10 12 12 80,640 40,476 1440 876

18 10 12 24 167,280 80,940 2880 1740

19 20 6 6 36,720 36,402 720 402

20 20 6 12 73,440 72,768 1440 798

21 20 6 24 146,880 145,590 2880 1590

22 20 9 6 87,480 58,203 1080 603

23 20 9 12 174,960 116,397 2160 1197

24 20 9 24 349,920 232,785 4320 2385

25 20 12 6 159,840 80,004 1440 804

26 20 12 12 319,680 159,996 2880 1596

27 20 12 24 639,360 319,980 5760 3180

Table 10 Parameters used for the
implementation of the GA for all
instances

G n γ1 γ2 γ3

300 300 0.8 0.05 0.1

The geometry and layout of plots to create the 27 instances are shown in Fig. 6. The area
of each plot was fixed in 4 hectares. In Fig. 6 we illustrate a plantation area divided into 12
plots.

Table 11 presents data for 20 different crops, specifically for duration of the crop cultiva-
tion, botanical family that the plant belongs to, and profitability per hectare.

The area of each plot j was fixed equal to area j = 4 hectares for all j .
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Fig. 6 Illustration of the
disposition and dimension of the
plots considered for the instances

Table 11 Crop data: duration of
the crop cultivation, family they
belong to and profitability per
hectare

Crop Ci Fi li × ha−1

1 2 1 10.0000

2 3 1 9.8947

3 1 2 9.7895

4 2 2 9.6842

5 2 3 9.5789

6 2 3 9.4737

7 3 4 9.3684

8 2 4 9.2632

9 3 5 9.1579

10 1 5 9.0526

11 2 6 8.9474

12 2 6 8.8421

13 3 7 8.7368

14 4 7 8.6316

15 2 8 8.5263

16 1 8 8.4211

17 2 9 8.3158

18 2 9 8.2105

19 3 10 8.1053

20 1 10 8.0000
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