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Abstract
Weconsider an irreversible dynamic pricing situation inwhich a firm uses real-time inventory
information to decide the most opportune time to raise its sales prices. Feng and Xiao (Oper
Res 48:332–343, 2000b) has studied this problem along with the opposite markdown case. In
quite symmetric fashions, they established the optimality of threshold policies for both cases.
Though the earlier work has made dramatic advances in dynamic pricing and at the same
time pioneered with many relevant techniques, we believe its treatment of the markup case
warrants some revision. In particular, we find it is in possession of an erstwhile-unknown
complementarity property between price flexibility and inventory, whose counterpart is not
true for themarkdown case. This property is needed in the derivation leading to the optimality
of a threshold policy. Our development also allows demand to be time-dependent in a product
form, and naturally leads to an efficient policy-computing algorithm.

Keywords Dynamic pricing · Markup practice · Threshold policy

1 Introduction

Dynamic pricing ismainly concernedwith howafirmcouldmaximize its revenue by charging
the right prices over a given time horizon, during which demand arrives in a random and
yet price-dependent fashion. We focus on one of the two irreversible pricing cases where
the concerned firm is in the markup mode, so that it continuously charges a sequence of
progressively increasing prices. Airlines and hotels often practice markup to sell tickets to
exploit the difference in cost sensitivity between leisure and business travelers. Obviously,
a firm may also exercise markdown, or when there is no predetermined direction in which
prices can go, reversible pricing. Reversible and irreversible cases are known to require
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different treatments. Surprisingly, we find that the two seemingly symmetric irreversible
cases of markup and markdown should be handled quite differently as well.

Our assumption of Poisson arrival reflects that the aggregate demand arises from inde-
pendent purchase decisions made by a myriad of buyers. The influence of the firm’s pricing
decisions over buyers’ behaviors is captured by the arrival rate’s dependence on the price
charged by the firm. Demand arrival may also fluctuate over time. This time-variability may
be caused by seasonality of the product being sold, the fact that the concerned product is
newly introduced or is gradually phasing out of themarket, or other factors such as predictable
changes over time of competitive firms’ aggregate behavior.

In this study, we let demand arrival be governed by the following product form: there is
an overarching time-dependent term that spells out the demand’s oscillation over time, and
the actual demand arrival rate is proportional to both this term and another price-dependent
factor. Under this demand pattern, we establish the optimality of a threshold policy for both
markup and markdown cases, albeit with the first being our primary focus. The policy is
representable by price-switching time points τ kn that depend on both current price choices k
and inventory levels n, with higher inventory levels corresponding to earlier times.

To better understand our contribution, let us first briefly recount earlier research on
dynamic pricing. Gallego and van Ryzin (1994) started treating dynamic pricing from the
optimal control perspective. They examined the problem of dynamically pricing inventories
with stationary, stochastic demands, and showed the optimality of a monotone pricing policy
as well as the asymptotic optimality of fixed-price heuristics. Dealing with a similar model
involving a finite number of price choices, Feng and Xiao (2000a) provided justifications
to the earlier assumption that the revenue-generation rate be increasing and concave in the
demand arrival rate. They derived the optimality of a comparable monotone pricing policy
and offered a procedure for computing this policy.

When demand is time-varying, Zhao and Zheng (2000) identified the decline over time
of customers’ willingness to pay premiums as a sufficient condition for the monotonicity of
the optimal pricing policy. This result generalizes the claim made by Bitran and Mondschein
(1997), that a monotone policy would be optimal when the ratio of arrival rates at any two
given prices remains the same over time. For amulti-product/resource version of the problem,
Gallego and van Ryzin (1997) gave asymptotically optimal heuristics that are based on the
solution to the problem’s deterministic control counterpart.

Various attempts have been made to generalize dynamic pricing to the case involving
ambiguity, where the demand-price relationship is initially unknown to the firm; see, e.g.,
Aviv and Pazgal (2005), Araman and Caldentey (2009), Besbes and Zeevi (2009), Farias and
van Roy (2010), Broder and Rusmevichientong (2012) andWang et al. (2014). Recently, Xia
et al. (2019) also considered the case involving a randomly evolving economic indicator. To
the best of our knowledge, most of the recent progresses were made on the reversible pricing
case where the firm is free to revisit any previously used prices.

In comparison, the irreversible case relevant to certain pricing practices of airlines and
hotels has not received as much attention. Feng and Gallego (1995) initiated irreversible
pricing control with their study of a problem involving two price choices and an arrival
pattern that is dependent on price only. For this problem, they showed the optimality of a
threshold-like policy. Feng and Xiao (2000b) generalized the above result to a case with
multiple price switches in the same direction. Feng and Gallego (2000) moved on to the
more general problem where both paths of prices and arrival rates can be time-varying, and
demand may be dependent on sales-to-date. For this case, however, optimal policies were
not shown to necessarily come from the threshold-like family.
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The current work remedies the markup portion of Feng and Xiao (2000b) and show that it
is fundamentally different from the seemingly symmetric case of markdown. For both cases,
Feng and Xiao (2000b) arrived to the same conclusion on the threshold-like policy shape
when demand is stationary. Our derivation sheds more light on the distinction between the
markup and markdown cases. As a property, complementarity between price flexibility and
inventory is not possessed by the markdown case; yet, it is essential to the derivation for the
markup case. The property expresses the increased value of an additional unit of inventory
when the firm possesses yet more flexibility to raise its prices. Feng and Xiao’s (2000b)
treatment of the markup case seems to have missed this point; see in Sect. 5 our counter
example to the markup portion of their Lemma 1.

Methodologically, we let the solution of an ordinary differential equation (ODE) permeate
through our derivation. Such extensive use of ODE in dynamic pricing has not been known
to us. We also introduce a mixed use of mathematical induction and sample-path arguments
to facilitate the derivation of the complementarity property. Besides, we show in general
that τ kn is not decreasing in k for the two irreversible pricing cases, though for the reversible
pricing case this trend known as time monotonicity is in existence (Zhao and Zheng 2000).
Our development also leads to an efficient policy-computing algorithm.

The rest of the paper is organized as follows. In Sect. 2, we provide the markup problem’s
formulation. A procedure for constructing value functions and threshold levels is proposed
in Sect. 3, while the optimality of the thus constructed threshold policy is proved in Sect. 4.
We introduce an algorithm for computing an optimal policy and discuss merits of our current
approach in Sect. 5. Computational studies are presented in Sect. 6 and the paper is concluded
in Sect. 7. We have relegated proofs to “Appendix A” and details about the markdown case
to “Appendix B”, and minor algorithms to “Appendix C”.

2 Formulation

Over some time interval [0, T ], we suppose the concerned firm is to sell some N items
of a product; and, it is allowed to consecutively charge a sequence of some K + 1 prices
p̄0, p̄1, . . . , p̄K , where 0 < p̄0 < p̄1 < · · · < p̄K . Demand comes to the firm as a
time-varying Poisson process whose instantaneous rate λk(t) depends on both the current
price p̄k charged by the firm and the overall market condition at time t . We also suppose
that the demand rate function is of the product form. There are strictly positive constants
ᾱ0, ᾱ1, . . . , ᾱK and strictly positive and continuous function β(·) on [0, T ], so that

λk(t) = ᾱk · β(t), ∀k = 0, 1, . . . , K , t ∈ [0, T ].
The time multiplier β(·) may be a consequence of seasonality of the product being sold,
the fact that the concerned product is newly introduced or is gradually phasing out of the
market, or other factors such as predictable changes over time of competitive firms’ aggregate
behavior. The price multiplier ᾱk indicates the relative attractiveness of the product under
price p̄k . We assume

(S1) for the revenue generation rates,

p̄0ᾱ0 > p̄1ᾱ1 > · · · > p̄K ᾱK .

(S1) is known as the “maximum increasing concave envelope” property. It lets lower prices
be associated with higher revenue generation rates. A lower price would not need to be
considered were it not to generate revenue faster than a higher price. With this assumption
at hand, we no longer have to separately require
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(S1’) for the demand arrival rates,

ᾱ0 > ᾱ1 > · · · > ᾱK .

Of course, (S1’) is universally true because demand is in general a decreasing function of
price. For our current case, (S1) happens to be needed in the first place. We may take the
view that potential buyers arrive at the rate of ᾱ0 · β(t) at time t , and among all those that
arrive, only a ᾱk/ᾱ0 portion will purchase the product when the price being charged is p̄k .

We denote a threshold policy by τ ≡ (τ kn | k = 1, 2, . . . , K , n = 1, 2, . . . , N ) ∈ (�N )K ,
where �N ⊂ [0, T ]N is defined through

�N ≡ {(τ1, τ2, . . . , τN ) | 0 ≤ τN ≤ τN−1 ≤ · · · τ1 ≤ T }. (1)

For the current markup case, adopting such a policy entails that, the firm should raise its
price from p̄k−1 to p̄k when its inventory level drops to n ahead of the threshold level τ kn .
τ ∈ (�N )K with �N defined through (1) means that 0 ≤ τ kN ≤ τ kN−1 ≤ · · · ≤ τ k1 ≤ T for
each k = 1, 2, . . . , K . Such a policy indicates that the higher the firm’s inventory level is,
the earlier it should exercise price switching. In Sects. 3 and 4 , we show such a policy is
indeed optimal for the markup case and more than that, the extra k-monotonicity property
that τ kn be decreasing in k could also be had.

We let all random elements be defined on a probability space with a filtration. Also, denote
by T (t) the set of stopping times that is later than t . Each price choice k is associated with a
point process (Nk(t) | t ∈ [0, T ]) that is with intensity process (ᾱk · β(t) | t ∈ [0, T ]) and
adapted to the given filtration. For any s < t and n = 0, 1, 2, . . .,

P

[
Nk(t) − Nk(s) = n

]
= exp

(
−ᾱk · β̂(s, t)

)
·
(
ᾱk · β̂(s, t)

)n

n! . (2)

In (2), we have taken the conventions 00 = 1 and β̂(s, t) ≡ ∫ t
s β(u) · du.

Let vkn(t) be the maximum revenue the firm can make in time interval [t, T ] when it starts
the interval with price p̄k and inventory level n. As the highest price p̄K is the last price for
the firm to charge, we have

vK
n (t) = p̄K · E

[
(NK (T ) − NK (t)) ∧ n

]
. (3)

For k = K − 1, K − 2, . . . , 0, the firm still has the chance to increase its price to p̄k+1 when
it is currently charging p̄k . Hence,

vkn(t) = sup
τ∈T (t)

E

[
p̄k ·

{
(Nk(τ ) − Nk(t)) ∧ n

}
+ vk+1

(n−Nk (τ )+Nk (t))+(τ )
]
. (4)

Basically, the firm is to choose the time τ , dependent on all historical observations, to switch
to the next higher price p̄k+1 from its current p̄k . Inside the bracket on the right-hand side
of (4), the first term is the firm’s gain from time t to τ under the price p̄k and the second term
is its gain from τ to T while starting at τ with price p̄k+1.

3 A constructive procedure

Our analysis relies on an ordinary differential equation (ODE) and its known solution. Given
continuous functions a(·) and b(·) defined on the interval [0, t], consider the following:

ds f (s) = b(s) − a(s) · f (s), ∀s ∈ (0, t). (5)
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This ODE has a unique solution f (·), such that for any s ∈ [0, t],
f (s) = f (0) · exp (− ∫ s

0 a(u)du
) + ∫ s

0 b(u) · exp (− ∫ s
u a(v)dv

) · du
= f (t) · exp

(∫ t
s a(u)du

)
− ∫ t

s b(u) · exp (∫ u
s a(v)dv

) · du.
(6)

Coming back to the markup pricing problem, let us define the infinitesimal generator
Gk
n(t) corresponding to price p̄k , inventory level n, and time t , so that when it is applied to a

well-defined function vector u ≡ (un(t) | n = 0, 1, . . . , N , t ∈ [0, T ]),
Gk
n(t) ◦ u = dtun(t) + ᾱk · β(t) · (un−1(t) − un(t)). (7)

Note that it would be an abuse of notation to call the left-hand side Gkun(t), as knowing
un(t) at the particular n and t alone will not help one get to the right-hand side.

For the case where the time multiplier β(·) is stationary, Theorem 1 of Feng and Xiao
(2000b) offers sufficient conditions for a vector of functions to be the value functions vkn(t).
But this result can be easily generalized to the case where β(·) is time-variant. In the same
spirit of this theorem, we have the following.

Proposition 1 For any k = K − 1, K − 2, . . . , 0, a function vector u ≡ (un(t) | n =
0, 1, . . . , N , t ∈ [0, T ]) that is uniformly bounded and absolutely continuous in t for every
n will be vk ≡ (vkn(t) | n = 0, 1, . . . , N , t ∈ [0, T ]) that satisfies (3) and (4), if it satisfies:

(i) un(t) ≥ vk+1
n (t) for every n = 0, 1 . . . , N and t ∈ [0, T ],

(ii) un(T ) = 0 for every n = 0, 1, . . . , N and u0(t) = 0 for every t ∈ [0, T ],
(iii) for n = 1, 2, . . . , N and t ∈ [0, T ], un(t) = vk+1

n (t) impliesGk
n(t)◦u+ p̄k ᾱk ·β(t) ≤ 0,

(iv) for n = 1, 2, . . . , N and t ∈ [0, T ], un(t) > vk+1
n (t) impliesGk

n(t)◦u+ p̄k ᾱk ·β(t) = 0.

Proposition 1 offers a hint as to how the value functions vkn(t) and threshold levels τ kn
can be constructed. First, due to (3), vK

n (t) can be shown to satisfy a differential equation
involving vK

n−1(t) but still in the spirit of (5). Hence, using (6) and the fact that vK
0 (t) = 0,

we can establish all the vK
n (t) values in an n-loop.

Then, for any k = K − 1, K − 2, . . . , 0, suppose vk+1
n (t) is known for all n and t . We can

then go through an n-loop to find all the vkn(t)’s. First, we can let v
k
0(t) = 0 as suggested by

(ii) of the proposition. Second, suppose vkn−1(t) is known for all t and some n = 1, 2, . . . , N .
Then, we have vkn(T ) = 0 by (ii) of the proposition. Next, we may “weave” vkn(t) for ever
smaller t values by solving the differential equation Gk

n(t)◦vk + p̄k ᾱk ·β(t) = 0 as indicated
by (iv) of the proposition. We stop at the t when vkn(t) is to sink below vk+1

n (t)—according
to (i) of the proposition, vkn(t

′) ≥ vk+1
n (t ′) for every t ′. For time t ′ earlier than this t , which

we mark as τ k+1
n , we let vkn(t

′) be vk+1
n (t ′).

According to (iii) of the proposition, we still need Gk
n(t

′) ◦ vk + p̄k ᾱk · β(t ′) ≤ 0 for
t ′ < τ k+1

n for the thus constructed vkn(·) to be the true value function. Nevertheless, let
us go ahead with the construction procedure thus outlined. Not knowing whether what
shall be constructed are the true value functions, we call them u’s instead of v’s. For-
mally, here is the iterative procedure for constructing the function vector u ≡ (ukn(t) |
k = 0, 1, . . . , K , n = 0, 1, . . . , N , t ∈ [0, T ]) and time point vector τ ≡ (τ kn | k =
1, 2, . . . , K , n = 1, 2, . . . , N ).

First, let
uk0(t) = 0, ∀k = K , K − 1, . . . , 0, t ∈ [0, T ]. (8)

Then, for n = 1, 2, . . . , N and t ∈ [0, T ], let

uKn (t) = ᾱK ·
∫ T

t
β(s) ·

(
p̄K + uK

n−1(s)
)

· exp
(
−ᾱK · β̂(t, s)

)
· ds. (9)
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Next, we go over an outer loop on k = K − 1, K − 2, . . . , 0 and an inner loop on n =
1, 2, . . . , N . At each k and n, first let

ukn(t) = ᾱk ·
∫ T

t
β(s) ·

(
p̄k + ukn−1(s)

)
· exp

(
−ᾱk · β̂(t, s)

)
· ds, ∀t ∈ [0, T ]. (10)

Then, let

τ k+1
n = inf

{
t ∈ [0, T ] | ukn(t) > uk+1

n (t)
}

, (11)

with the understanding that τ kn = 0 when the concerned inequality is always true and τ kn = T
when it is never true. Finally, let

ukn(t) = uk+1
n (t), ∀t ∈ [0, τ k+1

n ]. (12)

In obtaining (9) and (10), we have resorted to (5) and (6) for solving Gk
n(t) ◦ uk + p̄k ᾱk ·

β(t) = 0 for k = K , K − 1, . . . , 0. According to (7), the ODE boils down to

dtu
k
n(t) = −ᾱk · β(t) · ( p̄k + ukn−1(t)) − ᾱk · β(t) · ukn(t). (13)

This is in the form of (5) with a(t) = ᾱk · β(t) and b(t) = −ᾱk · β(t) · ( p̄k + ukn−1(t)). With
the terminal condition ukn(T ) = 0 and the second half of (6), we will have (9) for k = K
and (10) for k = K − 1, K − 2, . . . , 0.

When properly discretized, the recursive procedure can be translated into an efficient
algorithm for computing threshold policies. In implementation, we discretize the time axis
[0, T ] by a grid {0,�T , 2�T , . . . , Q · �T }, where Q is a strictly positive integer and
�T = T /Q. For k = 0, 1, . . . , K and q = 0, 1, . . . , Q, we use λkq to denote ᾱkβ(q · �T ).

In spelling out the algorithm, we use the fact that (9) and (10) would lead to

ukn(t) = ukn(t + �t) + ᾱkβ(t) · �t · ( p̄k + ukn−1(t) − ukn(t + �t)) + o(�t). (14)

Now, we can adapt the procedure from (8) to (12) to the following algorithmMarkup. for
k = 0 to K

for q = 0 to Q
let vk0q = 0;

for n = 1 to N
let vK

nQ = 0;
for q = Q − 1 down to 0

let vK
nq = vK

n,q+1 + λK
q · �T · ( p̄K + vK

n−1,q − vK
n,q+1);

for k = K − 1 down to 0
for n = 1 to N

let q = Q and vknq = 0;

while q = Q, or q ≥ 0 and vknq > vk+1
nq do

let q = q − 1;
if q ≥ 0

let vknq = vkn,q+1 + λkq · �T · ( p̄k + vkn−1,q − vkn,q+1);

let τ k+1
n = (q + 1) · �T ;

for r = q down to 0
let vknr = vk+1

nr .
InMarkup, each vknq corresponds to vkn(q ·�T ) in the continuous-timemodel. The algorithm’s
time complexity is apparently O(K NQ).
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4 Optimality and k-monotonicity

Wenow show that the above procedure indeed leads to the true value functions and an optimal
pricing policy. First, through a sample-path argument that is reminiscent of Zhao and Zheng’s
(2000) treatment of the same property for reversible dynamic pricing, we can show that the
marginal value of any additional item is diminished at a higher inventory level.

Proposition 2 For any fixed k = 0, 1, . . . , K and t ∈ [0, T ], the value function vkn(t) is
concave in n: vkn+1(t) − vkn(t) ≤ vkn(t) − vkn−1(t).

We can use this result and more involved sample-path analysis to show the added benefit
that more flexibility in pricing can bring to the firm when there are more items.

Proposition 3 For any fixed t ∈ [0, T ], the value function vkn(t) has decreasing differences
between k and n: vk+1

n+1(t) − vk+1
n (t) ≤ vkn+1(t) − vkn(t).

Proposition 3 will play a critical role in the proof of the next key result. We believe this
property is previously unknown; for instance, it has no counterpart in Feng and Xiao (2000b).
In the proof of it, an important step is made on the premise that more sales will be made
for pools of items starting with more flexible prices, to the effect that the concavity property
Proposition 2 can be used. For the markup case, lower prices are the more flexible ones
because they allow more room to be raised further. Proposition 3 thus conveys the message
that an additional unit of inventory would be more valuable when there is more potential to
further raise the price. At the same time, lower prices tend to attract more sales. However, the
opposite is true for the markdown case. There, higher prices allow more room to be lowered
further; yet, it is still the lower prices that hold more attractions for demands. Because of this
asymmetry, a similar property as that exhibited in Proposition 3 is not to be expected of the
markdown case. Indeed, one of our computational studies has shown that the case does not
have complementarity between price flexibility and inventory.

We now demonstrate the optimality of a threshold policy for the markup case. For conve-
nience, we have let the yet undefined τ K+1

n = 0 for n = 1, 2, . . . , N and vK+1
n (t) = uK

n (t)
for n = 0, 1, . . . , N and t ∈ [0, T ].
Theorem 1 The u and τ as constructed from (8) to (12) satisfy the following for k = K , K −
1, . . . , 0:

(a[k]) for any n = 1, 2, . . . , N, (Gk
n)

+(τ k+1
n ) ◦ vk+1 + p̄k ᾱk · β(τ k+1

n ) ≤ 0;
(b[k]) Gk

n(t) ◦ vk+1/β(t) is increasing in t for n = 1, 2, . . . , N and t ∈ (0, T );
(c[k]) ukn(t) = vkn(t) for any n = 0, 1, . . . , N and t ∈ [0, T ];
(d[k]) for any n = 1, 2, . . . , N, we have vkn(t) = vk+1

n (t) and Gk
n(t) ◦ vk + p̄k ᾱk · β(t) ≤ 0

for t ∈ (0, τ k+1
n ), and Gk

n(t) ◦ vk + p̄k ᾱk · β(t) = 0 for t ∈ (τ k+1
n , T );

(e[k]) τ k+1
n is decreasing in n;

(f[k]) on top of vkn(t) having decreasing differences between n and t, it is further true that
dtvkn(t)/β(t) is decreasing in t for n = 1, 2, . . . , N and t ∈ (0, T ).

As a consequence, τ provides an optimal policy for the firm; under this policy, the firm should
switch to price p̄k+1 when its inventory level drops to n before time τ k+1

n while its price level
is p̄k .

In (a[k]) of Theorem 1, the operator (Gk
n)

+(t) is merely Gk
n(t) defined in (7) with dt

replaced by the right derivative d+
t . The successful proof of Theorem 1 depends very much

on the complementarity property provided by Proposition 3. It suggests the firm to raise its
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price from the current p̄k to the next higher level p̄k+1 if still possible when a demand arrival
has prompted an inventory level drop to the level n at a time before the threshold level τ k+1

n .
Finally, regarding the k-monotonicity of the optimal policy, we have the following result
directly from the definition (11) and Theorem 1.

Proposition 4 Suppose τ kn < T for some k = 1, 2, . . . , K − 1 and n = 1, 2, . . . , N. Then,
we have τ k+1

n ≤ τ kn if and only if vk−1
n (t) − vkn(t) > 0 will lead to vkn(t) − vk+1

n (t) > 0.

As confirmed by one of our computational studies, the threshold level τ kn for the markup
case is not necessarily decreasing in k. Hence, this casemay have its “leapfrog” phenomenon:
When it is time to switch to the price level p̄k+1, it may also be the time to switch to the
next higher price p̄k+2, and so on and so forth. Therefore, when it is time to make the price
swith from p̄k , the ultimate target should be some p̄k̃

+(k,n), where k̃+(k, n) is not necessarily
k + 1. For each n = 1, 2, . . . , N , we can use the following iterative procedure to find
(k̃+(k, n) | k = 0, 1, . . . , K − 1): for k = K − 1 down to 0

let l = k + 1;
while l ≤ K − 1 and τ l+1

n ≥ τ k+1
n do

let l = k̃+(l, n);
let k̃+(k, n) = l.

5 Discussion

For the markdown case, we can again use a constructive procedure to attain an optimal
threshold policy, which is not necessarily k-monotone; see “Appendix B”. Under such a
policy τ ≡ (τ kn | k = 1, 2, . . . , K , n = 1, 2, . . . , N ) ∈ (�N )K , the firm in the markdown
case is supposed to lower its price from p̄k to p̄k−1 if still possible when no demand arrival
has prompted an inventory level drop from its current level n by the threshold time τ kn .

It has long been known by Zhao and Zheng (2000) that an ostensibly similar-looking
threshold policy τ ∈ (�N )K is optimal for the reversible-pricing case, where price changes
can be in either direction. Our product-form demand pattern also satisfies the sufficient
condition specified in Zhao and Zheng (2000) for the k-monotonicity (time-monotonicity in
that context) of the threshold policy: 0 ≡ τ K+1

n ≤ τ K
n ≤ τ K−1

n ≤ · · · ≤ τ 1n ≤ τ 0n ≡ T .
At the inventory level n, the firm following such a policy should charge price p̄k when the
time is between τ k+1

n and τ kn . The irreversible- and reversible-pricing cases clearly differ on
whether optimal policies possess the k-monotone property.

Within the irreversible-pricing category, we have something more important to stress.
While the threshold point τ kn is a zero-crossing point for vk−1

n (t)−vkn(t) for the markup case,
it is not necessarily one for Gk−1

n (t)◦vk + p̄k−1ᾱk−1 ·β(t): Though the term is below 0 when
t ∈ (0, τ kn ), we can verify through computation that the term is not necessarily above 0 when
t ∈ (τ kn , T ) is not too much above τ kn . This marks a huge contrast with the markdown case,
for which the threshold point τ kn is the zero-crossing point for both Gk

n(t)◦vk−1+ p̄k ᾱk ·β(t)
and vkn(t)−vk−1

n (t); see Figs. 1 and 2 for a demonstration of this discrepancy. This previously
unnoticed point determines that, in order to obtain the n-monotone pattern of the τ kn points
for the markup case, we have to deal with the dependence of vk−1

n (t) − vkn(t) on n.
Feng and Xiao’s (2000b) treatment of the markup case relied on properties of Gk−1

n (t)◦vk

rather than those of vk−1
n (t)−vkn(t). Temporarily, let us consider the stationary-demand case

where β(t) = 1 for all t ∈ [0, T ]. Their Lemma 1 claimed that the increase of Gk−1
n (t) ◦ vk

in t and n alone, without other benefits that might come from the vkn(·)’s being truly value
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Fig. 1 Illustration for the markup case

functions of a markup problem, would lead to optimal threshold levels τ kn that necessarily
satisfy 0 ≤ τ kN ≤ τ kN−1 ≤ · · · τ k1 ≤ T . While its counterpart for the markdown case is
correct, we have a counter example to the current claim.

Consider the casewith T = 1, K = 1, N = 2, and ᾱ0 = 2.Letv10(t) = 0,v11(t) = −2t+2,
and v12(t) = t2 − 4t + 3. We can check that dtv11(t) = −2 and dtv12(t) = 2t − 4. These lead
to G0

1 (t) ◦ v1 = 4t − 6 and G0
2(t) ◦ v1 = −2t2 + 6t − 6. Hence, G0

1 (t) ◦ v1 and G0
2 (t) ◦ v1

are both increasing in t ∈ [0, 1]. In addition, G0
2 (t) ◦ v1 − G0

1(t) ◦ v1 = −2t2 + 2t , which is
positive for t ∈ [0, 1]. That is, G0

n(t) ◦ v1 is increasing in n too. On the other hand, we may
let v01(t) = −t2 − t + 2 and v02(t) = v12(t) = t2 − 4t + 3. Now, v01(t) − v11(t) = −t2 + t ,
which is strictly positive for t ∈ (0, 1), and v02(t) − v12(t) = 0. Thus, it is not true that
v01(t)−v11(t) ≤ v02(t)−v12(t) on t ∈ [0, 1]. Among other violations, the last point consists of
a violation of Proposition 3. So the possibility that these vkn(·)’s form actual value functions
for a markup problem has been ruled out.

When we pretend that these vkn(t)’s form value functions for a markup problem, however,
we should have τ 11 as the smallest t such that v01(t) − v11(t) > 0 and τ 12 the smallest t such
that v02(t) − v12(t) > 0; also, each threshold level should be set at 0 when the corresponding
strict positivity is always true and set at T = 1 when the corresponding strict positivity is
never true. Therefore, we should have τ 11 = 0 and τ 12 = 1 for this example. It is therefore
not true that τ 11 ≥ τ 12 . But the latter is required for a threshold policy.

In our approach for the markup case, Proposition 3 has been set aside for the sole purpose
of illustrating the complementarity between price flexibility and inventory, a property that is
both previously unknown and not possessed by the seemingly symmetric markdown case. In
addition, property (a[k]) in Theorem1, concerning right derivatives of the value functions, has
no counterpart in earlier literature. Moreover, Feng and Xiao (2000b) erroneously used the
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Fig. 2 Illustration for the markdown case

increase ofGk−1
n (t)◦vkn in n (their Lemmas 1 and 2) that we have no use of. Our computational

test confirmed that this is not necessarily true.

6 Computational studies

Without the analysis done in Sect. 3 and “Appendix B”, or without knowing the shape of the
optimal pricing policy, one can already come up with brute-force algorithms Markup2 and
Markdown2 for the two cases. These and other algorithms that are useful in our computational
studies are presented in “Appendix C”.

Throughout our computational studies, we take the horizon length T = 1, K = 4 so
that there are five different price levels, the number of initial stock level N = 20, the price-
level vector ( p̄k | k = 0, 1, . . . , K ) = (1, 2, 3, 4, 5), the time-multiplier vector (ᾱk | k =
0, 1, . . . , K ) = (4N , 1.7N , 1.0N , 0.7N , 0.54N ) unless otherwise specified, and the number
of discrete time intervals Q = 1, 000, 000. Unless otherwise specified, we define the time
multiplier β(·) to be used in the product form by

β(t) = W

1 − e−W
· eW ·(t−T )/T , ∀t ∈ [0, T ], (15)

where parameter W ∈ {1, 2, · · · , 10}. It is easy to check that the time average
∫ T
0 β(t) ·

dt/T = 1 at all W values, and that W reflects the degree of time-variability of the arrival
pattern β(·). We set the default value of W at 5.
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Fig. 3 Violations of
complementarity between
price-flexibility and inventory at
different W ’s

The bulk of our computational studies are devoted to probes of the following questions:

(a) whether the markdown case does not have complementarity between price flexibility
and inventory, a property that is essential for the markup case;

(b) whether earlier treatment of the markup case needs minor corrections;
(c) whether k-monotonicity is in general not true for the threshold policies of the irreversible-

pricing cases;
(d) whether heeding the time-variability of β(t) helps reap huge benefits; and,
(e) whether optimal policies for arrival patterns more general than the current product form

are not necessarily threshold-like.
All these questions will be answered in the affirmative.

In test (a), we use v−k
nq to denote the values achieved byMarkdown on themarkdown problem.

Let us define the ratio μ−:

μ− =
∑Q

q=0

∑N−1
n=0

∑K−1
k=0

(
v−k
n+1,q + v

−,k+1
nq − v−k

nq − v
−,k+1
n+1,q

)+

∑Q
q=0

∑N−1
n=0

∑K−1
k=0 | v−k

n+1,q + v
−,k+1
nq − v−k

nq − v
−,k+1
n+1,q | . (16)

Note that μ− is always between 0 and 1; it will be 0 if and only if v−k
nq + v

−,k+1
n+1,q ≥ v−k

n+1,q +
v

−,k+1
nq at every possible (k, n, q), that is, if and only if v−k

nq has increasing differences between
k and n. For the markdown case, a higher k means more price choices in the future. Thus,
μ− measures the degree to which complementarity between price flexibility and inventory is
violated for the markdown case. WhenW = 5, we find μ− ≈ 25.0%. Figure 3 further shows
varying μ− values at different W levels. From all these, we can see that the markdown case
does not enjoy complementarity between price flexibility and inventory. This contrasts with
what Proposition 3 has said about the markup case.

In test (b), we use Markup for the markup case. For the arrival pattern, β(t) = 1 for all
t’s suffices for our study. Concerning the sign of Gk−1

n (t) ◦ vk + p̄k−1ᾱk−1 · β(t) within
(τ kn , T ), we find that G3

6(t) ◦ v4 + p̄3ᾱ3 · 1 < −1.7 when t ∈ [0.6065, 0.6165], where
τ 46 � 0.6065 is the threshold level for k = 4 and n = 6. Here, any dtu(t) is approximated by
[u(t+�t)−u(t)]/�t . Therefore,Gk−1

n (t)◦vk+ p̄k−1ᾱk−1·β(t)maybenegativewhen t > τ kn .
Concerning the monotonicity of Gk−1

n (t) ◦ vk in n, we find that G0
17(t) ◦ v1 − G0

16(t) ◦ v1 �
−0.340 when t � 0.2622. That is, we do not necessarily have the increase of Gk−1

n (t) ◦ vk

in n. However, this has been erroneously used in Feng and Xiao (2000b).
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Fig. 4 Violations of
k-monotonicity at different W ’s

In test (c), we use τ±k
n to denote threshold levels found by applying Markup(down)1 to

the markup(down) problem. Let us define the δ± ratios:

δ± =
∑N

n=1
∑K−1

k=0

(
τ

±,k+1
n − τ±k

n

)+

∑N
n=1

∑K−1
k=0 | τ

±,k+1
n − τ±k

n | . (17)

Note that δ± is always between0 and1; itwill be 0 if andonly if τ±k+1
n ≤ τ±k

n at every possible
(k, n). Thus, it measures the degree to which k-monotonicity has been violated. For W = 5
and time-multiplier vector (ᾱk | k = 0, 1, . . . , K ) = (2.0N , 0.76N , 0.5N , 0.25N , 0.1N ),
we have δ+ ≈ 11.2% for the markup case. For the markdown case, we have to use a different
time-multiplier vector (ᾱk | k = 0, 1, . . . , K ) = (3N , N , 0.5N , 0.35N , 0.27N ) to achieve
unequivocal results. Under this and W = 5, we find δ− ≈ 13.9%. We can also plot the δ±
values when W changes in Fig. 4. All results point to the violation of k-monotonicity in
general for both irreversible-pricing cases. This is in stark contrast with reversible-pricing.

In test (d), we suppose that, when not aware of the time-variability of β(·), the firm will
take the flat β ′(t) = 1 as β(t) in its policy derivation. Let us use v+k

nq and τ+k
n to denote,

respectively, the values and threshold levels resulting from applying Markup to the markup
problem defined by β(·), and use τ+′k

n to denote the threshold levels resulting from applying
Markup to the corresponding flat-rate problem defined by β ′(·). To find the values v+′k

nq from

applying the sub-optimal policy defined by the τ+′k
n ’s to the actual situation defined by β(·),

we shall use algorithm Markup3.
Corresponding to Markup3, we have algorithms Markdown3 and Reversible3 for the

markdownand reversible-pricing cases, respectively.All these are described in “AppendixC”.
For the markdown case, the relevant values will be denoted by v−k

nq and v−′k
nq , while for the

reversible-pricing case, these values will be denoted by v0nq and v0′nq .
To measure the losses due to neglecting the time-variability of β(·), we may define η±(0)

for the markup(down) and reversible-pricing cases:

η± =
∑K

k=0(v
±k
N0 − v±′k

N0 )∑K
k=0 v±k

N0

, η0 = v0N0 − v0′N0

v0N0

. (18)

When W = 5, we have η+ ≈ 2.0%, η− ≈ 18.9%, and η0 ≈ 15.8%. Hence, the benefit of
heeding demand’s time-variability in each of the three cases is substantial. When W varies,
we show the η±(0) values in Fig. 5. It is quite clear from the figure that the benefit increases
with the degree of the fluctuation.
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Fig. 5 Benefits of heeding
demand’s time-variability at
different W ’s

Fig. 6 Non-threshold pricing decisions when arrival is not of product form

In test (e), we abandon the product-form arrival pattern λk(t) = ᾱk · β(t). In its stead,

λk(t) = ᾱk ·
[
1 + 0.8 · sin

(
2π ·

(
k

0.3
+ t

))]
. (19)

Note that (19) is not defined by one single β(·) across different k values. As algorithms
Markup,Markdown, and Reversible are designed for cases where the arrival pattern is of the
product form, they are not guaranteed to arrive to correct answers any more. Indeed, discrep-
ancies appear for the current arrival pattern between results produced by these algorithms and
those by the brute-force algorithms. In Fig. 6, we demonstrate the pricing decisions reached
by Markup2 and Markdown2, as well as pn(t) reached by Reversible2 at particular (k and)
n values.

Since none of the above pricing decisions is decreasing in t , we simply can not define τ kn
for any of these cases. Therefore, predictions made in the paper stop at the product-form case
for the time being. Note that λk+1(t)/λk(t) under (19) is not decreasing in t . Therefore, Zhao
and Zheng’s (2000) Assumption 1 is violated, and our counter example for the reversible-
pricing case is not in contradiction with Zhao and Zheng’s prediction for time-monotone
policies when arrival patterns are well behaved.
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7 Concluding remarks

We hve considered the markup case of dynamic pricing, where a firm has to charge an
increasing sequence of predetermined prices. A threshold policy has been found to be optimal
when the demand arrival rate is of the product form. Our derivation corrects errors made in
the earlier work Feng and Xiao (2000b) on almost the same subject. Our derivation relies on
a complementarity property between price flexibility and inventory, an erstwhile-unknown
property that sets the markup case apart from the markdown case. Our development also
leads to an efficient algorithm and certain methodological advances.

Acknowledgements Jian Yang’s research has benefited from the National Natural Science Foundation of
China Grants 11371273 and 71502015.

Appendices

A Proofs for themarkup case

Proof of Proposition 2 We can use a sample-path argument to prove that

vkn(t) ≥ vkn−1(t) + vkn+1(t)

2
. (A.1)

We allow four pools of inventories, termed 1, 2, 1̄, and 2̄, to start at time t with the same
price p̄k and experience the same sample path over the interval [t, T ]. These pools have
different starting inventory levels and may exert different price controls, though. Pools 1 and
2 start with n + 1 and n − 1 initial items and pools 1̄ and 2̄ with n items.

Besides applying optimal time-increasing stopping-time pricing policies to pools 1 and 2,
we apply the higher of the two prices for pools 1 and 2 to pool 1̄ and the lower of the two prices
to pool 2̄, until the first moment, say s, when pool 1 is to have generated one more demand
arrival than pool 1̄. After s, we let pool 1̄ follow pool 1’s decisions and pool 2̄ follow pool 2’s
decisions. As both the minimum and maximum of two decreasing functions are decreasing
functions themselves, pools 1̄ and 2̄ can be considered as adopting time-increasing stopping-
time pricing policies as well.

Suppose the moment ever occurred, i.e., s ∈ [t, T ). Then, it has already been shown by
Zhao and Zheng that the total sales revenue made by pools 1̄ and 2̄ amounts to the same as
that by pools 1 and 2. Suppose the moment never occurred, i.e., s = T . Then, it has been
shown by Zhao and Zheng that pools 1̄ and 2̄ can generate as high a total sales revenue as
pools 1 and 2. So regardless, on every sample path, pools 1̄ and 2̄ can generate as high a total
revenue as pools 1 and 2. Thus, we have proved (A.1). 
�
Proof of Proposition 3 We use a sample-path approach to show the following: for any n =
0, 1, . . . , N − 1,

vkn+1(t) − vkn(t) ≥ vk+1
n+1(t) − vk+1

n (t), ∀k = 0, 1, . . . , K − 1, t ∈ [0, T ]. (A.2)

We prove by induction on the inventory level n. Let us first prove

vk1(t) − vk0(t) ≥ vk+1
1 (t) − vk+1

0 (t), ∀k = 0, 1, . . . , K − 1, t ∈ [0, T ]. (A.3)

For every possible k and t ,we introduce four pools of inventories, 1, 2, 1̄, and 2̄, that experience
identical sample paths. At time t , pools 1 and 1̄ are with price index k + 1, and pools 2 and 2̄
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are with price index k. Also, pools 1 and 2̄ have one item, while pools 1̄ and 2 are out of stock.
Apparently, pools 1̄ and 2 will continue to hold zero inventory. On the other hand, pool 2̄ can
immediately raise its price to p̄k+1 and then match actions taken by pool 1. Hence, (A.3) is
true.

Now, for some n = 1, 2, . . . N − 1, suppose it is true that, for any m = 0, 1, . . . , n − 1,

vkm+1(t) − vkm(t) ≥ vk+1
m+1(t) − vk+1

m (t), ∀k = 0, 1, . . . , K − 1, t ∈ [0, T ]. (A.4)

We now prove that

vkn+1(t) − vkn(t) ≥ vk+1
n+1(t) − vk+1

n (t), ∀k = 0, 1, . . . , K − 1, t ∈ [0, T ]. (A.5)

For any possible k and t , we rely on pools 1, 2, 1̄, and 2̄ that experience identical sample
paths. At time t , pools 1 and 1̄ are with price index k + 1, and pools 2 and 2̄ are with price
index k. Also, pools 1 and 2̄ both have n + 1 items, while pools 1̄ and 2 both have n items.
For s ∈ [t, T ], let us use Ni (s) to denote the inventory level of pool i at time s. For instance,
we have N1̄(t) = n and N2̄(t) = n+ 1. We let pools 1 and 2 execute their respective optimal
decisions. For a certain period, we let pool 1̄ follow pool 1’s decisions and pool 2̄ follow pool
2’s decisions. Note that prices adopted by all pools are increasing over time.

We let this certain period end at the first moment, say s ∈ [t, T ), when (a) pools 1 and 2
have reached the same price, (b) pools 2 and 2̄ have just experienced one more arrival than
pools 1 and 1̄, or (c) pools 1 and 2̄ both have just one item left while pools 1̄ and 2 have no
item left. We may denote the case where none of the above occurs by s = T . This is the case
when by time T , at any moment the price taken by pool 2 has always been strictly lower than
that taken by pool 1, yet all pools have admitted the same demand arrivals, and none of the
pools have run out of stock. We caution that the opposite to (b) will not occur, since before
its price “catches up” with that of pool 1, pool 2 always charges a strictly lower price than
pool 1 and hence, by (S1’), has more chance to realize sales.

For all cases, pools 1̄ and 2̄ will have together generated the same revenue as pools 1 and
2 by time s. This also means that we are already done when s = T .

When (a) ever occurs, we may let pools 1̄ and 2̄ both execute optimal decisions from time
s on. Then, within the time interval [s, T ], pool 1̄ will behave exactly the same as pool 2, and
pool 2̄ will behave exactly the same as pool 1. So, pools 1̄ and 2̄ will continue to together
produce the same revenue as pools 1 and 2 do.

When (b) ever occurs, denote the price taken by pool 1 at time s by k1 and the price taken
by pool 2 at time s by k2. We have k1 > k2, and

n + 1 = N1(t) ≥ N1(s) = N1̄(s) + 1 = N2̄(s) + 1 = N2(s) + 2. (A.6)

Hence, from the induction hypothesis (A.4), we have

v
k2
N2̄(s)

(s) − v
k2
N2(s)

(s) ≥ v
k1
N2̄(s)

(s) − v
k1
N2(s)

(s). (A.7)

But from Proposition 2, we also have

v
k1
N2̄(s)

(s) − v
k1
N2(s)

(s) ≥ v
k1
N1(s)

(s) − v
k1
N1̄(s)

(s). (A.8)

Combining (A.7) and (A.8), we obtain

v
k2
N2̄(s)

(s) − v
k2
N2(s)

(s) ≥ v
k1
N1(s)

(s) − v
k1
N1̄(s)

(s). (A.9)

In view of thememorylessness property of the Poisson process, (A.9)means that, conditioned
on the same sample path up to the provocation of (b), pools 1̄ and 2̄ will on average together
earn more than pools 1 and 2 in the time interval [s, T ].
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When (c) ever occurs, denote the price taken by pool 1 at time s by k1 and the price taken
by pool 2 at time s by k2. We have k1 > k2, and

N1(s) = N1̄(s) + 1 = N2̄(s) = N2(s) + 1 = 1. (A.10)

From the induction hypothesis (A.4), we have

v
k2
N2̄(s)

(s) − v
k2
N2(s)

(s) ≥ v
k1
N1(s)

(s) − v
k1
N1̄(s)

(s). (A.11)

In view of the memorylessness property of the Poisson process, (A.11) means that, condi-
tioned on the same sample path up to the provocation of (c), pools 1̄ and 2̄ will on average
together earn more than pools 1 and 2 in the time interval [s, T ].

In view of all the above, we see that (A.5) is true. We have hence completed the induction
process. Therefore, (A.2) is true. 
�
Proof of Theorem 1 The proof has use of the following lemma,whichwas originated inKarlin
(1968) and also used in Feng and Xiao (2000b).

Lemma 1 Let k > 0 and φ(t) = ∫ +∞
t ρ(s) · exp(−k · (s − t)) · ds. Then, φ(t) will be

decreasing in t ≥ 0 if ρ(s) is decreasing in s ≥ 0.

We prove by induction on k. Let us focus on proving (a[K]) to (f[K]) first. Take n =
1, 2, . . . , N . From (3), we have

vK
n (t) = p̄K · E[(NK (T ) − NK (t)) ∧ n] = p̄K ·

(
n −

n−1∑
m=0

(n − m) · P[NK (t, T ) = m]
)

,

(A.12)
which, by (2), amounts to

vK
n (t) = p̄K · n − p̄K · exp

(
−ᾱK · β̂(t, T )

)
·
n−1∑
m=0

(n − m) ·
(
ᾱK · β̂(t, T )

)m

m! . (A.13)

Taking derivative over t , we find that, for t ∈ (0, T ),

dtv
K
n (t) = − p̄K ᾱK · β(t) · exp

(
−ᾱK · β̂(t, T )

)
·
n−1∑
m=0

(
ᾱK · β̂(t, T )

)m

m! . (A.14)

Taking differences over n, we find that

vK
n (t) − vK

n−1(t) = p̄K ·
⎛
⎜⎝1 − exp

(
−ᾱK · β̂(t, T )

)
·
n−1∑
m=0

(
ᾱK · β̂(t, T )

)m

m!

⎞
⎟⎠ . (A.15)

From (A.14) and (A.15), it can be checked that

GK
n (t) ◦ vK (t) + p̄K ᾱK · β(t) = 0, ∀t ∈ (0, T ). (A.16)

Consulting (5) and (6), we obtain

vK
n (t) = ᾱK ·

∫ T

t
β(s) ·

(
p̄K + vK

n−1(s)
)

· exp
(
−ᾱK · β̂(t, s)

)
· ds. (A.17)
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In view of the construction (9), we may see (c[K ]), that
uK ≡ (

uK
n (t) | n = 0, 1, . . . , N , t ∈ [0, T ])

= vK ≡ (
vK
n (t) | n = 0, 1, . . . , N , t ∈ [0, T ]) .

(A.18)

From (A.16), we may confirm (d[K ]) with the understanding that τ K+1
n = 0 for n =

1, 2, . . . , N . The convention for the τ K+1
n ’s also leads directly (e[K ]). By (A.16) and the

convention on τ K+1
n and vK+1

n (t), we may see that (a[K ]) and (b[K ]) are both true. To verify
(f[K ]), we can use the samemethod on (f[k]) for k = K −1, K −2, . . . , 0, which is presented
near the end of this proof.

Suppose for some k = K − 1, K − 2, . . . , 0, we have (a[k + 1]), that
(Gk+1

n )+(τ k+2
n ) ◦ vk+2 + p̄k+1ᾱk+1 · β(τ k+2

n ) ≤ 0, ∀n = 1, 2, . . . , N , (A.19)

(b[k + 1]), that Gk+1
n (t) ◦ vk+2/β(t) is increasing in t for n = 1, 2, . . . , N and t ∈ (0, T ),

(c[k + 1]), that
uk+1
n (t) = vk+1

n (t), ∀n = 0, 1, . . . , N , t ∈ [0, T ], (A.20)

(d[k + 1]), that, for n = 1, 2, . . . , N ,

vk+1
n (t) = vk+2

n (t) and Gk+1
n (t) ◦ vk+1 + p̄k+1ᾱk+1 · β(t) ≤ 0, ∀t ∈ (0, τ k+2

n ), (A.21)

and
Gk+1
n (t) ◦ vk+1 + p̄k+1ᾱk+1 · β(t) = 0, ∀t ∈ (τ k+2

n , T ). (A.22)

(e[k+1]), that τ k+2
n is decreasing in n, and (f[k+1]), that vk+1

n (t) has decreasing differences
between n and t .

Now we embark on showing (a[k]) to (f[k]). For n = 1, 2, . . . , N , by the definition of
τ k+1
n through (11), we know that

ukn(t) > vk+1
n (t), ∀t ∈ (τ k+1

n , T ), (A.23)

ukn(τ
k+1
n ) = vk+1

n (τ k+1
n ), (A.24)

and
d+
t u

k
n(τ

k+1
n ) ≥ d+

t vk+1
n (τ k+1

n ). (A.25)

By (5) and (6), we may see that the construction (10) renders

Gk
n(t) ◦ uk + p̄k ᾱk · β(t) = 0, ∀t ∈ (τ k+1

n , T ). (A.26)

Our construction through (10)–(12) also guarantees that

ukn−1(τ
k+1
n ) ≥ vk+1

n−1(τ
k+1
n ). (A.27)

Combining (A.24)–(A.27), we obtain

(Gk
n)

+(τ k+1
n ) ◦ vk+1 + p̄k ᾱk · β(τ k+1

n ) ≤ 0. (A.28)

Thus we have (a[k]).
Note that (a[k + 1]) means (A.19). This, (b[k + 1]), and (d[k + 1]) together lead to the

fact that Gk+1
n (t) ◦ vk+2/β(t) is increasing in t and below − p̄k+1ᾱk+1. From the definition

of uk+1
n (t) for t ∈ [0, τ k+2

n ] through (12), (c[k + 1]), and (e[k + 1]), we may see that

Gk+1
n (t) ◦ vk+1

β(t)
= Gk+1

n (t) ◦ vk+2

β(t)
, ∀t ∈ (0, τ k+2

n ). (A.29)
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Hence, in view of the above and (b[k + 1]) again, we may see that Gk+1
n (t) ◦ vk+1/β(t) is

increasing in t and below − p̄k+1ᾱk+1 when t ∈ (0, τ k+2
n ), and is flat at − p̄k+1ᾱk+1 for

t ∈ (τ k+2
n , T ). Now, note that

Gk
n(t) ◦ vk+1 − Gk+1

n (t) ◦ vk+1

β(t)
= (ᾱk − ᾱk+1) ·

(
vk+1
n−1(t) − vk+1

n (t)
)

, (A.30)

which, by (S1’) and (f[k+1]), is increasing in t . This and the just proved result together lead
to the increase of Gk

n(t) ◦ vk+1/β(t) in t . Hence, we have (b[k]).
From (a[k]) and (b[k]), we obtain, for n = 1, 2, . . . , N ,

Gk
n(t) ◦ vk+1 + p̄k ᾱk · β(t) ≤ 0, ∀t ∈ (0, τ k+1

n ). (A.31)

Our construction (12) and (c[k + 1]) dictate that
ukn(t) = vk+1

n (t), ∀t ∈ [0, τ k+1
n ]. (A.32)

We now define λ, so that
λ = ᾱ0 · sup

t∈[0,T ]
β(t). (A.33)

By the continuity of β(·) and the compactness of [0, T ], we know that λ is a strictly pos-
itive and finite constant. By (S1’), we know that λ is the highest instantaneous arrival rate
that could ever materialize. By its construction, ukn(t) is uniformly bounded by NλT ; it is
also Lipschitz continuous in t with coefficient Nλ, and hence absolutely continuous in t .
By (A.23), (A.26), (A.31), and (A.32), and as well as the fact that vk+1

n (T ) = 0 for every n,
we may see that uk ≡ (ukn(t) | n = 0, 1, . . . , N , t ∈ [0, T ]) satisfies the sufficient condi-
tions (i) to (iv) stipulated in Proposition 1. Hence, we have shown (c[k]), that ukn(t) = vkn(t)
for every n = 0, 1, . . . , N and t ∈ [0, T ].

From (A.26), (A.31), (A.32), and (c[k]), we easily have (d[k]).
For n = 1, 2, . . . , N − 1, we have, from (11), (c[k + 1]), and (c[k]),

vkn(t) − vk+1
n (t) > 0, ∀t ∈ (τ k+1

n , T ). (A.34)

By Proposition 3, however, we have

vkn+1(t) − vk+1
n+1(t) ≥ vkn(t) − vk+1

n (t). (A.35)

Combining (A.34) and (A.35), we obtain

vkn+1(t) − vk+1
n+1(t) > 0, ∀t ∈ (τ k+1

n , T ). (A.36)

But in view of (11), (c[k + 1]), and (c[k]), this leads to τ k+1
n+1 ≤ τ k+1

n . Thus, we have (e[k]).
Let us now turn to the proof of (f[k]). For convenience, we denote dtvkn(t)/β(t) by wk

n(t).
When t ∈ (0, τ k+1

n ), which is ∅ when k = K , we have wk
n(t) = wk+1

n (t) from (d[k]). Hence,
following (f[k+1]), we know thatwk

n(t) is decreasing in t . Let t ∈ (τ k+1
n , T ) then. By (d[k]),

vkn(t) − vkn−1(t) = p̄k + wk
n(t)

ᾱk
. (A.37)

By the boundary conditions vkn(T ) = vkn−1(T ) = 0, we therefore have

wk
n(T

−) = − p̄k ᾱk . (A.38)

Taking derivative on (A.37), it follows that

Gk
n(t) ◦ wk = 0, ∀t ∈ (τ k+1

n , T ). (A.39)
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In view of (5), (6), and (A.38), we can solve (A.39) to obtain, for t ∈ (τ k+1
n , T ),

wk
n(t) = − p̄k ᾱk ·exp(−ᾱk ·β̂(t, T ))+ᾱk ·

∫ T

t
β(s)·wk

n−1(s)·exp(−ᾱk ·β̂(t, s))·ds, (A.40)

which, by the identity

ᾱk ·
∫ T

t
β(s) · exp

(
−ᾱk · β̂(t, s)

)
· ds = 1 − exp

(
−ᾱk · β̂(t, T )

)
, (A.41)

results in

wk
n(t) = − p̄k ᾱk + ᾱk ·

∫ T

t
β(s) ·

(
p̄k ᾱk + wk

n−1(s)
)

· exp
(
−ᾱk · β̂(t, s)

)
· ds. (A.42)

Since β̂(0, ·) is a strictly increasing function on [0, T ], we can define strictly increasing
function θ(·) on [0, β̂(0, T )], so that

β̂(t, θ(y)) = β̂(0, θ(y)) − β̂(0, t) = y − β̂(0, t), ∀y ∈ [0, β̂(0, T )]. (A.43)

This then leads to

dyθ(y) = 1

ds β̂(0, s)
|s=θ(y)= 1

β(θ(y))
. (A.44)

In view of the above, we can bring a change of variables to the integral involved in (A.42),
so that the latter becomes

wk
n(t) = − p̄k ᾱk + ᾱk ·

∫ β̂(0,T )

β̂(0,t)

(
p̄k ᾱk + wk

n−1(θ(y))
)

· exp
(
−ᾱk · (y − β̂(0, t))

)
· dy.
(A.45)

Suppose wk
n−1(t) is decreasing in t for t ∈ (0, T ), then since θ(·) is increasing, we know

wk
n−1(θ(y)) is decreasing in y for y ∈ (0, β̂(0, T )). From (A.38) which also applies to

wk
n−1(T

−), we may see that

p̄k ᾱk + wk
n−1(θ(y)) ≥ 0, ∀y ∈ (0, β̂(0, T )), (A.46)

and
p̄k ᾱk + wk

n−1(θ((β̂(0, T ))−)) = 0. (A.47)

Hence, (A.45) can be rewritten as

wk
n(t) = − p̄k ᾱk + ᾱk ·

∫ +∞

β̂(0,t)
( p̄k ᾱk +wk

n−1(θ(y)))+ ·exp(−ᾱk · (y− β̂(0, t))) ·dy. (A.48)

By the decrease of ( p̄k ᾱk+wk
n−1(θ(y)))+ in y ≥ 0, the increase of β̂(0, t) in t , and Lemma 1,

we can get the decrease of wk
n(t) in t on (τ k+1

n , T ). But combining with the earlier result on
the other half interval, we may get the decrease of wk

n(t) in t on the entire (0, T ) from that
of wk

n−1(t). As wk
0(t) = 0 for all t ∈ (0, T ), we can therefore use induction on n to prove

the decrease of wk
n(t) in t ∈ (0, T ) for all n = 0, 1, . . . , N .

For t ∈ (0, τ k+1
n ), which is ∅ when k = K and a subset of (0, τ k+1

n−1 ) by (e[k]), we have
from (d[k]) that,

vkn(t) − vkn−1(t) = vk+1
n (t) − vk+1

n−1(t). (A.49)
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Hence, vkn(t) − vkn−1(t) is decreasing in t by (f[k + 1]). For t ∈ (τ k+1
n , T ), we can achieve

the same property by (A.37) and the just proved decrease ofwk
n(t) in t . Thus, we have shown

(f[k]). Note that, when k = K , the proof has no involvement of any [k + 1]-property.
We have now completed the induction process. Therefore, (a[k]) to (f[k]) are all true for

k = K , K − 1, . . . , 0. From these, we see that, for any k = K − 1, K − 2, . . . , 0 and
n = 1, 2, . . . , N ,

vkn(t)

{= vk+1
n (t), ∀t ∈ [0, τ k+1

n ],
> vk+1

n (t), ∀t ∈ (τ k+1
n , T ).

(A.50)

Hence, we may see that each τ k+1
n offers an optimal time by which the firm is to raise its

price from p̄k to p̄k+1 when it has n remaining items. 
�

B Themarkdown case

In the markdown case, the firm has to consecutively charge the sequence of decreasing prices
p̄K , p̄K−1, . . . , p̄0. Again, we show the optimality of a threshold policy τ ≡ (τ kn | k =
1, 2, . . . , K , n = 1, 2, . . . , N ) ∈ (�N )K . Under it, the firm should lower its price from p̄k

to p̄k−1 when the threshold τ kn corresponding to its current inventory level n is about to be
passed.

Let vkn(t) be the maximum revenue the firm can make in time interval [t, T ] when it starts
time t with price p̄k and inventory level n. Since the lowest price p̄0 is the last price the firm
can charge before running out of stock, we have

v0n(t) = p̄0 · E [
(N 0(T ) − N 0(t)) ∧ n

]
. (B.1)

When the firm is charging any other price p̄k for k = 1, 2, . . . , K , it has yet to dynamically
decide the time to switch to the next price p̄k−1. Hence, we have

vkn(t) = sup
τ∈T (t)

E

[
p̄k · {(Nk(τ ) − Nk(t)) ∧ n} + vk−1

(n−Nk (τ )+Nk (t))+(τ )
]
, (B.2)

where T (t) is again the set of stopping times later than t . Contrast this with (4), and we can
see that in the markdown case, it is the next lower price p̄k−1 that will be tried after p̄k .
Similar to Proposition 1, we have the following markdown counterpart.

Proposition 5 For any k = 1, 2, . . . , K, a function vector u ≡ (un(t) | n = 0, 1, . . . , N , t ∈
[0, T ]) that is uniformly bounded and absolutely continuous in t for every n will be the value-
function sub-vector vk ≡ (vkn(t) | n = 0, 1, . . . , N , t ∈ [0, T ]), if it satisfies the following:
(i) un(t) ≥ vk−1

n (t) for every n = 0, 1 . . . , N and t ∈ [0, T ],
(ii) un(T ) = 0 for every n = 0, 1, . . . , N and u0(t) = 0 for every t ∈ [0, T ],
(iii) for n = 1, 2, . . . , N and t ∈ [0, T ], un(t) = vk−1

n (t) impliesGk
n(t)◦u+ p̄k ᾱk ·β(t) ≤ 0,

(iv) for n = 1, 2, . . . , N and t ∈ [0, T ], un(t) > vk−1
n (t) impliesGk

n(t)◦u+ p̄k ᾱk ·β(t) = 0.

Proposition 5 offers a hint as to how the value functions vkn(t) and threshold levels τ kn
can be constructed. First, due to (B.1), v0n(t) can be constructed in an n-loop. Then, for any
k = 1, 2, . . . , K , suppose vk−1

n (t) is known. We can then go through an n-loop to find all the
vkn(t)’s. First, we can let vk0(t) = 0 as suggested by (ii) of the proposition. Second, suppose
vkn−1(t) is known for some n = 1, 2, . . . , N . Then, starting with t = T , we can equate vkn(t)
to vk−1

n (t) for ever smaller t values until it is to occur that Gk
n(t) ◦ vk + p̄k ᾱk · β(t) > 0. The
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latter is not allowed by (iii) and (iv) of the proposition. For time t ′ earlier than this t , which
we mark as τ kn , we let v

k
n(t

′) be the solution to Gk
n(t

′) ◦ vk + p̄k ᾱk · β(t ′) = 0.
According to (i) of the proposition, we still need vkn(t

′) ≥ vk−1
n (t ′) for t ′ < τ kn for the

thus constructed vkn(·) to be the true value function. Nevertheless, let us go ahead with the
construction thus outlined. Not knowing whether what shall be constructed are the true value
functions, we call them u’s instead of v’s. Formally, here is the iterative procedure.

First, let
uk0(t) = 0, ∀k = 0, 1, . . . , K , t ∈ [0, T ]. (B.3)

Then, for n = 1, 2, . . . , N and t ∈ [0, T ], let

u0n(t) = ᾱ0 ·
∫ T

t
β(s) · (

p̄0 + u0n−1(s)
) · exp

(
−ᾱ0 · β̂(t, s)

)
· ds. (B.4)

Next, we go over an outer loop on k = 1, 2, . . . , K and an inner loop on n = 1, 2, . . . , N .
At each k and n, first let

τ kn = inf
{
t ∈ [0, T ] | Gk

n(t) ◦ uk−1 + p̄k ᾱk · β(t) ≤ 0
}

, (B.5)

with the understanding that τ kn = 0 when the concerned inequality is always true and τ kn = T
when it is never true. Then, let

ukn(t) = uk−1
n (t), ∀t ∈ [τ kn , T ], (B.6)

and when t ∈ [0, τ kn ),

ukn(t) = uk−1
n (τ kn )·exp(−ᾱk ·β̂(t, τ kn ))+ᾱk ·

∫ τ kn

t
β(s)·( p̄k+ukn−1(s))·exp(−ᾱk ·β̂(t, s))·ds.

(B.7)
In obtaining (B.4) and (B.7), we have resorted to (5) and (6) for solving Gk

n(t) ◦ uk +
p̄k ᾱk · β(t) = 0 for k = 0, 1, . . . , K . Like its markup counterpart, the ODE again boils
down to (13). With the terminal condition u0n(T ) = 0 and the second half of (6), we will
have (B.4). For k = 1, 2, . . . , K , with ukn(τ

k
n ) = uk−1

n (τ kn ) and again the second half of (6),
we will have (B.7). Now, we proceed to show the optimality of the construction.

Proposition 6 For any fixed k = 0, 1, . . . , K and t ∈ [0, T ], the value function vkn(t) is
concave in n: vkn+1(t) − vkn(t) ≤ vkn(t) − vkn−1(t).

For convenience, we have let the yet undefined τ 0n = T for n = 1, 2, . . . , N and v−1
n (t) =

u0n(t) for n = 1, 2, . . . , N and t ∈ [0, T ]. Using Proposition 6, we can prove the following.

Theorem 2 The u and τ as constructed from (B.3) to (B.7) satisfy the following for k =
0, 1, . . . , K:

(a[k]) Gk
n(t) ◦ vk−1/β(t) is decreasing in t for n = 1, 2, . . . , N and t ∈ (0, T );

(b[k]) ukn(t) = vkn(t) for any n = 0, 1, . . . , N and t ∈ [0, T ];
(c[k]) for any n = 1, 2, . . . , N, we have Gk

n(t) ◦ vk + p̄k ᾱk · β(t) = 0 for t ∈ (0, τ kn ) and
Gk
n(t) ◦ vk + p̄k ᾱk · β(t) ≤ 0 for t ∈ (τ kn , T );

(d[k]) τ kn is decreasing in n;
(e[k]) more than having decreasing differences between n and t, vkn(t) satisfies the following

for every t ∈ (0, T ):

dtv
k
1(t) ≤ 0,
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and for n = 1, 2, . . . , N − 1,

dtv
k
n+1(t) − dtv

k
n(t) ≤ ᾱk · β(t) ·

(
vkn−1(t) − 2vkn(t) + vkn+1(t)

)
,

which is negative due to Proposition 6.

Proof We prove by induction on k. Let us first focus on proving (a[0]) to (e[0]). Take n =
1, 2, . . . , N . First, we have

G0
n (t) ◦ v0(t) + p̄0ᾱ0 · β(t) = 0, ∀t ∈ (0, T ). (B.8)

and (b[0]), that

u0 ≡ (
u0n(t) | n = 0, 1, . . . , N , t ∈ [0, T ]) = v0 ≡ (

v0n(t) | n = 0, 1, . . . , N , t ∈ [0, T ]) .

(B.9)
From (B.8), we may confirm (c[0]) with the understanding that τ 0n = T for n = 1, 2, . . . , N .
The convention for the τ 0n ’s also leads directly (d[0]). From (B.1), we have

v01(t) = p̄0 · E[N 0(t, T ) ∧ 1] = p̄0 · P[N 0(t, T ) ≥ 1] < p̄0. (B.10)

As v00(t) = 0 for any t ∈ [0, T ], we can apply (B.8) at n = 1 to get

dtv
0
1(t) = ᾱ0 · β(t) · (v01(t) − p̄0), ∀t ∈ (0, T ). (B.11)

which is negative by (B.10). For n = 1, 2, . . . , N −1, we can apply (B.8) at both n and n+1
to obtain

dtv
0
n+1 − dtv

0
n(t) = ᾱ0 · β(t) · (

v0n−1(t) − 2v0n(t) + v0n+1(t)
)
, ∀t ∈ (0, T ). (B.12)

So (e[0]) is satisfied as well. Finally, by our default definition of v−1
n (t) and (B.8), we know

that (a[0]) is true.
Suppose for some k = 1, 2, . . . , K , we have (a[k − 1]), that Gk−1

n (t) ◦ vk−2/β(t) is
decreasing in t for n = 1, 2, . . . , N and t ∈ (0, T ), (b[k − 1]), that

uk−1
n (t) = vk−1

n (t), ∀n = 0, 1, . . . , N , t ∈ [0, T ], (B.13)

(c[k − 1]), that, for n = 1, 2, . . . , N ,

Gk−1
n (t) ◦ vk−1 + p̄k−1ᾱk−1 · β(t) = 0, ∀t ∈ (0, τ k−1

n ), (B.14)

and
Gk−1
n (t) ◦ vk−1 + p̄k−1ᾱk−1 · β(t) ≤ 0, ∀t ∈ (τ k−1

n , T ), (B.15)

(d[k − 1]), that τ k−1
n is decreasing in n, and (e[k − 1]), that, for t ∈ (0, T ),

dtv
k−1
1 (t) ≤ 0, ∀t ∈ (0, T ), (B.16)

and for n = 1, 2, . . . , N − 1,

dtv
k−1
n+1−dtv

k−1
n (t) ≤ ᾱk−1 ·β(t)·

(
vk−1
n−1(t) − 2vk−1

n (t) + vk−1
n+1(t)

)
, ∀t ∈ (0, T ). (B.17)

Now we embark on showing (a[k]) to (e[k]). Take n = 1, 2, . . . , N . From the definition
of τ k−1

n through (B.5), (b[k − 1]), and (c[k − 1]), we may see that

Gk−1
n (t) ◦ vk−1 + p̄k−1ᾱk−1 · β(t) = 0 < Gk−1

n (t) ◦ vk−2 + p̄k−1ᾱk−1 · β(t), (B.18)

for t ∈ (0, τ k−1
n ), and

Gk−1
n (t) ◦ vk−1 + p̄k−1ᾱk−1 · β(t) = Gk−1

n (t) ◦ vk−2 + p̄k−1ᾱk−1 · β(t) ≤ 0, (B.19)
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for t ∈ (τ k−1
n , T ). Therefore,

Gk−1
n (t) ◦ vk−1 + p̄k−1ᾱk−1 · β(t) = [Gk−1

n (t) ◦ vk−2 + p̄k−1ᾱk−1 · β(t)] ∧ 0, (B.20)

and hence by the strict positivity of β(·),
Gk−1
n (t) ◦ vk−1

β(t)
=

[
Gk−1
n (t) ◦ vk−2

β(t)
+ p̄k−1ᾱk−1

]
∧ 0 − p̄k−1ᾱk−1. (B.21)

Note that the above is even true for k = 1 due to the default definitions. Combining (a[k−1])
and (B.21), we obtain the decrease of Gk−1

n (t) ◦ vk−1/β(t) in t . Now, note that

Gk
n(t) ◦ vk−1 − Gk−1

n (t) ◦ vk−1

β(t)
= (ᾱk−1 − ᾱk) ·

(
vk−1
n (t) − vk−1

n−1(t)
)

, (B.22)

which, by (S1’) and (e[k − 1]), is decreasing in t . This and the just proved result together
lead to the decrease of Gk

n(t) ◦ vk−1/β(t) in t . Hence, we have (a[k]).
By the definition of τ kn through (B.5) and (b[k − 1]), we have

Gk
n(t) ◦ vk−1 + p̄k ᾱk · β(t) > 0, ∀t ∈ (0, τ kn ). (B.23)

Due to the strict positivity of β(·) and (b[k − 1]), the threshold τ kn also satisfies

τ kn = inf

{
t ∈ [0, T ] | Gk

n(t) ◦ vk−1

β(t)
+ p̄k ᾱk ≤ 0

}
. (B.24)

But this and (a[k]) will lead to

Gk
n(t) ◦ vk−1

β(t)
+ p̄k ᾱk ≤ 0, ∀t ∈ (τ kn , T ). (B.25)

Combining (B.23), (B.25), and the strict positivity of β(·), we arrive to

Gk
n(t) ◦ vk−1 + p̄k ᾱk · β(t)

{
> 0, ∀t ∈ (0, τ kn ),

≤ 0, ∀t ∈ (τ kn , T ).
(B.26)

Our construction (B.6) and (b[k − 1]) dictate that
ukn(t) = vk−1

n (t), ∀t ∈ [τ kn , T ]. (B.27)

Also, we may see that the construction (B.7) renders

Gk
n(t) ◦ uk + p̄k ᾱk · β(t) = 0, ∀t ∈ (0, τ kn ). (B.28)

From the first half of (B.26), we have, for any n = 1, 2, . . . , N and t ∈ [0, τ kn ),

vk−1
n (t) < vk−1

n (τ kn ) · exp(−ᾱk · β̂(t, τ kn ))

+ᾱk · ∫ τ kn
t β(s) · ( p̄k + vk−1

n−1(s)) · exp(−ᾱk · β̂(t, s)) · ds. (B.29)

Using (B.7) and (B.29), as well as the fact that uk0(t) = vk−1
0 (t) = 0 for any t ∈ [0, T ], we

can use induction over n to prove that

ukn(t) > vk−1
n (t), ∀n = 1, 2, . . . , N and t ∈ [0, τ kn ). (B.30)

By its construction, ukn(t) is uniformly bounded by NλT ; it is also Lipschitz continuous in
t with coefficient Nλ, and hence absolutely continuous in t . By (B.26)–(B.28), and (B.30),
as well as the fact that vk−1

n (T ) = 0 for every n, we may see that uk ≡ (ukn(t) | n =
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0, 1, . . . , N , t ∈ [0, T ]) satisfies the sufficient conditions (i) to (iv) stipulated in Proposi-
tion 5. Hence, we have shown (b[k]), that ukn(t) = vkn(t) for every n = 0, 1, . . . , N and
t ∈ [0, T ].

From the second half of (B.26), (B.27), (B.28), and (b[k]), we easily have (c[k]).
Now take n = 1, 2, . . . , N − 1. By (S1’), (e[k − 1]), and Proposition 6, we have

dtv
k−1
n+1(t) − dtvk−1

n (t) ≤ ᾱk−1 · β(t) · (vk−1
n−1(t) − 2vk−1

n (t) + vk−1
n+1(t))

≤ ᾱk · β(t) · (vk−1
n−1(t) − 2vk−1

n (t) + vk−1
n+1(t)) ≤ 0.

(B.31)

We therefore have the negativity of

Gk
n+1(t) ◦ vk−1 − Gk

n(t) ◦ vk−1

= dtv
k−1
n+1(t) − dtvk−1

n (t) + ᾱk · β(t) ·
(
2vk−1

n (t) − vk−1
n−1(t) − vk−1

n+1(t)
)

.
(B.32)

But by the definition of τ kn and τ kn+1, this leads to τ kn+1 ≤ τ kn . Therefore, we have (d[k]).
Let us turn to the proof of (e[k]). When t ∈ (τ k1 , T ), we have

dtv
k
1(t) = dtv

k−1
1 (t), (B.33)

which is negative by (B.16). When t ∈ (0, τ k1 ), we have

dtvk1(t) = ᾱk · β(t) · (vk1(t) − p̄k)
= ᾱk · β(t) · [vk−1

1 (τ k1 ) · exp(−ᾱk · β̂(t, τ k1 ))

+ p̄k ᾱk · ∫ τ k1
t β(s) · exp(−ᾱk · β̂(t, s)) · ds − p̄k]

= ᾱk · β(t) · exp(−ᾱk · β̂(t, τ k1 )) · (vk−1
1 (τ k1 ) − p̄k),

(B.34)

where the first equality is due to (c[k]), the second equality is from (b[k]) and (B.7), and the
last equality is by the following result from integration by parts:

ᾱk ·
∫ τ k1

t
β(s) · exp

(
−ᾱk · β̂(t, s)

)
· ds = 1 − exp

(
−ᾱk · β̂(t, τ k1 )

)
. (B.35)

But from (B.1), (B.2), and the fact that p̄k > p̄k−1 > · · · > p̄0, it is obvious that vk−1
1 (τ k1 ) ≤

p̄k−1 < p̄k . So we know that dtvk1(t) ≤ 0 for t ∈ (0, τ k1 ) as well.
Now let n = 1, 2, . . . , N − 1. For t ∈ (τ kn , T ), we have t ∈ (τ kn+1, T ) as well due to

(d[k]). Thus, we have
vkn(t) = vk−1

n (t) and vkn+1(t) = vk−1
n+1(t), (B.36)

and hence

dtvkn+1(t) − dtvkn(t) = dtv
k−1
n+1(t) − dtvk−1

n (t)
≤ ᾱk−1 · β(t) · (vk−1

n−1(t) − 2vk−1
n (t) + vk−1

n+1(t))
≤ ᾱk · β(t) · (vk−1

n−1(t) − 2vk−1
n (t) + vk−1

n+1(t))
≤ ᾱk · β(t) · (vkn−1(t) − 2vkn(t) + vkn+1(t)),

(B.37)

where the first inequality is by (e[k−1]), the second inequality is by (S1’) and Proposition 6,
and the last inequality is from (B.36) and the fact that vkn−1(t) ≥ vk−1

n−1(t). For t ∈ (0, τ kn ),
we have, by (c[k]),

Gk
n+1(t) ◦ vk + p̄k ᾱk · β(t) ≤ 0 = Gk

n(t) ◦ vk + p̄k ᾱk · β(t). (B.38)

This leads to

dtv
k
n+1(t) − dtv

k
n(t) ≤ ᾱk · β(t) · (vkn−1(t) − 2vkn(t) + vkn+1(t)). (B.39)
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Therefore, we have (e[k]).
We have thus completed the induction process. Therefore, (a[k]) to (e[k]) are all true for

k = 0, 1, . . . , K . From these, we see that, for any k = 1, 2, . . . , K and n = 1, 2, . . . , N ,

vkn(t)

{
> vk−1

n (t), ∀t ∈ [0, τ kn ),

= vk−1
n (t), ∀t ∈ [τ kn , T ]. (B.40)

Hence, we may see that each τ kn offers an optimal time beyond which the firm is to drop its
price from p̄k to p̄k−1 when it has n remaining items. 
�

For the thus constructed threshold levels, it may be tempting to conjecture that τ kn is
decreasing in k as well. We have the following relevant result.

Proposition 7 Suppose τ kn > 0 for some k = 1, 2, . . . , K − 1 and n = 1, 2, . . . , N. Then,
we have τ k+1

n ≤ τ kn if and only if

vkn(τ
k
n ) − vkn−1(τ

k
n ) ≤ p̄k ᾱk − p̄k+1ᾱk+1

ᾱk − ᾱk+1 .

Proof If τ kn = T , we have both τ k+1
n ≤ T = τ kn and, due to (S1),

vkn(T ) − vkn−1(T ) = 0 ≤ p̄k ᾱk − p̄k+1ᾱk+1

ᾱk − ᾱk+1 . (B.41)

Now suppose τ kn ∈ (0, T ). From Theorem 2, we know that

Gk
n(t) ◦ vk + p̄k ᾱk · β(t) = 0, ∀t ∈ (0, τ kn ]; (B.42)

we have τ k+1
n ≤ τ kn if and only if

Gk+1
n (τ kn ) ◦ vk + p̄k+1ᾱk+1 · β(τ kn ) ≤ 0. (B.43)

Due to (S1’) and (B.42), the above (B.43) is equivalent to

vkn(τ
k
n ) − vkn−1(τ

k
n ) ≤ p̄k ᾱk − p̄k+1ᾱk+1

ᾱk − ᾱk+1 . (B.44)

This completes our proof 
�
In the last inequality in Proposition 7, the left-hand side is independent of p̄k+1 or ᾱk+1;

yet, the right-hand side is dependent on both, and can be arbitrarily small. Hence, we may see
that τ kn is not necessarily decreasing in k. Thence, there exists a possibility for the following
“leapfrog” phenomenon: Right after the time has gone past τ kn , it has also passed the time
τ k−1
n , and so on and so forth. Therefore, when the time passes beyond τ kn and it is currently

charging p̄k while with n items, the firm should ultimately switch to some price p̄k̃
−(k,n),

where k̃−(k, n) is not necessarily k − 1. For each n = 1, 2, . . . , N , we can use the following
iterative procedure to find (k̃−(k, n) | k = 1, 2, . . . , K ): for k = 1 to K

let l = k − 1;
while l ≥ 1 and τ ln ≤ τ kn do

let l = k̃−(l, n);
let k̃−(k, n) = l.

One of our computational studies shall confirm that a threshold policy for the markdown case
is not necessarily k-monotone.

We can adapt the recursive procedure described from (B.3) to (B.7) to the following
algorithm Markdown. for k = 0 to K
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for q = 0 to Q
let vk0q = 0;

for n = 1 to N
let v0nQ = 0;
for q = Q − 1 down to 0

let v0nq = v0n,q+1 + λ0q · �T · ( p̄0 + v0n−1,q − v0n,q+1);
for k = 1 to K

for n = 1 to N
let q = Q;
do

let l = vk−1
nq − vk−1

n,q−1 + λkq · �T · ( p̄k + vk−1
n−1,q − vk−1

nq );
if l ≤ 0

let q = q − 1;
while l ≤ 0 and q ≥ 1;
let τ kn = q · �T ;
for r = Q down to q

let vknr = vk−1
nr ;

for r = q − 1 down to 0
let vknr = vkn,r+1 + λkr · �T · ( p̄k + vkn−1,r − vkn,r+1).

The algorithm’s time complexity is apparently O(K NQ).

C Other algorithms

For the markup case, there is always the brute-force method Markup2. for k = 0 to K
for n = 0 to N

let vknQ = 0;
for q = 0 to Q − 1

let vk0q = 0;
for q = Q − 1 down to 0

for n = 1 to N
let vK

nq = λK
q · �T · ( p̄K + vK

n−1,q+1) + (1 − λK
q · �T ) · vK

n,q+1;
for k = K − 1 down to 0

for q = Q − 1 down to 0
for n = 1 to N

let vknq = λkq · �T · ( p̄k + vkn−1,q+1) + (1 − λkq · �T ) · vkn,q+1, pknq = p̄k ,

and u = λk+1
q · �T · ( p̄k+1 + vk+1

n−1,q+1) + (1 − λk+1
q · �T ) · vk+1

n,q+1;

if u > vknq

let vknq = u and pknq = p̄k+1.

In this algorithm, each pknq indicates the new price taken by the firm when it has n items and

is charging price p̄k right before time q · �T .
For the markdown case, there is also the brute-force method Markdown2. for k = 0 to

K
for n = 0 to N

let vknQ = 0;
for q = 0 to Q − 1

let vk0q = 0;
for q = Q − 1 down to 0
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for n = 1 to N
let v0nq = λ0q · �T · ( p̄0 + v0n−1,q+1) + (1 − λ0q · �T ) · v0n,q+1;

for k = 1 to K
for q = Q − 1 down to 0

for n = 1 to N
let vknq = λkq · �T · ( p̄k + vkn−1,q+1) + (1 − λkq · �T ) · vkn,q+1, pknq = p̄k ,

and u = λk−1
q · �T · ( p̄k−1 + vk−1

n−1,q+1) + (1 − λk−1
q · �T ) · vk−1

n,q+1;

if u > vknq

let vknq = u and pknq = p̄k−1.

Here, pknq means the same as in Markup2.
For the reversible-pricing case, we can translate Zhao and Zheng’s (2000) method in

Section 4.2 into the following algorithm Reversible. for q = Q down to 0
let v0q = 0;

for n = 1 to N
let vnQ = 0 and k = 0;
for q = Q − 1 down to 0

let vnq = (1 − λkq+1 · �T ) · vn,q+1 + λkq+1 · �T · ( p̄k + vn−1,q+1);
for l = k to K

let δl = p̄lλlq − λlq · (vnq − vn−1,q);

let μK = δK ;
for l = K − 1 down to k + 1

let μl = μl+1;
if δl > μl

let μl = δl ;
while k < K and δk < μk+1

let k = k + 1 and τ kn = q · �T ;
while k < K

let k = k + 1 and τ kn = 0.
For this case, there is again the brute-force method Reversible2. for n = 0 to N
let vnQ = 0;

for q = 0 to Q − 1
let v0q = 0;

for n = 1 to N
for q = Q − 1 down to 0

let vnq = λK
q · �T · ( p̄K + vn−1,q+1) + (1 − λK

q · �T ) · vn,q+1 and pnq = p̄K ;
for k = K − 1 down to 0

let u = λkq · �T · ( p̄k + vn−1,q+1) + (1 − λkq · �T ) · vn,q+1;
if u ≥ vnq

let vnq = u and pnq = p̄k .
In the algorithm, each pnq stores the price to be taken at time q · �T when the firm has n
items at that time.

Now we introduce the three algorithms needed in computation. First, the following is
algorithm Markup3. for k = 0 to K

for n = 0 to N
let v+′k

nQ = 0;
for q = 0 to Q − 1

let v+′k
0q = 0;

for q = Q − 1 down to 0
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for n = 1 to N
let v+′K

nq = λK
q · �T · ( p̄K + v+′K

n−1,q+1) + (1 − λK
q · �T ) · v+′K

n,q+1;
for k = K − 1 down to 0

for q = Q − 1 down to 0
for n = 1 to N

if q < τ
+′,k+1
n · Q

let v+′k
nq = λk+1

q · �T · ( p̄k+1 + v
+′,k+1
n−1,q+1) + (1 − λk+1

q · �T ) · v
+′,k+1
n,q+1 ;

else
let v+′k

nq = λkq · �T · ( p̄k + v+′k
n−1,q+1) + (1 − λkq · �T ) · v+′k

n,q+1.
Next comes algorithm Markdown3. for k = 0 to K
for n = 0 to N

let v−′k
nQ = 0;

for q = 0 to Q − 1
let v−′k

0q = 0;
for q = Q − 1 down to 0

for n = 1 to N
let v−′0

nq = λ0q · �T · ( p̄0 + v−′0
n−1,q+1) + (1 − λ0q · �T ) · v−′0

n,q+1;
for k = 1 to K

for q = Q − 1 down to 0
for n = 1 to N

if q ≥ τ−′k
n · Q

let v−′k
nq = λk−1

q · �T · ( p̄k−1 + v
−′,k−1
n−1,q+1) + (1 − λk−1

q · �T ) · v
−′,k−1
n,q+1 ;

else
let v−′k

nq = λkq · �T · ( p̄k + v−′k
n−1,q+1) + (1 − λkq · �T ) · v−′k

n,q+1.
Finally, the following is algorithm Reversible3. for n = 0 to N
let v′

nQ = 0;
for q = 0 to Q − 1

let v′
0q = 0;

for n = 1 to N
let k = 0;
for q = Q − 1 down to 0

let v′
nq = λkq · �T · ( p̄k + v′

n−1,q+1) + (1 − λkq · �T ) · v′
n,q+1;

while k ≤ K − 1 and τ ′k+1
n · Q > q

let k = k + 1.
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