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Abstract
We study cooperative interval games. These are cooperative games where the value of a
coalition is given by a closed real interval specifying a lower bound and an upper bound of the
possible outcome. For interval cooperative games, several (interval) solution concepts have
been introduced in the literature. We assume that each player has a different attitude towards
uncertainty by means of the so-called Hurwicz coefficients. These coefficients specify the
degree of optimism that each player has so that an interval becomes a specific payoff. We
show that a classical cooperative game arises when applying the Hurwicz criterion to each
interval game. On the other hand, the same Hurwicz criterion can also be applied to any
interval solution of the interval cooperative game. Given this, we say that a solution concept
is Hurwicz compatible if the two procedures provide the same final payoff allocation. When
such compatibility is possible, we characterize the class of compatible solutions, which
reduces to the egalitarian solution when symmetry is required. The Shapley value and the
core solution cases are also discussed.

Keywords Cooperative interval games · Hurwicz criterion · Hurwicz compatibility

1 Introduction

Given a set of agents (or players), cooperative (or transferable utility) games assign to each
coalition of agents a real number. This number represents the maximum utility that the
members of this coalition can assure by themselves. Cooperative game theory has addressed
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these problems by proposing relevant solutions, or values, that suggest one or several payoff
allocations satisfying certain desirable properties. Typically, the most standard property is
efficiency, which implies that the worth of the grand coalition is shared. Some examples of
efficient solutions are the core, the Weber set, the Shapley value, and the nucleolus.

Cooperative interval games generalize the idea of cooperative games by assigning to each
coalition a closed interval. Analogously, efficient interval solutions propose an allocation
of the interval generated by the grand coalition. Many of the classical solutions have been
defined in the context of cooperative interval games by Alparslan Gök et al. (2008, 2009c).
See Brânzei et al. (2010) for a survey.

Interval games have been applied to bankruptcy problems (Brânzei and Alparslan Gök
2008), airport games (Alparslan Gök et al. 2009a), minimum cost spanning tree problems
(Montemanni 2006; Moretti et al. 2011), assignment problems (Pereira and Averbakh 2011;
van den Brink et al. 2017; Wu et al. 2018), and sequencing games (Alparslan Gök et al.
2013).

A classical interpretation of the intervals is that each of them represents the possible
worth range that a coalition can get by themselves. Examples are those that appear from the
so-called games with externalities (Thrall and Lucas 1963), where the worth of a coalition
depends not only on the coalition itself but also on how the rest of the players cooperate.1

(van den Brink et al. 2017) propose a different motivation, where the worth of a coalition
varies between the (classical) pessimistic assumption that the rest of players will try to harm
them as much as possible and the most optimistic assumption given by the dual problem.

At this point, we have to distinguish between risk and uncertainty. In a risky situation,
players are unsure of the final result of their cooperation, but they can assign a precise
probability to each possible outcome. This kind of riskiness has been deeply studied in
economic literature, from a cooperative and non-cooperative point of view. Frequently, it
is assumed that each player has some private information and precise knowledge of the
probability distribution of how the others are. This approach does not fit into the model
proposed by interval games, where each interval does not depend on the private information
of the players. In other situations, the probability distribution is common knowledge, but
their consequences are not homogeneous among players (Alparslan Gök et al. 2013). Again,
this approach neither fits interval games, where each interval is coalition-dependent.

As opposed, under uncertainty, players are not only unsure of the outcome of their potential
cooperation but also the probability of these possible outcomes. When there is no private
information, i.e. all the players agree on the uncertainty that lies behind the cooperation of
each coalition, interval games provide a more realistic interpretation of uncertainty.

An interval solution is then a way to share the uncertainty of the grand coalition worth
taking into account the uncertain worth of each coalition.

Given this, each player can have a different attitude towards uncertainty. For example,
a pessimistic player would prefer to maximize the minimum possible outcome (maximin
criterion), so that its preferred payoff is an interval with a high lower bound, whereas an
optimistic (maximax criterion) player would prefer intervals with a high upper bound. An
intermediate approach (Laplace criterion or criterion of rationality) is to assume all the
possible outcomes are equally probable, in the sense that they follow a uniform distribution.
Hence, players with a Laplace criterion prefer intervals with a high midpoint.

A generalization of these criteria is the so-called Hurwicz criterion (Hurwicz 1951), which
states that there exists a fixed coefficient between 0 and 1 that measures the degree of opti-

1 For example, assume that players form an oligopoly that plans to create a cartel. The cartel can then
anticipate their benefit as a monopoly. However, if two or more players are not present, the remaining players
can not anticipate their exact benefit, as it would depend on whether the other players merge or not.
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mism. Hence, a pessimistic player would have a coefficient 0, an optimistic one 1, and a
rational one (in the sense of Laplace) 1

2 .
Once the Hurwicz coefficients are stated for each player, uncertainty disappears, and

players can uniquely assign a concrete value to each interval. The payoff allocation of the
grand coalition interval becomes a payoff allocation for the grand coalition. We can then
check the payoff allocation proposed by each interval solution.

In this paper, we study what happens when this statement is done on the interval game
before applying any interval value. We prove (Proposition 1) that this operation generates a
(classical) cooperative game so that we can compute its interval value.2

Therefore, we can proceed in two ways. On the one hand, we can compute the interval
value on the interval game, and then apply the Hurwicz criterion. On the other hand, we can
apply the Hurwicz criterion in the interval game to get a (classical) cooperative game, then
apply the interval solution.3 We are interested in studying which values are compatible in the
sense that both procedures provide the same final payoff allocation. This property has the
potential of solving situations where players have uncertain needs for a resource when it has
to be divided before uncertainty resolves (Xue 2018).

Our second result (Proposition 2) implies that this property is incompatible with efficiency
in the more general setting. However, we focus on the only two situations where they are
compatible. On the one hand, we can assume that all the players have the same Hurwicz
coefficient. On the other hand, we can assume that uncertainty disappears when the grand
coalition forms. The latter is what happens in the motivating examples: both games with
externalities and the optimistic-pessimistic approach given by van den Brink et al. (2017).

We prove (Theorems 1 and 3) that the unique compatible solutions are the proportional
ones. These are solutions that have recently received increasing attention from the economic
and social choice theory (Abe and Nakada 2019; Béal et al. 2016; Koster and Boonen 2019;
Yokote et al. 2018). They state that the worth of the grand coalition should be proportionally
distributed. As a direct corollary, we deduce (Theorems 2 and 4) that the unique anonymous
(in the sense that symmetric agents are treated symmetrically) compatible solution is the
egalitarian one. This states an equivalence between Hurwicz compatibility and the egalitar-
ian notion given by theDutta and Ray (1989) interpretation ideally yielding Lorenz-dominant
allocations but without core-like participation constraints. Experimental evidence also backs
egalitarian outcomes (Bolton and Ockenfels 2000). It is worthy to note that usual characteri-
zations of the egalitarian solution heavily rely on the properties of either additivity (Béal et al.
2016, 2019; Bergantiños and Vidal-Puga 2004; Casajus and Huettner 2014b; Hougaard and
Moulin 2018; van den Brink 2007; van den Brink et al. 2015) or monotonicity (Bergantiños
and Vidal-Puga 2009; Casajus and Huettner 2013, 2014a), which are not required here.

The rest of the paper is organized as follows. In Sect. 2, we present the notation. In Sect. 3,
we define the Hurwicz criterion and prove that it can only be applied in two particular
situations, which are analyzed in Sects. 4 and 5, respectively. In Sect. 6, we focus on the core.
In Sect. 7, we present some concluding remarks.

2 Other applications of Hurwicz coefficients in interval games appear in Lardon (2017) and Li (2016), who
also deduce a (classical) cooperative game by using a selection via degrees of optimism. However, these
degrees are coalition-dependent, not individual. Hence, they cannot be identified as Hurwicz coefficients in
the same way we do here.
3 This is always possible to do since interval cooperative games generalize classical ones.
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2 Notation

Let I := {
a = [

a, a
] : a, a ∈ R, a ≤ a

}
be the set of closed intervals in R. Given a,b ∈ I,

we say that a � b when a ≤ b and a ≤ b. Notice that if a = [a, a] and b = [b, b] for some
a, b ∈ R, we have that a � b iff a ≤ b. Remark that � is a partial order relation in I; for
example [−1, 2] � [0, 2] but [−2, 3] and [−1, 2] are not comparable with respect to �.

Given x ∈ R+ and a ∈ I, we define x · a := [x · a, x · a] ∈ I. Given αi ∈ R and a ∈ I,
we define

αi ◦ a := αi · a + (1 − αi ) · a = a + αi · (a − a) ∈ R.

Given a,b ∈ I, we define a ⊕ b := [a + b, a + b] ∈ I, and a � b := [a − b, a − b] ∈ I;
moreover, when a − b ≤ a − b, we define a � b := [a − b, a − b] ∈ I. When A =
{a1, . . . , ak} ⊂ I, we define

∑

a∈A
a := a1 ⊕ · · · ⊕ ak ∈ I

with the convention that
∑

a∈∅ a := [0, 0].
Let N = {1, . . . , n} be a finite set of players. A coalitional interval game is a pair (N , v)

where v : 2N → I is a function that assigns a closed interval v(S) = [
v(S), v(S)

]
to each

coalition S ⊆ N with the property that v(∅) = [0, 0], i.e. v(∅) = v(∅) = 0. Let IGN denote
the class of all coalitional interval games with N as set of players. Since N is fixed, from
now on we write v instead of (N , v) and IG instead of IGN .

Notice that coalitional interval games generalize classical coalitional (transferable utility,
or TU) games. Just take v(S) = v(S) for all S ⊆ N . There are three trivial TU games
associated with any v ∈ IG. These are the border games v and v, and the length game |v|
given by |v|(S) = v(S) − v(S) for all S ⊆ N . Let G denote the set of TU games with N as
the player set. With some abuse of notation, we assume G ⊂ IG.

Given S ⊆ N , let R
S denote the |S|-dimensional Euclidean space with generic element

x̂ = (xi )i∈S . Given S ⊆ N and x̂, ŷ ∈ R
S , we define ẑ = x̂ − ŷ ∈ R

S as zi = xi − yi for all
i ∈ S. Moreover, given X , Y ⊂ R

S , we define X − Y = {
x̂ − ŷ : x̂ ∈ X , ŷ ∈ Y

} ⊆ R
S .

Apart from coalitional interval games, another generalization of TU games is non-
transferable utility games or NTU games. An NTU game V with player set N is given
by a characteristic function V : 2N → ⋃

S⊆N R
S , with the convention R

∅ = {0}, satisfying,
for all S ⊆ N :

1. V (S) ⊆ R
S

2. V (S) �= ∅
3. V (S) closed
4. V (S) bounded from above, i.e. ∃x̂ ∈ R

S such that V (S) ∩ {ŷ ∈ R
S : x̂ ≤ ŷ} = ∅, where

x̂ ≤ ŷ means xi ≤ yi for all i ∈ S.
5. V (S) comprehensive, i.e. x̂ ∈ V (S), ŷ ≤ x̂ �⇒ ŷ ∈ V (S).

It is well known that any TU game v can be written as an NTU game V with V (S) ={
x̂ ∈ R

S : ∑i∈S xi ≤ v(S)
}
for all S ⊆ N . Clearly, V (S) can be also be written as V (S) ={

x̂ ∈ R
S : ∑i∈S xi = v(S)

}− R
S+ for all S ⊆ N . Notice that, in general, X − R

S+ builds the
comprehensive cover of X ⊂ R

S .
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Analogously, we can write any interval game v ∈ IG applying natural generalization of
NTU games as follows:

V(S) =
⎧
⎨

⎩
a ∈ I

S :
∑

j∈S
a j � v(S)

⎫
⎬

⎭
(1)

for all S ⊆ N . We then say that V is an interval game written in NTU form.
A relevant class of coalitional interval games is the following (AlparslanGök et al. 2009b).

A coalitional interval game v is size monotonic if |v|(S) ≤ |v|(T ) for all S ⊆ T ⊆ N . We
denote as SMIG the set of size monotonic interval game with N as the player set. Clearly,
all TU games are size monotonic interval games, i.e. G ⊂ SMIG.

A solution in the set of TU games is a function σ : G → R
N that assigns to each TU game

v ∈ G a payoff allocation σ(v) ∈ R
N . A solution σ in the set of TU games is efficient if∑

j∈N σ j (v) = v(N ) for all v ∈ G. A well-known efficient solution in the set of TU games
is the Shapley value (Shapley 1953).

Let IB be a subset of IG such that it contains all the TU games, i.e. G ⊆ IB. An efficient
solution for IB is a function σ : IB → I

N that assigns to each v ∈ IB a payoff allocation
σ (v) ∈ I

N such that
∑

i∈N σ i (v) = v(N ) for all v ∈ IB.

3 Hurwicz criterion

Hurwicz (1951) first stated the most well-known criterion to deal with uncertainty. Assume
that each player i ∈ N has a coefficient αi ∈ [0, 1] which determines its degree of optimism.
This means that if player i is assigned to an interval a ∈ I, its valuation of it would be αi ◦ a.

Given α̂ ∈ [0, 1]N and an interval game solution σ : IB → I
N , we define α̂ ◦ σ : IB →

R
N as the function given by applying the Hurwicz criterion to σ with coefficients in α̂, i.e.

(α̂ ◦ σ )i (v) := αi ◦ σ i (v) ∈ R (2)

for all v ∈ IB and all i ∈ N .
Analogously, given α̂ ∈ [0, 1]N and v ∈ IG, we define α̂ ◦ V as the NTU game given by

applying the Hurwicz criterion to each v(S) with coefficients in α̂. Formally,

(α̂ ◦ V)(S) :=
{
(αi ◦ ai )i∈S ∈ R

S : â ∈ V(S)
}

− R
S+ (3)

for all S ⊆ N , where V is defined as in (1). As usual, −R
S+ allows us to assure comprehen-

siveness (despite the incompleteness of the partial order �).

Proposition 1 Given α̂ ∈ [0, 1]N and v ∈ IG, the associated NTU game α̂ ◦V is equivalent
to the TU game α̂ ◦ v defined as follows:

(α̂ ◦ v)(S) :=
(
max
i∈S αi

)
◦ v(S) ∈ R (4)

for all S ⊆ N, S �= ∅.
Proof Fix S ⊆ N , S �= ∅. We first prove that, given b ∈ I,

⎧
⎨

⎩
(αi ◦ ai )i∈S ∈ R

S : â ∈ I
S ,
∑

i∈S
ai � b

⎫
⎬

⎭
− R

S+ =
⎧
⎨

⎩
(αi ◦ ai )i∈S ∈ R

S : â ∈ I
S ,
∑

i∈S
ai = b

⎫
⎬

⎭
− R

S+.

(5)
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The “⊇” part follows from the fact that
∑

i∈S ai = b implies
∑

i∈S ai � b. For the “⊆” part,
let â ∈ I

S such that
∑

i∈S ai � b, i.e.
∑

i∈S ai ≤ b and
∑

i∈S ai ≤ b. Then, fix i0 ∈ S and
define ĉ ∈ I

S as

ci0 = min

{

b −
∑

i∈S
ai , b −

∑

i∈S
ai

}

,

ci0 = max

{

b −
∑

i∈S
ai , b −

∑

i∈S
ai

}

,

and ci = [0, 0] otherwise. Hence, (αi ◦ c)i∈S ∈ R
S+. Now, it is straightforward to check that

(αi ◦ a)i∈S = (αi ◦ (a ⊕ c))i∈S − (αi ◦ c)i∈S ,
∑

i∈S(a ⊕ c)i = b, and hence the following
statement [equivalent to the “⊆” part in (5)] holds:

{

(αi ◦ ai )i∈S ∈ R
S : â ∈ I

S,
∑

i∈S
ai � b

}

⊆
{

(αi ◦ ai )i∈S ∈ R
S : â ∈ I

S,
∑

i∈S
ai = b

}

− R
S+.

If S = { j}, then

(α̂ ◦ V)(S) = (α̂ ◦ V)({ j}) (3)(1)= {
α j ◦ a j : a j � v({ j})} − R

{ j}
+

(5)= {αi ◦ v({ j})} − R
{ j}
+ =

{
x ∈ R

{ j} : x ≤ αi ◦ v({ j})
}

≡ α j ◦ v({ j}) =
(
max
i∈S αi

)
◦ v(S).

Take S ⊆ N , |S| > 1, and j ∈ argmaxi∈S αi . In case of more than one possible j , we take
any one of them. Let T = S\{ j} �= ∅. For each a ∈ I, let |a| := a − a. Then,

(α̂ ◦ V)(S)

(3)=
{
(αi ◦ ai )i∈S ∈ R

S : â ∈ V(S)
}

− R
S+

(1)=
{

(αi ◦ ai )i∈S ∈ R
S :

∑

i∈S
ai � v(S)

}

− R
S+

(5)=
{

(αi ◦ ai )i∈S ∈ R
S :

∑

i∈S
ai = v(S)

}

− R
S+

=
{

(xi + αi · yi )i∈S ∈ R
S :

∑

i∈S
xi = v(S), x̂ ∈ R

S,
∑

i∈S
yi = |v|(S), ŷ ∈ R

S+

}

− R
S+.

Given that x̂ ∈ R
S is only restricted by

∑
i∈S xi = v(S), this amount v(S) can be freely

transferable among the players, so that the Pareto frontier is reached when
∑

i∈S αi · yi is
maximum, given that ŷ ∈ R

N+ and
∑

i∈S yi = |v|(S). Since α j ≥ αi for all i ∈ S, this
maximum is α j · |v|(S), reached at least when y j = |v|(S) and yi = 0 otherwise. Hence,
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(α̂ ◦ V)(S) =
{

(xi )i∈T × (
x j + α j · |v|(S)

) ∈ R
S :

∑

i∈S
xi = v(S)

}

− R
S+

=
{

x̂ ∈ R
S :

∑

i∈S
xi = v(S) + α j · |v|(S)

}

− R
S+

≡ α j ◦ v(S) =
(
max
i∈S αi

)
◦ v(S). ��

Under Proposition 1, any coalitional interval game v ∈ IG turns into a unique TU game
α̂ ◦ v ∈ G by applying the Hurwicz criterion with coefficients in α̂.

Given α̂ ∈ [0, 1]N and an interval game solution σ : IB → I
N , we define σ ◦ α̂ : IB →

R
N as the function given by applying σ to α̂ ◦ v for each v ∈ IB, i.e.

(σ ◦ α̂)i (v) := σ i (α̂ ◦ v) ∈ R (6)

for all v ∈ IB and i ∈ N .
Notice that both (2) and (6) apply an interval solution and the Hurwicz criterion with some

coefficients. The difference between both approaches is the order in which they do so.
It is then natural to require this order to be irrelevant, i.e. both α̂ ◦ σ and σ ◦ α̂ should

coincide. We call this property Hurwicz compatibility.

Definition 1 An interval game solution σ : IB → I
N is Hurwicz compatible in IB if

(σ ◦ α̂)(v) = (α̂ ◦ σ )(v) for all v ∈ IB and all α̂ ∈ [0, 1]N .
Proposition 2 For all α̂ ∈ [0, 1]N and all v ∈ IG,

∑

i∈N
(α̂ ◦ σ )i (v) ≤

∑

i∈N
(σ ◦ α̂)i (v)

for all efficient solution σ : IG → I
N . Moreover,

– Equality holds for all v ∈ IG and all efficient solution σ : IG → I
N if and only if

αi = α j for all i, j ∈ N.
– Equality holds for all α̂ ∈ [0, 1]N if and only if |v|(N ) = 0.

Proof Under efficiency,

∑

i∈N
(α̂ ◦ σ )i (v)

(2)=
∑

i∈N
αi ◦ σ i (v) =

∑

i∈N

(
σ i (v) + αi · |σ i (v)|

)

= v(N ) +
∑

i∈N
αi · |σ i (v)| ≤ v(N ) +

(
max
i∈N αi

)
·
∑

i∈N
|σ i (v)|

= v(N ) +
(
max
i∈N αi

)
· |v|(N ) =

(
max
i∈N αi

)
◦ v(N )

(4)= (
α̂ ◦ v

)
(N ) =

∑

i∈N
σ i (α̂ ◦ v)

(6)=
∑

i∈N
(σ ◦ α̂)i (v).

Notice that this statement has a unique inequality. Hence, equality holds when this inequality
is not strict. That is, equality holds iff

∑

i∈N
αi · |σ i (v)| =

(
max
i∈N αi

)
·
∑

i∈N
|σ i (v)|
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which is equivalent to either αi = α j for all i, j ∈ N or |σ i (v)| = 0 for all i ∈ N . Since |x |
is always nonnegative, this second condition is equivalent to |v|(N ) = 0. ��
Corollary 1 No efficient solution in the set of (size monotonic) coalitional interval games is
Hurwicz-compatible.

In view of Proposition 2, we can only find Hurwicz compatibility in efficient solutions
when we restrict ourselves to two possible situations:

1. All the Hurwicz coefficients coincide (equal degree of optimism).
2. There is no uncertainty when all players cooperate (grand coalition certainty).

The second situation arises in particular for some economic situations such as oligopolies,
as commented in the Introduction as a particular case of gameswith externalities. On the other
hand, the first situation completes the class of conditions under which Hurwicz compatibility
is possible, and it is a reasonable requirement to study its implications under the symmetry
of the players (apart from the differences derived from the characteristic function).

4 Uniform degree of optimism

In this Section, we study which interval solutions are Hurwicz compatible when all coeffi-
cients coincide.

Definition 2 Given IB ⊆ IG, an interval game solution σ : IB → I
N is uniform Hurwicz

compatible in IB if, for all α0 ∈ [0, 1], we have (σ ◦ α̂)(v) = (α̂ ◦ σ )(v) for all v ∈ IB,
where αi = α0 for all i ∈ N .

Let us consider a coalitional interval game v and α̂ ∈ [0, 1]N the vector of players’ Hurwicz
coefficients. We denote αS := maxi∈S αi and

nS := |S|!(n − 1 − |S|)!
n!

for each S ⊆ N . By convention, α∅ := 0.
We consider here the Shapley value of the TU game α̂ ◦ v, i.e.

Shi (α̂ ◦ v) :=
∑

S⊆N\{i}
nS · (αS∪{i} ◦ v(S ∪ {i}) − αS ◦ v(S)

)
(7)

for each i ∈ N . On the class of size monotonic coalitional interval games, Alparslan Gök
et al. (2010) define a generalization of the Shapley value, whichwe call the interval Alparslan
Gök-Brânzei-Tijs (ABT) solution, as follows:

ABTi (v) :=
∑

S⊆N\{i}
nS · (v(S ∪ {i}) � v(S))

for each v ∈ SMIG and each i ∈ N . Analogously, Han et al. (2012) define another gen-
eralization of the Shapley value, which we call the interval Han-Sun-Xu (HSX) solution, as
follows:

HSXi (v) :=
∑

S⊆N\{i}
nS · (v(S ∪ {i}) � v(S))

for each v ∈ IG and each i ∈ N .

123



Annals of Operations Research (2021) 301:143–159 151

Proposition 3 The interval ABT solution is uniform Hurwicz compatible in SMIG.
Proof The interval ABT solution can be written as

ABTi (v) =
⎡

⎣
∑

S⊆N\{i}
nS · (v(S ∪ {i}) − v(S)

)
,

∑

S⊆N\{i}
nS · (v(S ∪ {i}) − v(S))

⎤

⎦

for each v ∈ SMIG and each i ∈ N . Since all the Hurwicz coefficients coincide (α1 =
α2 = · · · = αn = α0), then α̂ ◦ ABT(v) = Sh(α̂ ◦ v). In particular,

α̂ ◦ ABTi (v)

= (1 − α0) ·
⎛

⎝
∑

S⊆N\{i}
nS · (v(S ∪ {i}) − v(S)

)
⎞

⎠ + α0 ·
⎛

⎝
∑

S⊆N\{i}
nS · (v(S ∪ {i}) − v(S))

⎞

⎠

=
∑

S⊆N\{i}
nS · ((1 − α0) · (v(S ∪ {i}) − v(S)

) + α0 · (v(S ∪ {i}) − v(S))
)

=
∑

S⊆N\{i}
nS · (((1 − α0) · v(S ∪ {i}) + α0 · v(S ∪ {i})) − (

(1 − α0) · v(S) + α0 · v(S)
))

=
∑

S⊆N\{i}
nS · (α0 ◦ v(S ∪ {i}) − α0 ◦ v(S)) = Shi (α̂ ◦ v)

= ABTi (α̂ ◦ v) = (
ABT ◦ α̂

)
i (v)

for each v ∈ SMIG and each i ∈ N . ��
Theorem 1 An efficient solution σ : IG → R

N is uniform Hurwicz compatible in IG if and
only if there exist two vectors δ̂ ∈ R

N and γ̂ ∈ R
N+ with

∑
i∈N δi = 0 and

∑
i∈N γi = 1,

and such that

σ i (v) = δi · [1, 1] + γi · v(N ) (8)

for all v ∈ IG and all i ∈ N.

Proof (⇐) Assume σ is defined as in (8). It is clear that such a solution is efficient. We now
check that it is uniform Hurwicz compatible. Fix v ∈ IG. Let α0 ∈ [0, 1] and let α̂ ∈ [0, 1]N
defined as αi = α0 for all i ∈ N . We have to prove that (σ ◦ α̂)(v) = (α̂ ◦ σ )(v). For each
i ∈ N ,

(σ ◦ α̂)i (v) = σ i (α̂ ◦ v)

= δi · [1, 1] + γi · (α̂ ◦ v(N ))

≡ δi + γi · (α̂ ◦ v(N ))

and

(α̂ ◦ σ )i (v) = α̂ ◦ σ i (v)

= α̂ ◦ (δi · [1, 1] + γi · v(N ))

= δi + γi · (α̂ ◦ v(N )).

(⇒) Let σ : IG → I
N be an efficient, Hurwicz compatible solution in IG. Let v ∈ IG.

Let 1̂ ∈ [0, 1]N defined as 1i = 1 for all i ∈ N , and let 0̂ ∈ [0, 1]N defined as 0i = 0 for all
i ∈ N . Then, for each v ∈ IG and i ∈ N ,

σ i (v) = 1̂ ◦ σ i (v) = σ i (1̂ ◦ v) = σ i (v) (9)
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and

σ i (v) = 0̂ ◦ σ i (v) = σ i (0̂ ◦ v) = σ i
(
v
)
. (10)

Since both v and v are TU games, we deduce that σ only depends on its restriction on TU
games, i.e., once we define σ (v) for each v ∈ G, we can deduce σ (v) for any other v ∈ IG.
Moreover, given v,w ∈ Gwith v(S) ≤ w(S) for all S ⊆ N , it holdsσ (v) ≤ σ (w) (otherwise,
σ (w) with w(S) = [v(S), w(S)] for all S ⊆ N would not be well-defined). Now, for each
v ∈ G, define v−, v+ ∈ G as follows:

v+(S) :=
{

v(N ) if v(S) ≤ v(N )

v(S) if v(S) > v(N )

v−(S) :=
{

v(S) if v(S) ≤ v(N )

v(N ) if v(S) > v(N )

for all S ⊆ N . Clearly, v−(S) ≤ v(S) ≤ v+(S) for all S ⊆ N . Hence, σ (v−) ≤ σ (v) ≤
σ (v+). Moreover, v−(N ) = v(N ) = v+(N ) and hence σ (v−) = σ (v) = σ (v+). For each
x ∈ R, define ux ∈ G as follows:

ux (S) :=
{
x if S = N
0 if S �= N

for all S ⊆ N . On the one hand, either uv(N )(S) ≤ v+(S) for all S ⊆ N (when v(N ) > 0) or
v−(S) ≤ uv(N )(S) for all S ⊆ N (when v(N ) ≤ 0). On the other hand, uv(N )(N ) = v(N ) =
v+(N ) = v−(N ). Hence, either σ (uv(N )) = σ (v+) (when v(N ) > 0) or σ (uv(N )) = σ (v−)

(when v(N ) ≤ 0). In either case,

σ (v) = σ (uv(N )) (11)

i.e. the only relevant value is v(N ). Let

f (x) := σ (ux ) (12)

for all x ∈ R. Now, we prove that

fi (α0 · x) = α0 · fi (x) + (1 − α0) · fi (0) (13)

for all i ∈ N , all α0 ∈ [0, 1], and all x ∈ R. We assume x > 0. Case x < 0 is analogous and
case x = 0 is trivial. Define u0x ∈ IG as follows:

u0x (S) :=
{ [0, x] if S = N
0 if S �= N

for all S ⊆ N . Let α̂ ∈ [0, 1]N defined by αi = α0 for all i ∈ N for some α0 ∈ [0, 1]. Hence,
fi (α0 · x) = fi (α0 · x + (1 − α0) · 0) = σ i

(
uα0·x+(1−α0)·0

)

= σ i
(
α̂ ◦ u0x

) = (σ ◦ α̂)i
(
u0x

)

for all i ∈ N . By uniform Hurwicz compatibility of σ :

fi (α0 · x) = (α̂ ◦ σ )i (u0x ) = α0 ◦ σ i (u0x )

= α0 ◦ [σ i
(
u0
)
, σ i

(
ux
)]

= α0 · σ i (u
x ) + (1 − α0) · σ i (u

0)

= α0 · fi (x) + (1 − α0) · fi (0)
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0 α0 · x x

fi(0)

fi(x)

α0 · fi(x) + (1 − α0) · fi(0) fi(α0 · x)

Fig. 1 Visual proof that (13) implies (14)

for all i ∈ N , and hence (13) holds. This implies that, for each i ∈ N , there exist δi , γi ∈ R

such that

fi (x) = δi + γi · x (14)

for all x ∈ R (see Fig. 1).
Clearly, δi = fi (0) for all i ∈ N . Moreover, γi ≥ 0 for all i ∈ N because otherwise

σ i (v) /∈ I when |v|(N ) > 0. By efficiency of σ :
∑

i∈N
δi =

∑

i∈N
fi (0) =

∑

i∈N
σ i

(
u0
) = u0(N ) = 0

and
∑

i∈N
γi =

∑

i∈N
(γi · 1) =

∑

i∈N
( fi (1) − δi ) =

∑

i∈N
σ i

(
u1
) −

∑

i∈N
δi = u1(N ) − 0 = 1.

Finally, for all v ∈ IG and all i ∈ N ,

σ i (v)
(10)(9)= [

σ i
(
v
)
, σ i (v)

]

(11)=
[
σ i

(
uv(N )

)
, σ i

(
uv(N )

)]

(12)= [
fi (v(N )), fi (v(N ))

]

(14)= [
δi + γi · v(N ), δi + γi · v(N )

]

= δi · [1, 1] + γi · [v(N ), v(N )
] = δi · [1, 1] + γi · v(N ). ��

In particular, when δi = δ j and γi = γ j for all i, j ∈ N , then δi = 0 and γi = 1
n for all

i ∈ N , and so we obtain the interval egalitarian solution:

ei (v) := 1

n
· v(N )

for all i ∈ N .
An important implication of Theorem 1 is the following:
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Theorem 2 The interval egalitarian solution is the only efficient, symmetric, and uniform
Hurwicz compatible solution in IG.
Proof It follows from Theorem 1 and the fact that the interval egalitarian solution is the only
symmetric one in the family of efficient, uniform Hurwicz-compatible solutions. ��
Corollary 2 For n > 1, the interval HSX solution is not uniform Hurwicz compatible in IG.
Proof It follows from Theorem 2 and the fact that the interval HSX solution is efficient,
symmetric, defined in all IG, and (for n > 1) different from the interval egalitarian solution.

��

5 Grand coalition certainty

Let IC denote the set of interval coalitional games v ∈ IG satisfying v(N ) = v(N ). Clearly,
G ⊂ IC.

A simple family of efficient solutions in IC is given by

eω
i (v) := ωi (v(N ))

for all i ∈ N , where ω(x) ∈ R
N satisfies

∑
i∈N ωi (x) = x for all x ∈ R. In particular, when

ωi (x) = ω j (x) for all i, j ∈ N and all x ∈ R, we obtain the egalitarian solution:

ei (v) := 1

n
· v(N )

for all i ∈ N .

Theorem 3 An efficient solution σ : IC → R
N is Hurwicz-compatible in IC if and only if

there exists a functionω that assigns to each x ∈ Ra vectorω(x) ∈ R
N with

∑
i∈N ωi (x) = x

and such that

σ(v) = eω(v)

for all v ∈ IC.
Proof Since we are in IC, α̂ ◦ σ = σ for all efficient solution σ and all α̂ ∈ [0, 1]N . Hence,
Hurwicz compatibility is equivalent to

σ(v) = σ(α̂ ◦ v)

for all v ∈ IC and all α̂ ∈ [0, 1]N . It is not difficult to check that, given ω : R → R
N with∑

i∈N ωi (x) = x for all x ∈ R, eω is Hurwicz-compatible for IC. Let σ : IC → R
N be

an efficient Hurwicz compatible solution for IC. For each x ∈ R, let ex ∈ IC defined as
ex (N ) = [x, x] and ex (S) = [0, 0] otherwise. Let

ωi (x) = σi (ex )

for all x ∈ R and all i ∈ N . By efficiency of σ , we deduce
∑

i∈N ωi (x) = x for all x ∈ R.
We prove that σ(v) = eω(v) for all v ∈ IC by induction on the cardinality of

�(v) = {S ⊂ N , S �= ∅ : v(S) �= [0, 0]} .

Assume first |�(v)| = 0. Then, v = ev(N ) and hence

σ(v) = σ(ev(N )) = ω(v(N )) = eω(v).
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Assume now the result holds when the cardinality of �(v) is less than θ > 0, and let
|�(v)| = θ . Let S ∈ �(v). We have three cases:

Case 1: 0 ∈ v(S). Since S ∈ �(v), we deduce that there exists some α0 ∈ [0, 1] such that
0 = α0 ◦ v(S). Let αi = α0 for all i ∈ N and let v−S ∈ IC defined as follows:

v−S(T ) :=
{
v(T ) if T �= S
[0, 0] if T = S

for all T ⊆ N . It is straightforward to check that α̂ ◦ v = α̂ ◦ v−S . Under Hurwicz
compatibility of σ and the induction hypothesis,

σ(v) = σ(α̂ ◦ v) = σ(α̂ ◦ v−S) = σ(v−S)

= eω(v−S(N ))(v−S) = eω(v(N ))(v).

Case 2: 0 < v(S). Let αi = 1 for all i ∈ N . Let v−0,S ∈ IC defined as follows:

v−0,S(T ) :=
{
v(T ) if T �= S
[0, v(S)] if T = S

for all T ⊆ N . It is straightforward to check that α̂ ◦ v = α̂ ◦ v−0,S . Under Hurwicz
compatibility of σ ,

σ(v) = σ(α̂ ◦ v) = σ(α̂ ◦ v−0,S) = σ(v−0,S)

and we proceed as in Case 1 with (v−0,S).
Case 3: v(S) < 0. Let αi = 0 for all i ∈ N . Let v+0,S ∈ IC defined as follows:

v+0,S(T ) :=
{
v(T ) if T �= S[
v(S), 0

]
if T = S

for all T ⊆ N . It is straightforward to check that α̂ ◦ v = α̂ ◦ v+0,S . Under Hurwicz
compatibility of σ ,

σ(v) = σ(α̂ ◦ v) = σ(α̂ ◦ v+0,S) = σ(v+0,S)

and we proceed as in Case 1 with v+0,S .

��
An important implication of Theorem 3 is the following:

Theorem 4 The egalitarian solution is the only efficient and symmetric Hurwicz compatible
solution in IC.

Proof It follows from Theorem 3 and the fact that the egalitarian solution is the only sym-
metric one in the family of efficient, Hurwicz-compatible solutions. ��

6 A comment on the core

Let us consider a coalitional interval game v ∈ IG and α̂ ∈ [0, 1]N . For any coalition S ⊆ N ,
we denote αS = maxi∈S αi . The core of the TU game α̂ ◦v defined as (α̂ ◦v)(S) = αS ◦v(S),
for all S ⊆ N , S �= ∅ is given by the set:
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C(α̂ ◦ v) :=
{

x̂ ∈ R
N :

∑

i∈N
xi = αN ◦ v(N ), αS ◦ v(S) ≤

∑

i∈S
xi ,∀S ⊆ N

}

.

6.1 The interval core

Let us recall that the interval core with N players as defined in Alparslan Gök et al. (2008)
as the set

C(v) :=
{

a ∈ I
N :

∑

i∈N
ai = v(N ), v(S) �

∑

i∈S
ai ,∀S ⊆ N

}

.

In this case, we can apply the Hurwicz criterion to C(v) and obtain the set

α̂ ◦ C(v) :=
{
(α̂ ◦ ai )i∈N ∈ R

N : a ∈ C(v)
}

=
{
(
ai + αi · |ai |

)
i∈N ∈ R

N :
∑

i∈N
ai = v(N ), v(S) �

∑

i∈S
ai ,∀S ⊆ N

}

where
∑

i∈N
ai = v(N ) ⇐⇒

∑

i∈N
ai = v(N ) and

∑

i∈N
|ai | = |v|(N )

and

v(S) �
∑

i∈S
ai ⇐⇒ v(S) ≤

∑

i∈S
ai and |v|(S) ≤

∑

i∈S
|ai |

for all S ⊆ N . Notice that � has a different formal meaning than �. In particular, � implies
� but the opposite does not hold. For example, [0, 1] � [2, 2] but [0, 1] � [2, 2] because
|[0, 1]| > |[2, 2]|.
Proposition 4 If all the Hurwicz coefficients coincide, αi = α0 for all i ∈ N, then

α̂ ◦ C(v) ⊆ C(α̂ ◦ v). (15)

Proof Let us consider x̂ ∈ α̂◦C(v). Then, xi = ai +α0 · |ai | for any i ∈ N ,
∑

i∈N ai = v(N )

and
∑

i∈N |ai | = |v|(N ), and v(S) ≤ ∑
i∈S ai and |v|(S) ≤ ∑

i∈S |ai | for any S ⊆ N . Then,
∑

i∈N
xi =

∑

i∈N
ai + α0 ·

∑

i∈N
|ai | = α0 ◦ v(N )

and, for any S ⊆ N ,

α0 ◦ v(S) ≤
∑

i∈S
ai + α0 ·

∑

i∈S
|ai | =

∑

i∈S
xi

so x̂ ∈ C(α̂ ◦ v). ��
Observe that inclusion (15) holds also when C(v) = ∅. Inclusion C(α̂ ◦ v) ⊆ α̂ ◦ C(v) is not
always true, as in the following example.

Example 1 Consider n = 2 and the interval cooperative game v given by v({1}) = v({2}) =
[1, 3] and v({1, 2}) = [2, 4]. For this game, C(v) = ∅, while if we consider α1 = α2 = 0,
the game α̂ ◦ v has non emptycore: 0 ◦ v({1}) = 1, 0 ◦ v({2}) = 1 and 0 ◦ v({1, 2}) = 2, so
C(α̂ ◦ v) = {(1, 1)}.
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Then we can deduce the next result.

Proposition 5 The interval core is not uniform Hurwicz-compatible in IG.

Remark 1 If we consider in the previous example the grand coalition certainty, in particular
if we assume v({1, 2}) = [2, 2], we have still that the inclusion C(α̂ ◦ v) ⊆ α̂ ◦ C(v) does
not hold.

6.2 The interval square core

Given an interval cooperative game v ∈ IG, we call border games the two (classical) coop-
erative games defined as v and v where for any S ⊆ N , v(S) = [

v(S), v(S)
]
. In Alparslan

Gök et al. (2009c) the square interval core C
(
v
)
�C (v) has been defined as:

C
(
v
)
�C (v) :=

{

a ∈ I
N :

∑

i∈N
ai = v(N ), a ∈ C

(
v
)
, a ∈ C (v)

}

and it has been proved that if C(v) �= ∅ then C
(
v
)
�C (v) = C(v). Then, the same consid-

erations of the interval core on the Hurwicz compatibility can be done.

7 Concluding remarks

In this paper we study interval cooperative games. These are games where the worth of
coalitions are uncertain. Both a lower and an upper bound of the possible outcome is assigned
to each coalition. For these games, several solution concepts provide interval allocations to
the players and leave uncertainty on the exit. To mitigate this uncertainty, assuming some
degree of optimism (or pessimism) of the players (given by real numbers between 0 and 1),
we introduce a TU cooperative game applying the Hurwicz criterion. This procedure allows
having a standard solution concept once the degree of optimism is fixed.

Another possibility of approaching the uncertainty is the following: consider any interval
solution concept in the original interval game and then apply the Hurwicz criterion to the
interval allocation. The question posed in the paper is if the two approaches lead to the same
result. We give the idea of Hurwicz compatibility and investigate under which conditions
it holds. In the case of a uniform degree of optimism/pessimism or of the grand coalition
certainty, we prove that the only compatible solutions are the proportional ones, or the egal-
itarian in case symmetry is required. Some considerations on the Shapley value and the core
solution are also discussed.
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