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Abstract
In this paper, two new joint maintenance and spare parts provisioning policies for a multi-unit
production system are proposed. The production system consists of N identical, independent
units, each subject to gradual deterioration. Production rates of the units depend on their
operating states. Every maintenance action incurs a high set-up cost which includes the cost
of sending a crew to the field, and it is therefore cost effective to maintain several units at the
same time. The paper’smain contribution is an analytical modeling of amulti-unit production
system and the development of effective joint maintenance and spare parts ordering policies
for such system. The states of the units are observable through regular inspections and the
maintenance and spare part ordering decisions depend on the number of the failed units and
the number of available spare parts. The process is formulated as a semi-Markov decision
process with the optimality criterion being the minimization of the total long-run expected
average cost per unit time. The objective is to determine the optimal levels of the number of
failed units to place an order for the spare parts or to initiate group maintenance, and to find
the optimal inspection interval. Numerical examples are provided to illustrate the proposed
optimization model and to compare the two maintenance policies. Sensitivity analysis is
conducted to analyze the effect of several cost components on the optimal levels and on the
long run expected average cost rate.

Keywords Condition-based maintenance · Spare part provisioning · Multi-unit system ·
Production system · Semi-Markov decision process

1 Introduction

Most production systems are subject to deterioration with usage and age which leads to their
failure. Failure of such systems incurs high replacement cost and the cost of lost demand
due to their unavailability. Maintenance expenses are estimated to be in the range of 15–
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40% (in the study conducted by Maggard and Rhyne (1992)), or in the range of 15–70%
(Bevilacqua and Braglia 2000) of the total production cost. So, taking proper maintenance
actions is important to increase the availability and reduce the operating costs of the system.
Corrective maintenance (CM) or preventive maintenance (PM) actions are performed on
deteriorating production systems (Wang and Pham 1999) to keep the unavailability of the
system down, and to decrease the cost of lost production. CM is performed after a system’s
failure, however PM is performed before a system’s failure to prevent severe deterioration
or failure of the system. PM activities generally consist of cleaning, lubrication, adjustment,
alignment and replacement of sub-systems and components that are not functioning properly
(Moghaddam and Usher 2011). Usually, PM is more effective than CM, as it can improve
system performance by preventing or reducing unpredictable failure of the system resulting
in its higher availability.

PM can be categorized into two classes: time-based preventive maintenance (TBPM) and
condition-based preventive maintenance (CBM) (Wang et al. 2009). TBPM sets a periodic
interval to perform PM regardless of the health status of a physical asset (Jardine et al. 2006).
For example, Yeh et al. (2010) discussed an application of age-based maintenance policy
for a leased equipment within the lease period, where PM decision was made considering a
threshold for age. CBM suggests the required maintenance actions according to the actual
condition of the system by means of degradation monitoring and failure prediction (Rahmati
et al. 2018). Different CBM optimization models have been proposed in the literature, how-
ever, most of the reported CBM models are applicable to single unit systems (Dieulle et al.
2003; Wang 2000; Jiang et al. 2012; Niu et al. 2016).

Various maintenance models of multi-unit systems have been proposed for different sys-
tem designs. For example, the problem of joint determination of a cost-optimal inspection
and replacement policy for a deteriorating, complex multi-component manufacturing system
is addressed in Ahmadi (2014). Authors assumed two possible states during operation: nor-
mal and degraded states. The system state is modeled using a proportional intensity model
incorporating a damage process and a virtual age process generated by repair. The long-run
average cost per unit time is derived by applying renewal reward process approach.

Group replacement policies can be implemented in a real production setting, where all
units are as-good-as-new after maintenance (Barron 2015). A significant contribution has
been made by Barron (2015), where the author presented three group replacement policies
for a multi-component repairable, cold standby system. It is assumed that failure time has
a phase-type (PH) distribution, and the long-run average cost rate was derived by applying
renewal process.

A k-out-of-n system consists of n identical units which can operate if at least k of the units
operate (Asadi andBayramoglu 2006).Due to the existence of economic dependencies among
the units of a k-out-of-n system, the combination of the optimal maintenance decisions for
the units is not optimal for the whole system (Nicolai and Dekker 2008). There are several
papers studying k-out-of-n systems (Barron 2018; Eruguz et al. 2017; Bohlin and Wärja
2015). Studying the availability and reliability of such systems has received a great deal of
attention. Availability of R-out-of-N repairable system is studied in Barron et al. (2004).
The authors applied Markov renewal theory and semi-regenerative processes to formulate
the availability of such a system. Recently, Barron and Yechiali (2017) developed another
preventive maintenance policy for a 1-out-of-N repairable system by applying dynamic
programming, where the lifetimes of units follow a discrete phase-type distribution.

Two important special cases of k-out-of-n systems are series and parallel systems corre-
sponding to k = n (n-out-of-n) and k = 1 (1-out-of-n), respectively. If a multi-unit system
has a series configuration, the whole system stops operating whenever one of the units fails
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(Zhou et al. 2009; Rao and Bhadury 2000; Moghaddam and Usher 2011). A parallel multi-
unit system is a system that fails to operate if all the components stop operating (Tian et al.
2011; Keizer et al. 2018).

Most models of k-out-of-n systems have focused on the reliability assessment of the sys-
tem rather than on the development of maintenance policies for such systems. The multi-unit
system considered in this paper is related to k-out-of-n systems, but we are considering n
independent units working in parallel (there are no stand-by units) and we propose mainte-
nance policies for such a system. Applying proper maintenance policy is an effective way
to keep the system in a good condition, but a common assumption in related, previously
published papers is that spare parts are available at all times. This assumption reduces the
complexity of maintenance problems, but it is not realistic for the majority of the real-world
problems.

Assuming a system or its units to be either operating or failed is not applicable to many
real world systems as the system or its units might be degraded but not failed (Kontoleon and
Kontoleon 1974). Categorizing the system health state into three states has been considered
in several papers (Kontoleon and Kontoleon 1974; Jia et al. 2016; Khaleghei andMakis 2015,
2016; Salari and Makis 2017b). For instance, Eryilmaz and Xie (2014) studied marginal and
joint survival functions for the lifetime of two different three-state k-out-of-n : G systems.
Authors considered a system consisting of n components where each component could be
in three different states: perfect functioning, partial performance and complete failure. In
a research presented in Jia et al. (2016), authors considered an n-unit system, where each
unit has three states: perfectly working, deteriorated and complete failure. Authors applied
Markov theory and aggregated stochastic process theory to get reliability indices. We will
show a detailed development for 3 states, that can be extended to a general case of n states (see
“Appendix C”). We assume that deterioration process of each unit has two working states
and a failure state which is absorbing. Assuming only two operational states is sufficient
for CBM (e.g. Jafari et al. 2018) in most practical applications (see also the description in
“Appendix C” on extending the model to a model with more than three states).

Most production systems are subject to high costs due to down time, and it is essential
for these systems to have high availability. One efficient way of increasing availability and
reducing the total cost is to jointly plan the maintenance actions and spare parts ordering.
Spare parts are common inventory stock itemswhich are required for maintenance of systems
(Kennedy et al. 2002). Having a sufficient amount of spare parts at the right time when a
maintenance decision is made is a crucial inventory control problem. It is therefore essential
for a production manager to combine maintenance decisions with the spare parts ordering
decisions.

Joint maintenance and inventory models have been introduced and studied recently by
some researchers. Wang (2011) presented a joint spare part and maintenance inspection
optimization model using the delay-time concept. A two-stage failure process characterized
by the delay-time concept is used to model the failure and inspection processes. Optimal
ordering quantity, ordering interval, and inspection interval are obtained by minimizing the
long run expected average cost per unit time. An algorithm is proposed to determine the
optimal decision process using a combination of analytical and enumeration approaches.
Keizer et al. (2017) proposed a joint optimization of CBM and spares planning for multi-unit
systems. A Markov decision process is applied to formulate the model. A decision is made
at the beginning of each time unit whether or not to replace some units and to determine the
number of spare parts to order.

Spare parts may be very expensive, and on the other hand, stocking is limited by space and
cost. One effective strategy is the just-in-time provision of spare parts. The idea of just-in-time
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provision of spare parts is to order and deliver spare parts whenever required instead of keep-
ing them in stock permanently (Lanza et al. 2009). Just-in-time spare parts provisioning and
maintenance optimization is studied in Lanza et al. (2009). Authors assumed that breakdowns
of production can incur high cost when the required spare part is missing, so just-in-time
strategy which depends on both reliability and economical aspects was applied in the model.
Amethod was presented to calculate the optimal time to perform preventive maintenance and
spare part provision using a stochastic optimization algorithm. This assumption of incurring
high cost when spare parts are not available is a reasonable assumption for many production
systems. In this paper, we consider just-in-time provision of spare parts as keeping spares in
stock is not feasible and cost effective for many systems.

Based on our reviewofmaintenancemodels formulti-unit production systems, no research
papers have been published considering the combination of CBM, economic dependence, and
spare parts provisioning, specially just-in-time concept for a multi-unit production system.
There are papers studying the CBM and demand satisfaction for a production system. For
example, Salari and Makis (2017a) proposed a CBM model for a multi-unit parallel system
subject to deterioration. They considered production level of the system as a threshold for
initiating preventive maintenance. They focused on demand satisfaction, however, they did
not consider spare part provisioning in their model. We extend this model to a more complex
model by considering two kinds of decisions, namely decision regarding spare parts ordering
applying JIT approach, and also a maintenance decision. The other major difference is that
the decision to perform maintenance in Salari and Makis (2017a) depends on the production
rate of the system, whereas in our model the decision to perform maintenance depends
on the number of failed units in the system. There are also papers studying the CBM and
spare part provisioning for a multi-unit system subject to deterioration. For example, de
Smidt-Destombes et al. (2006) considered a single k-out-of-n system with deteriorating
units and hot standby redundancy, where each unit had three possible observable states,
namely as-good-as-new, degraded and failed. The conditions to initiate a maintenance, the
stock level determination, the repair capacity and the repair priority settings are considered
as the variables to control the availability. The authors presented two approximate methods
to analyze the relation between the system availability and the control variables. Authors
did not include production rates of the units and the demand satisfaction requirement in the
model. They focusedmainly on the availability of the system rather than studying the optimal
maintenance policy for such system. In particular, although CBM and spare part provisioning
have been considered for multi-unit systems, those studies did not consider the impact of
deterioration level on the production rate of the units of the system and they assumed that
the demand is always satisfied, which is not realistic.

The main objective of this research is to develop a joint model for CBM and just-in-
time spare parts provisioning for a multi-unit production system, focusing on satisfying
of the demand for the system. We consider a multi-unit parallel system with deteriorating
units, where deterioration process of each unit is a three-state continuous time homogeneous
Markov chain with two working states and a failure state. Examples of such systems are
energy systems such as solar panels or wind turbine farms, or production systems with a
large number of machines. To model the effect of deterioration on the production rate of
the system, we consider variable production rates of the units depending on their states. An
example of application of the model considered in this paper is the maintenance of Active
Phased Array Radar (APAR) described in de Smidt-Destombes et al. (2004). System under
study in de Smidt-Destombes et al. (2004) is a radar which consists of several transmit and
receive elements. Authors assumed that a certain percentage of the total number of elements
is allowed to fail, without losing the function of the specific radar face. Set-up costs for
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maintenance are considered to be high, so maintenance cannot be performed upon each
element failure. This model is considered as a k-out-of-N system, where system is operable
when at least k units are operating. A special case k = 1, that is system is operable if at least
1 unit is operating, is similar to our proposed model.

Another application of the proposed model is in the area of fleet maintenance (ElMoudani
and Mora-Camino 2000), where the aim is to establish a fleet maintenance plan with main-
tenance contractors. Fleet of the vehicles is assumed as the system where each unit (bus,
aircraft, etc.) operates independently and can deteriorate by usage and age.

The main contributions of this paper can be summarized as follows:

– We propose a new joint CBM and spare part provisioning model for a multi-unit parallel
production system applying just-in-time ordering concept. No analytical research has
been done on the joint maintenance and spare part provisioning modeling for multi-unit
systems where units are working in parallel.

– Units of the system are subject to deterioration, and different production rates are consid-
ered in different working states. None of the previous studies in the area of maintenance
modeling ofmulti-unit production systems presented an analytical development for CBM
of multi-unit parallel production systems subject to deterioration.

– Demand satisfaction is another interesting contribution of this paper, which makes the
modeling more difficult especially for the calculation of the expected cost.

– Applying semi-Markov decision process (SMDP) approach to formulate and solve jointly
the maintenance and spare parts ordering decision problem for the multi-unit system
described above using just-in-time concept, which is a new contribution to maintenance
modeling and control research.

2 Problem assumptions

The system under study is defined by the following assumptions:

1. There is a production facility (e.g. wind farm), composed of several units (e.g. wind
turbines) which are subject to deterioration.

2. The deterioration level of each unit and the spare parts inventory level become known
through periodic inspections at discrete time epochs {kΔ : k = 1, 2, . . .}, where Δ is a
fixed inspection interval.

3. An inspection reveals the exact state of the units. At each inspection time, an inspector
is sent to the field to inspect the turbines, deterioration level of each unit is checked, and
the number of units in each state and the inventory level are recorded.

4. Deterioration process {Xt }t≥0 of each unit is modeled as a three-state continuous time
homogeneous Markov chain with two working states O = {0, 1} and a failure state F
which is absorbing, Ω = {0, 1, F}. State 0 means that the unit is as-good-as-new, state
1 means that the unit is in a warning state, and state F is a failure state.

5. In our model, we assume that when the unit leaves state i , it next enters state j with a
known transition probability function Pi j (t). Transition from state i to j is meaningful
if j ≥ i since deterioration is increasing with time.

6. System state space description keeps track of the number of units in each state and the
inventory level of the spare parts at each inspection time. The state space for the whole
system can be defined as W = {(nF , n1, S)|n1 + nF ≤ N , n1, nF , S ≥ 0}, where nF ,
n1 represent the number of units in the failure state and warning state, respectively, and
S represents the on-hand inventory.
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7. Units produce with different production rates in states 0 and 1.
8. We consider known demand and production rates depending on the states. Units are

capable of producing at different production rates, andwe study the effect of deterioration
on the total production rate in the model.

9. Unsatisfied demand incurs high cost of lost demand and excess production in an interval
can be sold at a market price.

10. At each inspection time, there are several possible actions. A decision is made whether
or not to initiate maintenance and on the ordering of spare parts. Maintenance is initiated
if the number of failed units in the system is found to be greater than or equal to R units.
More specifically, maintenance time of the system is defined as the first inspection time
when the number of failed units exceeds the maintenance threshold R (R > 0). Hence,
the action space is defined as: A={M,O}.M andO can be 0 or 1, whereM = 1 represents
initiation of maintenance, and M = 0 represents no maintenance. O = 1 means that an
order is placed, and O = 0 means that no order is placed.
Two maintenance policies are considered in this paper:

– First maintenance policy prescribes replacement of the failed units when at an inspec-
tion time there are at least R failed units in the system, where R is a decision variable.
We assume that there is a set-up time to prepare and send a crew to perform main-
tenance. We also assume that sufficient number of repairmen is available so that
all units can be maintained simultaneously. However the maintenance cost for both
policies depends on the number of units maintained.

– Second maintenance policy prescribes replacement of failed units and preventive
maintenance of units in state 1, when at an inspection time there are at least R
failed units in the system. If the decision is to perform maintenance, failed units are
replaced and there is an opportunity to perform preventive maintenance on the units
in the warning state. After maintenance is performed, all the units are working in
state 0.

Thus, the maintenance action is decided by comparing the number of failed units with
the threshold R, and maintenance is initiated if at a decision epoch (kΔ), nF ≥ R, where
(nF , n1, S) is the state of the system at this epoch.

11. We assume that the total time to perform corrective or preventive maintenance, TR (or
TP ) have known density functions fTR (t) (or fTP (t)). We assume that TP ≥st TR so that
FTR (t) ≥ FTP (t).

Remark 1 We say that the random variable X is stochastically larger than the random variable
Y , written as X ≥st Y , if, for all t:

P(X > t) ≥ P(Y > t)

12. Both preventive and corrective maintenance actions are perfect i.e. they will restore the
units to the as-good-as-new condition.

13. To perform replacement, spare parts are required and all units share the same pool of
spares. Spare parts ordering depends on the number of failed units and the number of
available spare parts in the system at each inspection time. We define a threshold to order
spare parts as R − x , x ≥ 1 where both R and x are decision variables and R is the
threshold to perform maintenance. Assume that the state of the system at an inspection
time is (nF , n1, S). If R > nF ≥ R −x , x ≥ 1, an order of size R − S for spares is placed
and the total number of spares is equal to R after the delivery. If nF ≥ R, maintenance
is initiated, and the missing spares are obtained through an emergency order.
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14. We assume that the space and the budget for holding the spare parts is limited, so JIT
ordering strategy is applied in the model. The system starts operating and there is no
spare part available in the system. When the number of failed units reaches R − x , an
order for R spare parts is placed. When the number of failed units reaches or exceeds R,
maintenance is initiated. In this case, the system requires at least R spare parts (which
are available if the order was placed before), and if more than R spare parts are required,
an emergency order is placed.

Remark 2 The number of available spare parts in the system at each inspection time can be
0 or R (S ∈ {0, R}), due to just-in-time ordering.

15. There are two types of ordering for spare parts: a regular order with a fixed lead time and
an emergency order with a negligible lead time and a higher ordering cost compared to
regular ordering.

16. The following cost components are considered in the model:

– CI : Inspection cost per unit at each inspection time
– CF : Failure replacement cost of each unit
– CP : Preventive maintenance cost of each unit
– CD : Cost of lost production per unit time, when the total production rate of the system

is below the demand rate D
– CE : Profit rate from the excess production, when the total production rate of the

system is higher than the demand rate D
– CK M : Set-up cost of performing maintenance
– CK I : Set-up cost of performing inspection
– CH : Holding cost rate per spare part
– CO : Regular ordering cost per unit
– Ces : Emergency ordering cost per unit

Figure 1 shows the decision at each inspection time depending on the number of failed
units and the number of available spare parts in the system.

Two types of ordering of spares is considered in the model. A regular order with a fixed
lead time To and an emergency order with a negligible lead time and a higher ordering cost
per spare part. We assume that the regular order lead time To is smaller than a reasonable
inspection interval Δ so that the regular order will arrive by the next inspection time.

If the number of failed units at an inspection time exceeds R units (maintenance is
required), maintenance crew is sent to perform maintenance. If there is not enough spares
available in the system, emergency order is placed to cover the required number of spares.

The decision variables in the joint maintenance and inventory optimization model include
the number of failed units to initiate maintenance (R), ordering time, which is the first
inspection time when the number of failed units exceeds R − x, x ≥ 1, and inspection
interval (Δ).

Our objective is to minimize the long-run expected average cost per unit time.

3 State definition

It is assumed that the sojourn times in states 0 and 1 are exponentially distributed. Transition
probability from state i to j for each unit is equal to Pi j (t) for t ≥ 0 which is obtained by
solving the Kolmogorov backward differential equations. Details can be found in “Appendix
A”.
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Fig. 1 Decision made at each
inspection time depending on the
number of failed units and the
number of available spare parts 0 R

0

− −
Do nothing Do nothing

−

−

Place a 
regular 
order

Do nothing

Perform 
maintenance

Perform 
maintenance

S

…

…

…

States of the system are defined as follows:

1. State (0, 0, 0): initial state when all units are in state 0 and there is no spare part available
in the system.

2. State (nF , n1, S): there are nF units in the failure state, n1 units in state 1, n0 = N −
n1 − nF units in state 0, and S spare parts are available in the system.

Consider a system whose state is observed at inspection epochs and at each epoch a
decision ismade and costs are incurred as a consequence of the decisionmade. This controlled
dynamic system is called an SMDP when the following Markovian properties are satisfied:
if at a decision epoch the action a is chosen in state i , then the expected time and expected
cost until the next decision epoch and the state at the next epoch depend only on the present
state i and the subsequently chosen action a. So, sojourn time, expected cost, and the state
at the next epoch are independent of the past history of the system (Tijms 1986).

SMDP is determined by the following quantities:

– Pi j = the probability that the system will be in state j ∈ W at the next decision epoch
given the current state is i ∈ W . Note that Pi j depends on the time till the next decision
epoch.

– τi = the expected time until the next decision epoch given the current state is i ∈ W .
– Ci = the expected cost incurred until the next decision epoch given the current state is

i ∈ W .

From the theory of SMDP for given control limits (R, x) and inspection interval Δ, the
long-run expected average cost per unit time g(Δ, R, x) can be obtained by solving the
following linear equations (Tijms 1986):

Vm = Cm − g(Δ, R, x) · τm +
∑

k∈W

Pm,k · Vk

Vj = 0 for an arbitrarily selected single state j ∈ W, (1)

where the quantities Vm are the relative values dependent on the control limits when starting
in state m ∈ W . The optimal values of the control limits and inspection interval can be
obtained as follows:

(Δ∗, R∗, x∗) = argΔ>0
R>0,
x>0

in f g(Δ, R, x)
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These optimal control parametersminimize the long run expected average cost g(Δ∗, R∗, x∗)
which is obtained by solving the system of linear equations (1) considering different combi-
nations of Δ, R, and x .

Next, we derive the transition probabilities, the expected costs and sojourn times for each
state of the system.

3.1 Computing the transition probabilities for the system

In this section, we derive the transition probability matrix for a system consisting of N units.
Transition probabilities for each state depend on the decision made in that state.

If the decision at an inspection time is to have no order and no maintenance, the system
can transit from state (nF , n1, S) to state (n′

F , n′
1, S′).

Remark 3 Assume that the state of the system at the current inspection time is (nF , n1, S),
and the state of the system at the next inspection time is (n′

F , n′
1, S′). If the decision is to do

nothing at the current inspection time, we can write:

n′
F ≥ nF , n′

0 = N − n′
F − n′

1, n0 = N − nF − n1, n′
0 ≤ n0, S = S′.

Theorem 1 The transition probability function when the decision is to continue operation
(no maintenance or ordering is initiated) is given by the following equations:

P(nF ,n1,S)(nF +i,n′
1,S)(Δ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑min{i,n1}
j=n1−n′

1

( n0
i− j

)(n1
j

)( n0−i+ j
n′
1−n1+ j

)
P00(Δ)n′

0 P01(Δ)n′
1−n1+ j n′

1 < n1

×P0F (Δ)i− j P11(Δ)n1− j P1F (Δ) j

∑min{i,n1}
j=0

( n0
i− j

)(n1
j

)(n0−i+ j
j

)
P00(Δ)n′

0 P01(Δ) j n′
1 = n1

×P0F (Δ)i− j P11(Δ)n1− j P1F (Δ) j

∑min{i,n1}
j=0

( n0
i− j

)(n1
j

)( n0−i+ j
n′
1−n1+ j

)
P00(Δ)n′

0 P01(Δ)n′
1−n1+ j n′

1 > n1,

×P0F (Δ)i− j P11(Δ)n1− j P1F (Δ) j

(2)

where i = n′
F − nF , i ≥ 0 is the total number of units which failed in the system during the

next time interval Δ, and j is the number of units which failed from state 1 during that time
interval.
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Fig. 2 Number of units changing state in a time interval of length Δ

Proof Transition from state (nF , n1, S) to state (nF + i, n′
1, S) occurs when i units fail in

the next time interval of length Δ. These failed units can be from state 0, or state 1, or both,
depending on n′

1.
Figure 2 shows the number of units which change their state in the next time interval of

length Δ.
Define j as the number of units which fail from state 1 in the time interval of length Δ,

where j ≤ i .
From the total i units which fail during the next time interval of length Δ, we assume that

j units have failed from state 1 and the remaining i − j units have failed from state 0.
If j units fail from state 1, n′

1 − n1 + j units must deteriorate to state 1, and the other
units do not deteriorate or fail (stay in the same state) during time Δ. The values of n′

1, n1,
and i are known based on the current state (nF , n1, S) and the next state (nF + i, n1, S) of
the system at the next inspection interval, but the values of j can vary.

Two different cases can occur which are summarized as follows:

– Consider the case n′
1 < n1 where at least n1 − n′

1 units can fail from state 1 in the
time interval of length Δ, in this case min{ j} = n1 − n′

1. The maximum number of
units which can fail from state 1 depends on the value of i . As j ≤ i , the number of
units which can fail from state 1 cannot exceed i . On the other hand, the maximum
number of units available in state 1 which can fail is equal to n1, so that max{ j} =
min{n1, i}.

– If n′
1 ≥ n1, the minimum number of units which can fail from state 1 is equal to 0, so

the minimum value of j is equal to 0 and the maximum value of j is the same as in the
previous case.

��
If at an inspection time the number of failed units exceeds R, a decision is made to perform

maintenance. If the number of failed units is greater than the number of available spares, an
emergency order is placed to have the required spares on hand.

Theorem 2 The transition probability when the decision is to perform maintenance is given
by the following formulas:
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– For the first maintenance policy:

P(nF ,n1,S)(0,n′
1,0)

(TR) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N−nF −n′
1

i=n1−n′
1

∑min{i,n1}
j=n1−n′

1

( n0
i− j

)(n1
j

)( n0−i+ j
n′
1−n1+ j

)
(

∫ ∞

0
P00(u)n′

0 n′
1 < n1

×P01(u)n′
1−n1+ j P0F (u)i− j P11(u)n1− j P1F (u) j × fTR (u) du)

∑N−nF −n′
1

i=0

∑min{i,n1}
j=0

( n0
i− j

)(n1
j

)(n0−i+ j
j

)
(

∫ ∞

0
P00(u)n′

0 P01(u) j n′
1 = n1

×P0F (u)i− j P11(u)n1− j P1F (u) j × fTR (u) du)

∑N−nF −n′
1

i=0

∑min{i,n1}
j=0

( n0
i− j

)(n1
j

)( n0−i+ j
n′
1−n1+ j

)
(

∫ ∞

0
P00(u)n′

0 n′
1 > n1

×P01(u)n′
1−n1+ j P0F (u)i− j P11(u)n1− j P1F (u) j × fTR (u) du)

(3)

Transition probability in this case depends on the total number of units which failed in
the system (i), and the number of units which failed from state 1 ( j ) during TR.

– For the second maintenance policy:

P(nF ,n1,S)(0,0,0)(TP ) = 1 (4)

Proof • First maintenance policy prescribes corrective replacement of failed units and the
units which fail during TR . After performing maintenance, all failed units are replaced,
there are no spare parts available in the system, and the state of the system after mainte-
nance is (0, n′

1, 0), where 0 ≤ n′
1 ≤ N − nF .

During TR , which has a known density function fTR (t), units in states 0 and 1 are still
working and their state may change. The transition probability for the first maintenance
policy is the same as that in Eq. 2, however lead time is a random variable and the number
of units which transit to failure state in the system (i) during TR is not fixed. Proof is the
same as the proof of Theorem 2, but we need to condition on the random time TR .
It is known that i ≥ j , so the minimum number of units that can fail in the system is
equal to the minimum number of units which fail from state 1, so min{i} = min{ j} for
all the cases.
There are N − nF operational units in the system in state (nF , n1, S) which can fail by
the end of TR . We know that state of the system after TR is (0, n′

1, 0) which means that
from N − nF operational units in the system, n′

1 units are working in state 1 after TR .
So the maximum number of units which can fail in the system during TR is equal to
N − nF − n′

1, that is max{i} = N − nF − n′
1.• For the second maintenance policy, all the failed units are replaced correctively and units

in state 1 are maintained preventively by the end of TP . After TP , all the units are in
state 0, and there are no spares available in the system. Therefore, transition from state
(nF , n1, S) to state (0, 0, 0) occurs with probability one.

��

If at an inspection time the state of the system is (nF , n1, S), where R − x ≤ nF < R and
S < R, a decision is made to place an order (but not to perform maintenance). The order of
size R − S is placed which will arrive before the next inspection time (To < Δ).
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Theorem 3 The transition probability function when the decision is to place a regular order
for spare parts is given as follows ((Δ > To):

P(nF ,n1,S)(nF +i,n′
1,R)(Δ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑min{i,n1}
j=n1−n′

1

( n0
i− j

)(n1
j

)( n0−i+ j
n′
1−n1+ j

)
P00(Δ)n′

0 P01(Δ)n′
1−n1+ j n′

1 < n1

×P0F (Δ)i− j P11(Δ)n1− j P1F (Δ) j

∑min{i,n1}
j=0

( n0
i− j

)(n1
j

)(n0−i+ j
j

)
P00(Δ)n′

0 P01((Δ) j n′
1 = n1

×P0F (Δ)i− j P11(Δ)n1− j P1F (Δ) j

∑min{i,n1}
j=0

( n0
i− j

)(n1
j

)( n0−i+ j
n′
1−n1+ j

)
P00(Δ)n′

0 P01(Δ)n′
1−n1+ j n′

1 > n1

×P0F (Δ)i− j P11(Δ)n1− j P1F (Δ) j

(5)

Proof Ordering spare parts does not affect the deterioration process of the units. The regular
order arrives before the next inspection time, so that the state of the system at that time is
(nF + i, n′

1, R), where the number of spare parts increases to R. The transition probability
from state (nF , n1, S) to state (n′

F , n′
1, R) in the next time interval of length Δ is the same as

the transition probability from state (nF , n1, S) to state (n′
F , n′

1, S) in Eq. 2, but the number
of spares increased to R by the time Δ. ��

3.2 Derivation of the expected costs

The expected cost at each inspection time is given by the sum of the inspection cost, main-
tenance cost (if maintenance is performed), ordering cost (if an order is placed), profit from
excess production, cost of lost demand, and holding cost (for on hand spare parts).

We define P R = p0 × n0 + p1 × n1 (n0 = N − nF − n1) as the total production rate
of the system at each time which depends on the number of units in states 0 and 1. If the
total production rate of the system (P R) drops below the demand rate (D) at time t , shortage
occurs with a cost of lost demand depending on the amount of shortage and sojourn time in
that state.

Let us define Crt (nF , n1, S) as the cost rate (cost rate of lost demand or cost rate of excess
production) of the system that is charged whenever the system is in state (nF , n1, S), which
is written as follows:

Crt (nF , n1, S) = CD × Max{0, D − ((N − nF − n1)p0 + n1 p1)}
−CE × Max{0, ((N − nF − n1)p0 + n1 p1) − D} (6)

We define C R(t) as the cost of lost demand (or profit from excess production) during a
time interval of length t . If the decision is not to perform maintenance, t = Δ, and if the
decision is to perform maintenance, t is a random variable with a density function fTR (or
fTP ).

Theorem 4 The expected cost of lost demand (or profit from excess production) during the
time interval t given the current system state is given as follows:

E[C R(t)|(nF , n1, S)] =
N−nF −n1∑

i=x

n1+n0−i∑

n′
1=max{n1−i,0}

min{i,n1}∑

j=x

Crt (nF +i, n′
1, S′)
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×
(

n0

i − j

)(
n1

j

)(
n0 − i + j

n′
1 − n1 + j

) ∫ t

0
P00(u)n′

0 P01(u)n′
1−n1+ j

×P0F (u)i− j P11(u)n1− j P1F (u) j du (7)

where x = 0 for n′
1 ≥ n1, and x = n1 − n′

1 for n′
1 < n1.

Proof Suppose that for the continuous-time Markov chain {Xt } the rates νi = ∑
j 
=i qi j (of

the units of the system) are bounded in i ∈ Ω . Then:

E[C R(t)|(nF , n1, S)] =
∑

(nF +i,n′
1,S)

Crt (nF + i, n′
1, S′)E(nF ,n1,S)(nF +i,n′

1,S
′)(t)

=
∑

(nF +i,n′
1,S)

Crt (nF + i, n′
1, S′) ×

∫ t

0
P(nF ,n1,S)(nF +i,n′

1,S
′)(u)du,

where E(nF ,n1,S)(nF +i,n′
1,S)(t) is the expected amount of time that the process is in state

(nF + i, n′
1, S), and the summation is over all the reachable states from the current state

(nF , n1, S). Cost rate of Crt (nF + i, n′
1, S′) is given by the following formula:

Crt (nF + i, n′
1, S′)=CD × Max{0, D−((N −(nF + i) − n′

1)p0 + n′
1 p1)}

−CE × Max{0, ((N − (nF + i) − n′
1)p0 + n′

1 p1) − D}
��

Expected cost at each state can be derived based on the decision made in that state. To
decide about the required action, we compare the number of failed units in each state with
the critical levels R, and R − x .

The total expected cost of the system in state (nF , n1, S) when the decision is not to
perform maintenance and not to place an order is equal to:

C(nF ,n1,S)(Δ) = CK I + CI (N − nF ) + CH · S · Δ + E(C R(Δ|(nF ,1 , S))) (8)

The total expected cost of the system in state (nF , n1, S) when the decision is not to
perform maintenance but to place a regular order is equal to:

C(nF ,n1,S)(Δ) = CK I + CI (N − nF ) + CO(R − S)

+CH (S · To + R(Δ − To)) + E(C R(Δ|(nF ,1 , S))) (9)

If at an inspection time, decision is made to perform maintenance, maintenance team is
sent to the field to initiate maintenance with the total maintenance time equal to TR (or TP ).
If there is a need for more spare parts (number of failed units is greater than the number of
available spare parts) an emergency order is placed. Expected cost of emergency ordering
and maintenance cost can be derived by conditioning on the number of units in states F and
1 at the end of TR (or TP ).

Note that if the decision is to perform maintenance in state (nF , n1, S), after TR (or TP )
there are no available spare parts in the system (S = 0). Based on the idea of just-in-time
ordering S = 0 or R at each inspection time. If at an inspection time nF ≥ R maintenance
is initiated, and during TR the number of failed units can increase to nF + i ≥ R, i ≥ 0.
The maximum number of available spare parts in the system is equal to R that is less than
or equal to the number of failed units in the system (S ≤ R ≤ nF + i). All the failed units
are replaced correctively by the end of TR (or TP ) and at least nF + i ≥ S spare parts are
required in the system, so all the spare parts will be used and S = 0 by the end of TR (or TP ).
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For the firstmaintenance policywhen the number of failed units exceeds R at an inspection
time, failed units are correctively replaced by the end of TR . For the second maintenance
policy, when the total number of failed units at an inspection time exceeds R, failed units are
correctively replaced and units in state 1 are preventively maintained by the end of TP .

Theorem 5 The total expected cost of performing maintenance incurred in state (nF , n1, S),
when the decision is to initiate maintenance is as follows:

– First maintenance policy:

E(C |TR, (nF , n1, S)) = CK M + CI (N − nF ) +
∫ ∞

0
CH · S · fTR (u)du

+
N−nF −n′

1∑

i=x

n1+n0−i∑

n′
1=max{n1−i,0}

min{i,n1}∑

j=x

(
n0

i − j

)(
n1

j

)(
n0 − i + j

n′
1 − n1 + j

)

×
[(

Ces(nF + i − S) + CF (nF + i)

) ∫ ∞

0
P00(u)n′

0 P01(u)n′
1−n1+ j

× P0F (u)i− j P11(u)n1− j P1F (u) j fTR (u) du

+ Crt (nF + i, n′
1, S′)

∫ ∞

0

∫ u

0
P00(t)

n′
0 P01(t)

n′
1−n1+ j

× P0F (t)i− j P11(t)
n1− j P1F (t) j fTR (u)dtdu

]
(10)

where x = 0 for n′
1 ≥ n1, and x = n1 − n′

1 for n′
1 < n1.

– Second maintenance policy:

E(C |TP , (nF , n1, S)) = CK M + CI (N − nF ) + E(CH |TP )

+ E(C R|TP ) + E(CE M |TP ) + E(CC M + CP M |TP )

= CK M + CI (N − nF ) +
∫ ∞
0

CH · S · fTP (u)du

+
N−nF −n′

1∑

i=x

n1+n0−i∑

n′
1=max{n1−i,0}

min{i,n1}∑

j=x

(
n0

i − j

)(
n1
j

)(
n0 − i + j

n′
1 − n1 + j

)

×
[(

Ces(nF + i − S) + CF (nF + i) + CP (n′
1)

)∫ ∞
0

P00(u)n′
0

× (
P01(u)n′

1−n1+ j P0F (u)i− j P11(u)n1− j P1F (u) j fTP (u) du
)

+ Crt (nF + i, n′
1, S′) ×

∫ ∞
0

∫ u

0
P00(t)

n′
0 P01(t)

n′
1−n1+ j

× P0F (t)i− j P11(t)
n1− j P1F (t) j fTP (u) dtdu

]
(11)

where x = 0 for n′
1 ≥ n1, and x = n1 − n′

1 for n′
1 < n1.

Proof is given in “Appendix B”. ��
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3.3 Calculation of expected sojourn times

The expected sojourn time is the expected time until the next decision epoch if action a
is chosen in the present state. So, the expected sojourn time in state (nF , n1, S), when the
decision is not to perform maintenance, is equal to the inspection interval Δ, as the system
state is revealed after Δ time units (the next decision epoch is after the next Δ time units). A
transition to a different state may or may not occur during the next Δ time units.

The expected sojourn time in state (nF , n1, S), when the decision is to perform mainte-
nance is equal to E(TR) or E(TP ) for the first and the secondmaintenance policy, respectively.

4 Numerical example

In this section, we present the results of a numerical example to illustrate performance of the
proposed maintenance policies. We obtain the optimal level to initiate maintenance, optimal
level to place an order for spares and the optimal inspection interval for different values of
the profit rate from excess production, and lost demand cost rate.

Salari andMakis (2017a) considered a wind farm consisting of 10 wind turbines, and they
assumed that gearbox is subject to condition monitoring. We consider the same wind farm
with 10 wind turbines working in parallel.

Deterioration process of each gearbox is described by a continuous time homogeneous
Markov chain with two operating states {0, 1}, and a failure state {F} which is absorbing,
Ω = {0, 1, F}. The sojourn time in healthy state (state 0) has an exponential distribution
with parameter ν0 = q01 + q02, and the sojourn time in the warning state (state 1) has an
exponential distribution with parameter ν1 = q12.

We consider the weekly-based deterioration process of each gearbox given by Byon and
Ding (2010).

P =
⎡

⎣
0.93 0.04 0.03
0 0.95 0.05
0 0 1

⎤

⎦

Using Eq. 13 we can derive the parameters of the exponential distributions corresponding
to the sojourn time in healthy and warning states, respectively.

The unit of measurement of production rate of a wind turbine is kW h, so we readjust the
parameters by changing the time unit from 1 week to 1 h (to be consistent with our example)
and we obtain the following parameters:

q01 = 0.2619 × 10−3, q02 = 0.1726 × 10−3, q12 = 0.3036 × 10−3

We assume that each turbine is working in the wind farm with a rated capacity of 1.5 MW
and capacity factors of 30% and 22% in states 0 and 1, respectively (Salari andMakis 2017a).
These capacity factors result in the output of p0 = 450 kWh for the units in healthy state,
and the output of p1 = 330 kWh for the units in warning state, respectively. We assume that
the demand rate of the wind farm is D = 2000 kWh, which is constant.

The maintenance cost parameters are given by: (Salari and Makis 2017a; Byon and Ding
2010)

CF = $78368, CP = $8182, CI = $50, CK I = 2000, CK M = $6000
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The parameters related to the spare part ordering are:

CO = $500, To = 150 (h), Ces = $1000, Ch = $2 per hour per spare part

Set-up time to perform maintenance follows a gamma distribution with parameters α and
β:

f (t) = βα

Γ (α)
tα−1e−βt

We consider α = 6, β = 0.1 for the first maintenance policy (mean value of 60 h) and
α = 6, β = 0.08 for the second maintenance policy (mean value of 75 h).

The average price of electricity to ultimate customers in residential sector in U.S. ranges
from 9.56 to 29.39 cents per kWh (EIA 2019). Five different cost rates of lost demand are
considered: 0.10, 0.2, 0.3, 0.4, and 0.5 $/kWh (10, 20, 30, 40 and 50 cents per kWh). Profit
rate from the excess production (CE ) can vary depending on the ability to sell the excess
production in the market, so we will find the optimal production rate to do maintenance for
different values of CE .

If at an inspection time the total number of failed units exceeds the optimal level (R∗ −
x∗), a regular order of size R∗ is placed and if the total number of failed units exceeds
R∗, maintenance is initiated. Tables 1 and 2 present the optimal values and the expected
average costs for different cost parameters of the first and the second maintenance policies,
respectively (note that Δ increased in 100h).

Results in Table 1 indicate thatwhenCD = 0.1 andCE = 0 the optimal inspection interval
is Δ∗ = 1600h. Optimal maintenance level is R∗ = 6, which means that maintenance is
initiated when the total number of failed units at an inspection time is greater than or equal

Table 1 Optimal values for Policy 1 (corrective maintenance)

Lost demand
cost rate

Profit rate Optimal values Expected
average cost

Inspection
interval

# of failed units
to do mainte-
nance

# of failed
units to
order spares

0.1 0 1600 6 5 140.36

0.02 1100 6 5 125.70

0.04 2500 2 1 106.97

0.2 0 900 5 4 149.59

0.02 700 5 4 130.94

0.04 1700 2 1 109.51

0.3 0 600 5 4 152.97

0.02 600 5 4 133.67

0.04 1500 2 1 110.67

0.4 0 500 5 4 155.34

0.02 700 4 3 135.14

0.04 1300 2 1 111.4

0.5 0 400 5 4 157.34

0.02 700 4 3 136.10

0.04 1200 2 1 111.93
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Table 2 Optimal values for Policy 2 (corrective and preventive maintenance)

Lost demand
cost rate

Profit rate Optimal values Expected
average cost

Inspection
interval

# of failed
units to do
maintenance

# of failed
units to order
spares

0.1 0 1400 6 5 135.74

0.02 3000 2 1 114.22

0.04 1200 2 1 85.93

0.2 0 900 5 4 142.40

0.02 2200 2 1 116.99

0.04 1100 2 1 86.11

0.3 0 700 5 4 145.16

0.02 1900 2 1 118.34

0.04 1000 2 1 86.25

0.4 0 500 5 4 147.17

0.02 1700 2 1 119.23

0.04 900 2 1 86.30

0.5 0 800 4 3 148.94

0.02 1600 2 1 119.86

0.04 900 2 1 86.45

to 6 units. If at an inspection time 5 ≤ nF < 6 a regular order for 6 − S spare parts (if
S = 0 order for 6 spare parts and if S = R∗ = 6 order for 0 spare parts) is placed (x∗ = 1,
(R∗ − x∗) = 5). If at an inspection time nF ≥ 6 (maintenance in initiated) and there are
not enough spare parts available in the system, an emergency order is placed for the required
spare parts. The corresponding expected average cost rate for the whole wind farm is equal
to $140.36 per hour. This high level for initiating maintenance is due to the low cost rate of
lost demand and profit rate. When the lost demand cost rate is low and profit rate is low (in
this case CE = 0), it is not profitable to performmaintenance regularly, so maintenance level
is high as we expect. To analyze the effect of the profit rate on the optimal values, we obtain
the optimal values for CE = 0.02 and CD = 0.04.

For CD ∈ {0.1, 0.2} by increasing profit rate from 0 to 0.02, the optimal inspection
interval decreases but R∗, and x∗ remain constant. When profit rate increases from 0.02 to
0.04, inspection interval increases but R∗ decreases to a lower level of R∗ = 2, and x∗
remains constant (x∗ = 1).

When CD = 0.3, optimal values do not change for the increase of CE from 0 to 0.02.
Next by the increase of CE from 0.02 to 0.04, Δ∗ increases but R∗ decreases to the lower
value of R∗ = 2, and x∗ remains constant (x∗ = 1), which is the same behavior as in the
previous cases.

When CE ∈ {0.4, 0.5}, by the increase of profit rate Δ∗ increases, R∗ decreases, and x∗
remains constant (x∗ = 1).

Furthermore, results indicate that for a given lost demand cost rate by the increase of profit
rate we can observe two behaviors:

1. Optimal inspection interval decreases (or remains constant), R∗ and x∗ remain constant,
or
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2. Optimal inspection interval increases (less frequent inspection is required) and this effect
is balanced by the decrease in R∗, and x∗ remains constant.

We note that x∗ is not affected by CE and CD , as it depends mostly on the holding cost
rate (CH = 2) that is assumed to be the same for all the cases.

We can also see from Table 1 that for a given lost demand cost rate by the increase of the
profit rate, the long-run expected average cost rate of the wind farm decreases. However, for
a given profit rate by the increase of the lost demand cost rate, the long-run expected average
cost rate of the wind farm increases (as we expect).

Second maintenance policy assumes corrective replacement of the failed gearboxes and
preventive maintenance of gearboxes in the warning state, when the total number of failed
units at an inspection time is greater than or equal to an optimal level R∗. A regular order of
size R∗ − S for spare parts is placed when the number of failed units is greater than or equal
to the optimal level R∗ − x∗. We compute the optimal inspection interval, optimal level to
initiate maintenance, and optimal level to place an order. The results are shown in Table 2.

Results of Table 2 indicate that for a givenCD by the increase ofCE from0 to 0.02, optimal
inspection interval increases and R∗ decreases to R∗ = 2. Next, by the increase of CE from
0.02 to 0.04, optimal inspection interval decreases and R∗ does not change (R∗ = 2). For
all of these cases, x∗ is not affected (x∗ = 1).

Compared to the previous policy, the decrease in the optimal level R∗ is more drastic for
Policy 2.

Policy 2 gives lower expected average cost rates compared to Policy 1. When Policy 2 is
applied, all the components are operating in the healthy state after maintenance, however,
when Policy 1 is applied, only units in the failure state are replaced, so there is a smaller
number of units working in the healthy state after maintenance compared to Policy 2. As a
result, the total production rate of the wind farm is higher after maintenance for Policy 2. This
is due to the higher production rate of the units in the healthy state (p0 = 450 kWh) compared
to the units in the warning state (p1 = 330). So, the cost of lost demand is lower and the
profit from selling extra production is higher for Policy 2 compared to Policy 1. Results of

Table 3 Expected cost savings
obtained by applying Policy 2
instead of Policy 1

CD CE Expected cost saving (%)

0.1 0 3.3

0.02 9.1

0.04 19.7

0.2 0 4.8

0.02 10.7

0.04 21.4

0.3 0 5.1

0.02 11.5

0.04 22.1

0.4 0 5.3

0.02 11.8

0.04 22.5

0.5 0 5.3

0.02 11.9

0.04 22.8
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both tables indicate that for a givenCD the average cost decreases whenCE increases. Tables
1 and 2 confirm that the second policy outperforms the first policy.

Table 3 presents the expected cost savings associated with applying Policy 2 instead of
Policy 1. For a given CE with the increase of CD , expected cost savings associated with
applying Policy 2 increases. Furthermore, for a given CD by the increase of profit rate,
expected cost savings associated with applying Policy 2 increases.

We can observe that expected cost saving by applying Policy 2 instead of Policy 1 for the
lowest values of CD and CE (CD = 0.1, CE = 0) is equal to %3.3, however for the highest
values of CD and CE (CD = 0.5, CE = 0.04) the expected cost saving increases to %22.8.
Therefore, performance of Policy 2 is better for the higher values of lost demand cost rate
and the higher values of excess production profit rate.

5 Conclusions and future research

In this paper, we have developed two new joint CBM and just-in-time spare parts provision-
ing policies for a multi-unit production system. We have considered a multi-unit parallel
production system consisting of N identical, independent units, each subject to gradual dete-
rioration. Deterioration process of each unit is assumed to be a three-state continuous time
homogeneous Markov chain with two working states and a failure state. Production rate
of units depends on the working state, indicating the effect of deterioration of units on the
production rate. Units are subject to inspection and maintenance and each inspection or
maintenance action entails a fixed cost of sending an inspector or crew to the field but it
is charged only once, when actions on the several units of the system are performed. The
proposed joint maintenance and spare part provisioning policies belongs to the class of the
control-limit policies, where decisions regarding maintenance and spare parts ordering are
made by comparing the number of failed units with the critical thresholds. Both maintenance
policies prescribe corrective replacement of failed units when the total number of failed units
exceeds a critical level. Second maintenance policy prescribes preventive maintenance of
units in the warning state as well. We have applied SMDP framework to formulate the joint
maintenance and spare parts ordering decision problem with the optimality criterion being
the minimization of the long-run expected average cost per unit time. The expected long run
cost rate model has been developed for a general multi-unit system to determine the optimal
level to initiate maintenance, the optimal level to order spare parts, and the optimal inspection
interval.

A numerical example has been developed to illustrate the proposed joint maintenance and
spare part provisioning model and to compare both policies. The results have shown that
Policy 2 gives lower expected average cost rates compared with Policy 1. For both policies
for a given profit rate, when the lost demand cost rate increases, the optimal level to perform
maintenance decreases or remains constant. For both policies, the decrease in the optimal level
for performing maintenance is balanced by the increase in the optimal inspection interval.
We also noticed that performance of Policy 2 depends on the lost production cost rate and
excess production profit rate. By the increase of these rates, performance of Policy 2 increases
(compared to Policy 1).

There are a variety of interesting extensions and topics for future research. One direction
would be to have stochastic demand instead of constant demand rate in the model. The
stochastic demand can depend on the off-peak and on-peak periods for energy systems, so
that maintenance can be performed in the off-peak periods to decrease the unavailability
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of the system. Another interesting topic for future research would be to investigate the case
where deterioration process of each unit hasmore than three states.Wehave considered a three
state deterioration process for each unit which is a reasonable assumption for many real world
applications, but this model can be extended to a general N state deterioration process. Such
an extension would lead to both interesting theoretical and practical challenges, especially
in the calculation of the transition probabilities and expected costs. Another possible future
research topic would be to consider the general extension of the exponential distribution
which is the phase-type distribution (PH). The proposed mathematical formulation becomes
so complicated which makes it intractable, and by applyng PH distribution it is possible to
overcome this barrier.
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Appendix A: Calculation of transition probabilities for each unit

The instantaneous deterioration transition rates qi j , i, j ∈ Ω for each unit are defined by:

qi j = limu→0
P(Xt+u = j |Xt = i)

u
< +∞, j 
= i

and qii = −
∑

j 
=i

qi j (12)

where i, j ∈ {0, 1, F}, and the state transition matrix P(t) can be written as follows:

P(t) =

⎡

⎢⎢⎣
e−ν0t q01(e−ν1t − e−ν0t )

ν0 − ν1
1 − e−ν0t − q01(e−ν1t − e−ν0t )

ν0 − ν1
0 e−ν1t 1 − e−ν1t

0 0 1

⎤

⎥⎥⎦ , (13)

where the exponential distribution parameters of the sojourn times are denoted by ν0 =
q01 + q0F and ν1 = q1F .

We assume that the state process is non-decreasing with probability 1, i.e., qi j = 0 for all
j < i and failure state is absorbing. The Kolmogorov’s backward differential equations for
given transition rates can be written as follows:

P ′
00(t) = −ν0P00(t)

P ′
01(t) = q01P11(t) − ν0P01(t)

P ′
02(t) = q01P12(t) + q02(t)P22(t) − ν0P02(t)

P ′
11(t) = −ν1P11(t)

P ′
12(t) = ν1P22(t) − ν1P12(t)

Extensive details on the Laplace transform can be found in Debnath and Bhatta (2014).
Taking Laplace transform of the above equations, the following equations are obtained:

s P00(s) − 1 = −ν0P00(s)

s P01(s) = q01P11(s) − ν0P01(s)

s P02(s) = q01P12(s) + q02
s

− ν0P02(s)
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s P11(s) − 1 = −ν1P11(s)

s P12(s) = ν1

s
− ν1P12(s),

where Pi j (s) is the Laplace transform of the transition probability Pi j (t), which is written
as: Pi j (s) = ∫ ∞

0 e−st Pi j (t)dt . By solving the above equations we get:

P00(s) = 1

s + ν0
, P01(s) = q01

(s + ν0)(s + ν1)
, P02(s) = ν0ν1 + q02s

s(s + ν0)(s + ν1)

P11(s) = 1

s + ν1
, P12(s) = ν1

s(s + ν1)
.

By taking the inverse Laplace transform of the above equations, we derive the transition
probabilities as follows:

P00(t) = e−ν0t , P01(t) = q01(e−ν1t − e−ν0t )

ν0 − ν1
,

P02(t) = 1 − P00(t) − P01(t) = 1 − e−ν0t − q01(e−ν1t − e−ν0t )

ν0 − ν1

P11(t) = e−ν1t , P12(t) = 1 − e−ν1t .

Appendix B: Proof of Theorem 5

Assume that the state of the system is (nF , n1, S) and the decision is to performmaintenance.
If the state of the system changes to (nF + i, n′

1, S), i ≥ 0 during TR (or TP ) an emergency
order of size nF +i−S is placed. The expected cost of emergency ordering in state (nF , n1, S)

for different values of i is as follows:

E(CE M |TR, (nF , n1, S)) =
∑

(nF +i,n′
1,S)

E(CE M |(nF + i, n′
1, S))

×
∫ ∞

0
P(nF ,n1,S)(nF +i,n′

1,S)(u) fTR (u) du

=
N−nF −n′

1∑

i=x

n1+n0−i∑

n′
1=max{n1−i,0}

Ces(nF + i − S)

×
∫ ∞

0
P(nF ,n1,S)(nF +i,n′

1,S)(u) fTR (u) du

=
N−nF −n′

1∑

i=x

n1+n0−i∑

n′
1=max{n1−i,0}

min{i,n1}∑

j=x

Ces(nF + i − S)

×
(

n0

i − j

)(
n1

j

)(
n0 − i + j

n′
1− n1+ j

)∫ ∞

0
P00(u)n′

0 P01(u)n′
1−n1+ j

× P0F (u)i− j P11(u)n1− j P1F (u) j · fTR (u) du (14)

where x = 0, for n′
1 ≥ n1, and x = n1 − n′

1, for n′
1 < n1.
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For the first maintenance policy, the expected cost of corrective replacement in state
(nF , n1, S) is equal to:

E(C |TR, (nF , n1, S)) = CK M + CI (N − nF ) + E(CH |TR)

+ E(C R|TR) + E(CE M |TR) + E(CC M |TR)

=CK M + CI (N − nF ) +
∫ ∞

0
CH · S · fTR (u)du

E(Cost (profit) from production)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+ ∑N−nF −n1
i=x

∑n1+n0−i
n′
1=max{n1−i,0}

∑min{i,n1}
j=x Crt (nF + i, n′

1, S′)

×( n0
i− j

)(n1
j

)( n0−i+ j
n′
1−n1+ j

) ∫ ∞
0

∫ u
0 P00(t)n′

0

×P01(t)n′
1−n1+ j P0F (t)i− j P11(t)n1− j P1F (t) j fTR (u)dtdu

E(Cost of emergency ordering)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+ ∑N−nF −n′
1

i=x

∑n1+n0−i
n′
1=max{n1−i,0}

∑min{i,n1}
j=x Ces(nF + i − S)

×( n0
i− j

)(n1
j

)( n0−i+ j
n′
1−n1+ j

) ∫ ∞
0 P00(u)n′

0

×P01(u)n′
1−n1+ j P0F (u)i− j P11(u)n1− j P1F (u) j fTR (u) du

E(Cost of failure replacement)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+ ∑N−nF −n′
1

i=x

∑n1+n0−i
n′
1=max{n1−i,0}

∑min{i,n1}
j=x CF (nF + i)

×( n0
i− j

)(n1
j

)( n0−i+ j
n′
1−n1+ j

) ∫ ∞
0 P00(u)n′

0

×P01(u)n′
1−n1+ j P0F (u)i− j P11(u)n1− j P1F (u) j fTR (u) du

= CK M + CI (N − nF ) +
∫ ∞

0
CH · S · fTR (u)du

+
N−nF −n′

1∑

i=x

n1+n0−i∑

n′
1=max{n1−i,0}

min{i,n1}∑

j=x

(
n0

i − j

)(
n1

j

)(
n0 − i + j

n′
1 − n1 + j

)

×
[(

Ces(nF + i − S) + CF (nF + i)

) ∫ ∞

0
P00(u)n′

0 P01(u)n′
1−n1+ j

× P0F (u)i− j P11(u)n1− j P1F (u) j fTR (u) du

+ Crt (nF + i, n′
1, S′)

∫ ∞

0

∫ u

0
P00(t)

n′
0 P01(t)

n′
1−n1+ j

× P0F (t)i− j P11(t)
n1− j P1F (t) j fTR (u)dtdu

]
(15)

where x = 0 for n′
1 ≥ n1, and x = n1 − n′

1 for n′
1 < n1.

The expected cost of corrective replacement and preventive maintenance for the second
policy in state (nF , n1, S) is equal to:

E(CC M + CP M |TP , (nF , n1, S)) =
∑

(nF +i,n′
1,S)

E(CC M + CP M |(nF + i, n′
1, S))

×
∫ ∞

0
P(nF ,n1,S)(nF +i,n′

1,S)(u) fTP (u) du

=
N−nF −n′

1∑

i=x

n1+n0−i∑

n′
1=max{n1−i,0}

(CF (nF + i) + CP (n′
1))

×
∫ ∞

0
P(nF ,n1,S)(nF +i,n′

1,S)(u) fTP (u) du
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=
N−nF −n′

1∑

i=x

n1+n0−i∑

n′
1=max{n1−i,0}

min{i,n1}∑

j=x

(CF (nF + i) + CP (n′
1))

×
(

n0

i − j

)(
n1

j

)(
n0 − i + j

n′
1 − n1 + j

) ∫ ∞

0
P00(u)n′

0 P01(u)n′
1−n1+ j

× P0F (u)i− j P11(u)n1− j P1F (u) j × fTP (u) du (16)

where x = 0 for n′
1 ≥ n1, and x = n1 − n′

1 for n′
1 < n1.

Appendix C: Extension tomore than 3 state deterioration process

First, we will show how to extend the model to a more complex case of a 4 state deterioration
process (we consider 4 states for each unit of the system). This change affects the number of
system states, transition probabilities, production rate and the expected cost. In this sectionwe
provide the formula to calculate the transition probabilities. The calculation of the expected
cost is similar to to the previous case (3 state deterioration process).

Consider a system consisting of N units where deterioration process of each unit is mod-
eled as a 4-state continuous time homogeneous Markov chain with three working states and
a failure state F which is absorbing, Ω = {0, 1, 2, F}. The state space for the whole system
can be defined as W = {(nF , n2, n1, S) | n1 +n2 +nF ≤ N , n1, n2, nF , S ≥ 0}, where nF ,
n2, and n1 represent the number of units in the failure state, state 2, and state 1, respectively,
and S represents the on-hand inventory. Based on Remark 2, the number of available spare
parts in the system at each inspection time can be 0 or R, so the number of states for this
system is equal to (N+1)(N+2)(N+3)×2

3! .
The transition probability functionwhen the decision is to continue operation is as follows:

P(nF ,n2,n1,S)(nF +i,n′
2,n

′
1,S)(Δ) =

min{i,n2}∑

k=max{0,n2−n′
2}

min{i−k,n1}∑

j=max{0,i−k−n0}

min{n1− j,n′
2−n2+k}∑

m=max{0,n1−n′
1− j}

(
n0

i − j − k

)(
n0 − i + k + j

n′
1 − n1 + m + j

)

(
n0 − i + k − n′

1 + n1 − m

n′
2 − n2 + k − m

)(
n1

j

)(
n1 − j

m

)(
n2

k

)
P00(Δ)n′

0 P01(Δ)n′
1−n1+ j+m

P02(Δ)n′
2−n2+k−m P0F (Δ)i− j−k P11(Δ)n1−m− j P12(Δ)m P1F (Δ) j P22(Δ)n2−k P2F (Δ)k

(17)

Figure 3 shows the number of units which change their state in the next time interval of
length Δ when deterioration process of units has 4 states.

The transition probability when the decision is to perform maintenance is given by the
following formulas:

– For the first maintenance policy,

P(nF ,n2,n1,S)(0,n′
2,n

′
1,0)

(TR) =
N−nF −n′

1−n′
2∑

i=max{0,n1+n2−n′
1−n′

2}

min{i,n2}∑

k=max{0,n2−n′
2}

min{i−k,n1}∑

j=max{0,i−k−n0}

min{n1− j,n′
2−n2+k}∑

m=max{0,n1−n′
1− j}

(
n0

i − j − k

)
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Fig. 3 Number of units changing state in a time interval of length Δ

Fig. 4 Number of units changing state in a time interval of length Δ

(
n0 − i + k + j

n′
1 − n1 + m + j

)(
n0 − i + k − n′

1 + n1 − m

n′
2 − n2 + k − m

)(
n1

j

)(
n1 − j

m

)(
n2

k

)

(∫ ∞

0
P00(u)n′

0 P01(u)n′
1−n1+ j+m P02(u)n′

2−n2+k−m P0F (u)i− j−k P11(u)n1−m− j

P12(u)m P1F (u) j P22(u)n2−k P2F (u)k × fTR (u)du
)

(18)

– For the second maintenance policy,

P(nF ,n2,n1,S)(0,0,0,0)(TP ) = 1

As can be seen, the number of system states increases dramatically and the calcu-
lation of transition probability becomes quite complicated by adding new states. We
assume that a transition to a different state may or may not occur during the next Δ

time units, which makes it difficult to calculate transition probabilities for the system.
Some simplification is possible for reliable systems, for which transitions to some states
can be eliminated. So, we can consider a system consisting of N units where deteri-
oration process of each unit is modeled as an m-state continuous time homogeneous
Markov chain with m − 1 working states and a failure state F which is absorbing,
Ω = {0, 1, 2, . . . , m − 1, F}. The multi-state structure is considered where transitions are
allowed either to the neighbor state or to the failure state. For highly reliable systems, we
can omit any intermediate transition between states during each inspection interval (see
Fig. 4).

The state space for the whole system can be defined as W = {(nF , nm−1, . . . , n1, S) |
n1 + · · · + nF ≤ N , n1, . . . , nF , S ≥ 0}, where nF , ni i ∈ {0, 1, . . . , m − 1} represent the
number of units in the failure state, and state i , respectively, and S represents the on-hand
inventory.

The transition probability function when the decision is to continue operation is given
by:
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P(nF ,nm−1,...,n1,S)(nF +i,n′
m−1,...,n

′
1,S)(Δ) =

min{i,nm−1,nm−1−n′
m−1+nm−2}∑

Yn−1=max{0,nm−1−n′
m−1}

min{i−Ym−1,nm−2,nm−2−n′
m−2+nm−3}∑

Ym−2=max{0,nm−2−n′
m−2}

. . .

min{i−Ym−1−···−Y2,n1,n1−n′
1+n0}∑

Y1=max{0,n1−n′
1}(

n0

Z0

)(
n0 − Z0

i − Y1 − Y2 − · · · − Ym−1

)(
n1

Z1

)(
n1 − Z1

Y1

)
. . .

(
nm−1

Ym−1

)

P
n′
0

0,0 P Z0
(0,1) PY0

(0,F) Pn1−Y1−Z1
1,1 P Z1

(1,2) PY1
(1,F) . . . Pm−1−Ym−1

m−1,m−1 PYm−1
(m−1,F)

where

Zm−2 = n′
m−1 − nm−1 + Ym−1

Zm−3 = n′
m−2 − nm−2 + Ym−2 + Zn−2

. . .

Z1 = n′
2 − n2 + Y2 + Z2

Z0 = n′
1 − n1 + Y1 + Z1.
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