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Abstract
An efficient and robust algorithm based on mixed integer linear programming is proposed to
extend the Logical Analysis of Data (LAD) methodology to solve multiclass classification
problems, where One-vs-Rest learning models are constructed to classify observations in
predefined classes. The proposed algorithm uses two control parameters, homogeneity and
prevalence, for identifying relaxed (fuzzy) patterns in multiclass datasets. The utility of the
proposed method is demonstrated through experiments on multiclass benchmark datasets.
Numerical experiments show that the efficiency and performance of the proposed multiclass
LAD method with relaxed patterns is comparable to, if not better than, those of the previ-
ously developed LAD based multiclass classification as well as other well-known supervised
learning methods.

Keywords Supervised learning · Multiclass classification · Logical analysis of data · Mixed
integer linear programming

1 Introduction

With the advent of new technologies, we are facing an exponentially growing volume of
complex structured data in diverse fields of science and engineering, where data mining has
become ubiquitous in many real-world applications. Wide interest for data analysis com-
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ing from numerous disciplines motivated an interdisciplinary research approach, which cuts
across the disciplines of applied mathematics and computer science and fosters the integra-
tion of ideas. These interdisciplinary efforts set the stage for innovation by uniting together
to create new tools, develop new disciplines, and ultimately open new avenues of research.
A fundamental challenge in data mining is to extract, analyze, and interpret knowledge from
large-scale datasets effectively and efficiently. In order to address this challenge, the tradi-
tional statistical methods are complemented by sophisticated supervised learning techniques,
including, for example, support vector machines (Burges 1998; Schölkopf and Smola 2001),
neural networks (Bishop 2007; Fausett 1994), decision trees (Bishop 2007; Duda et al. 2001),
and a pattern based method, called Logical Analysis of Data (Alexe et al. 2007; Boros et al.
1997, 2000) that are designed to find a decision boundary from the given samples with known
classes to predict the class of a new or unseen observation.

Supervised learning algorithms solve binary classification problems, where a learning
model is constructed to separate observations into two predefined classes. However, many
real-world problems require the identification of more than two subgroups of observations
and the features and patterns associated with each subgroup. Typical examples include (i)
identification of different subtypes of human cancers (Hanash and Creighton 2003), (ii)
protein fold recognition (Ding and Dubchak 2001), (iii) microscopy images (Boland et al.
1998; Misselwitz et al. 2010), (iv) histogram based image classification (Chapelle et al.
1999), (v) handwritten character recognition (LeCun et al. 1989; Lee and Seung 1997), (vi)
part-of-speech tagging (Nakagawa et al. 2002), (vii) speech recognition (Jelinek 1998), (viii)
text categorization (Apté et al. 1994), etc.

Since the problem is of practical importance, there have been several attempts to extend
well-known binary classification algorithms to multiclass problems. The most common
approaches to multiclass classification are the natural extension of binary classification prob-
lem known as One-vs-One (OvO) and One-vs-Rest (OvR) (Hastie and Tibshirani 1998).
Given a K -class dataset Ω ⊂ IRm×n with m observations and n features, OvO scheme,
shown in Fig. 1, assumes that there exists a separator between any two classes and builds
K (K − 1)/2 classifiers, denoted by fi j , to distinguish each pair of classes Ci , C j ∈ C, i �= j ,
where C = {C1, . . . , CK } is the family of classes. The class of a new or unseen observation,
o ∈ IRn , o /∈ Ω , is then assigned by the use of the discriminant function:

f (o) = argmax
i

∑

j

fi j (o). (1)

A less expensive approach OvR, shown in Fig. 2, assumes the existence of a single
separator between a class Ci (for some i) and all other classes in C and builds K different
binary classifiers. Let fi be the i th classifier separating observations in class Ci (considered
to be positive) and observations in C \ Ci (forming the set of negative observations). In this
case a new or unseen observation o ∈ IRn , o /∈ Ω is classified by

f (o) = argmax
i

fi (o). (2)

Fig. 1 One-vs-One (OvO) multiclass scheme
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Fig. 2 One-vs-One (OvR) multiclass scheme

Since both approaches are easy to adopt, diverse groups of researchers invented them
independently: see, for example, multiclass classification (Beygelzimer et al. 2007; Gehler
and Nowozin 2009; Har-Peled et al. 2002; Yang and Tsang 2012), discriminant analysis for
multiclass classification (Li et al. 2006; Liu et al. 2011), multiclass learning (Daniely et al.
2012; Even-Zohar and Roth 2001), combining many two-class classifiers into a multiclass
classifier (Galar et al. 2011; Platt et al. 2000; Tax and Duin 2002; Tewari and Bartlett 2007;
Wu et al. 2004), multiclass classification with applications (Singh-Miller and Collins 2009),
mixed integer programming approach to multiclass data classification (Avila-Herrera and
Subasi 2013, 2015; Kim and Choi 2015; Üney and Türkay 2006), multiclass classification by
using support vector machine (Aiolli and Sperduti 2005) and general multiclass classification
methods review (Aly 2005). The choice between the use of OvO and OvR in multiclass
problems is largely computational.

Despite the undoubted advancements in the area of multiclass classification, there is still
room for developing new approaches to improve the effectiveness and efficiency of the
methods and tools to analyze archives of historical records for the purpose of discovering
hidden structural relationships in large-scale datasets. In this paper, we integrate the mixed
integer linear programming based Logical Analysis of Data (LAD) approach of Ryoo and
Jang (2009) with the multiclass LAD method of Avila-Herrera and Subasi (2013, 2015) to
develop a new multiclass LAD algorithm, where two control parameters, homogeneity and
prevalence, are incorporated to generate relaxed (fuzzy) patterns.

LAD is a pattern-based two-class learning method which integrates principles of combi-
natorics, optimization, and the theory of Boolean functions. The research area of LAD was
introduced and developed by Hammer (1986) whose vision expanded the LADmethodology
from theory to successful data applications in numerous biomedical, industrial, and eco-
nomics case studies, see, for example, Alexe et al. (2003, 2004, 2005, 2006), Hammer et al.
(1999, 2011), Hammer and Bonates (2006), Lauer et al. (2002), Reddy et al. (2008, 2009)
and the references therein. The implementation of LADmethod was described in Boros et al.
(1997, 2000), Crama et al. (1988) and several further developments of the original technique
were presented in Alexe et al. (2007), Alexe and Hammer (2006), Bonates et al. (2008), Guo
and Ryoo (2012), Hammer et al. (2004), Ryoo and Jang (2009). An overview of standard
LAD method can be found in Alexe et al. (2007) and Bonates et al. (2008). Various recent
applications of LAD are presented in Dupuis et al. (2012), Ghasemi et al. (2013), Lejeune
et al. (2018), Lejeune and Margot (2011), Mortada et al. (2011) and Subasi et al. (2017).
LADmethod has been extended to survival analysis (Kronek andReddy 2008) and regression
analysis (Bonates and Hammer 2007; Lemaire 2011) as well.

Extensions of LAD method to multiclass problems are previously studied by Moreira
(2000),Mortada (2010),Mortada et al. (2014).Moreira (2000) proposed twomethods to break
down a multiclass classification problem into two-class problems using an OvO approach.
The first method uses the typical OvO scheme which does not require the alteration of the
structure of the standard LAD method presented by Boros et al. (2000). The second OvO-
type method modifies the architecture of the pattern generation and theory formation steps
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in standard LAD method, where a LAD pattern Pi j is generated for each pair of classes
Ci , C j ∈ C, i �= j .

Mortada (2010) proposed a multiclass LAD method, integrating ideas from the second
approach presented by Moreira (2000), which is based on OvO scheme and an implemen-
tation of LAD based on mixed integer linear programming (MILP) presented by Ryoo and
Jang (2009). The methodology of Mortada (2010) was applied to five multiclass benchmark
datasets. Mortada (2010) observed that the MILP based LAD approach of Ryoo and Jang
(2009) combined with the second approach of Moreira (2000) provides classification models
with higher accuracy than those models obtained by multiclass approach applied to standard
LAD algorithm of Boros et al. (2000).

Recent papers by Avila-Herrera and Subasi (2013, 2015) and Kim and Choi (2015) have
also considered the multiclass extension of LAD. Avila-Herrera and Subasi (2013, 2015)
explored and rectified the limitations of the two-class MILP LAD approach by Ryoo and
Jang (2009), relating to its poor differentiating power in two-class classification. Kim and
Choi (2015) developed an efficient iterative genetic algorithm with flexible chromosomes
and multiple populations to extend LAD to multiclass classification. The performance of the
method was evaluated on six benchmark multiclass datasets.

In this paper, we propose a parametrized/relaxed algorithmic approach that builds on the
MILP pattern generation approach of Ryoo and Jang (2009) and multiclass LAD approach
of Avila-Herrera and Subasi (2013, 2015) that constructs an OvR-type LAD classifier to
identify patterns in multiclass datasets. This modification introduces two control parameters,
homogeneity and prevalence, to generate fuzzy patterns which we call “relaxed patterns”.
The organization of the paper is as follows. Section 2 describes the basic principles of
the standard LAD method of Boros et al. (2000). Section 3 presents the proposed MILP
based relaxed multiclass LAD approach to obtain OvR-type multiclass LAD classifiers. In
Sect. 4 we present experiments on multiclass benchmark datasets to demonstrate the utility
of our proposed methodology and compare the efficiency and performance of the proposed
multiclass LAD method with relaxed patterns with that of the previously developed LAD
based multiclass classification as well as other well-known supervised learning methods.

2 Preliminaries: logical analysis of data

Logical Analysis of Data (LAD) is a two-class learning method based on combinatorics,
optimization, and the theory of Boolean functions Boros et al. (2000). Given an input dataset,
Ω , consisting of two disjoint classesΩ+ (set of positive observations) andΩ− (set of negative
observations), where Ω = Ω+ ∪ Ω− and Ω+ ∩ Ω− = ∅, there exists a hidden function of
nature separating the observations in Ω+ and Ω−. The goal of LAD is to identify positive
and negative patterns to approximate the hidden function of nature (as illustrated in Fig. 3).

The standard LAD methodology presented in Boros et al. (1997, 2000) is a multistep
procedure, consisting of five main components outlined below. A more detailed overview of
the standard LADmethod togetherwith the recent developments in its theory and applications
can be found in Lejeune et al. (2018).

2.1 Discretization/binarization and support set selection

This step is the transformation of numeric features (attributes/variables) into binary features
without losing predictive power. The procedure consists of finding cut-points for each numeric
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Fig. 3 LAD approximation to hidden function in nature

Fig. 4 Illustration of cutpoints

feature. The set of cut-points can be interpreted as a sequence of threshold values collectively
used to build a global classification model over all features (Boros et al. 1997, 2000). Given
a numeric dataset, there is a large number of “feasible” cut-points, identified by the standard
methods such as equal width, equal intervals, based on entropy, chi-square tests, etc. In most
cases many of these cut-points may be redundant. In this step a set covering problem is solved
to identify an optimal (minimum size) set of cut-points to transform the numerical features
into binary ones, illustrated in Fig. 4.

Discretization is a very useful step in data mining, especially for the analysis of medical
data (which is very noisy and includes measurement errors)—it reduces noise and produces
robust results. The problem of discretization is well studied and many powerful methods are
presented in literature, see, e.g., the survey papers (Kotsiantis and Kanellopoulus 2006; Liu
et al. 2002). Discretization step may produce several binary features some of which may
be redundant. In this step of LAD procedure, a minimum set covering problem is solved to
obtain an irredundant smallest subset of binary variables, which can distinguish every pair
of positive and negative observations in the dataset. The resulting set is called a support set
(Boros et al. 1997, 2000). If the input data is categorical (nominal) or text, then there are
well-known techniques to binarize the data (Aggarwal 2015).
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2.2 Pattern generation

Patterns are the key ingredients of LAD algorithm. This step uses the features in combination
to produce rules (combinatorial patterns) that can define homogenous subgroups of interest
within the data. The simultaneous use of two ormore features allows the identification ofmore
complex rules that can be used for the precise classification of an observation as illustrated
in Fig. 5.

Given a binary (or binarized) datasetΩ = Ω+ ∪Ω− ⊂ IBm×n withm observations and n
features, where Ω+ ∩ Ω− = ∅, a pattern P is simply defined as a subcube of IBn = {0, 1}n .
A LAD pattern can be described as a Boolean term, that is, a conjunction of literals (binary
variables or its negation) which does not contain both a variable and its negation:

P =
∧

j∈MP

x j
∧

j∈NP

x̄ j

where MP , NP ⊆ {1, · · · , n}, MP ∩ NP = ∅, and x j is the Boolean literal associated with
the j th feature in the dataset.

Patterns define homogeneous subgroups of observations and have the following distinctive
characteristics.

• Degree: The number of literals involved in the definition of a pattern is called the degree
of the pattern.

• Homogeneity: The proportion of positive (negative) observations among all those obser-
vations covered by a pattern is called the positive (negative) homogeneity of the pattern. A
pure positive pattern has 100% positive homogeneity and 0% negative homogeneity and
is defined as a combination of featureswhich covers a proportion of positive observations,
but none of the negative ones: P(ω+) = 1 for at least one ω+ ∈ Ω+ and P(ω−) = 0
for every ω− ∈ Ω−. A pure negative pattern can be defined similarly: P(ω−) = 1 for at
least one ω− ∈ Ω− and P(ω+) = 0 for every ω+ ∈ Ω+.

• Prevalence: The proportion of positive (negative) observations covered by a pattern is
called the positive (negative) prevalence of the pattern.

• Coverage: An observationω ∈ Ω satisfying the conditions of a pattern P , i.e., P(ω) = 1,
is said to be covered by that pattern. Coverage of a pattern P , denoted by Cov(P), is the
set of observations covered by the pattern.

• Hazard ratio: The ratio between the proportion of positive observations among all those
observations covered by a pattern and the proportion of positive observations among
those observations not covered by the pattern is called the hazard ratio of the pattern.

Note that a positive homogeneity plus negative homogeneity of a pattern is 100%. A
pattern associated with positive (negative) class must exhibit a positive (negative) homo-
geneity more than 50%. A positive (negative) pattern with positive (negative) homogeneity
less than 100% is called a relaxed (fuzzy) pattern. We also remark that a high quality positive
(negative) pattern must have high positive (negative) homogeneity and high positive (nega-
tive) prevalence. Smaller degree reduces the complexity, allowing easier interpretation of the
pattern.

The most straightforward approach to pattern generation is based on the use of combi-
natorial enumeration techniques, for example, a bottom-up/top-down approach (Boros et al.
1997, 2000). The bottom-up approach follows a lexicographic order in generating the pat-
terns in order to reduce the amount of computations necessary. The approach starts with
terms of degree one that cover some positive observations. If such a term does not cover any
negative observation, it is a positive pattern. Otherwise, literals are added to the term one by
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one until generating a pattern of prefixed degree. The top-down pattern generation approach
starts by considering all uncovered observations as patterns of degree n and for each of those
patterns, literals are removed one by one, until a pattern with smallest degree is reached. The
enumeration type pattern generation approach is a costly process. Given a two-class binary
dataset with n features, the total number of candidate patterns to be searched is

∑n
i=1 2

i
(n
i

)

and the number of degree d patterns can be 2d
(n
d

)
.

Apattern P is called a strongpattern if there is nopattern P ′ such thatCov(P) ⊂ Cov(P ′).
Pattern P is called a prime pattern if the deletion of any literal from P results in a term that
is no longer a pattern. Since patterns play a central role in LAD methodology, various types
of patterns have been studied and several pattern generation algorithms have been developed
for their enumeration (see Lejeune et al. 2018 and the references therein). Our OvR-type
multiclass LAD algorithm is motivated by the MILP approach of Ryoo and Jang (2009) that
generates strong LAD patterns in a two-class dataset.

Consider a two-class dataset Ω consisting of m binary observations and n features. Let
I+ = {i : ω+

i ∈ Ω+} and I− = {i : ω−
i ∈ Ω−}, where Ω = Ω+ ∪ Ω− and Ω+ ∩ Ω− = ∅.

For each observation ωi ∈ Ω , let ωi j denote the binary value of the j th feature in the i th
observation ωi . Let x j , j = 1, · · · , n, denote the Boolean literal corresponding to the j th
feature b j in Ω and introduce n new features xn+ j = 1 − x j , j = 1, · · · , n (representing
b̄ j ). If x j = 1 for some specific j = 1, . . . , n, then b j = 1 in observation ωi and if xn+ j = 1
for some specific j = 1, . . . , n, then b j = 0 in observation ωi . Let ρi , i = 1, . . . ,m, be
penalties associated with the coverage of the pattern P , defined as

ρi =
{
1 if P(ωi ) = 0, i ∈ I+
0 otherwise.

Following the pattern generation approach of Ryoo and Jang (2009), we formulate the below
MILP to generate a positive LAD pattern with α% positive homogeneity and β% positive
prevalence:

minimize cd +
∑

i∈I+
ρi

subject to
2n∑

j=1

ωi j x j + nρi ≥ d, i ∈ I+

2n∑

j=1

ωi j x j − yi ≤ d − 1, i ∈ I−

∑

i∈I−
yi ≤ α|Ω+|

∑

i∈I+
ρi ≤ (1 − β)|Ω+|

x j + xn+ j ≤ 1, j = 1, . . . , n
2n∑

j=1

x j = d

1 ≤ d ≤ n, d ∈ Z
+

0 ≤ yi ≤ 1, i = 1, . . . ,m
ρi ∈ {0, 1}, i = 1, . . . ,m
x j ∈ {0, 1}, j = 1, . . . , 2n

(3)
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Fig. 5 LAD classification model

where 0 ≤ α, β ≤ 1 and c ∈ IR are constants, d is the unknown degree of a positive pattern
P , and variables yi , i = 1, . . . ,m are the relaxation variables, ensuring the generation of
pattern with α% homogeneity and β% prevalence.

Variables x j and xn+ j , j = 1, . . . , n, associatedwith the j th feature in datasetΩ determine
whether the j th feature takes value 1 or 0 in the i th observation wi ∈ Ω . A feasible solution
of problem (3) is a positive pattern with degree d , α%positive homogeneity, and β%positive
prevalence. When the scaling parameter c is positive, an optimal solution of problem (3) is
a positive pattern with the smallest degree and maximum coverage, and hence is a strong
prime pattern (Ryoo and Jang 2009):

P =
∧

{ j : x j=1}
b j

∧

{ j : xn+ j=1}
b̄ j .

Note that if we change the roles of index sets I+ and I− in problem (3), an optimal solution of
the problem provides us with a negative strong prime pattern with α% negative homogeneity
and β% negative prevalence.

2.3 LADmodel

The entire collection of patterns generated in Pattern Generation Step is called pandect and
is denoted by P = P+ ∪P−, where P+ and P− are disjoint sets of all positive and negative
patterns, respectively. A LAD model (illustrated in Fig. 5), denoted by M is a subset of
pandect, that is, M = M+ ∪ M−, where M+ ⊆ P+ and M− ⊆ P−.
Patterns are selected into the LAD modelM so that the model provides the same separation
of the positive and negative observations as the pandect P .

In many cases, when constructing a LAD model, every observation in the training dataset
is required to be covered at least k times (k ∈ Z

+) by the patterns in the model. The standard
LAD approach of Boros et al. (1997, 2000) produces patterns using enumerative techniques.
Greedy-type heuristic approaches are then adopted to select patterns into a final LADmodel.
As for the MILP approach of Ryoo and Jang (2009), producing patterns as optimal solutions
of the MILP’s involved, such as problem (3), the authors proposed Algorithm 1 to find a
LAD model.

Note that after a pattern is generated as an optimal solution of problem (3), Algorithm 1,
proposed by Ryoo and Jang (2009), removes the observations covered by that pattern from
the training data to prevent the algorithm from finding the same pattern found in the previous
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Algorithm 1: Pattern Generation (Ryoo and Jang 2009)
Data: Training data, Support Features, MILP model (3) for pattern generation
Result: Set of + and − patterns (M+ andM−, respectively)

1 for ∗ ∈ {+,−} do
2 set M∗ = ∅ ;
3 while I∗ �= ∅ do
4 formulate and solve an instance of the MILP problem (3);
5 form a pattern P from the solution obtained;
6 M∗ ← M∗ ∪ {P};
7 I∗ ← I∗ \ {

i ∈ I∗ : ωi is covered by P
}
;

8 return M∗;

solutions of problem (3). The algorithm terminates when every observation is covered at least
once. The resulting set of positive and negative patterns form a LAD model M.

2.4 Prediction and accuracy

In the final step of the LAD framework, LAD classification model M is used for the classi-
fication of a new or unseen observation o ∈ IBn , o /∈ Ω by the use of a discriminant function
Δ : {0, 1}n → IR associated with the model M, where Δ(o) is defined as the difference
between the weighted proportion of positive patterns and negative patterns covering o, that
is,

Δ(o) =
∑

P+
k ∈ M+

δ+
k P+

k (o) −
∑

P−
k ∈ M−

δ−
k P−

k (o),

where δ+
k ≥ 0 and δ−

k ≥ 0 are the weights assigned to positive patterns P+
k ∈ M+ and

negative patterns P−
k ∈ M−, respectively. The weights δ+

k and δ−
k can be calculated in

several ways. One possibility is to use the proportion of positive (negative) observations
covered by a positive pattern P+

k ∈ M+ (a negative pattern P−
k ∈ M−) to the total number

of positive (negative) observations (i.e., the prevalence of the pattern):

δ+
k = 1∣∣Ω+∣∣

∑

i∈I+
P+
k (ω+

i ) and δ−
k = 1

|Ω−|
∑

i∈I−
P−
k (ω−

i )

where I+ = {i : ω+
i ∈ Ω+}, and I− = {i : ω−

i ∈ Ω−}.
The accuracy of the model is estimated by a classical cross-validation procedure, where

the dataset Ω is randomly divided into two disjoint subsets called training and test sets
(Aggarwal 2015; Dietterich 1998; Efron and Tibshirani 1986; Hastie et al. 2005). A LAD
model is generated on the training data and evaluated on the test data. The experiment is
repeated several times (determined by the data analyst) and the accuracy of the LAD model
is reported as the average accuracies on the test datasets.

If an external dataset (validation set) is available, a LAD model M is obtained for the
original dataset Ω and the performance of the model is evaluated on the validation set.

Figures 6 and 7 shows the overall framework of LAD method, including the validation
step in case of the absence or presence of an external data, respectively.
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Fig. 6 Cross-validation of LAD model

3 Multiclass LADmethod with relaxed patterns

In this sectionwepresent anOvR-type extensionofLADalgorithm tomulticlass classification
problems. As in conventional LAD method, our multiclass LAD approach has four steps:
(i) binarization and support set selection, (i i) pattern generation, (i i i) theory formation, and
(iv) prediction. These steps are outlined below.

3.1 Binarization and support set selection

Binarization of a multiclass numeric data is similar to that of two-class data discussed in
Sect. 2.1. Binarization step associates several cut-points, ανk , and the following indicator
variables to a numeric feature ν to transform it into a set of binary features:

xνk =
{
1 if ν ≥ ανk

0 if ν < ανk

Transforming the data from discrete levels to indicator variables results in a multiclass binary
dataset. For each variable, virtually any numerical value can be considered as a cut-point.
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Fig. 7 Validation of LAD model on an external dataset

However, the cut-points are chosen in awaywhich allows to distinguish between observations
in different classes (Kotsiantis and Kanellopoulus 2006). An optimal (minimum size) set of
cut-points can be obtained by the use of a set-covering problem. Themulticlass discretization
problem is extensively studied and there are several different approaches to accomplish this
task (Friedman et al. 2000). As in two-class binarization procedure, an irredundant subset
of binarized features (support set) that can distinguish every pair of observations in different
classes of the K -class datasetΩ can be identified by solving aminimum set covering problem
similar to the one presented in Boros et al. (1997, 2000).

In what follows we assume that the input dataset is a binary (or binarized) multiclass
dataset.

3.2 Relaxedmulticlass LAD pattern generation

Let Ω = Ω1 ∪ · · · ∪ ΩK ⊂ IBm×n be a K -class binary dataset with n features and m
observations, where Ωi ∩ Ω j = ∅ for all i �= j . We introduce the following notations:

• C = {C1, . . . , CK }: family of classes in Ω , that is, any observation in Ωk has class Ck ,
k = 1, . . . , K .
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• PCp : pattern associated with class Cp , p = 1, . . . , K .
• ωi j : binary value of the j th feature in the i th observation ωi ∈ Ω .
• y j , j = 1, . . . , n: binary variable representing a Boolean literal corresponding to the

j th binary feature b j in Ω . If y j = 1 for some specific j = 1, . . . , n, then b j = 1 in
observation ωi and the j th literal, x j , is used in the construction of the pattern.

• yn+ j = 1− y j , j = 1, . . . , n: binary variable representing the negation of the j th binary
feature b̄ j in Ω . If yn+ j = 1 for some specific j = 1, . . . , n, then b j = 0 in observation
ωi and the negation of the j th literal, x̄ j , is used in the construction of the pattern.

• d ∈ Z
+: unknown degree of a pattern PCp , p = 1, . . . , K .

• ρ = (ρ1, ρ2, . . . , ρm): penalty vector associated with the coverage of the pattern PCp .
For all i = 1, . . . ,m,

ρi =
{
1 if ωi ∈ Cp is not covered by pattern PCp

0 otherwise.
(4)

• zi , i = 1, . . . ,m: relaxation variables, ensuring the generation of a pattern with homo-
geneity less than 100%.

We shall formulate anMILP to generate a smallest degree andmaximum coverage relaxed
pattern PCp associated with some class Cp in K -class dataset Ω . In order to achieve this goal
we proceed as follows:

• Since a pattern cannot include both literals x j and x̄ j , we impose the condition

y j + yn+ j ≤ 1, j = 1, . . . , n. (5)

• Degree of pattern PCp is d ∈ Z
+ (unknown):

2n∑

j=1

y j = d. (6)

• Consider the augmented matrix B = [Ω|Ω], where Ω is the binary data obtained from
Ω by replacing 0 entries by 1 and 1 entries by 0. Define the vector v = By. In order to
produce a relaxed pattern PCp with α% homogeneity and β% prevalence, we prescribe
the following constraints:

vi + nρi ≥ d, i ∈ Ip, (7)

vi − zi ≤ d − 1, i ∈ Ik, k = 1, . . . , K , k �= p (8)
∑

i∈Ik
zi ≤ α|Ωp|, (9)

∑

i∈Ip
ρi ≤ (1 − β)|Ωp|, (10)

0 ≤ zi ≤ 1, i = 1, . . . ,m (11)

1 ≤ d ≤ n, d ∈ Z
+ (12)

ρi ∈ {0, 1}, i = 1, . . . ,m (13)

y j ∈ {0, 1}, j = 1, . . . , 2n (14)

where Ip = {
i : ωi is in class Cp

}
and Ik = {i : ωi is in class Ck} for all k �= p.
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• Let c ∈ IR+ be a constant. Our goal is to generate a pattern PCp with minimum degree
and maximum coverage. Therefore, we consider the objective function

cd +
∑

i∈Ip
ρi (15)

We use conditions in (5)–(14) to formulate the following MILP:

minimize cd +
∑

i∈Ip
ρi

subject to
vi + nρi ≥ d, i ∈ Ip

vi − zi ≤ d − 1, i ∈ Ik , k = 1, . . . , K , k �= p∑

i∈Ik
zi ≤ α|Ωp|

∑

i∈Ip
ρi ≤ (1 − β)|Ωp|

y j + yn+ j ≤ 1, j = 1, . . . , n
2n∑

j=1

y j = d

1 ≤ d ≤ n, d ∈ Z
+

0 ≤ zi ≤ 1, i = 1, . . . ,m
ρi ∈ {0, 1}, i = 1, . . . ,m
yj ∈ {0, 1}, j = 1, . . . , 2n

(16)

where c ∈ IR+ and 0 ≤ α, β ≤ 1 are input parameters.

Theorem 1 Let (v∗, y∗, z∗, ρ∗, d∗) be a feasible solution of problem (16). Let

S =
{
j : y∗

j = 1, j = 1, . . . , n
}

and S̄ =
{
j : y∗

n+ j = 1, j = 1, . . . , n
}

.

Then

PCp =
∧

S

x j
∧

S̄

x̄ j (17)

forms a relaxed (fuzzy) pattern of degree d∗, associated with class Cp.

Proof Let (v∗, y∗, z∗, ρ∗, d∗), where v∗ = By∗, be a feasible solution of problem (16). First
note that the constraint

y j + yn+ j ≤ 1, j = 1, . . . , n

ensures that the Boolean term PCp shown in (17) does not contain both literals x j and x̄ j
associated with the j th feature in dataset Ω and the condition

2n∑

j=1

y j = d

guarantees that the term PCp is of degree d . The constraint

vi + nρi ≥ d, i ∈ Ip
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ensures that PCp covers at least one observation ωi in class Cp , that is, PCp (ωi ) = 1, i ∈ Ip .
If an observation ωi , i ∈ Ip, is covered by PCp , then d number of y j ’s are set to 1 and hence,
we have vi = d, i ∈ Ip , where vi is the i th component of vector v = By. However, if an
observation is not covered by PCp , then vi < d, i ∈ Ip, and the term “nρi” is added to the
left hand side to compensate it. Similarly, the constraints

vi − zi ≤ d − 1, i ∈ Ik, k = 1, . . . , K , k �= p,
∑

i∈Ik
zi ≤ α|Ωp|

with the relaxation variables 0 ≤ zi ≤ 1, i = 1, . . . ,m, guarantee that up to (1 − α)% of
the observations covered by the term PCp may be in Ω \Ωp , i.e., the homogeneity of pattern
PCp is α%.

Moreover, the constraint
∑

i∈Ip
ρi ≤ (1 − β)|Ωp|

ensures that at least β% of the observations in Ωp are covered by pattern PCp , i.e., the
prevalence of pattern PCp is β%.

Thus, the solution (v∗, y∗, z∗, ρ∗, d∗) can be used to form a relaxed (fuzzy) pattern PCp ,
shown in (17), with degree d∗, homogeneity α%, and prevalence β%. ��
Theorem 2 Let (vopt , yopt , zopt , ρopt , dopt ) be an optimal solution of problem (16). Let

S =
{
j : yoptj = 1, j = 1, . . . , n

}
and S̄ =

{
j : yoptn+ j = 1, j = 1, . . . , n

}
.

Then

Popt
Cp

=
∧

S

x j
∧

S̄

x̄ j (18)

is a relaxed (fuzzy) strong prime pattern of degree dopt , associated with class Cp.

Proof Let (vopt , yopt , zopt , ρopt , dopt ) be an optimal solution of problem (16). Hence, as
discussed in the proof of Theorem 1, it can be used to construct a relaxed LAD pattern
PCp of degree dopt that is associated with class Cp . Note that the objective function of
problem (16) minimizes the degree of PCp , resulting in a prime pattern. Since the objective
function simultaneously minimizes the penalties ρi associated with observations ωi , i ∈ Ip ,
the resulting pattern has the maximum coverage in class Cp and is a strong pattern. Thus,
an optimal solution to problem (16) used to form a relaxed pattern Popt

Cp
, shown in (18), is a

strong prime pattern with degree dopt , homogeneity α%, and prevalence β%. ��

3.3 Relaxedmulticlass LADmodel

As stated in Theorem 2, an optimal solution of problem (16) is a fuzzy strong prime pattern.
In order to obtain amulticlass LADmodel, patternsmust be generated until every observation
in class Ck for all k = 1, . . . , K is covered at least once. Before we develop an algorithm
that produces a multiclass LAD model consisting of relaxed LAD patterns, we recall that in
case of two-class MILP approach, Algorithm 1 of Ryoo and Jang (2009) (shown in Sect. 2.3)
produces a set of patterns associated with a positive (negative) class that loops as many times
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as necessary until all observations in positive (negative) class are covered by at least one
pattern. Note that once a positive (negative) pattern P is found as an optimal solution of
problem (3), Algorithm 1 of Ryoo and Jang (2009) removes the observations covered by
the pattern P , whilst looping through execution. However, this is counterproductive because
every time the algorithm loops through again, it uses less information (smaller training set)
to generate new patterns. Mortada (2010) has adopted a similar approach to develop an OvO-
type multiclass LAD algorithm, where observations covered by a pattern are removed from
the training dataset while executing the proposed algorithm. As compared to Algorithm 1
of Ryoo and Jang (2009), the algorithm proposed by Mortada (2010) stops looping when
each observation is covered by t patterns, where t is a user-input, i.e., determined by the data
analyst.

In order to avoid the removal of observations from the training dataset when generating
new patterns that form a multiclass LAD model containing relaxed patterns obtained as the
optimal solutions of problem (16), we define κ as anm-vector that keeps track of the number
of patterns covering an observation ωi ∈ Ω for all i = 1, . . . ,m. Initially, for each class
Ck, k = 1, . . . , K , we set κ = 0. This vector shall be updated as new solutions of the MILP
problem (16) are found. With the help of new vector κ , constraint (7), i.e., the first constraint
in problem (16), can be replaced by

vi + n (ρi + κi ) ≥ d, i ∈ Ip. (19)

where κi ≥ 0, i = 1, . . . ,m.

Theorem 3 Let (v′, y′, z′, ρ′, d ′) be an optimal solution of problem (16), where the constraint

vi + nρi ≥ d, i ∈ Ip

is replaced by constraint (19). Let

S =
{
j : y′

j = 1, j = 1, . . . , n
}

and S̄ =
{
j : y′

n+ j = 1, j = 1, . . . , n
}

.

Then

P ′
Cp

=
∧

S

x j
∧

S̄

x̄ j

is a degree d ′ relaxed strong prime pattern associated with class Cp.

Proof The proof of the assertion follows immediately from the proof of Theorem 1 and
Theorem 2 and hence, is left to the reader. ��

Theorem 3 enables us to propose an algorithmic approach to generate a multiclass LAD
model consisting of relaxed LAD patterns obtained as the optimal solutions of our multiclass
MILP problem (16). This approach is presented in Algorithm 2. We remark that, unlike the
Algorithm 1 of Ryoo and Jang (2009), our proposedAlgorithm 2 does not require the removal
of observations from the training dataset at any iteration by adding “NewConstraint” to the
relaxedMILP problem (16) each time a newpattern is generated to prevent the algorithm from
finding the same pattern found at the previous iterations. This is achieved by introducing κi
that keeps track of the number of patterns covering observations ωi ∈ Ω for all i = 1, . . . ,m
and “TotCov” that counts the number of observations covered so far.

Let Mk denote the set of relaxed LAD patterns associated with class Ck , k = 1, . . . , K
and M = M1 ∪ · · · ∪ MK , where Mi ∩ M j = ∅, i �= j , be the multiclass LAD model
obtained by Algorithm 2.
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Algorithm 2: Relaxed Multiclass LAD Algorithm
Input: p: index of current class

1 Global data: Ω ⊂ IBm×n: binary dataset, C = {C1, . . . ,CK }: set of classes
Result: MyPats[p] : patterns for class Cp

2 B = [Ω|Ω];
3 v = B y; (* y unknown variable *)
4 MyPats[p] = {};
5 κ = 0;
6 NewConstraint = {};
7 TotCov = 0;
8 while TotCov <

∣∣Ip
∣∣ do

9 R = {constraints f rom : Problem(16)} ∪ NewConstraint ;

10 pat = Minimize

⎡

⎣cd +
∑

i∈Ip
ρi : R and v, y,w, d ∈ Z

⎤

⎦

11 y∗ part of pat corresponding to variables y;
12 for i = 1 to m do
13 if vi = d then
14 κi = κi +1;

15 TotCov = 0;
16 for i = 1 to m do
17 if (i ∈ Ip) ∧ ( κi �= 0) then
18 TotCov = TotCov +1;

19 Not Found = True;
20 for i = 1 to m do
21 if (i ∈ Ip) ∧ ( κi = 0) ∧ (vi < d) ∧ ( Not Found) then
22 NewConstraint = {vi = d};
23 (* d and Y as unknown variables *)
24 Not Found = False;

25 MyPats[p] = MyPats[p] ∪ {
y∗}

;

26 return MyPats[p];

The final step of our proposed multiclass LADmethod with relaxed patterns is to validate
anduse themodelM for predictionof newobservations. Similar to the two-class classification
problem, the accuracy of a multiclass modelM is estimated by the classical cross-validation
procedures (Aggarwal 2015; Dietterich 1998; Efron and Tibshirani 1986; Hastie et al. 2005).
If an external dataset (test set) is available, the performance of the model can be evaluated
on that set and the accuracy of the model is reported as the accuracy on the test set.

3.4 OvRmulticlass LAD discriminant and prediction

Given a K−class dataset Ω = Ω1 ∪ · · · ∪ ΩK and a corresponding multiclass LAD model
M = M1 ∪ · · · ∪ MK , (Mi ∩ M j = ∅, i �= j), the classification of a new (or unseen)
observation o ∈ IBn , o /∈ Ω is determined by the value of the discriminant function

Δ(o) = argmax
k

Δk(o) (20)

where

Δk(o) =
∑

PCk ∈ Mk

δk PCk (o), k = 1, · · · , K
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Table 1 Five multiclass datasets from UCI repository

Dataset Number of observations in class Ci Number of features

Iris |C1| = |C2| = |C3| = 50 4

Glass ID |C1| = 69, |C2| = 76, |C3| = 17 10

|C4| = 13, |C5| = 9, |C6| = 29

Wine |C1| = 9, |C2| = 71, |C3| = 48 12

E. Coli |C1| = 143, |C2| = 77, |C3| = 52 34

|C4| = 35, |C5| = 20, |C6| = 5

Dermatology |C1| = 112, |C2| = 61, |C3| = 72 19

|C4| = 49, |C5| = 52, |C6| = 20

and δk ≥ 0 are the weights assigned to patterns PCk ∈ Mk, k = 1, . . . , K and can be
calculated in various ways. One possibility is to use the prevalence of patterns that is defined
by

δk = 1

|Ωk |
∑

i∈ICk
PCk (ωi )

where Ωk ⊂ Ω is the set of observations in class Ck and ICk = {i : ωi ∈ Ωk}, k = 1, . . . , K .
If Δ(o) = Δp(o) = Δq(o) for some p �= q , then the observation o is unclassified.

4 Experiments

In this section we present experimental results on publicly available datasets to show how
Algorithm 2 described in Sect. 3.3 can be used for multiclass classification. Regarding the
stopping criterion, Algorithm 2 ends once all patterns for each class Ck, k = 1, . . . , K ,

have been computed, i.e., all observations are covered. In the worst case, an adhoc pattern
can be built by the algorithm to cover a single observation. In regards to our relaxed MILP
LAD algorithm, the experiments are implemented through Python 3.5.7 on a GPU machine,
containing the virtual environment and all necessary packages. The specifications for the
machine include an Intel CORE i7-6700 CPU with 64 GBMemory running Linux. The goal
in these experiments is not only to compare our new LAD based multiclass method with
the prior multiclass LAD techniques in LAD literature, but also with the well-known and
commonly used supervised learning methods in machine learning literature.

4.1 Experimental results

In order to test our proposed multiclass LAD methodology, we conduct experiments on five
multiclass datasets from UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/).
Table 1 summarizes the characteristics of these datasets.

We apply our proposed “Relaxed Multiclass LAD Method” (in what follows referred as
RelaxedMC-LAD) to these five datasets and report the average sensitivities of 10×10-folding
cross-validation experiments in Table 2.
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Table 2 Relaxed MC-LAD method: average sensitivity of 10 × 10 cross-validation experiments

Dataset C1 (%) C2 (%) C3 (%) C4 (%) C5 (%) C6 (%)

Iris 90 100 100

Glass ID 89 80 30 86 89 86

Wine 98 94 88

E. Coli 95 84 60 70 60 85

Dermatology 95 98 93 100 92 95

Table 3 Relaxed multiclass LAD pattern characteristics for Iris dataset

Iris dataset # of Patterns Patterns by relaxed MC-LAD

Degree of patterns Coverage of patterns

Class Min Average Max Min (%) Average (%) Max (%)

Setosa 1 1 1.00 1 100 100 100

Verisicolor 3 3 3.00 3 5.26 40.35 92.11

Virginica 3 2 2.00 2 35.14 53.15 89.19

4.2 Pattern characteristics

TheRelaxedMC-LADpattern characteristics for all five datasets are shown inTables 3, 4, 5, 6
and 7. As can be seen from these results, the Relaxed MC LAD method produces accurate
classification models with high quality patterns.

4.2.1 Relaxedmulticlass LAD pattern characteristics for Iris dataset

Table 3 shows the pattern characteristics for Iris dataset, where the degree of the patterns
ranges from one to three and patterns exhibit coverage varying from 5.26 to 100%. Note that
for class Setosa, our relaxed multiclass LAD approach produces a single pattern of degree
1 that covers all observations in class Setosa. The relaxed multiclass LAD model contains
seven patterns, one for class Setosa, three for class Verisicolor, and three for class Virginica.

4.2.2 Relaxedmulticlass LAD pattern characteristics for Wine dataset

Our relaxed multiclass LAD approach produces a LAD model consisting of nine patterns,
two for class A, five for class B, and two for class C. Table 4 shows the pattern characteristics
for Wine dataset, where the degree of the patterns ranges from 2 to 5 and patterns exhibit
coverage varying from 2.82 to 94.91%.

4.2.3 Relaxedmulticlass LAD pattern characteristics for Glass dataset

Glass dataset is a noisy dataset. Our relaxedmulticlass LAD approach produces a LADmodel
consisting of 51 patterns, fifteen for class A, sixteen for class B, nine for C, two for D, four
for E, and five for class E. Table 5 shows the pattern characteristics for Glass dataset, where
the degree of the patterns ranges from 1 to 5 and patterns exhibit coverage varying from 1.96
to 90.00%.
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Table 4 Relaxed multiclass LAD pattern characteristics for Wine dataset

Wine dataset # of Patterns Patterns by relaxed MC-LAD

Degree of patterns Coverage of patterns

Class Min Average Max Min (%) Average (%) Max (%)

A 2 4 4.00 4 28.81 61.86 94.92

B 5 5 5.00 5 2.82 31.83 80.28

C 2 2 2.00 2 35.42 63.54 91.67

Table 5 Relaxed multiclass LAD pattern characteristics for Glass dataset

Glass dataset # of Patterns Patterns by relaxed MC-LAD

Degree of patterns Coverage of patterns

Class Min Average Max Min (%) Average (%) Max (%)

A 15 1 2.86 4 1.96 9.28 25.49

B 16 2 3.14 5 3.51 7.46 21.05

C 9 2 3.00 4 7.96 11.97 23.08

D 2 2 3.00 4 10.00 50.00 90.00

E 4 2 3.00 4 14.29 28.57 42.86

F 5 2 2.80 4 4.55 21.82 68.18

Table 6 Relaxed multiclass LAD pattern characteristics for E. Coli dataset

E. Coli dataset # of Patterns Patterns by relaxed MC-LAD

Degree of patterns Coverage of patterns

Class Min Average Max Min (%) Average (%) Max (%)

cp 11 3 5.27 8 1.40 16.34 39.16

im 10 4 7.50 11 1.30 11.56 42.86

pp 7 4 6.86 9 1.92 22.25 46.15

imU 7 3 5.86 9 2.86 13.88 42.86

om 4 4 4.00 4 5.00 31.25 80.00

omL 1 3 3.00 3 100 100 100

4.2.4 Relaxedmulticlass LAD pattern characteristics for E. Coli dataset

Table 6 shows the pattern characteristics for E. Coli dataset, where the patterns are generated
by our multiclass LAD approach. Note that this model contains more complicated patterns
with degrees, ranging from 3 to 11 and coverage, ranging from 1.4 to 100%. The multiclass
LAD model contains a total of 40 patterns. Note that only one pattern of degree three is
sufficient to cover all observations in class omL.

4.2.5 Relaxedmulticlass LAD pattern characteristics for Dermatology dataset

Table 7 shows the pattern characteristics for Dermatology dataset, where the patterns are
generated by our multiclass LAD approach. Similar to E. Coli LAD model, the multiclass
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Table 7 Relaxed multiclass LAD pattern characteristics for Dermatology dataset

Dermatology dataset # of Patterns Patterns by relaxed MC-LAD

Degree of patterns Coverage of patterns

Class Min Average Max Min (%) Average (%) Max (%)

A 4 2 2.75 3 13.25 53.61 79.52

B 6 2 3.33 5 2.22 25.93 57.78

C 2 1 1.00 1 92.45 92.45 92.45

D 7 3 3.86 5 2.78 18.65 72.22

E 2 2 4.00 6 41.67 59.72 77.78

F 2 2 2.50 3 33.33 63.33 93.33

Table 8 Classification accuracy (%) of LAD based multiclass methods on Iris, Wine, and Glass datasets

Methods Iris Wine Glass

Relaxed MC-LAD 97.03 ± 1.90 94.67 ± 2.14 80.37 ± 4.87

Kim and Choi (2015)-OvR 94.80 ± 0.40 96.18 ± 1.76 96.26 ± 1.06

Kim and Choi (2015)-OvO 95.73 ± 0.53 96.86 ± 1.48 93.46 ± 1.48

Moreira (2000)-OvO n.a. 92.70 ± 2.54 62.41 ± 5.88

Mortada (2010)-OvO n.a. 93.10 ± 3.20 65.00 ± 5.40

Avila-Herrera and Subasi (2013)-OvR 94.00 ± 2.20 91.33 ± 3.54 79.54 ± 5.35

Table 9 Classification accuracy (%) of LAD based multiclass methods on E. Coli and Dermatology datasets

Methods E. Coli Dermatology

Relaxed MC-LAD 82.50 ± 5.79 96.06 ± 2.85

Kim and Choi (2015)-OvR 75.07 ± 0.60 92.18 ± 0.43

Kim and Choi (2015)-OvO 81.88 ± 1.00 96.26 ± 1.39

Moreira (2000)-OvO 78.34 ± 3.40 89.07 ± 2.84

Mortada (2010)-OvO 79.20 ± 5.35 n.a.

Avila-Herrera and Subasi (2013)-OvR n.a. 92.00 ± 2.14

LADmodel for Dermatology dataset contains more complicated patterns with degrees, rang-
ing from 1 to 6 and coverage, ranging from 2.22 to 92.45%. Note that the method produced
two degree one patterns associated with class C and these two patterns cover 92.45% of the
observations in class C.

4.3 Experiments comparing LAD basedmulticlass classificationmethods

In this section we report the average accuracy of 10 × 10-folding experiments, where we
compare RelaxedMC-LADmethod against other LAD basedmulticlass methods of Kim and
Choi (2015)-OvR, Kim and Choi (2015)-OvO, Moreira (2000)-OvO, Mortada (2010)-OvO,
and Avila-Herrera and Subasi (2013)-OvR. These results are summarized in Table 8 for Iris,
Wine, and Glass datasets and in Table 9 for E. Coli and Dermatology datasets.
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Table 10 Comparison of average CPU time for LAD based multiclass methods

Methods Average CPU time (in s)

Iris Wine Glass E. Coli Dermatology

Relaxed MC-LAD 0.24 4.4 37.8 18.3 29.1

Kim and Choi (2015)-OvR 15.1 16.9 24.9 31.4 21.4

Kim and Choi (2015)-OvO 21.1 22.8 73.9 129.4 74.2

Moreira (2000)-OvO n.a 1.2 12.7 17.5 10.1

Mortada (2010)-OvO n.a 1.0 39.0 49.0 n.a

Avila-Herrera and Subasi (2013)-OvR 16.70 236.5 1578 n.a 41.0

The average CPU times for LAD based multiclass methods, including our proposed
method Relaxed MC-LAD, are given in Table 10. Note that the efficiency of our proposed
Relaxed MC-LAD Method is comparable if not better than those other existing multiclass
LAD methods.

As compared to the previously proposed LAD multiclass approaches, our Relaxed MC-
LAD method is more efficient and performs better (higher accuracy) than those of Moreira
(2000)-OvO, Mortada (2010)-OvO and Avila-Herrera and Subasi (2013)-OvR for all five
datasets. The Relaxed MC-LAD method has smaller CPU times than those reported by the
methods of Kim and Choi (2015) for almost all of the datasets, except it is slightly slower than
Kim and Choi (2015)-OvR for the Glass dataset. We also observe that our proposed Relaxed
MC-LADmethod’s performance in terms of classification accuracy is very comparable to, if
not better than, the performance of themethods ofKimandChoi (2015) for all datasets, except
for Glass dataset. However, for Glass dataset, the Relaxed MC-LAD method outperforms
the previously developed multiclass LAD methods, excluding the methods of Kim and Choi
(2015), as can be seen from Tables 8 and 9.

4.4 Experiments comparing relaxedmulticlass LADmethod with well-known
classification techniques

Similar to the previous section, here we report the average accuracy of 10 × 10-folding
experiments of our Relaxed MC-LAD method as compared to the well-known classification
techniques, including Nearest Neighbor, Naïve Bayes, Logistic Regression, Support Vector
Machines,NeuralNetworks, andDecisionTrees-C4.5.These experimentswere run inWEKA
3.8 Data Mining Software (Frank et al. 2016).

Table 11 shows the average accuracy of the cross-validation experiments for Iris,Wine, and
Glass datasets and Table 12 shows the average accuracy of the cross-validation experiments
for E. Coli and Dermatology datasets.

We observe from Tables 11 and 12 that our proposed Relaxed MC-LAD method’s classi-
fication accuracy is very comparable to, if not better than, that of the well-known supervised
learning methods including Nearest Neighbor, Naïve Bayes, Logistic Regression, Neural
Networks, and Decision Trees for all datasets, including Glass data where the performance
of all methods is much worse (≥ 10% smaller accuracy) than the RelaxedMC-LADmethod.
While all of the multiclass methods, including both LAD based and others, but excluding the
Relaxed MC-LAD method, poorly classify the observations in Glass dataset, the methods of
Kim andChoi (2015) do outperform all of themethods by aboutmore than 10% improvement
in accuracy based on the results reported in their paper.
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Table 11 Comparison of average accuracy of well-known classification methods for Iris, Wine, and Glass
datasets

Methods Average accuracy (%) of cross-validation experiments

Iris Wine Glass

Relaxed MC-LAD 97.03 ± 1.90 94.67 ± 2.14 80.37 ± 4.87

Nearest neighbor 95.40 ± 4.80 95.12 ± 4.34 70.30 ± 8.96

Naïve Bayes 95.53 ± 5.02 97.46 ± 3.70 47.75 ± 9.36

Logistic regression 97.07 ± 4.77 97.23 ± 3.83 63.92 ± 8.81

Support vector machines 96.27 ± 4.58 98.76 ± 2.73 57.72 ± 9.06

Neural networks 96.93 ± 4.07 98.02 ± 3.26 65.96 ± 9.11

Decision trees-C4.5 94.64 ± 5.78 89.90 ± 3.11 62.80 ± 4.43

Table 12 Comparison of average accuracy of well-known classification methods for E. Coli and Dermatology
datasets

Methods Average accuracy (%) of cross-validation experiments

E. Coli Dermatology

Relaxed MC-LAD 82.50 ± 5.79 96.06 ± 2.85

Nearest neighbor 81.99 ± 6.35 95.60 ± 3.16

Naïve Bayes 87.01 ± 6.23 97.52 ± 2.46

Logistic regression 86.64 ± 5.54 97.24 ± 2.65

Suport vector machines 84.43 ± 4.84 97.59 ± 2.37

Neural networks 87.14 ± 6.54 97.32 ± 2.61

Decision trees-C4.5 80.59 ± 4.14 94.48 ± 2.69

Our numerical experiments suggest that the proposed Relaxed MC-LAD method is an
exciting alternative to the multiclass classification literature. The method not only provides
efficient and robust results, but also easily interpretable explicit classification models—an
essential feature of LAD methodology.

5 Conclusions

In this paper we extend Logical Analysis of Data (LAD) to multiclass classification where
relaxed (fuzzy) patterns are generated as optimal solutions of a mixed integer linear pro-
gramming problem. Our proposed relaxed multiclass LAD approach is motivated by MILP
formulation of Ryoo and Jang (2009) that generates LAD patterns for two-class datasets and
LAD based multiclass algorithm of Avila-Herrera and Subasi (2013, 2015) that generated
pure patterns with minimum degree and maximum coverage. Our multiclass method uses
homogeneity and prevalence as two parameters to generate relaxed LAD patterns, aimed at
improving the generalization capability. While all of the multiclass methods, including both
LAD based and others, but excluding the Relaxed MC-LAD method, poorly classify the
observations in Glass dataset, the methods of Kim and Choi (2015) do outperform all of the
methods by about more than 10% improvement in accuracy based on the results reported in
their paper. All these results suggest that our proposed RelaxedMulticlass LADmethod is an
exciting alternative to the multiclass classification literature. We demonstrate the advantage
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of having the flexibility proposed in our method through experiments on five benchmark
multiclass datasets. Experimental results show that the proposed relaxed multiclass LAD
algorithm produces highly accurate classification models on the benchmark datasets, where
the cross-validation accuracy of the relaxed multiclass LAD algorithm is comparable to, if
not better than, those obtained by previously developed multiclass LAD classification meth-
ods well as those by the well-known classification techniques, including Nearest Neighbor,
Naïve Bayes, Logistic Regression, Support VectorMachines, Neural Networks, andDecision
Trees. In addition, our proposed relaxed multiclass LAD method is very efficient as can be
seen from the reported CPU time of the experiments.
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