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Abstract
Recently, Mishra et al. (Ann Oper Res 243(1):249–272, 2016) formulate and study theWolfe
and the Mond–Weir type dual models for the mathematical programs with vanishing con-
straints. They establish the weak, strong, converse, restricted converse and strict converse
duality results between the primal mathematical programs with vanishing constraints and the
corresponding dual model under some assumptions. However, their models contain the cal-
culation of the index sets, this makes it difficult to solve them from algorithm point of view. In
this paper, we propose the newWolfe andMond–Weir type dual models for the mathematical
programs with vanishing constraints, which do not involve the calculation of the index set.
We show that the weak, strong, converse and restricted converse duality results hold between
the primal mathematical programs with vanishing constraints and the corresponding new
dual models under the same assumptions as the ones of Mishra et al.
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1 Introduction

Mathematical programwith vanishing constraints (MPVC) was introduced by Achtziger and
Kanzow (2008), and its general form is as follows:

min f (x)
s.t . gi (x) ≤ 0, i = 1, 2, . . . ,m,

h j (x) = 0, j = 1, 2, . . . , p,
Hi (x) ≥ 0, i = 1, 2, . . . , l,
Gi (x)Hi (x) ≤ 0, i = 1, 2, . . . , l,

(1.1)

where f : Rn → R is Lipschitz continuous, g : Rn → Rm, h : Rn → Rp, G, H : Rn →
Rl are all continuously differentiable functions. Throughout this paper, X denotes the feasible
region of MPVC (1.1).

MPVC problem originates from the optimization topology design problems inmechanical
structures (Achtziger and Kanzow 2008). At present, the corresponding research shows that
the robot motion planning problem (Kirches et al. 2013) can be transformed into the MPVC
problem. In addition, it is also widely used in the economic dispatch problem (Jabr 2012) and
the nonlinear integer optimal control (Michael et al. 2013). As described in Achtziger and
Kanzow (2008), the major difficulty in solving problem (1.1) is that it does not satisfy most
of the standard constraint qualifications such as linearly independent constraint qualifica-
tion (LICQ) and Mangasarian–Fromovitz constraint qualification (MFCQ) at any interesting
feasible point, so that the standard optimization methods are likely to fail for this problem.
The MPVC has attracted much attentions in recent years. Several theoretical properties and
different numerical approaches for MPVC can be found in Achtziger and Kanzow (2008),
Kirches et al. (2013), Hoheisel et al. (2010), Hu et al. (2014), Hu et al. (2017), Benko and
Gfrerer (2017), Achtziger et al. (2013), Achtziger et al. (2012), Dorsch et al. (2012), Hoheisel
and Kanzow (2009), Hoheisel and Kanzow (2008), Hoheisel and Kanzow (2007), Hoheisel
et al. (2012), Izmailov and Pogosyan (2009) and Izmailov and Solodov (2009).

Duality is very important in optimization as the weak duality provides a lower bound to the
objective function value of the primal problem. The classical Wolfe duality was introduced
byWolfe (1961), while theMond–Weir duality was introduced byMond andWeir (1981) for
differentiable scalar functions. Later these duality models were extended to nondifferentiable
functions by utilizing different generalizations of the notion of convexity for both scalar and
vector cases (See Mishra et al. 2016; Antczak 2010; Chinchuluun et al. 2007; Askar and
Tiwari 2009; Gulati and Mehndiratta 2010; Bot and Heinrich 2014; Lai and Huang 2012;
Jefferson and Scott 2001; Lee and Lai 2005; Peterson 2001; Rockafellar 1999; Mishra and
Shukla 2010; Mishra et al. 2012, 2015; Mishra and Jaiswal 2015; Pandey and Mishra 2016,
2017, 2018). Recently, Mishra et al. (2016) formulate and studyWolfe and Mond–Weir type
dual models for the mathematical programs with vanishing constraints. They establish the
weak, strong, converse, restricted converse and strict converse duality results between the
primal mathematical programswith vanishing constraints and the corresponding dual models
under some assumptions. Since their models involve the calculation of index set, it is not
conducive for the numerical solutions of dual problems.

In this paper, the new Wolfe and Mond–Weir type dual models for the mathematical
programs with vanishing constraints are proposed which do not involve the calculations
of index sets. Under the same assumptions as the ones of Mishra et al, the weak, strong,
converse and restricted converse duality results between the primal mathematical programs
with vanishing constraints and the corresponding new dual models are established. We also
verify the validity of these results through an example.
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The outline of this paper is as follows: in Sect. 2, we give some preliminaries about the
MPVC. In Sect. 3, we give the new Wolfe and Mond–Weir type dual models for MPVC and
some duality results. We close with some final remarks in Sect. 4.

2 Preliminaries

Let x∗ ∈ X be any feasible point of the MPVC (1.1). The following index sets will be used
in the sequel.

Ig(x
∗) = {i |gi (x∗) = 0}

Ih(x
∗) = {1, 2, . . . , p}

I+(x∗) = {i |Hi (x
∗) > 0}

I0(x
∗) = {i |Hi (x

∗) = 0}
(2.1)

I+0(x
∗) = {i |Hi (x

∗) > 0,Gi (x
∗) = 0}

I+−(x∗) = {i |Hi (x
∗) > 0,Gi (x

∗) < 0}
I0+(x∗) = {i |Hi (x

∗) = 0,Gi (x
∗) > 0}

I00(x
∗) = {i |Hi (x

∗) = 0,Gi (x
∗) = 0}

I0−(x∗) = {i |Hi (x
∗) = 0,Gi (x

∗) < 0}

(2.2)

We also use the following Lagrangian function and its gradient:

L(y, λ, μ, ηH , ηG) = f (y) +
m∑

i=1

λi gi (y) +
p∑

j=1

β j h j (y) −
l∑

i=1

ηH
i Hi (y) +

l∑

i=1

ηGi Gi (y)

and

∇L(y, λ, μ, ηH , ηG) = ∇ f (y) +
m∑

i=1

λi∇gi (y) +
p∑

j=1

β j∇h j (y) −
l∑

i=1

ηH
i ∇Hi (y)

+
l∑

i=1

ηGi ∇Gi (y).

We define the following index sets for x ∈ X :

I+
g (x) = {i ∈ {1, 2, . . . ,m}|λi > 0}
I+
h (x) = { j ∈ Ih(x)|μ j > 0}
I−
h (x) = { j ∈ Ih(x)|μ j < 0}

I+
0+(x) = {i ∈ I0+(x)|ηH

i > 0}
I−
0+(x) = {i ∈ I0+(x)|ηH

i < 0}
I+
00(x) = {i ∈ I00(x)|ηH

i > 0}
I+
+0(x) = {i ∈ I+0(x)|ηH

i > 0}
I++−(x) = {i ∈ I+−(x)|ηH

i > 0}
I+
0−(x) = {i ∈ I0−(x)|ηH

i > 0}
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I++
+0 (x) = {i ∈ I+0(x)|ηGi > 0}
I+++− (x) = {i ∈ I+−(x)|ηGi > 0}

(2.3)

In order to establish the corresponding duality results, we give the following definitions
and theorem which can be found in Achtziger and Kanzow (2008).

Definition 2.1 Let x∗ ∈ X be a feasible point of the MPVC (1.1). The Abadie constraint
qualification, denoted by ACQ, is said to hold at x∗, iff T (x∗) = L(x∗), where

T (x∗) =
{
d ∈ Rn : ∃{xk} ⊆ X , ∃{tk} ↓ 0, xk → x∗ and

xk − x∗

tk
→ d

}

is the standard tangent cone of the MPVC (1.1) at x∗, and

L(x∗) = {d ∈ Rn : ∇gi (x
∗)T d ≤ 0, i ∈ Ig(x

∗), ∇h j (x
∗)T d = 0, j = 1, 2, . . . , p,

∇Hi (x
∗)T d = 0, i ∈ I0+(x∗), ∇Hi (x

∗)T d ≥ 0, i ∈ I00(x
∗) ∪ I0−(x∗),

∇Gi (x
∗)T d ≤ 0, i ∈ I+0(x

∗)}
denotes the corresponding linearized cone of the MPVC (1.1) at x∗.

Definition 2.2 Let x∗ ∈ X be a feasible point of the MPVC (1.1). The VC-ACQ is said to
hold at x∗, iff LVC (x∗) ⊆ T (x∗), where

LVC (x∗) = {d ∈ Rn : ∇gi (x
∗)T d ≤ 0, i ∈ Ig(x

∗), ∇h j (x
∗)T d = 0, j = 1, 2, . . . , p,

∇Hi (x
∗)T d = 0, i ∈ I0+(x∗), ∇Hi (x

∗)T d ≥ 0, i ∈ I00(x
∗) ∪ I0−(x∗),

∇Gi (x
∗)T d ≤ 0, i ∈ I00(x

∗) ∪ I+0(x
∗)}

denotes the corresponding VC-linearized cone of the MPVC (1.1) at x∗.

Theorem 2.1 Let x∗ ∈ X be a local minimum of the MPVC (1.1) such that VC-ACQ holds
at x∗. Then, there exist Lagrange multipliers λi ∈ R (i = 1, 2, . . . ,m), μ j ∈ R ( j ∈
Ih), ηH

i , ηGi ∈ R (i = 1, 2, . . . , l), such that

∇L(x∗, λ, μ, ηH , ηG) = 0 (2.4)

and

h j (x
∗) = 0 ( j ∈ Ih(x

∗)),
λi ≥ 0, gi (x

∗) ≤ 0, λi gi (x
∗) = 0 (i = 1, 2, . . . ,m),

ηH
i = 0 (i ∈ I+(x∗)), ηH

i ≥ 0 (i ∈ I00(x
∗) ∪ I0−(x∗)), ηH

i is f ree (i ∈ I0+(x∗)),
ηGi = 0 (i ∈ I0+(x∗) ∪ I0−(x∗) ∪ I+−(x∗)), ηGi ≥ 0 (i ∈ I00(x

∗) ∪ I+0(x
∗)).

(2.5)

The following concepts of convexity and generalized convexity play a vital role during
the establishment of some duality theorems.

Definition 2.3 Let S ⊆ Rn be any nonempty set and let f : Rn → R be continuously
differentiable. Then, f is said to be convex at x∗ ∈ S on S, iff for any x ∈ S, one has

f (x) − f (x∗) ≥ 〈∇ f (x∗), x − x∗〉.
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Definition 2.4 Let S ⊆ Rn be any nonempty set and let f : Rn → R be continuously
differentiable. Then, f is said to be quasiconvex at x∗ ∈ S on S, iff for any x ∈ S, one has

f (x) ≤ f (x∗) ⇒ 〈∇ f (x∗), x − x∗〉 ≤ 0.

Definition 2.5 Let S ⊆ Rn be any nonempty set and let f : Rn → R be continuously
differentiable. Then, f is said to be pseudoconvex at x∗ ∈ S on S, iff for any x ∈ S, one has

〈∇ f (x∗), x − x∗〉 ≥ 0 ⇒ f (x) ≥ f (x∗).

3 Two new duals for mathematical programmswith vanishing
constraints

Recently, Mishra et al. (2016) gives the Wolfe type dual and Mond–Weir type dual for the
MPVC (1.1). It is noted that their models involve the calculation of the index set, which make
it is complicated in the practical applications. In this section, we will propose the newWolfe
type and Mond–Weir type dual models which does not contain the calculation of index set.
Also we will establish the weak and strong, converse, restricted converse (strictly converse)
dual theorems under mild conditions. Moreover, we will utilize the example to explain their
validity.

3.1 Wolfe andMond–Weir type dual models proposed byMishra et al

Firstly, we give the Wolfe type and Mond–Weir type duals of the MPVC (1.1) which were
proposed by Mishra et al. (2016). For x ∈ X , the Wolfe type and Mond–Weir type duals of
the MPVC (1.1) are as follows:

Wolfe type dual model:

max L(y, λ, μ, ηH , ηG)

s.t . ∇L(y, λ, μ, ηH , ηG) = 0

λi ≥ 0,∀i /∈ Ig(x),

ηH
i ≥ 0,∀i ∈ I+(x),

ηGi ≤ 0,∀i ∈ I0+(x), ηGi ≥ 0,∀i ∈ I0−(x) ∪ I+−(x).

Mond–Weir type dual models:

max f (y)

s.t . ∇L(y, λ, μ, ηH , ηG) = 0

λi ∈ R+, λi gi (y) ≥ 0,∀i = 1, 2, . . . ,m,

μ j ∈ R, μ j h j (y) ≥ 0,∀ j = 1, 2, . . . , p,

ηH
i ≥ 0,∀i ∈ I+(x), ηH

i ∈ R,∀i ∈ I0(x),

− ηH
i Hi (y) ≥ 0,∀i = 1, 2, . . . , l,

ηGi ≤ 0,∀i ∈ I0+(x), ηGi ≥ 0,∀i ∈ I0−(x) ∪ I+−(x),

ηGi ∈ R,∀i ∈ I00(x) ∪ I+0(x),

ηGi Gi (y) ≥ 0,∀i = 1, 2, . . . , l.
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Remark 3.1 For the above two models, we can directly see that they involve the calculation
of the index set. So, it is difficult to deal with the dual problems from algorithm point of view,
and this also limits the practicability of the models.

Subsequentially, we give the new dual models and establish the weak, strong, converse
and restricted converse duality theorems.

3.2 NewWolfe type dual model

For x ∈ X , the new Wolfe type dual of the MPVC (1.1), VC-WD(x) for short, is as follows:

max L(y, λ, μ, ηH , ηG)

s.t . ∇L(y, λ, μ, ηH , ηG) = 0

λi ≥ 0,∀i = 1, 2, . . . ,m,

ηGi = vi Hi (x), vi ≥ 0,∀i = 1, 2, . . . , l

ηH
i = ρi − vi Gi (x), ρi ≥ 0,∀i = 1, 2, . . . , l.

(3.1)

Let Sw(x) ⊆ Rn × Rm × Rp × Rl × Rl denote the feasible set, i.e.,

Sw(x) ={(y, λ, μ, ηH , ηG , ρ, υ) : ∇L(y, λ, μ, ηH , ηG) = 0,

λi ≥ 0, i = 1, 2, . . . ,m,

ηGi = υi Hi (x), υi ≥ 0, i = 1, 2, . . . , l,

ηH
i = ρi − υi Gi (x), ρi ≥ 0, i = 1, 2, . . . , l.}

(3.2)

We denote by

pr Sw(x) = {y ∈ Rn : (y, λ, μ, ηH , ηG , ρ, v) ∈ Sw(x)}
the projection of the set Sw(x) on Rn .

To be independent of theMPVC (1.1), we consider another dual problemwhich is denoted
by VC-WD as follows:

max L(y, λ, μ, ηH , ηG)

subject to
(y, λ, μ, ηH , ηG , ρ, v) ∈ ∩x∈X Sw(x) (3.3)

The set of all feasible points of the VC-WD is denoted by Sw = ∩x∈X Sw(x) and the
projection of the set Sw on Rn is denoted by pr Sw .

Remark 3.2 Compared with the newWolfe dual model and the Wolfe dual model which was
proposed byMishra et al. (2016), we can obviously see that they do not involve the calculation
of the index set for the above newWolfe model. Moreover, it is not difficult to find that some
signs of multiplier are different between the new Wolfe dual model and the Mishra et al’s
Wolfe dual model. Firstly, λi ≥ 0,∀i = 1, 2, . . . ,m is required in the newWolfe dual model,
but it only requires that λi ≥ 0,∀i /∈ Ig(x) in theMishra et al’sWolfe dual model. Hence, our
model can better explain the nonnegative of the multipliers corresponding to the inequality
constraints gi (x) ≤ 0, i = 1, 2, . . . ,m. Secondly, ηGi = 0,∀i ∈ I0+(x) is required in the
new Wolfe dual model, but it requires that ηGi ≤ 0,∀i ∈ I0+(x) in the Mishra et al’s Wolfe
dual model. This implies that our model can better explain the complementary slackness of
the multipliers corresponding to the constraint functions Gi (x), i ∈ I0+(x).
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Remark 3.3 In the newWolfe dual model, the significance of ρi and νi is the same as the one
in Theorem 1 of Achtziger and Kanzow (2008). How to select them to evaluate the optimal
solution can be found in Remark 1 of Achtziger and Kanzow (2008).

Firstly, we give the weak duality theorem. The theorem shows the relationship between a
feasible point of the MPVC (1.1) and a feasible point of the new Wolfe type dual.

Theorem 3.1 Let x ∈ X , (y, λ, μ, ηH , ηG , ρ, v) ∈ Sw be feasible points for the MPVC (1.1)
and the VC-WD, respectively. If one of the following conditions holds:

(1) L(·, λ, μ, ηH , ηG) is convex at y ∈ X ∪ pr Sw;
(2) f , gi (i ∈ I+

g (x)), h j ( j ∈ I+
h (x)),− h j ( j ∈ I−

h (x)),−Hi (i ∈ I+0(x) ∪ I+−(x) ∪
I00(x) ∪ I0−(x) ∪ I+

0+(x)),−Hi (i ∈ I−
0+(x)),−Gi (i ∈ I0+(x)),Gi (i ∈ I00(x) ∪

I+0(x) ∪ I0−(x) ∪ I+−(x)) are convex at y ∈ X ∪ pr Sw;

Then f (x) ≥ L(y, λ, μ, ηH , ηG).

Proof (1) Suppose f (x) < L(y, λ, μ, ηH , ηG),i.e.,

f (x) < f (y) +
m∑

i=1

λi gi (y) +
p∑

j=1

μ j h j (y) −
l∑

i=1

ηH
i Hi (y) +

l∑

i=1

ηGi Gi (y). (3.4)

Since x ∈ X and (3.1), it follows that

gi (x) < 0 λi ≥ 0 i /∈ Ig(x),

gi (x) = 0 λi ≥ 0 i ∈ Ig(x),

h j (x) = 0 μ j ∈ R j ∈ Ih,

− Hi (x) < 0 ηH
i ≥ 0 i ∈ I+(x),

− Hi (x) = 0 ηH
i ∈ R i ∈ I0(x),

Gi (x) > 0 ηGi = 0 i ∈ I0+(x),

Gi (x) = 0 ηGi ≥ 0 i ∈ I00(x) ∪ I+0(x),

Gi (x) < 0 ηGi ≥ 0 i ∈ I0−(x) ∪ I+−(x),

that is,
m∑

i=1

λi gi (x) +
p∑

j=1

μ j h j (x) −
l∑

i=1

ηH
i Hi (x) +

l∑

i=1

ηGi Gi (x) ≤ 0 (3.5)

Adding (3.4) and (3.5), one has

f (x) +
m∑

i=1

λi gi (x) +
p∑

j=1

μ j h j (x) −
l∑

i=1

ηH
i Hi (x) +

l∑

i=1

ηGi Gi (x)

< f (y) +
m∑

i=1

λi gi (y) +
p∑

j=1

μ j h j (y) −
l∑

i=1

ηH
i Hi (y) +

l∑

i=1

ηGi Gi (y)

i.e.,
L(x, λ, μ, ηH , ηG) < L(y, λ, μ, ηH , ηG) (3.6)
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By the convexity of L(·, λ, μ, ηH , ηG), it follows that

L(y, λ, μ, ηH , ηG) + 〈∇L(y, λ, μ, ηH , ηG), x − y〉 ≤ L(x, λ, μ, ηH , ηG)

In view of the first equation in (3.1), one has L(x, λ, μ, ηH , ηG) ≥ L(y, λ, μ, ηH , ηG).
That is a contradiction to (3.6) and hence the result is proved.

(2) By the convexity of gi (i ∈ I+
g (x)), h j ( j ∈ I+

h (x)),−h j ( j ∈ I−
h (x)),−Hi (i ∈

I+0(x) ∪ I+−(x) ∪ I00(x) ∪ I0−(x) ∪ I+
0+(x)),−Hi (i ∈ I−

0+(x)),−Gi (i ∈ I0+(x)),Gi (i ∈
I00(x) ∪ I+0(x) ∪ I0−(x) ∪ I+−(x) at y ∈ X ∪ pr Sw , x ∈ X , (y, λ, μ, ηH , ηG , ρ, v) ∈ Sw,
one has

gi (y) + 〈∇gi (y), x − y〉 ≤ gi (x) ≤ 0 λi > 0, i ∈ I+
g (x),

h j (y) + 〈∇h j (y), x − y〉 ≤ h j (x) = 0 μ j > 0, j ∈ I+
h (x),

h j (y) + 〈∇h j (y), x − y〉 ≥ h j (x) = 0 μ j < 0, j ∈ I−
h (x),

− Hi (y) − 〈∇Hi (y), x − y〉 ≤ − Hi (x) ≤ 0, ηH
i ≥ 0, i ∈ I+0(x)

∪ I+−(x) ∪ I00(x) ∪ I0−(x) ∪ I+
0+(x),

−Hi (y) − 〈∇Hi (y), x − y〉 ≤ −Hi (x) = 0, ηH
i < 0, i ∈ I−

0+(x),

Gi (y) + 〈∇Gi (y), x − y〉 ≥ Gi (x) > 0, ηGi = 0, i ∈ I0+(x),

Gi (y) + 〈∇Gi (y), x − y〉 ≤ Gi (x) = 0, ηGi ≥ 0, i ∈ I+0(x) ∪ I00(x),

Gi (y) + 〈∇Gi (y), x − y〉 ≤ Gi (x) < 0, ηGi ≥ 0, i ∈ I0−(x) ∪ I+−(x),

which implies that

m∑

i=1

λi gi (y) +
p∑

j=1

μ j h j (y) −
l∑

i=1

ηH
i Hi (y) +

l∑

i=1

ηGi Gi (y)

+
〈

m∑

i=1

λi∇gi (y) +
p∑

j=1

μ j∇h j (y) −
l∑

i=1

ηH
i ∇Hi (y) +

l∑

i=1

ηGi ∇Gi (y), x − y

〉
≤ 0

(3.7)
Also, by the convexity of f at y ∈ X ∪ pr Sw , one has

f (y) + 〈∇ f (y), x − y〉 ≤ f (x) (3.8)

Adding (3.7) and (3.8), one has

L(y, λ, μ, ηH , ηG) + 〈∇L(y, λ, μ, ηH , ηG), x − y〉 ≤ f (x)

In view of the first equation in (3.1), one has

L(y, λ, μ, ηH , ηG) ≤ f (x).

and hence the result is proved. ��

The following strong duality theorem gives the condition under which the newWolfe dual
is solvable and the global maximum can be obtained.
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Theorem 3.2 Let x∗ ∈ X be a local minimum of the MPVC (1.1), such that the VC-ACQ
holds at x∗. Then, there exist Lagrange multipliers λ̄ ∈ Rm, μ̄ ∈ Rp, η̄H , η̄G , ρ̄, v̄ ∈ Rl ,
such that (x∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) is a feasible point of the VC-WD(x∗) and

m∑

i=1

λ̄i gi (x
∗) +

p∑

j=1

μ̄ j h j (x
∗) −

l∑

i=1

η̄H
i Hi (x

∗) +
l∑

i=1

η̄Gi Gi (x
∗) = 0 (3.9)

Moreover, if one of the following conditions holds:

(1) L(·, λ, μ, ηH , ηG) is convex at y ∈ X ∪ pr Sw(x∗);
(2) f , gi (i ∈ I+

g (x∗)), h j ( j ∈ I+
h (x∗)),− h j ( j ∈ I−

h (x∗)),−Hi (i ∈ I+0(x∗) ∪
I+−(x∗)∪ I00(x∗)∪ I0−(x∗)∪ I+

0+(x∗)), Hi (i ∈ I−
0+(x∗)),−Gi (i ∈ I0+(x∗)),Gi (i ∈

I00(x∗) ∪ I+0(x∗) ∪ I0−(x∗) ∪ I+−(x∗)) are convex at y ∈ X ∪ pr Sw(x∗);

Then, (x∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) is a global maximum of the VC-WD(x∗), that is,

L(x∗, λ̄, μ̄, η̄H , η̄G) ≥ L(y, λ, μ, ηH , ηG),∀(y, λ, μ, ηH , ηG) ∈ Sw(x∗)

and

f (x∗) = L(x∗, λ̄, μ̄, η̄H , η̄G).

Proof Since x∗ is local minimum of the MPVC (1.1) and the VC-ACQ condition is
satisfied at x∗, by Theorem 2.1, it follows that, there exist Lagrange multipliers λ̄ ∈
Rm, μ̄ ∈ Rp, η̄H , η̄G , ρ̄, v̄ ∈ Rl , such that the conditions (2.4) and (2.5) hold and hence
(x∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) is a feasible point of the VC-WD(x∗). By Theorem 3.1, one has

f (x∗) ≥ L(y, λ, μ, ηH , ηG),∀(y, λ, μ, ηH , ηG , ρ, v) ∈ Sw(x∗) (3.10)

Adding (3.9) and (3.10), one has

L(x∗, λ, μ, ηH , ηG) ≥ L(y, λ, μ, ηH , ηG),∀(y, λ, μ, ηH , ηG , ρ, v) ∈ Sw(x∗)

that is, (x∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) is a global maximum of the VC-WD(x∗). Also, the local
minimum of the MPVC (1.1) and the global minimum of the VC-WD(x∗) are equal. ��

The following theorem is a converse duality theorem. It gives the condition under which
a feasible point of the new Wolfe dual generates a global minimum of the MPVC (1.1).

Theorem 3.3 Let x ∈ X be any feasible solution of theMPVC (1.1) and let (y∗, λ̄, μ̄, η̄H , η̄G ,

ρ̄, v̄) be a feasible point of the VC-WD such that

λ̄i gi (y
∗) ≥ 0 i = 1, 2, . . . ,m,

μ̄ j h j (y
∗) = 0 j = 1, 2, . . . , p,

−η̄H
i Hj (y

∗) ≥ 0 i = 1, 2, . . . , l,

λ̄G
i Gi (y

∗) ≥ 0 i = 1, 2, . . . , l.

Moreover, if one of the following conditions holds:

(1) L(·, λ, μ, ηH , ηG) is convex at y∗ ∈ X ∪ pr Sw;
(2) f , gi (i ∈ I+

g (x)), h j ( j ∈ I+
h (x)),− h j ( j ∈ I−

h (x)),− Hi (i ∈ I+
+0(x) ∪ I++−(x) ∪

I+
00(x)∪ I+

0−(x)∪ I+
0+(x)),− Hi (i ∈ I−

0+(x)),Gi (i ∈ I++
+0 (x)∪ ∈ I+++− (x)) are convex

at y∗ ∈ X ∪ pr Sw;
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Then, y∗ is a global minimum of the MPVC (1.1).

Proof Suppose to the contrary that y∗ is not a global minimum of the MPVC (1.1), i.e., there
exists x̃ ∈ X such that

f (x̃) < f (y∗) (3.11)

(1) Since x̃ and (y∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) be the feasible point for the MPVC (1.1) and the
VC-WD, respectively. Combining the hypothesis in the theorem, one has

m∑

i=1

λ̄i gi (x̃) +
p∑

j=1

μ̄ j h j (x̃) −
l∑

i=1

η̄H
i Hi (x̃) +

l∑

i=1

η̄Gi Gi (x̃) ≤ 0

≤
m∑

i=1

λ̄i gi (y
∗) +

p∑

j=1

μ̄ j h j (y
∗) −

l∑

i=1

η̄H
i Hi (y

∗) +
l∑

i=1

η̄Gi Gi (y
∗)

(3.12)

Adding (3.11) and (3.12), one has

L(x̃, λ̄, μ̄, η̄H , η̄G) < L(y∗, λ̄, μ̄, η̄H , η̄G)

By the convexity of L(·, λ, μ, ηH , ηG) at y∗ ∈ X ∪ pr Sw , it follows that

〈∇L(y∗, λ̄, μ̄, η̄H , η̄G), x̃ − y∗〉 < 0,

this is a contradiction to the dual constraint (3.1) of the VC-WD (x) and hence the result is
proved.

(2) Since x̃ and (y∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) be the feasible point for the MPVC (1.1) and the
VC-WD, respectively. Combining the hypothesis in the theorem, one has

gi (x̃) ≤ gi (y
∗) i ∈ I+

g (x̃),

h j (x̃) = h j (y
∗) j ∈ I+

h (x̃) ∪ I−
h (x̃),

−Hi (x̃) ≤ −Hi (y
∗) i ∈ I+

+0(x̃) ∪ I++−(x̃) ∪ I+
00(x̃) ∪ I+

0−(x̃) ∪ I+
0+(x̃),

−Hi (x̃) ≥ −Hi (y
∗) i ∈ I−

0+(x̃),

Gi (x̃) ≤ Gi (y
∗) i ∈ I++

+0 (x̃) ∪ I+++− (x̃),

By the convexity of the fuction in the theorem, it follows that

〈∇gi (y
∗), x̃ − y∗〉 ≤ 0, λ̄i > 0, i ∈ I+

g (x̃),

〈∇h j (y
∗), x̃ − y∗〉 ≤ 0, μ̄ j > 0, j ∈ I+

h (x̃),

〈∇h j (y
∗), x̃ − y∗〉 ≥ 0, μ̄ j < 0, j ∈ I−

h (x̃),

− 〈∇Hi (y
∗), x̃ − y∗〉 ≤ 0, η̄H

i ≥ 0, i ∈ I+
+0(x̃) ∪ I++−(x̃) ∪ I+

00(x̃) ∪ I+
0−(x̃) ∪ I+

0+(x̃),

− 〈∇Hi (y
∗), x̃ − y∗〉 ≥ 0, η̄H

i ≤ 0, i ∈ I−
0+(x̃),

〈∇Gi (y
∗), x̃ − y∗〉 ≤ 0, η̄Gi ≥ 0, i ∈ I++

+0 (x̃) ∪ I+++− (x̃),

which implies that
〈

m∑

i=1

λ̄i∇gi (y
∗) +

p∑

j=1

μ̄ j∇h j (y
∗) −

l∑

i=1

η̄H
i ∇Hi (y

∗) +
l∑

i=1

η̄Gi ∇Gi (y
∗), x̃ − y∗

〉
≤ 0.
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Using the above inequality and (3.1), one has

〈∇ f (y∗), x̃ − y∗〉 ≥ 0.

By the convexity of f , it follows that

f (x̃) ≥ f (y∗),

this is a contradiction to our hypothesis and hence the result is proved. ��
The following theorem is restricted converse duality theorem which gives a sufficient

condition for a feasible point of the MPVC (1.1) to be a global minimum by using the new
Wolfe dual.

Theorem 3.4 Let x∗ ∈ X bea feasible point of theMPVC (1.1)and let (y∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄)

be a feasible point of the VC-WD such that f (x∗) = L(y∗, λ̄, μ̄, η̄H , η̄G). Moreover, if one
of the following conditions holds:

(1) L(·, λ̄, μ̄, η̄H , η̄G) is convex at y∗ ∈ X ∪ pr Sw;
(2) f , gi (i ∈ I+

g (x∗)), h j ( j ∈ I+
h (x∗)),−h j ( j ∈ I−

h (x∗)),−Hi (i ∈ I+
+0(x

∗)∪ I++−(x∗)∪
I+
00(x

∗) ∪ I+
0−(x∗) ∪ I+

0+(x∗)),−Hi (i ∈ I−
0+(x∗)),Gi (i ∈ I++

+0 (x∗)∪ ∈ I+++− (x∗)) are
convex at y∗ ∈ X ∪ pr Sw;

Then, x∗ is a global minimum of the MPVC (1.1).

Proof Suppose to the contrary that x∗ ∈ X is not a global minimum of the MPVC (1.1), then
there exists x̃ ∈ X such that

f (x̃) < f (x∗).

Combining the assumption in the theorem, it follows that

f (x̃) < L(y∗, λ̄, μ̄, η̄H , η̄G),

a contradiction to the Theorem 3.1 and hence the result is proved. ��
The following strict converse duality theoremgives a sufficient condition about the unique-

ness of a local minimum of the MPVC (1.1) and a global maximum of the new Wolfe dual
model.

Theorem 3.5 Let x∗ ∈ X be a local minimum for the MPVC (1.1) such that the VC-ACQ
at x∗. Assume the conditions of Theorem 3.2 hold and (y∗, λ̃, μ̃, η̃H , η̃G , ρ̃, ṽ) be a global
maximum of the VC-WD(x∗). If one of the following conditions holds:

(1) L(·, λ̃, μ̃, η̃H , η̃G) is strictly convex at y ∈ X ∪ pr Sw(x∗);
(2) f is strictly convex and gi (i ∈ I+

g (x∗)), h j ( j ∈ I+
h (x∗)),−h j ( j ∈ I−

h (x∗)),−Hi (i ∈
I+0(x∗) ∪ I+−(x∗) ∪ I00(x∗) ∪ I0−(x∗) ∪ I+

0+(x∗)),−Hi (i ∈ I−
0+(x∗)),−Gi (i ∈

I0+(x∗)),Gi (i ∈ I00(x∗) ∪ I+0(x∗) ∪ I0−(x∗) ∪ I+−(x∗)) are convex at y ∈ X ∪
pr Sw(x∗).

Then x∗ = y∗.

Proof (1) Suppose that x∗ �= y∗. By Theorem 3.2, there exist Lagrange multipliers λ̄ ∈
Rm, μ̄ ∈ Rp, η̄G ∈ Rl , η̄H ∈ Rl , ρ̄ ∈ Rl , v̄ ∈ Rl such that (y∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) be a
global maximum of the VC-WD(x∗). Hence,

f (x∗) = L(x∗, λ̄, μ̄, η̄H , η̄G) = L(y∗, λ̃, μ̃, η̃H , η̃G). (3.13)

123



244 Annals of Operations Research (2020) 287:233–255

In view of the feasibility of x∗ for theMPVC (1.1) and the feasibility of (y∗, λ̃, μ̃, η̃H , η̃G ,

ρ̃, ṽ) for the VC-WD(x∗), it follows that

gi (x
∗) < 0 λ̃i ≥ 0 i /∈ Ig(x

∗),
gi (x

∗) = 0 λ̃i ≥ 0 i ∈ Ig(x
∗),

h j (x
∗) = 0 μ̃ j ∈ R j ∈ Ih(x

∗),
− Hi (x

∗) < 0 η̃H
i ≥ 0 i ∈ I+(x∗),

− Hi (x
∗) = 0 η̃H

i ∈ R i ∈ I0(x
∗),

Gi (x
∗) > 0 η̃Gi = 0 i ∈ I0+(x∗),

Gi (x
∗) = 0 η̃Gi ≥ 0 i ∈ I00(x

∗) ∪ I+0(x
∗),

Gi (x
∗) < 0 η̃Gi ≥ 0 i ∈ I0−(x∗) ∪ I+−(x∗),

that is,

m∑

i=1

λ̃i gi (x
∗) +

p∑

j=1

μ̃ j h j (x
∗) −

l∑

i=1

η̃H
i Hi (x

∗) +
l∑

i=1

η̃Gi Gi (x
∗) ≤ 0 (3.14)

Adding (3.13) and (3.14), one has

L(x∗, λ̃, μ̃, η̃H , η̃G) ≤ L(y∗, λ̃, μ̃, η̃H , η̃G) (3.15)

By the strict convexity of L(·, λ̃, μ̃, η̃H , η̃G), it follows that

〈∇L(y∗, λ̃, μ̃, η̃H , η̃G), x∗ − y∗〉 < 0

That is a contradiction to the first equation in (3.1) and hence the result is proved.
(2) By the strict convexity of f at y∗, one has

f (x∗) − f (y∗)>< ∇ f (y∗), x∗ − y∗〉. (3.16)

In view of the convexity of gi (i ∈ I+
g (x∗)), h j ( j ∈ I+

h (x∗)),−h j ( j ∈ I−
h (x∗)),−Hi (i ∈

I+0(x∗) ∪ I+−(x∗) ∪ I00(x∗) ∪ I0−(x∗) ∪ I+
0+(x∗)),−Hi (i ∈ I−

0+(x∗)),−Gi (i ∈
I0+(x∗)),Gi (i ∈ I00(x∗) ∪ I+0(x∗) ∪ I0−(x∗) ∪ I+−(x∗) at y∗ ∈ X ∪ pr Sw(x∗), x∗ ∈ X
and (y∗, λ̃, μ̃, η̃H , η̃G , ρ̃, ṽ) ∈ Sw(x∗), one has

gi (y
∗) + 〈∇gi (y

∗), x∗ − y∗〉 ≤ gi (x
∗) ≤ 0 λ̃i > 0, i ∈ I+

g (x∗),
h j (y

∗) + 〈∇h j (y
∗), x∗ − y∗〉 ≤ h j (x

∗) = 0 μ̃ j > 0, j ∈ I+
h (x∗),

h j (y
∗) + 〈∇h j (y

∗), x∗ − y∗〉 ≥ h j (x
∗) = 0 μ̃ j < 0, j ∈ I−

h (x∗),
− Hi (y

∗) − 〈∇Hi (y
∗), x∗ − y∗〉 ≤ − Hi (x

∗) ≤ 0, η̃H
i ≥ 0, i ∈ I+0(x

∗)
∪ I+−(x∗) ∪ I00(x

∗) ∪ I0−(x∗) ∪ I+
0+(x∗),

−Hi (y
∗) − 〈∇Hi (y

∗), x∗ − y∗〉 ≤ −Hi (x
∗) = 0, η̃H

i < 0, i ∈ I−
0+(x∗),

Gi (y
∗) + 〈∇Gi (y

∗), x∗ − y∗〉 ≥ Gi (x
∗) > 0, η̃Gi = 0, i ∈ I0+(x∗),

Gi (y
∗) + 〈∇Gi (y

∗), x∗ − y∗〉 ≤ Gi (x
∗) = 0, η̃Gi ≥ 0, i ∈ I+0(x

∗) ∪ I00(x
∗),

Gi (y
∗) + 〈∇Gi (y

∗), x∗ − y∗〉 ≤ Gi (x
∗) < 0, η̃Gi ≥ 0, i ∈ I0−(x∗) ∪ I+−(x∗),
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which implies that
m∑

i=1

λ̃i gi (y
∗) +

p∑

j=1

μ̃ j h j (y
∗) −

l∑

i=1

η̃Hi Hi (y
∗) +

l∑

i=1

η̃Gi Gi (y
∗)

+
〈 m∑

i=1

λ̃i∇gi (y
∗) +

p∑

j=1

μ̃ j∇h j (y
∗) −

l∑

i=1

η̃Hi ∇Hi (y
∗) +

l∑

i=1

η̃Gi ∇Gi (y
∗), x∗ − y∗

〉
≤ 0

(3.17)

Adding (3.16) and (3.17), one has

L(y∗, λ̃, μ̃, η̃H , η̃G) < f (x∗).

This is a contradiction to (3.13) and hence the result is proved. ��
In order to verify the validity of the new Wolfe dual model and the related theorems, we

give the following example.

Example 1 Consider the following MPVC

min f (x) = x21 + x22
s.t . H1(x) = x2 ≥ 0,

G1(x)H1(x) = x1x2 ≤ 0,

(3.18)

with n = 2,m = p = 0, l = 1. The new Wolfe dual model to (3.18) is given by

max L(y, ηH
1 , ηG1 ) = y21 + y22 − ηH

1 y2 + ηG1 y1

s.t . ∇L(y, ηH
1 , ηG1 ) = (2y1 + ηG1 , 2y2 − ηH

1 )T = 0,

ηG1 = v1x2, v1 ≥ 0

ηH
1 = ρ1 − v1x1, ρ1 ≥ 0.

(3.19)

(1) Let x∗ = (0, 0)T ∈ X , (y, ηH
1 , ηG1 , ρ1, v1) = (0, 0, 0, 0, 0) ∈ SW (x∗), one has

f (x∗) = 0 = L(0, 0, 0)

It can be verified that the hypothesis of Theorem 3.4 holds, since the positive definiteness

of ∇2L(y, ηH
1 , ηG1 ) =

(
2 0
0 2

)
. Taking account (3.18), x∗ is a global minimum of (3.18). So,

Theorem 3.4 is verified.
(2) We can get y1 = − 1

2η
G
1 , y2 = 1

2η
H
1 by (3.19). One has also

L(y, ηH
1 , ηG1 ) = −1

4
ηG1

2 − 1

4
ηH
1

2 ≤ 0.

Since f (x) = x21 + x22 ≥ 0, we can get f (x) ≥ L(y, ηH
1 , ηG1 ), Hence, Theorem 3.1 is

verified.
(3)We can obtain that (3.18) satisfy VC-LICQ, since∇H1 = (0, 1)T ,∇G1 = (1, 0)T . So

we obtain that (3.18) satisfies VC-ACQ. By Theorem 2.1, there exist Lagrange multipliers
ηH
1 , ηG1 , ρ1, v1 ∈ R such that (0, ηH

1 , ηG1 , ρ1, v1) is a feasible point of the VC-WD(0) and

− ηH
1 H1(0) + ηG1 G1(0) = 0.

So, (0, ηH
1 , ηG1 , ρ1, v1) is a global maximum of the VC-WD(0) and f (0) = 0 =

L(0, ηH
1 , ηG1 ). Theorem 3.2 is verified.
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3.3 NewMond–Weir type dual model

In this section, we discuss the new Mond–Weir type dual for MPVC (1.1). For x ∈ X , the
new Mond–Weir type dual of the MPVC (1.1), VC-MWD(x) for short, is as follows:

max f (y)

s.t . ∇L(y, λ, μ, ηH , ηG) = 0,

λi ≥ 0, λi gi (y) ≥ 0, i = 1, 2, . . . ,m,

μ j h j (y) = 0, j = 1, 2, . . . , p,

ηGi Gi (y) ≥ 0, i = 1, 2, . . . , l,

ηGi = vi Hi (x), vi ≥ 0, i = 1, 2, . . . , l,

− ηH
i Hi (y) ≥ 0, i = 1, 2, . . . , l,

ηH
i = ρi − vi Gi (x), ρi ≥ 0, i = 1, 2, . . . , l.

(3.20)

Let SMW (x) ⊆ Rn × Rm × Rp × Rl × Rl denote feasible point set, i.e.

SMW (x) = {(y, λ, μ, ηH , ηG , ρ, υ) : ∇ψ(y, λ, μ, ηH , ηG) = 0,

λi ≥ 0, λi gi (y) ≥ 0, i = 1, 2, . . . ,m,

μ j h j (y) = 0, j = 1, 2, . . . , p,

ηGi Gi (y) ≥ 0, i = 1, 2, . . . , l,

ηGi = vi Hi (x), vi ≥ 0, i = 1, 2, . . . , l,

− ηH
i Hi (y) ≥ 0, i = 1, 2, . . . , l,

ηH
i = ρi − vi Gi (x), ρi ≥ 0, i = 1, 2, . . . , l}.

(3.21)

We denote by

pr SMW (x) = {y ∈ Rn : (y, λ, μ, ηH , ηG , ρ, v) ∈ SMW (x)}
the projection of the set SMW (x) on Rn .

Similar to the new Wolfe dual, we also consider another dual problem which is denoted
by VC-MWD as follows:

max f (y)

s.t . (y, λ, μ, ηH , ηG , ρ, v) ∈ ∩x∈X SMW (x)

The set of all feasible points of the VC-MWD is denoted by SMW = ∩x∈X SMW (x) and
the projection of the set SMW on Rn is denoted by pr SMW .

Remark 3.4 From the newMond–Weir type dual model and the Mond–Weir type dual model
which was proposed by Mishra et al. (2016), we can also see that they do not involve the
calculation of the index set for the above new Mond–Weir type model. Moreover, it is not
difficult to find that some signs of multiplier are different between the new Mond–Weir
type dual model and the Mishra et al’s Mond–Weir type dual model. Firstly, ηGi ≥ 0,∀i ∈
I00(x) ∪ I+0(x), ηGi = 0, i ∈ I0+(x) is required in the new Mond–Weir dual model, but
it requires that ηGi ∈ R,∀i ∈ I00(x) ∪ I+0(x), ηGi ≤ 0, i ∈ I0+(x) in the Mishra et al’s
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Mond–Weir dual model, i.e., the signs of ηGi , i ∈ I00(x) ∪ I+0(x) ∪ I0+(x) in our model
are the same as the ones in Theorem 1 of Achtziger and Kanzow (2008). This shows that our
model can better explain the complementary slackness and the nonnegative of the multipliers
corresponding to the constraint function Gi (x), i ∈ I00(x) ∪ I+0(x) ∪ I0+(x). Secondly,
ηH
i ≥ 0,∀i ∈ I00(x) ∪ I0−(x), ηH

i ∈ R, i ∈ I0+(x) is required in the new Mond–Weir
dual model, but it requires that ηH

i ∈ R,∀i ∈ I00(x) ∪ I0−(x) ∪ I0+(x) in the Mishra et al’s
Mond–Weir dual model, i.e., the signs of ηH

i , i ∈ I00(x)∪ I0−(x)∪ I0+(x) in our model are
the same as the ones in Theorem 1 of Achtziger and Kanzow (2008). This implies that our
model can better explain the nonnegative of the multipliers corresponding to the constraint
functions Hi (x), i ∈ I00(x) ∪ I0−(x) ∪ I0+(x).

Remark 3.5 Similar to the new Wolfe dual model, the significance of ρi and νi is also the
same as the one in Theorem 1 of Achtziger and Kanzow (2008). The method about selecting
these parameters to evaluate the optimal solution can also be found in Remark 1 of Achtziger
and Kanzow (2008).

The following weak duality theorem shows the relationship between a feasible point of
the MPVC (1.1) and a feasible point of the new Mond–Weir type dual.

Theorem 3.6 Let x ∈ X and (y, λ, μ, ηH , ηG , ρ, v) ∈ SMW be feasible points for theMPVC
(1.1) and the VC-MWD, respectively. Moreover, if one of the following conditions holds:

(1) f (·) is pseudoconvex and
m∑
i=1

λi gi (·) +
p∑

j=1
μ j h j (·) −

l∑
i=1

ηH
i Hi (·) +

l∑
i=1

ηGi Gi (·) is
quasiconvex at y ∈ X ∪ pr SMW , respectively;

(2) f (·) is pseudoconvex and gi (i ∈ I+
g (x)), h j ( j ∈ I+

h (x)),−h j ( j ∈ I−
h (x)),−Hi (i ∈

I+
+0(x) ∪ I++−(x) ∪ I+

00(x) ∪ I+
0−(x) ∪ I+

0+(x)),−Hi (i ∈ I−
0+(x)),Gi (i ∈ I++

+0 (x)∪ ∈
I+++− (x)) are quasiconvex at y ∈ X ∪ pr SMW ,respectively;

Then, f (x) ≥ f (y).

Proof (1) Since x ∈ X and (y, λ, μ, ηH , ηG , ρ, v) ∈ SMW , it follows that

gi (x) ≤ 0 λi ≥ 0 i = 1, 2, . . . ,m,

h j (x) = 0 μ j ∈ R j = 1, 2, . . . , p,

− Hi (x) < 0 ηH
i ≥ 0 i ∈ I+(x),

− Hi (x) = 0 ηH
i ∈ R i ∈ I0(x),

Gi (x) > 0 ηGi = 0 i ∈ I0+(x),

Gi (x) = 0 ηGi ≥ 0 i ∈ I00(x) ∪ I+0(x),

Gi (x) < 0 ηGi ≥ 0 i ∈ I0−(x) ∪ I+−(x).

By (3.20), it implies that

m∑

i=1

λi gi (x) +
p∑

j=1

μ j h j (x) −
l∑

i=1

ηH
i Hi (x) +

l∑

i=1

ηGi Gi (x)

≤
m∑

i=1

λi gi (y) +
p∑

j=1

μ j h j (y) −
l∑

i=1

ηH
i Hi (y) +

l∑

i=1

ηGi Gi (y)
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Combining the quasiconvexity of
m∑
i=1

λi gi (·)+
p∑

j=1
μ j h j (·)−

l∑
i=1

ηH
i Hi (·)+

l∑
i=1

ηGi Gi (·),
one has

〈
m∑

i=1

λi∇gi (y) +
p∑

j=1

μ j∇h j (y) −
l∑

i=1

ηH
i ∇Hi (y) +

l∑

i=1

ηGi ∇Gi (y), x − y

〉
≤ 0.

Using the above inequality and the first equation in (3.20), one has

〈∇ f (y), x − y〉 ≥ 0.

By the pseudoconvexity of f , it implies that

f (x) ≥ f (y),

and hence the result is proved.
(2) By x ∈ X , (y, λ, μ, ηH , ηG , ρ, v) ∈ SMW , it follows that

gi (x) ≤ gi (y) i ∈ I+
g (x),

h j (x) = h j (y) j ∈ I+
h (x) ∪ I−

h (x),

− Hi (x) ≤ −Hi (y) i ∈ I+
+0(x) ∪ I++−(x) ∪ I+

00(x) ∪ I+
0−(x) ∪ I+

0+(x),

− Hi (x) ≥ −Hi (y) i ∈ I−
0+(x),

Gi (x) ≤ Gi (y) i ∈ I++
+0 (x) ∪ I+++− (x),

By the quasiconvexity of f , gi (i ∈ I+
g (x)), h j ( j ∈ I+

h (x)),−h j ( j ∈ I−
h (x)),−Hi (i ∈

I+
+0(x)∪ I++−(x)∪ I+

00(x)∪ I+
0−(x)∪ I+

0+(x)), Hi (i ∈ I−
0+(x)),Gi (i ∈ I++

+0 (x)∪ ∈ I+++− (x)),
it implies that

〈∇gi (y), x − y〉 ≤ 0, i ∈ I+
g (x),

〈∇h j (y), x − y〉 ≤ 0, j ∈ I+
h (x),

〈∇h j (y), x − y〉 ≥ 0, j ∈ I−
h (x),

− 〈∇Hi (y), x − y〉 ≤ 0, i ∈ I+
+0(x) ∪ I++−(x) ∪ I+

00(x) ∪ I+
0−(x) ∪ I+

0+(x),

− 〈∇Hi (y), x − y〉 ≥ 0, i ∈ I−
0+(x),

〈∇Gi (y), x − y〉 ≤ 0, i ∈ I++
+0 (x) ∪ I+++− (x).

From the above inequalities and (2.3), it follows that

〈
m∑

i=1

λi∇gi (y) +
p∑

j=1

μ j∇h j (y) −
l∑

i=1

ηH
i ∇Hi (y) +

l∑

i=1

ηGi ∇Gi (y), x − y〉 ≤ 0.

Combining the above inequality and (3.20), one has

〈∇ f (y), x − y〉 ≥ 0.

By the pseudoconvexity of f , it implies that

f (x) ≥ f (y)

and hence the result is proved. ��
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The following strong duality theoremgives the condition underwhich the newMond–Weir
dual is solvable and the global maximum can be obtained.

Theorem 3.7 Let x∗ ∈ X be a local minimum of the MPVC (1.1) such that the VC-ACQ
holds at x∗. Then, there exist Lagrange multipliers λ̄ ∈ Rm, μ̄ ∈ Rp, η̄H , η̄G , ρ̄, v̄ ∈
Rl , such that (x∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) is a feasible point of the VC-MWD(x∗), that is,
(x∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) ∈ SMW (x∗). Moreover, Theorem 3.6 holds, then (x∗, λ̄, μ̄, η̄H , η̄G)

is a global maximum of the VC-MWD(x∗).

Proof Since x∗ ∈ X is a local minimum of the MPVC (1.1) and the VC-ACQ condition
is satisfied at x∗. By theorem 2.1, it follows that, there exist Lagrange multipliers λ̄ ∈
Rm, μ̄ ∈ Rp, η̄H , η̄G , ρ̄, v̄ ∈ Rl such that the conditions (2.4) and (2.5) hold and hence
(x∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) is a feasible point of the VC-MWD(x∗). By Theorem 3.6, it follows
that

f (x∗) ≥ f (y), ∀(y, λ, μ, ηH , ηG , ρ, v) ∈ SMW (x∗),

and hence (x∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) ∈ SMW (x) is a global maximum of the VC-MWD
(x∗). ��

The following converse duality theorem gives the condition under which a feasible point
of the new Mond–Weir dual generates a global minimum of the MPVC (1.1).

Theorem 3.8 Let x ∈ X and (y∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) ∈ SMW be feasible points for the
MPVC (1.1) and the VC-MWD, respectively. Moreover, if one of the following conditions
holds:

(1) f (·) is pseudoconvex and
m∑
i=1

λ̄i gi (·) +
p∑

j=1
μ̄ j h j (·) −

l∑
i=1

η̄H
i Hi (·) +

l∑
i=1

η̄Gi Gi (·) is
quasiconvex at y∗ ∈ X ∪ pr SMW , respectively;

(2) f (·) is pseudoconvex and gi (i ∈ I+
g (x)), h j ( j ∈ I+

h (x)),−h j ( j ∈ I−
h (x)),−Hi (i ∈

I+
+0(x) ∪ I++−(x) ∪ I+

00(x) ∪ I+
0−(x) ∪ I+

0+(x)),−Hi (i ∈ I−
0+(x)),Gi (i ∈ I++

+0 (x)∪ ∈
I+++− (x)) are quasiconvex at y∗ ∈ X ∪ pr SMW ;
Then y∗ is a global minimum of the MPVC (1.1).

Proof Suppose to the contrary that y∗ is not a global minimum of the MPVC (1.1), that is,
there exists x̃ ∈ X , such that f (x̃) < f (y∗).

(1) By the pseudoconvexity of f (·), one has
〈∇ f (y∗), x̃ − y∗〉 < 0. (3.22)

Since x̃ ∈ X , (y∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) ∈ SMW , one has

λ̄i gi (x̃) ≤ λ̄i gi (y
∗) i = 1, 2, . . . ,m,

μ̄ j h j (x̃) = μ̄ j h j (y
∗) j = 1, 2, . . . , p,

− η̄H
i Hi (x̃) ≤ −η̄H

i Hi (y
∗) i = 1, 2, . . . , l,

η̄Gi Gi (x̃) ≤ η̄Gi Gi (y
∗) i = 1, 2, . . . , l.

which implies that

m∑

i=1

λ̄i gi (x̃) +
p∑

j=1

μ̄ j h j (x̃) −
l∑

i=1

η̄H
i Hi (x̃) +

l∑

i=1

η̄Gi Gi (x̃)
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≤
m∑

i=1

λ̄i gi (y
∗) +

p∑

j=1

μ̄ j h j (y
∗) −

l∑

i=1

η̄H
i Hi (y

∗) +
l∑

i=1

η̄Gi Gi (y
∗)

By the quasiconvexity of
m∑
i=1

λ̄i gi (·)+
p∑

j=1
μ̄ j h j (·)−

l∑
i=1

η̄H
i Hi (·)+

l∑
i=1

η̄Gi Gi (·), it follows
that

〈
m∑

i=1

λ̄i∇gi (y
∗) +

p∑

j=1

μ̄ j∇h j (y
∗) −

l∑

i=1

η̄H
i ∇Hi (y

∗) +
l∑

i=1

η̄Gi ∇Gi (y
∗), x̃ − y∗

〉
≤ 0.

(3.23)
Adding the inequalities (3.22) and (3.23), one has

〈∇L(y∗, λ̄, μ̄, η̄H , η̄G), x̃ − y∗〉 < 0,

this is a contradiction to (3.20) and hence the result is proved.
(2) Since x̃ ∈ X , (y∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) ∈ SMW , one has

λ̄i gi (x̃) ≤ λ̄i gi (y
∗) i = 1, 2, . . . ,m,

μ̄ j h j (x̃) = μ̄ j h j (y
∗) j = 1, 2, . . . , p,

− η̄H
i Hi (x̃) ≤ −η̄H

i Hi (y
∗) i = 1, 2, . . . , l,

η̄Gi Gi (x̃) ≤ η̄Gi Gi (y
∗) i = 1, 2, . . . , l.

Using the above inequalities and (2.3), it follows that

gi (x̃) ≤ gi (y
∗) i ∈ I+

g (x̃),

h j (x̃) = h j (y
∗) j ∈ I+

h (x̃) ∪ I−
h (x̃),

− Hi (x̃) ≤ − Hi (y
∗) i ∈ I+

+0(x̃) ∪ I++−(x̃) ∪ I+
00(x̃) ∪ I+

0−(x̃) ∪ I+
0+(x̃),

− Hi (x̃) ≥ − Hi (y
∗) i ∈ I−

0+(x̃),

Gi (x̃) ≤ Gi (y
∗) i ∈ I++

+0 (x̃) ∪ I+++− (x̃),

By the quasiconvexity of gi (i ∈ I+
g (x)), h j ( j ∈ I+

h (x)),−h j ( j ∈ I−
h (x)),−Hi (i ∈

I+
+0(x)∪ I++−(x)∪ I+

00(x)∪ I+
0−(x)∪ I+

0+(x)), Hi (i ∈ I−
0+(x)),Gi (i ∈ I++

+0 (x)∪ ∈ I+++− (x)),
it implies that

〈∇gi (y
∗), x̃ − y∗〉 ≤ 0, i ∈ I+

g (x̃),

〈∇h j (y
∗), x̃ − y∗〉 ≤ 0, j ∈ I+

h (x̃),

〈∇h j (y
∗), x̃ − y∗〉 ≥ 0, j ∈ I−

h (x̃),

− 〈∇Hi (y
∗), x̃ − y∗〉 ≤ 0, i ∈ I+

+0(x̃) ∪ I++−(x̃) ∪ I+
00(x̃) ∪ I+

0−(x̃) ∪ I+
0+(x̃),

− 〈∇Hi (y
∗), x̃ − y∗〉 ≥ 0, i ∈ I−

0+(x̃),

〈∇Gi (y
∗), x̃ − y∗〉 ≤ 0, i ∈ I++

+0 (x̃) ∪ I+++− (x̃),

Then, it follows that
〈

m∑

i=1

λ̄i∇gi (y
∗) +

p∑

j=1

μ̄ j∇h j (y
∗) −

l∑

i=1

η̄H
i ∇Hi (y

∗) +
l∑

i=1

η̄Gi ∇Gi (y
∗), x̃ − y∗

〉
≤ 0.
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Combining the above inequality and (3.20), one has

〈∇ f (y∗), x̃ − y∗〉 ≥ 0

By the pseudoconvexity of f (·), it implies that

f (x̃) ≥ f (y∗),

this is a contradiction to our hypothesis and hence the result is proved. ��
The following restricted converse duality theoremgives a sufficient condition for a feasible

point of the MPVC (1.1) to be a global minimum by utilizing the new Mond–Weir dual.

Theorem 3.9 Let x∗ ∈ X and (y∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) ∈ SMW be feasible points for the
MPVC (1.1) and the VC-MWD, respectively, such that f (x∗) = f (y∗). If the hypothesis of
theorem 3.6 holds at y∗ ∈ X ∪ pr SMW , then x∗ is a global minimum of the MPVC (1.1).

Proof Suppose to the contrary that x∗ ∈ X is not a global minimum of the MPVC (1.1), then
there exists x̃ ∈ X such that

f (x̃) ≤ f (x∗).

From the assumptions in the theorem, it follows that

f (x̃) ≤ f (y∗),

this is a contradiction to the Theorem 3.6 and hence the result is proved. ��
The following strict converse duality theoremgives a sufficient condition about the unique-

ness of a local minimum of the MPVC (1.1) and a global maximum of the new Wolfe dual
model.

Theorem 3.10 Let x∗ ∈ X be a local minimum for the MPVC (1.1) such that the VC-ACQ
at x∗. Assume the conditions of Theorem 3.7 hold and (y∗, λ̃, μ̃, η̃H , η̃G , ρ̃, ṽ) be a global
maximum of the VC-WD(x∗). If one of the following conditions holds:

(1) f (·) is strictly pseudoconvex and
m∑
i=1

λ̃i gi (·)+
p∑

j=1
μ̃ j h j (·)−

l∑
i=1

η̃H
i Hi (·)+

l∑
i=1

η̃Gi Gi (·)
is quasiconvex at y∗ ∈ X ∪ pr SMW (x∗), respectively;

(2) f (·) is strictly pseudoconvex and gi (i ∈ I+
g (x∗)), h j ( j ∈ I+

h (x∗)),−h j ( j ∈
I−
h (x∗)),−Hi (i ∈ I+

+0(x
∗) ∪ I++−(x∗) ∪ I+

00(x
∗) ∪ I+

0−(x∗) ∪ I+
0+(x∗)),−Hi (i ∈

I−
0+(x∗)),Gi (i ∈ I++

+0 (x∗)∪ ∈ I+++− (x∗)) are quasiconvex at y∗ ∈ X ∪ pr SMW (x∗),
respectively;

Then, x∗ �= y∗.

Proof (1) Suppose that x∗ �= y∗. By Theorem 3.7, there exist Lagrange multipliers λ̄ ∈
Rm, μ̄ ∈ Rp, η̄G ∈ Rl , η̄H ∈ Rl , ρ̄ ∈ Rl , v̄ ∈ Rl such that (y∗, λ̄, μ̄, η̄H , η̄G , ρ̄, v̄) be a
global maximum of the VC-MWD(x∗). Hence,

f (x∗) = f (y∗). (3.24)

Since x∗ ∈ X and (y∗, λ̃, μ̃, η̃H , η̃G , ρ̃, ṽ) ∈ SMW , it follows that

gi (x
∗) ≤ 0 λ̃i ≥ 0 i = 1, 2, . . . ,m,

h j (x
∗) = 0 μ̃ j ∈ R j = 1, 2, . . . , p,
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− Hi (x
∗) < 0 η̃H

i ≥ 0 i ∈ I+(x∗),
− Hi (x

∗) = 0 η̃H
i ∈ R i ∈ I0(x

∗),
Gi (x

∗) > 0 η̃Gi = 0 i ∈ I0+(x∗),
Gi (x

∗) = 0 η̃Gi ≥ 0 i ∈ I00(x
∗) ∪ I+0(x

∗),
Gi (x

∗) < 0 η̃Gi ≥ 0 i ∈ I0−(x∗) ∪ I+−(x∗).

By (3.20), it implies that

m∑

i=1

λ̃i gi (x
∗) +

p∑

j=1

μ̃ j h j (x
∗) −

l∑

i=1

η̃H
i Hi (x

∗) +
l∑

i=1

η̃Gi Gi (x
∗)

≤
m∑

i=1

λ̃i gi (y
∗) +

p∑

j=1

μ̃ j h j (y
∗) −

l∑

i=1

η̃H
i Hi (y

∗) +
l∑

i=1

η̃Gi Gi (y
∗)

Combining the quasiconvexity of
m∑
i=1

λ̃i gi (·)+
p∑

j=1
μ̃ j h j (·)−

l∑
i=1

η̃H
i Hi (·)+

l∑
i=1

η̃Gi Gi (·),
one has

〈
m∑

i=1

λ̃i∇gi (y
∗) +

p∑

j=1

μ̃ j∇h j (y
∗) −

l∑

i=1

η̃H
i ∇Hi (y

∗) +
l∑

i=1

η̃Gi ∇Gi (y
∗), x∗ − y∗〉 ≤ 0.

Using the above inequality and the first equation in (3.20), one has

〈∇ f (y∗), x∗ − y∗〉 ≥ 0.

By the strictly pseudoconvexity of f , it implies that

f (x∗) > f (y∗),

This is a contradiction to (3.24) and hence the result is proved.
(2) By using x∗ ∈ X , (y∗, λ̃, μ̃, η̃H , η̃G , ρ̃, ṽ) ∈ SMW (x∗), it follows that

gi (x
∗) ≤ gi (y

∗) i ∈ I+
g (x∗),

h j (x
∗) = h j (y

∗) j ∈ I+
h (x∗) ∪ I−

h (x∗),
− Hi (x

∗) ≤ −Hi (y
∗) i ∈ I+

+0(x
∗) ∪ I++−(x∗) ∪ I+

00(x
∗) ∪ I+

0−(x∗) ∪ I+
0+(x∗),

− Hi (x
∗) ≥ −Hi (y

∗) i ∈ I−
0+(x∗),

Gi (x
∗) ≤ Gi (y

∗) i ∈ I++
+0 (x∗) ∪ I+++− (x∗),

In view of the quasiconvexity of gi (i ∈ I+
g (x∗)), h j ( j ∈ I+

h (x∗)),−h j ( j ∈
I−
h (x∗)),−Hi (i ∈ I+

+0(x
∗)∪I++−(x∗)∪I+

00(x
∗)∪I+

0−(x∗)∪I+
0+(x∗)), Hi (i ∈ I−

0+(x∗)),Gi (i ∈
I++
+0 (x∗)∪ ∈ I+++− (x∗)), it implies that

〈∇gi (y
∗), x∗ − y∗〉 ≤ 0, i ∈ I+

g (x∗),
〈∇h j (y

∗), x∗ − y∗〉 ≤ 0, j ∈ I+
h (x∗),

〈∇h j (y
∗), x∗ − y∗〉 ≥ 0, j ∈ I−

h (x∗),

123



Annals of Operations Research (2020) 287:233–255 253

− 〈∇Hi (y
∗), x∗ − y∗〉 ≤ 0, i ∈ I+

+0(x
∗) ∪ I++−(x∗) ∪ I+

00(x
∗) ∪ I+

0−(x∗) ∪ I+
0+(x∗),

− 〈∇Hi (y
∗), x∗ − y∗〉 ≥ 0, i ∈ I−

0+(x∗),
〈∇Gi (y

∗), x∗ − y∗〉 ≤ 0, i ∈ I++
+0 (x∗) ∪ I+++− (x∗).

From the above inequalities and (2.3), it follows that
〈

m∑

i=1

λ̃i∇gi (y
∗) +

p∑

j=1

μ̃ j∇h j (y
∗) −

l∑

i=1

η̃H
i ∇Hi (y

∗) +
l∑

i=1

η̃Gi ∇Gi (y
∗), x∗ − y∗

〉
≤ 0.

Combining the above inequality and (3.20), one has

〈∇ f (y∗), x∗ − y∗〉 ≥ 0.

By the strictly pseudoconvexity of f , it implies that

f (x∗) > f (y∗)

This is a contradiction to (3.24) and hence the result is proved.

In order to verify the validity of the new Mond–Weir type dual, we continue to consider
(3.18).

Example 2 For (3.18), its new Mond–Weir dual model is given by

max f (y) = y21 + y22

s.t . ∇L(y, ηH
1 , ηG1 ) = (2y1 + ηG1 , 2y2 − ηH

1 )T = 0,

ηG1 G1(y) = ηG1 y1 ≥ 0,

ηG1 = v1x2, v1 ≥ 0,

− ηH
1 H1(y) = −ηH

1 y2 ≥ 0,

ηH
1 = ρ1 − v1x1, ρ1 ≥ 0.

(3.25)

(1) Let x∗ = (0, 0)T ∈ X , (y∗, ηH
1 , ηG1 , ρ1, v1) = (0, 0, 0, 0, 0) ∈ SMW one has

f (x∗) = 0 = f (y∗)

It can be verified that the hypothesis of Theorem 3.8 hold, since the positive definiteness

of∇2L(y, ηH
1 , ηG1 ) =

(
2 0
0 2

)
. Taking into account (3.18), x∗ is a global minimum of (3.18).

So, Theorem 3.8 is verified.
(2) We can get y1 = − 1

2η
G
1 , y2 = 1

2η
H
1 by (3.25), one has

L(y, ηH
1 , ηG1 ) = f (y) − ηH

1 H1(y) + ηG1 G1(y) = −1

4
ηG1

2 − 1

4
ηH
1

2 ≤ 0,

which implies that

f (y) ≤ ηH
1 H1(y) − ηG1 G1(y),

combining (3.25), one has f (y) ≤ 0. Since f (x) = x21 + x22 ≥ 0, we can get f (x) ≥ f (y).
Theorem 3.6 is verified.
(3) We can obtain that (3.18) satisfy VC-LICQ, since ∇H1 = (0, 1)T ,∇G1 = (1, 0)T . So
we obtain that (3.18) satisfy VC-ACQ. By Theorem 2.1, there exist Lagrange multipliers
ηH
1 , ηG1 , ρ1, v1 ∈ R such that (0, ηH

1 , ηG1 , ρ1, v1) is a feasible point of the VC-MWD(0).
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Taking into account f (y) ≤ 0, (0, ηH
1 , ηG1 , ρ1, v1) is a global maximum of the VC-MWD(0)

and Theorem 3.7 is verified.

4 Conclusions

In this paper, we have formulated newWolfe andMond–Weir type dual models to theMPVC
and have established the weak, strong, converse and restricted converse duality results under
the assumptions of convexity, strict convexity, pseudoconvexity, strict pseudoconvexity and
quasiconvexity. Also, the validity of the results is verified by an example. As the future work,
some other dual models for the MPVC, like the mixed type dual, may be investigated by
relaxing the convexity and generalized convexity assumptions.

References

Achtziger, W., Hoheisel, T., & Kanzow, C. (2012). On a relaxation method for mathematical programs with
vanishing constraints. GAMM-Mitteilungen, 35(2), 110–130.

Achtziger, W., Hoheisel, T., & Kanzow, C. (2013). A smoothing-regularization approach to mathematical
programs with vanishing constraints. Computation Optimization and Applications, 55(3), 733–767.

Achtziger,W.,&Kanzow,C. (2008).Mathematical programswith vanishing constraints:Optimality conditions
and constraints qualifications. Mathematical Programming, 114(1), 69–99.

Antczak, T. (2010). G-saddle point criteria and G-Wolfe duality in differentiate mathematical programming.
Journal of Information and Optimization Sciences, 31(1), 63–85.

Askar, S. S., & Tiwari, A. (2009). First-order optimality conditions and duality results for multi-objective
optimization problems. Annals of Operations Research, 172(1), 277–289.

Benko, M., & Gfrerer, H. (2017). An SQP method for mathematical programs with vanishing constraints with
strong convergence properties. Computation Optimization and Applications, 11(3), 641–653.

Bot, R. I., & Heinrich, A. (2014). Regression tasks in machine learning via Fenchel duality. Annals of Oper-
ations Research, 222(1), 197–211.

Chinchuluun, A., Yuan, D., & Pardalos, P. M. (2007). Optimality conditions and duality for nondifferen-
tiablemultiobjective fractional programmingwith generalized convexity.Annals of Operations Research,
154(1), 133–147.

Dorsch, D., Shikhman, V., & Stein, O. (2012). Mathematical programs with vanishing constraints: Critical
point theory. Journal of Global Optimization, 52(3), 591–605.

Gulati, T. R., & Mehndiratta, G. (2010). Nondifferentiable multiobjective Mond-Weir type second-order
symmetric duality over cones. Optimization Letters, 4(2), 293–309.

Hoheisel, T., & Kanzow, C. (2007). First- and second-order optimality conditions for mathematical programs
with vanishing constraints. Applied Mathematics, 52(6), 495–514.

Hoheisel, T.,&Kanzow,C. (2008). Stationary conditions formathematical programswith vanishing constraints
using weak constraint qualification. Journal of Mathematical Analysis and Applications, 337(1), 292–
310.

Hoheisel, T., & Kanzow, C. (2009). On the Abadie and Guignard constraint qualification for mathematical
programs with vanishing constraints. Optimization, 58(4), 431–448.

Hoheisel, T., Kanzow, C., & Outrata, J. V. (2010). Exact penalty results for mathematical programs with
vanishing constraints. Nonlinear Analysis, 72(5), 2514–2526.

Hoheisel, T., Kanzow, C., & Schwartz, A. (2012). Convergence of a local regularization approach for math-
ematical programs with complementarity or vanishing constraints. Optimization Methods and Software,
27(3), 483–512.

Hu, Q. J., Chen, Y., Zhu, Z. B., & Zhang, B. S. (2014). Notes on some convergence properties for a smoothing-
regularization approach to mathematical programs with vanishing constraints. Abstract and Applied
Analysis, 2014(1), 1–7.

Hu, Q. J., Wang, J. G., Chen, Y., & Zhu, Z. B. (2017). On an l1 exact penalty result for mathematical programs
with vanishing constraints. Optimization Letters, 11(3), 641–653.

123



Annals of Operations Research (2020) 287:233–255 255

Izmailov, A. F., & Pogosyan, A. L. (2009). Optimality conditions and Newton-type methods for mathematical
programs with vanishing constraints. Computation Mathematics andMathematics Physics, 49(7), 1128–
1140.

Izmailov, A. F., & Solodov, M. V. (2009). Mathematical programs with vanishing constraints: Optimality
conditions, sensitivity and a relaxationmethod. Journal of Optimization Theory and Applications, 142(3),
501–532.

Jabr, R. A. (2012). Solution to economic dispatching with disjoint feasible regions via semidefinite program-
ming. IEEE Transactions on Power Systems, 27(1), 572–573.

Jefferson, T. R., & Scott, C. H. (2001). Quality tolerancing and conjugate duality. Annals of Operations
Research, 105(1–4), 185–200.

Kirches, C., Potschka, A., Bock, H. G., & Sager, S. (2013). A parametric active set method for quadratic
programs with vanishing constraints. Pacific Jounal of Optimization, 9(2), 275–299.

Lai, H. C., & Huang, T. Y. (2012). Nondifferentiable minimax fractional programming in complex spaces with
parametric duality. Journal of Global Optimization, 53(2), 243–254.

Lee, J. C., & Lai, H. C. (2005). Parameter-free dual models for fractional programming with generalized
invexity. Annals of Operations Research, 133(1–4), 47–61.

Michael, N. J., Kirches, C., & Sager, S. (2013). On perspective functions and vanishing constraints in mixedin-
teger nonlinear optimal control. In M. Jünger & G. Reinelt (Eds.), Facets of combinatorial optimization
(pp. 387–417). Berlin: Springer.

Mishra, S.K.,& Jaiswal,M. (2015). Optimality conditions and duality for semi-infinitemathematical program-
ming problem with equilibrium constraints. Journal Numerical Functional Analysis and Optimization,
36(4), 460–480.

Mishra, S. K., Jaiswal, M., &An, L. T. H. (2012). Duality for nonsmooth semi-infinite programming problems.
Optimization Letters, 6(2), 261–271.

Mishra, S. K., & Shukla, K. (2010). Nonsmooth minimax programming problems with V-r-invex functions.
Optimization, 59(1), 95–103.

Mishra, S. K., Singh, V., & Laha, V. (2016). On duality for mathematical programs with vanishing constraints.
Annals of Operations Research, 243(1), 249–272.

Mishra, S. K., Singh, V., Laha, V., & Mohapatra, R. N. (2015). On constraint qualifications for multiobjective
optimization problems with vanishing constraints. In H. Xu, S. Wang & S. Y. Wu (Eds.), Optimization
methods, theory and applications (pp. 95–135). Berlin: Springer.

Mond, B., & Weir, T. (1981). Generalized concavity and duality. In S. Schaible & W. T. Ziemba (Eds.),
Generalized concavity in optimization and economics (pp. 263–279). New York: Academic Press.

Pandey, Y., &Mishra, S. K. (2016). Duality for nonsmooth optimization problemswith equilibrium constraints
using convexificators. Journal of Optimization Theory and Applications, 171(2), 694–707.

Pandey, Y., & Mishra, S. K. (2017). Duality of mathematical programming problems with equilibrium con-
straints. Pacific Journal of Optimization, 13(1), 105–122.

Pandey, Y., & Mishra, S. K. (2018). Optimality conditions and duality for semi-infinite mathematical pro-
gramming problems with equilibrium constraints, using convexificators. Annals of Operations Research,
269(2), 549–564.

Peterson, E. L. (2001). The fundamental relations between geometric programming duality, parametric pro-
gramming duality, and ordinary Lagrangian duality. Annals of Operations Research, 105(1–4), 109–153.

Rockafellar, R. T. (1999). Duality and optimality in multistagestochastic programming. Annals of Operations
Research, 85(1), 1–19.

Wolfe, P. (1961). A duality theorem for nonlinear programming. Quarterly of Applied Mathematics, 19, 239–
244.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	New dualities for mathematical programs with vanishing constraints
	Abstract
	1 Introduction
	2 Preliminaries
	3 Two new duals for mathematical programms with vanishing constraints
	3.1 Wolfe and Mond–Weir type dual models proposed by Mishra et al
	3.2 New Wolfe type dual model
	3.3 New Mond–Weir type dual model

	4 Conclusions
	References




