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Abstract
We consider Bertrand oligopoly TU-games with differentiated products. We assume that
the demand system is Shubik’s and that firms operate at a constant and identical marginal
and average cost. Our main results state that Bertrand oligopoly TU-games in α, β and γ -
characteristic function form satisfy the convexity property, meaning that there exist strong
incentives for large-scale cooperation between firms on prices.
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1 Introduction

Usually, oligopolies are modeled by means of non-cooperative games. However, in some
oligopoly situations firms don’t always behave non-cooperatively and if sufficient communi-
cation is feasible it may be possible for firms to sign agreements. A question is then whether
it is possible for firms to cooperate all together and coordinate their output or price decision.
To this end, a cooperative approach for oligopoly situations can be considered by converting
the normal form oligopoly game into a cooperative oligopoly game with transferable utility
(henceforth, oligopoly TU-game) in which firms can form coalitions acting as a single player.
Since every individual profit function depends on each firm’s decision, the profit of a coali-
tion depends on outsiders’ behavior. As a consequence, the determination of the profit that a
coalition can obtain requires to specify how firms outside react. Aumann (1959) proposes two
approaches: according to the first, every coalition computes the maximal total profit which
it can guarantee itself regardless of what outsiders do; the second approach consists in com-
puting the minimal total profit for which outsiders can prevent the firms in the coalition from
getting more. These two assumptions lead to consider the α and β-characteristic functions,

I wish to thank Theo Driessen, Dongshuang Hou, Philippe Solal, Sylvain Béal, Pascal Billand and Christophe
Bravard for providing numerous suggestions that substantially improved the exposition of the article.

B Aymeric Lardon
aymeric.lardon@unice.fr

1 CNRS, GREDEG, Université Côte d’Azur, Valbonne, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-019-03351-7&domain=pdf


286 Annals of Operations Research (2020) 287:285–302

respectively. Another approach is proposed by Hart and Kurz (1983), and more specifically
by Chander and Tulkens (1997), where external firms choose their strategy individually as a
best reply to the coalitional action. This leads to consider the “partial agreement characteristic
function” or, for short, the γ -characteristic function.

An appropriate set-valued solution for oligopoly TU-games that deals with the possibility
for firms to cooperate all together is the core (Shapley 1955). Given a payoff vector in the
core, the grand coalition, i.e. the coalition comprising all firms, could form and distribute its
worth as payoffs to its members in such a way that no coalition can contest this sharing by
breaking off from the grand coalition. In oligopoly TU-games, the stability of cooperation
sustained by the grand coalition is then related to the non-emptiness of the core. The convexity
property (Shapley 1971) is a sufficent condition for the core to be non-empty and provides a
natural way to formalize the idea that it is worthwhile for a player to join larger coalitions.
Precisely, it means that the marginal contribution of a player to some coalition increases
if the coalition which he joins becomes larger, meaning that there are strong incentives for
large-scale cooperation in these game types.

Until now, many works have dealt with Cournot oligopoly TU-games. With or with-
out transferable technologies,1 Zhao (1999a,1999b) shows that the α and β-characteristic
functions lead to the same class of Cournot oligopoly TU-games. When technologies are
transferable, Zhao (1999a) provides a necessary and sufficient condition to establish the con-
vexity property in case the inverse demand function and cost functions are linear. Although
these games may fail to be convex in general, Norde et al. (2002) show they are nevertheless
totally balanced. When technologies are not transferable, Zhao (1999b) proves that the core
of such games is non-empty if every individual profit function is continuous and concave.
Furthermore, Norde et al. (2002) show that these games are convex in case the inverse demand
function and cost functions are linear. For the class of Cournot oligopoly TU-games in γ -
characteristic function form, Lardon (2012) shows that the differentiability of the inverse
demand function ensures that these games are well-defined and provides two core existence
results. The first result establishes that such games are balanced, and therefore have a non-
empty core, if every individual profit function is concave. When cost functions are linear,
the second result provides a single-valued allocation rule in the core, called NP(Nash Pro
rata)-value, which is characterized by four axioms: efficiency, null firm, monotonicity and
non-cooperative fairness.2 Lardon (2017) proposes to extend this setting and study the core
of interval oligopoly games under the γ -approach where each coalition is endowed with an
interval of possible worths. In quantity competition, Driessen et al. (2017) have also dealt
with Stackelberg oligopoly TU-games in γ -characteristic function formwhere each coalition
acts as a leader and outsiders play as followers.3 They provide a necessary and sufficient con-
dition, depending on the heterogeneity of costs, for the non-emptiness of the core. Another
interesting approach is due to Lekeas and Stamatopoulos (2014) where each coalition cannot
accurately predict outsiders’ behavior and assigns various probability distributions over the
set of possible partitions.

Unfortunately, few works have dealt with Bertrand oligopoly TU-games. Kaneko (1978)
considers a Bertrand oligopoly situation where a finite number of firms sell a homogeneous
product to a continuum of consumers. Kaneko assumes that a subset of firms and consumers
can cooperate by trading the good among themselves. The main result establishes that the

1 We refer to Norde et al. (2002) for a detailed discussion of this distinction.
2 Lardon (2012) gives a precise description of these axioms.
3 Thereupon, Julien (2017) studies the existence and uniqueness of a Stackelberg equilibrium with multiple
leaders and followers.
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core is empty when there are more than two firms. Deneckere and Davidson (1985) consider
a Bertrand oligopoly situation with differentiated products in which the demand system is
Shubik’s (1980) and firms operate at a constant and identical marginal and average cost.
They study the equilibrium distribution of prices and profits among coalitions and show that
a merger of two coalitions implies that all the firms charge higher prices, and so benefits all
the industry. They also prove that these games have a superadditive property in the sense
that a merger of two disjoint coalitions results in a joint after-merger profit for them which
is greater than the sum of their pre-merger profits. For the same model, Huang and Sjöström
(2003) provide a necessary and sufficient condition for the non-emptiness of the recursive
core4 which requires that the substitutability parameter must be greater than or equal to some
number that depends on the size of the industry. They conclude that the recursive core is
empty when there are more than ten firms.

As a counterpart to this lack of interest in the study of Bertrand oligopoly TU-games,5

we define Bertrand oligopoly TU-games by considering successively the α, β and γ -
characteristic functions as described above. As for Cournot oligopoly TU-games, we show
that the α and β-characteristic functions lead to the same class of Bertrand oligopoly TU-
games. Our main results state that the convexity property holds for these classes of games.
These findings extend the superadditivity result of Deneckere and Davidson (1985) and
contrasts sharply with the negative core existence results of Kaneko (1978), and Huang
and Sjöström (2003). Moreover, an important distinction between Cournot and Bertrand
competition is that the former has strategic substitutabilities and the latter has strategic com-
plementarities. Thus, although Cournot and Bertrand oligopoly games are basically different
in their non-cooperative forms, it appears that their cooperative forms may have the same
core geometrical structure.6

The remainder of the article is structured as follows. In Sect. 2 we introduce the model
and some notations. Section 3 establishes that Bertrand oligopoly TU-games in α, β and
γ -characteristic function form are convex. Section 4 gives some concluding remarks. Lastly,
Section 5 is the appendix where proofs of all the results are presented.

2 Themodel

2.1 Basic framework

We consider a Bertrand oligopoly situation (N , (Di ,Ci )i∈N ) where N = {1, 2, . . . , n} is
the finite set of firms, and Di : Rn+ −→ R andCi : R+ −→ R+, i ∈ N , are firm i’s demand
and cost functions, respectively. Throughout this article, we assume that:

(a) the demand system is Shubik’s (1980):

∀i ∈ N , Di (p1, . . . , pn) = V − pi − r(pi − p̂),

where p j is the price charged by firm j , p̂ = 1
n

∑
j∈N p j is the average price in

the industry, V ∈ R+ is the intercept of demand and r ∈ R++ is the substitutability

4 The worth of a coalition is defined in a recursive procedure applying the core solution concept to a “reduced
game” in order to predict outsiders’ behavior.
5 When technologies are transferable, Lardon (2019) studies the core of Bertrand oligopoly TU-games in α

and β-characteristic function form.
6 The convexity property ensures that the core is the convex combination of the marginal vectors (Shapley
1971).
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parameter.7 The quantity demanded of firm i’s brand depends on its own price pi and
on the difference between pi and the average price p̂. This quantity is decreasing with
respect to pi and increasing with respect to p j , j �= i ;

(b) firms operate at a constant and identical marginal and average cost:

∀i ∈ N , Ci (x) = cx ,

where c ∈ R+ is firm i’smarginal and average cost, and x ∈ R+ is the quantity demanded
of firm i’s brand.

Given assumptions (a) and (b), a Bertrand oligopoly situation is summarized by the 4-tuple
(N , V , r , c).

The normal form Bertrand oligopoly game (N , (Xi , πi )i∈N ) associated with the
Bertrand oligopoly situation (N , V , r , c) is defined as follows:

1. the set of firms is N = {1, . . . , n};
2. for every i ∈ N , the individual strategy set is Xi = R+ where pi ∈ Xi represents the

price charged byfirm i ; the set of strategyprofiles is XN = ∏
i∈N Xi where p = (pi )i∈N

is a representative element of XN ;
3. for every i ∈ N , the individual profit function πi : XN −→ R is defined as:

πi (p) = Di (p)(pi − c).

As mentioned above, we want to analyze the stability of coalitions and the incentives
for cooperation in Bertrand competition. To this end, we have to convert the normal form
Bertrand oligopoly game (N , (Xi , πi )i∈N ) into a Bertrand oligopoly TU-game which is the
purpose of Sect. 3.

2.2 General TU-games and properties

In this subsection,we give the definitions of a general TU-game and the core, andwe introduce
the notions of superadditivity and convexity. Let N = {1, . . . , n} be a fixed and finite set of
players. We denote by 2N the power set of N and call a subset S ∈ 2N , S �= ∅, a coalition.
The size s = |S| of coalition S is the number of players in S. A TU-game (N , v) is a
set function v : 2N −→ R, with the convention that v(∅) = 0, which assigns a number
v(S) ∈ R to every coalition S ∈ 2N . The number v(S) is the worth of coalition S. For a fixed
set of players N , we denote by GN the set of TU-games where v is a representative element
of GN .

In a TU-game v ∈ GN , every player i ∈ N may receive a payoff σi ∈ R. A vector
σ = (σ1, . . . , σn) is a payoff vector. We say that a payoff vector σ ∈ R

n is acceptable if
for every coalition S ∈ 2N ,

∑
i∈S σi ≥ v(S), i.e. the payoff vector provides a total payoff to

the members of coalition S that is at least as great as its worth. We say that a payoff vector
σ ∈ R

n is efficient if
∑

i∈N σi = v(N ), i.e. the payoff vector provides a total payoff to all
the players that is equal to the worth of the grand coalition N . The core (Shapley 1955) of a
TU-game v ∈ GN is the set C(v) of payoff vectors that are both acceptable and efficient:

C(v) =
{

σ ∈ R
n : ∀S ∈ 2N ,

∑

i∈S
σi ≥ v(S) and

∑

i∈N
σi = v(N )

}

.

7 When r approaches zero, products become unrelated, and when r becomes large, products tend to be perfect
substitutes.
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Given a payoff vector in the core, the grand coalition can form and distribute its worth as
payoffs to its members in such a way that no coalition can contest this sharing by breaking
off from the grand coalition.

A TU-game v ∈ GN is superadditive if:

∀S, T ∈ 2N such that S ∩ T = ∅, v(S ∪ T ) ≥ v(S) + v(T ).

The notion of a convex TU-game is introduced by Shapley (1971) and provides a natural way
to formalize the idea that it is worthwhile for a player to join larger coalitions. A TU-game
v ∈ GN is convex if one of the following two equivalent conditions is satisfied:8

∀S, T ∈ 2N , v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ),

or equivalently:

∀i, j ∈ N , ∀S ⊆ N\{i, j}, v(S ∪ {i}) − v(S) ≤ v(S ∪ {i, j}) − v(S ∪ { j}) (1)

Observe that every convex TU-game is superadditive. The convexity property means that
the marginal contribution of a player to some coalition increases if the coalition which he
joins becomes larger. Thus, the convexity property can be regarded as a strong incentive for
large-scale cooperation in a TU-game.

3 Convexity of Bertrand oligopoly TU-games

3.1 Bertrand oligopoly TU-games in˛ andˇ-characteristic function form

In this section, we convert a normal form Bertrand oligopoly game into a Bertrand oligopoly
TU-game in such a way that every coalition has pessimistic expectations on its feasible
profits. Traditionally, there are two main ways of converting a normal form game into a
cooperative game, called game in α and β-characteristic function form (Aumann 1959). In
the first case, the worth of a coalition is obtained by computing the maximal total profit which
its members can guarantee themselves regardless of what outsiders do. In the second case, the
worth of a coalition can be derived by computing the minimal total profit such that outsiders
can prevent its members from getting more. First, we show that the α and β-characteristic
functions are well-defined and lead to the same class of Bertrand oligopoly TU-games. This
equality between the α and β-characteristic functions is a useful property, as it relieves us
of the burden of choosing between the α and β-characteristic functions when describing
collusive profits. Then, we prove that the convexity property holds for this class of games,
i.e. when every coalition has pessimistic expectations on its feasible profits there exist strong
incentives for firms to cooperate all together.

In order to define the α and β-characteristic functions, we denote by XS = ∏
i∈S Xi the

coalition strategy set of coalition S ∈ 2N and XN\S = ∏
i∈N\S Xi the set of outsiders’

strategy profiles for which pS = (pi )i∈S and pN\S = (pi )i∈N\S are the representative
elements, respectively. For every coalition S ∈ 2N , the coalition profit function πS : XS ×
XN\S −→ R is defined as:

πS(pS, pN\S) =
∑

i∈S
πi (p).

8 The proof of this result is given by Shapley (1971).
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It is worth noting that every coalition profit function πS is quadratic and strictly concave with
respect to pi , i ∈ S. Given the normal form Bertrand oligopoly game (N , (Xi , πi )i∈N ), the
α and β-characteristic functions are defined for every coalition S ∈ 2N as:

vα(S) = max
pS∈XS

min
pN\S∈XN\S

πS(pS, pN\S) (2)

and

vβ(S) = min
pN\S∈XN\S

max
pS∈XS

πS(pS, pN\S) (3)

respectively. For a fixed set of firms N , we denote by GN
o ⊆ GN the set of Bertrand

oligopoly TU-games.
The following proposition states that Bertrand oligopoly TU-games in β-characteristic

function form are well-defined.

Proposition 3.1 Let (N , (Xi , πi )i∈N ) be a normal form Bertrand oligopoly game. Then, for
every coalition S ∈ 2N , it holds that:

vβ(S) = πS(pS, pN\S),

where (pS, pN\S) ∈ XS × XN\S is given by:

∀i ∈ S, pi = max

{

c,
V

2
(
1 + r(n − s)/n

) + c

2

}

(4)

and

∑

j∈N\S
p j = max

{

0,
n

r

(

c

(

1 + r
(n − s)

n

)

− V

)}

(5)

Proof See Appendix “Proof of Proposition 3.1”. �

Unsurprisingly, a direct consequence of this result is that any Bertrand oligopoly TU-game
vβ ∈ GN

o is symmetric, i.e. the worth of a coalition S ∈ 2N only depends on its size.9

Proposition 3.1 calls for some further comments which will be useful for the sequel.

Remark 3.2 For every coalition S ∈ 2N , it holds that:

1. If V ≤ c
(
1 + r(n − s)/n

)
, then by (4) each member i ∈ S charges prices equal to their

marginal cost, pi = c, and by (5) the outsiders charge a non-negative average price,∑
j∈N\S p j/(n − s) ≥ 0. In this case, coalition S obtains a zero profit, vβ(S) = 0.

2. If V > c
(
1+ r(n − s)/n

)
, then by (4) each member i ∈ S charges prices strictly greater

than their marginal cost, pi > c, and by (5) the outsiders charge a zero average price,∑
j∈N\S p j/(n − s) = 0. In this case, coalition S obtains a positive profit, vβ(S) > 0.

3. The computation of theworth vβ(S) is consistent with the fact that the quantity demanded
of firm i’s brand, i ∈ S, is positive since for every i ∈ S, Di (p) ≥ 0.

By solving successively the minimization and the maximization problems defined in (2), we
can show that Bertrand oligopoly TU-games in α-characteristic function form are also well-
defined. The technical arguments are similar to those used in the Proof of Proposition 3.1.

9 Formally, a TU-game v ∈ GN is symmetric if there exists a function f : N −→ R such that for every
coalition S ∈ 2N , v(S) = f (s).
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For general TU-games, Zhao (1999b) shows that the α and β-characteristic functions are
equal when every strategy set is compact, every utility (or profit) function is continuous,
and the strong separability condition is satisfied. This condition requires that the utility (or
profit) function of any coalition S and each of its members’ utility (or profit) functions
have the same minimizers. Zhao’s result (1999b) holds for the specific class of Bertrand
oligopoly TU-games with pessimistic expectations. First, we compactify the strategy sets by
assuming that for every firm i ∈ N , Xi = [0,p] where p is sufficiently large so that the
maximization/minimization problems defined in (2) and (3) have interior solutions. Then,
it is clear that every individual profit function πi is continuous. Finally, since the demand
system is symmetric and firms operate at a constant and identical marginal and average cost,
Bertrand oligopoly TU-games satisfy the strong separability condition.

Corollary 3.3 Let (N , (Xi , πi )i∈N ) be a normal form Bertrand oligopoly game. Then, for
every coalition S ∈ 2N , it holds that:

vα(S) = vβ(S).

Corollary 3.3 implies that outsiders’ strategy profile pN\S that best punishes coalition S
as a first mover (α-characteristic function) also best punishes S as a second mover (β-
characteristic function). We deduce from Corollary 3.3 that for any vα ∈ GN

o and any
vβ ∈ GN

o associated with the Bertrand oligopoly situation (N , V , r , c), it holds thatC(vα) =
C(vβ). The following theoremstates that the convexity property holds for the class ofBertrand
oligopoly TU-games in β-characteristic function form.

Theorem 3.4 Every Bertrand oligopoly TU-game vβ ∈ GN
o is convex.

Proof See Appendix “Proof of Theorem 3.4”. �

When firms operate at distinct marginal costs, Driessen et al. (2011) prove that the Shapley
value of Bertrand oligopoly TU-games in β-characteristic function form is fully determined
on the basis of linearity applied to an appealing decomposition of these games.

3.2 Bertrand oligopoly TU-games in �-characteristic function form

In this section, we consider the blocking rule for which outsiders choose their strategy indi-
vidually as a best reply facing the deviating coalition (Hart and Kurz 1983; Chander and
Tulkens 1997). Such an equilibrium is called a partial agreement equilibrium10 and leads
to consider the “partial agreement characteristic function” or, for short, the γ -characteristic
function. First, we verify that the γ -characteristic function is well-defined. Then, we prove
that the convexity property also holds for this class of games.

Given the normal formBertrand oligopoly game (N , (Xi , πi )i∈N ) and a coalition S ∈ 2N ,
a strategy profile (p∗

S, p̃N\S) ∈ XS × XN\S is a partial agreement equilibrium under S if:

∀pS ∈ XS, πS(p
∗
S, p̃N\S) ≥ πS(pS, p̃N\S) (6)

and

∀ j ∈ N\S, ∀p j ∈ X j , π j (p
∗
S, p̃N\S) ≥ π j (p

∗
S, p̃N\(S∪{ j}), p j ) (7)

The γ -characteristic function is defined for every coalition S ∈ 2N as:

vγ (S) = πS(p
∗
S, p̃N\S),

10 Equivalently, this also consists in finding a quasi-hybrid solution of a multiple objective game (Zhao 1991).
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where (p∗
S, p̃N\S) ∈ XS × XN\S is a partial agreement equilibrium under S.

Throughout this section, in addition to assumptions (a) and (b), we assume that:

(c) the intercept of demand V ∈ R+ is strictly greater than the marginal cost c ∈ R+.
For every partial agreement equilibrium under S, assumption (c) ensures that the quantity
demanded of every firm’s brand and every equilibrium price are non-negative.

Deneckere andDavidson (1985) studynormal formBertrandoligopoly gameswith general
coalition structures. A coalition structure P is a partition of the set of firms N , i.e. P =
{S1, . . . , Sk}, k ∈ {1, . . . , n}. An element of a coalition structure, S ∈ P , is called an
admissible coalition in P . We denote by �(N ) the set of coalition structures on N . We
introduce a binary relation ≤F on �(N ) defined as follows: we say that a coalition structure
P ′ ∈ �(N ) is finer than a coalition structure P ∈ �(N ) (or P is coarser than P ′) which we
write P ≤F P ′ if for every admissible coalition S in P ′ there exists an admissible coalition
T in P such that T ⊇ S. Note that (�(N ),≤F ) is a complete lattice.11

Given P ∈ �(N ), the normal form Bertrand oligopoly game (P, (XS, πS)S∈P ) associated
with the Bertrand oligopoly situation (N , V , r , c) is defined as follows:

1. the set of players (or admissible coalitions) is P;
2. for every S ∈ P , the coalition strategy set is XS = ∏

i∈S Xi ;
3. for every S ∈ P , the coalition profit function is πS = ∑

i∈S πi .

The following proposition contains different results established by Deneckere and David-
son (1985) which will be useful for the sequel.

Proposition 3.5 (Deneckere and Davidson 1985)

– Let P ∈ �(N ) be a coalition structure and let (P, (XS, πS)S∈P ) be the associated
normal form Bertrand oligopoly game. Then,

1. there exists a unique Nash equilibrium p∗ ∈ XN such that:

∀S ∈ P, ∃p∗S ∈ R+ : ∀i ∈ S, p∗
i = p∗S.

2. it holds that:

∀S, T ∈ P : s ≤ t, p∗S ≤ p∗T ,

with strict inequality if s < t .

– Let P,P ′ ∈ �(N ) be two coalition structures such that P ≤F P ′. Let p∗ ∈ XN and
p∗∗ ∈ XN be the unique Nash equilibria of the normal form Bertrand oligopoly games
(P, (XS, πS)S∈P ) and (P ′, (XS, πS)S∈P ′), respectively. Then,

3. it holds that for every i ∈ N, p∗
i ≥ p∗∗

i .

Point 1 of Proposition 3.5 establishes the existence of a unique Nash equilibrium for every
normal form Bertrand oligopoly game (P, (XS, πS)S∈P ) and stipulates that the members of
an admissible coalition S ∈ P charge identical prices. Point 2 of Proposition 3.5 characterizes
the distribution of priceswithin a coalition structure and states that if the size t of an admissible
coalition T ∈ P is greater than or equal to the size s of an admissible coalition S ∈ P , then
the firms in T charge higher prices than the firms in S. Point 3 of Proposition 3.5 analyses
the variations in equilibrium prices according to the coarseness of the coalition structure
and specifies that all the firms charge higher prices when the coalition structure becomes
coarser. It follows from Point 1 of Proposition 3.5 that Bertrand oligopoly TU-games in
γ -characteristic function form are well-defined.

11 We refer the reader to Topkis (1998) for an introduction to lattice theory and supermodular functions.
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Corollary 3.6 Let (N , (Xi , πi )i∈N ) be a normal form Bertrand oligopoly game. Then, for
every coalition S ∈ 2N , there exists a unique partial agreement equilibrium under S.

Proof See Appendix “Proof of Corollary 3.6”. �

By solving themaximization problems derived from (6) and (7), the unique partial agreement
equilibrium under S, (p∗

S, p̃N\S) ∈ XS × XN\S , is given by:

∀i ∈ S, p∗
i = (V − c)

(
2n(1 + r) − r

)
n

2
(
2n + r(n + s − 1)

)(
n + r(n − s)

) − r2s(n − s)
+ c (8)

and

∀ j ∈ N\S, p̃ j = (V − c)
(
2n(1 + r) − rs

)
n

2
(
2n + r(n + s − 1)

)(
n + r(n − s)

) − r2s(n − s)
+ c (9)

When c = 0, Deneckere and Davidson (1985) provide equivalent expressions of (8) and (9)
from which we deduce that Bertrand oligopoly TU-games in γ -characteristic function form
are symmetric. More precisely, it follows from (8) that the members of a coalition S ∈ 2N

charge identical prices, i.e. for every i ∈ S, there exists p∗s ∈ R+ such that p∗
i = p∗s . It also

follows from (9) that outsiders charge identical prices, i.e. for every j ∈ N\S, there exists
p̃s ∈ R+ such that p̃ j = p̃s . With these notations in mind, Proposition 3.5 calls for some
further comments.

Remark 3.7 1. For every coalition S ∈ 2N , we deduce from Point 2 of Proposition 3.5 that
p∗s ≥ p̃s , i.e. the members of coalition S charge higher prices than the outsiders.

2. For every coalition S, T ∈ 2N such that S ⊆ T , it follows from Point 3 of Proposition 3.5
that p∗s ≤ p∗t and p̃s ≤ p̃t .

3. For every coalition S ∈ 2N , let (p∗
S, p̃N\S) ∈ XS × XN\S be the unique partial agreement

equilibrium under S. If p∗s > c and p̃s > c then for every i ∈ N , Di (p∗
S, p̃N\S) ≥ 0.

In order to prove this result, for the sake of contradiction, assume that there exists i ∈ N
such that Di (p∗

S, p̃N\S) < 0, and p∗s > c and p̃s > c. We distinguish two cases:

– if i ∈ S then we deduce from Point 1 of Proposition 3.5 that for every j ∈ S,
Dj (p∗

S, p̃N\S) = Di (p∗
S, p̃N\S) < 0. Hence, it follows from p∗s > c that coalition

S obtains a negative profit.
– if i ∈ N\S then it follows from p̃s > c that outsider i obtains a negative profit.

In both cases, since coalition S or every outsider can guarantee a non-negative profit
by charging p∗s = c or p̃s = c, respectively, we conclude that (p∗

S, p̃N\S) ∈
XS × XN\S is not a partial agreement equilibrium under S, a contradiction.
By (8) and (9), note that p∗s > c and p̃s > c is satisfied if and only if V > c,
which corresponds to assumption (c). Thus, assumption (c) ensures that the quantity
demanded of every firm’s brand is non-negative.

It seems clear that for every coalition S ∈ 2N\{N }, vγ (S) ≤ vβ(S) and vγ (N ) = vβ(N ),
so that the core associated with the γ -characteristic function is included in the core associated
with the β-characteristic function12 as illustrated in the following example.

Example 3.8 Consider the Bertrand oligopoly situation (N , V , r , c) where N = {1, 2, 3},
V = 5, r = 2 and c = 1. For every coalition S ∈ 2N , the worths vβ(S) and vγ (S) are given
in the following table:

12 This result is intuitive and holds for general TU-games.
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S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
vβ(S) 0.76 0.76 0.76 3.33 3.33 3.33 12
vγ (S) 3.36 3.36 3.36 7.05 7.05 7.05 12

It follows that the cores C(vβ) and C(vγ ) are given by:

C(vβ) =
{

σ ∈ R
3 :

∑

i∈N
σi = 12 and ∀i ∈ {1, 2, 3}, 0.76 ≤ σi ≤ 8.67

}

,

and

C(vγ ) =
{

σ ∈ R
3 :

∑

i∈N
σi = 12 and ∀i ∈ {1, 2, 3}, 3.36 ≤ σi ≤ 4.95

}

.

The 2-simplex below represents these two core configurations:

Thus, from the Bertrand oligopoly TU-game vβ ∈ GN
o to the Bertrand oligopoly TU-game

vγ ∈ GN
o , we see that the core is substantially reduced.

A well-known single-valued allocation rule,13 is the Equal Division Solution. For every
TU-game v ∈ GN the Equal Division Solution, denoted by ED(v), is defined as:

∀i ∈ N , EDi (v) = v(N )

n
.

The Equal Division Solution distributes the worth of the grand coalition equally among
the players. Deneckere and Davidson (1985) establishes that any coalition S ⊆ N of size

13 A single-valued allocation rule on GN is a mapping ρ : GN −→ R
n that associates to every TU-game

v ∈ GN a payoff vector ρ(v) ∈ R
n .
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s ∈ {2, . . . , n} is profitable to each of the merging parties and that outsiders take a free ride
and earn larger profits than do insiders. Moreover, they prove that coalitions are increasingly
profitable, i.e. for all s ∈ {1, . . . , n} and for all t ∈ {1, . . . , n − 1 such that s > t , it holds
that:14

vγ (S)

s
>

vγ (S)

t
.

This property ensures that the Equal Division Solution belongs to the core.15

Corollary 3.9 Any Bertrand oligopoly TU-game vγ ∈ GN
o has at least one core element,

namely the Equal Division Solution.

The following result goes further and makes precise the sense of profitability of cooperation
between firms.

Theorem 3.10 Every Bertrand oligopoly TU-game vγ ∈ GN
o is convex.

Proof See Appendix “Proof of Theorem 3.10”. �

This result extends the superadditivity property estbalished by Deneckere and Davidson
(1985).

4 Concluding remarks

In this article, we have considered a fully cooperative approach for oligopoly situations. Our
analysis of incentives to cooperate is complementary to the previous theoretical and empiri-
cal studies of coalition formation process in the framework of non-cooperative games (see,
for example, Bloch 1995 and Levenstein 1997). Generally speaking, we have proved that
the convexity property holds for Bertrand oligopoly TU-games in α, β and γ -characteristic
function form. This generalizes the superaddivity result in Deneckere and Davidson (1985)
and contrasts sharply with the negative core existence results of Kaneko (1978), and Huang
and Sjöström (2003). Another approach proposed by Hart and Kurz (1983) consists in con-
sidering that for every coalition S ∈ 2N , outsiders will form the complementary coalition
N\S and correlate their strategies to maximize their joint profit. This leads to consider the
δ-characteristic function. Given the normal form Bertrand oligopoly game (N , (Xi , πi )i∈N )

and any coalition S ∈ 2N the δ-characteristic function is then given by:16

vδ(S) = sn(V − c)2(2n + r(n + s))2(n + r(n − s))

(4n2(1 + r) + 3r2s(n − s))2
.

In this case, the convexity property does not hold anymore since the core may be empty.
Precisely, it holds that:

vδ(N )

n
− vδ(S)

s
= (n − s)r2(V − c)2(−4n3(1 + r) + 4n2s(4r + 3) + nrs2(9r − 4) − 9r2s3)

4(4n2(1 + r) + 3r2s(n − s))2
,

14 Deneckere and Davidson (1985) prove that the profits of the coalitions are superadditive for any market
structure.
15 For general symmetric TU-games, the set of inequalities v(N )/n ≥ v(S)/s for any S ∈ 2N , S �= ∅, is a
necessary and sufficient condition for the non-emptiness of the core.
16 The computation of vδ(S) follows from standard first-order conditions.
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which is negative when the number of firms n is sufficiently large. Thus, for each r ∈ R++
there exists nr ∈ N such that for all n ≥ nr , the core is empty. The following table provides
some values of nr :

r 1/10 1/5 1/3 1/2 1 2 3 5 10 20 50

nr 4 4 4 4 4 5 5 6 7 9 13

Moreover, we have directly assumed that products are differentiated. Two other cases can
be considered: when products are unrelated (r = 0) and when products are perfect substitutes
(r = +∞). In the first case, the quantity demanded of firm i’s brand only depends on its
own price. Hence, the profit of a coalition does not depend on outsiders’ behavior, and so the
α, β, γ and δ-characteristic functions are equal. Moreover, for every coalition S ∈ 2N , the
coalition profit function πS is separable:

∀xS ∈ XS, πS(xS) =
∑

i∈S
πi (xi ).

Thus, for every coalition S ∈ 2N the unique Nash equilibrium p∗ ∈ XN of the normal form
Bertrand oligopoly game (N , (Xi , πi )i∈N ) is also the unique partial agreement equilibrium
under S. Hence, Bertrand oligopoly TU-games are additive,17 and so (v({i}))i∈N ∈ R

n is
the unique core element.
In the second case, firms sell a homogeneous product. It follows that firm i’s quantity
demanded is positive if and only if it charges the smallest price. Since firms operate at a
constant and identical marginal and average cost, for every coalition S ∈ 2N\{N }, outsiders
charge prices equal to their marginal cost,18 and so coalition S obtains a zero profit. By charg-
ing the monopoly price, the grand coalition obtains a non-negative profit, and we conclude
that the core is equal to the set of imputations consisting of all efficient payoff vectors σ ∈ R

n

such that σi ≥ 0 for all i ∈ N .

Appendix

Proof of Proposition 3.1: Take any coalition S ∈ 2N . Define bS : XN\S −→ XS the best
reply function of coalition S as:

∀pN\S ∈ XN\S, ∀pS ∈ XS, πS(bS(pN\S), pN\S) ≥ πS(pS, pN\S) (10)

It follows from (10) that:

vβ(S) = min
pN\S∈XN\S

πS(bS(pN\S), pN\S).

In order to compute the worth vβ(S) of coalition S, we have to successively solve the max-
imization and the minimization problems defined in (3). First, for every pN\S ∈ XN\S
consider the profit maximization program of coalition S:

∀pN\S ∈ XN\S, max
pS∈XS

πS(pS, pN\S).

17 A TU-game v ∈ GN is additive if for every coalition S ∈ 2N , v(S) = ∑
i∈S v({i}).

18 This outsiders’ behavior is consistent with the α, β, γ and δ-characteristic functions.
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The first-order conditions for a maximum are:

∀pN\S ∈ XN\S, ∀i ∈ S,
∂πS

∂ pi
(pS, pN\S) = 0,

and imply that the unique maximizer bS(pN\S) is given by:19

∀pN\S ∈ XN\S, ∀i ∈ S, bi (pN\S) = V + (r/n)
∑

j∈N\S p j

2
(
1 + r(n − s)/n

) + c

2
(11)

Then, given bS(pN\S) ∈ XS consider the profit minimization program of the complementary
coalition N\S:

min
pN\S∈XN\S

πS(bS(pN\S), pN\S).

The first-order conditions for a minimum are:

∀ j ∈ N\S,
∂πS

∂ p j
(bS(pN\S), pN\S) = 0,

which are equivalent, for all j ∈ N\S, to the following equality:

∑

j∈N\S
p j = n

r

(

c

(

1 + r
(n − s)

n

)

− V

)

.

Since for every i ∈ N , Xi = R+, it follows that any minimizer pN\S ∈ XN\S satisfies:
∑

j∈N\S
p j = max

{

0,
n

r

(

c

(

1 + r
(n − s)

n

)

− V

)}

,

which proves (5). By substituting (5) into (11), we deduce that:

∀i ∈ S, pi = bi (pN\S) = max

{

c,
V

2
(
1 + r(n − s)/n

) + c

2

}

,

which proves (4) and completes the proof. �

Proof of Theorem 3.4: Wewant to prove thatBertrand oligopolyTU-games inβ-characteristic
function form are convex. Proposition 3.1 implies that Bertrand oligopoly TU-games in
β-characteristic function form are symmetric. It follows from (4) that the members of a
coalition S ∈ 2N charge identical prices, i.e. for every i ∈ S, there exists ps ∈ R+ such that
pi = ps . It follows from (5) that outsiders charge an average price p[n−s]/(n − s) where
p[n−s] = ∑

j∈N\S p j . Hence, the worth vβ(S) depends only on the size s of coalition S, i.e.

there exists a function fβ : N −→ R such that for every coalition S ∈ 2N , it holds that:

vβ(S) = fβ(s) = s(ps − c)

(

V − ps
(

1 + r
(n − s)

n

)

+ r

n
p[n−s]

)

.

It remains to prove (1).20 Take any coalition S ∈ 2N of size s such that s ≤ n − 2. First, we
distinguish two cases:

19 The unicity of the maximizer bS(pN\S) follows from the strict concavity of πS with respect to pi , i ∈ S.
20 For a symmetric TU-game v ∈ GN where for every coalition S ∈ 2N , v(S) = f (s), condition (1) becomes:

∀S ∈ 2N : s ≤ n − 2, f (s + 1) − f (s) ≤ f (s + 2) − f (s + 1).
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– assume that V ≤ c
(
1 + r(n − s − 1)/n

)
. It follows from Point 1 of Remark 3.2 that

ps+1 = c.
– assume that V > c

(
1+ r(n − s − 1)/n

)
. This implies that V > c

(
1+ r(n − s − 2)/n

)
,

and it follows from Point 2 of Remark 3.2 that p[n−s−1] = p[n−s−2] = 0.

In both cases, it holds that:

(ps+1 − c)p[n−s−2] = (ps+1 − c)p[n−s−1] (12)

Since ps+2 is the unique maximizer for any coalition of size s + 2 and from (12), it holds
that:

fβ(s + 2) = (s + 2)(ps+2 − c)

(

V − ps+2
(

1 + r
(n − s − 2)

n

)

+ r

n
p[n−s−2]

)

≥ (s + 2)(ps+1 − c)

(

V − ps+1
(

1 + r
(n − s − 2)

n

)

+ r

n
p[n−s−2]

)

= (s + 2)(ps+1 − c)

(

V − ps+1
(

1 + r
(n − s − 2)

n

)

+ r

n
p[n−s−1]

)

= fβ(s + 1) + (ps+1 − c)

(

V − ps+1
(

1 + r
(n − 2s − 3)

n

)

+ r

n
p[n−s−1]

)

(13)

Moreover, since ps is the uniquemaximizer for any coalition of size s and p[n−s] ≥ p[n−s−1],
we deduce that:

fβ(s) = s(ps − c)

(

V − ps
(

1 + r
(n − s)

n

)

+ r

n
p[n−s]

)

≥ s(ps+1 − c)

(

V − ps+1
(

1 + r
(n − s)

n

)

+ r

n
p[n−s]

)

≥ s(ps+1 − c)

(

V − ps+1
(

1 + r
(n − s)

n

)

+ r

n
p[n−s−1]

)

(14)

It follows from the expression of fβ(s + 1) and (14) that:

fβ(s + 1) − fβ(s) ≤ (ps+1 − c)

(

V − ps+1
(

1 + r
(n − 2s − 1)

n

)

+ r

n
p[n−s−1]

)

(15)

We conclude from (13) and (15) that:

fβ(s + 1) − fβ(s) ≤ (ps+1 − c)

(

V − ps+1
(

1 + r
(n − 2s − 1)

n

)

+ r

n
p[n−s−1]

)

≤ (ps+1 − c)

(

V − ps+1
(

1 + r
(n − 2s − 3)

n

)

+ r

n
p[n−s−1]

)

≤ fβ(s + 2) − fβ(s + 1),

which completes the proof. �
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Proof of Corollary 3.6: Take any coalition S ∈ 2N and consider the coalition structure P S =
{S} ∪ {{ j} : j ∈ N\S}. It follows from (6) and (7) that a strategy profile (p∗

S, p̃N\S) ∈
XS × XN\S is a partial agreement equilibrium for the normal form Bertrand oligopoly game
(N , (Xi , πi )i∈N ) if and only if it is aNash equilibrium for the normal formBertrand oligopoly
game (P S, (XT , πT )T∈P S ). By Point 1 of Proposition 3.5 we conclude that there exists a
unique partial agreement equilibrium under S. �

Proof of Theorem 3.10: Pick any i ∈ N and any j ∈ N such that j �= i . We want to show
that for any coalition S ⊆ N\{i, j}, vγ (S ∪ {i}) − vγ (S) ≤ vγ (S ∪ {i, j}) − vγ (S ∪ { j}).
First, assume that S = ∅. In such a case, the superadditive result in Deneckere and Davidson
(1985) ensures that vγ ({i}) + vγ ({ j}) ≤ vγ ({i, j}), and so the convexity property holds for
S = ∅.
Then, assume that S �= ∅. For any S ⊆ N such that s ≥ 1, it follows from (8) and (9)
that the worth vγ (S) depends only on the size s of coalition S, i.e. there exists a function
fγ : N −→ R such that for every coalition S ∈ 2N , it holds that:

vγ (S) = fγ (s) = s(V − c)2
(
2n(1 + r) − r

)2
n
(
n + r(n − s)

)

(
4n2 + 6n2r − 2nrs + 2n2r2 − r2s2 − 2nr − 2nr2 + 2r2s − nr2s

)2 .

Since mergers are increasingly profitable (Deneckere and Davidson 1985), the function fγ is
increasing. In order to prove the convexity property (1), we want to show that for any s ≥ 1,
the second derivative of fγ is non-negative. This second derivative is given by:

d2 fγ
ds2

(s) = A

B(s)

(
r3(n − s)g1(s) + r2g2(s) + r4n2g3(s) − 8n3 + 12n3s

)
,

where:

A = 2(V − c)2
(
2n(1 + r) − r

)2
nr2 ≥ 0;

B(s) = (
4n2 + 6n2r − 2nrs + 2n2r2 − r2s2 − 2nr − 2nr2 + 2r2s − nr2s

)4 ≥ 0;

g1(s) = 3s3 + 9n2s − 4n2 − 8ns + 4n − 3ns2;

g2(s) = 6ns3 + (8n − 36n2)s2 + (33n3 − 4n)s − 16n3 + 8n2;

g3(s) = −6s2 + (9n + 1)s + 1 − 5n.

It remains to show that the functions g1, g2 and g3 are non-negative.
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Fig. 1 Graph of function g1

Fig. 2 Graph of function g2

First, the function g1 is increasingwith respect to s so that its minimum is g1(1) = 5n2−7n+
3 ≥ 0 as illustrated by Fig. 1. Then, the function g2 is also a polynomial function of degree 3
represented by Fig. 2. We can verify that dg2(s)/ds = 18ns2 + 2(8n − 36n2)s + 33n3 − 4n
has two real roots s1 and s2 such that:

1 ≤ s1 = 2n − 4

9
− 1

18

√
702n2 − 576n + 136 ≤ n,

and

n ≤ s2 = 2n − 4

9
+ 1

18

√
702n2 − 576n + 136.
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Fig. 3 Graph of function g3

So, g2 is increasing on [1; s1] and decreasing on [s1; n]. Moreover, g2(1) ≥ 0 and g2(n) ≥ 0
implying that g2 is non-negative. Finally, the function g3 is a polynomial function of degree
2 represented by Fig. 3 and we can verify that it is non-negative for any s ∈ {1, . . . , n} and
n ≥ 3, which concludes the proof. �
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