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Abstract
We develop a new approach to solving classification problems, which is based on the theory
of coherent measures of risk and risk sharing ideas. We introduce the notion of a risk-
averse classifier and a family of risk-averse classification problems.We show that risk-averse
classifiers are associated with minimal points of the possible classification errors, where the
minimality is understood with respect to a suitable stochastic order. The new approach allows
for measuring risk by distinct risk functional for each class. We analyze the structure of the
new classification problem and establish its theoretical relation to known risk-neutral design
problems. In particular, we show that the risk-sharing classification problem is equivalent
to an implicitly defined optimization problem with unequal weights for each data point.
Additionally, we derive a confidence interval for the total risk of a risk-averse classifier.
We implement our methodology in a binary classification scenario on several different data
sets. We formulate specific risk-averse support vector machines in order to demonstrate the
proposed approach and carry out numerical comparison with classifiers which are obtained
using the Huber loss function and other loss functions known in the literature.

Keywords Machine learning · Support vector machines · Soft-margin classifier · Coherent
measures of risk · Risk sharing · Normalized classifiers · Risk-aware classification

1 Introduction

Classification is one of the fundamental tasks of the data mining and machine learning
community. The need for accurate and effective solution of classification problems prolif-
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erates throughout the business world, engineering, and sciences. In this paper, we propose
a new approach to classification problems with the aim to develop a methodology for reli-
able and robust risk-averse classifier design which has allows the users to choose tailored
risk measurement for misclassification in various classes. Classification problems are based
on observed data; they use approximations for the true distribution of the populations to
be separated. Creating a good approximation or taking into account the uncertainty of the
approximated distribution is important for drawing proper conclusion. The uncertainty is
exacerbated when the data is high dimensional but some or all populations are represented
by small (relative to the dimensionality) samples. Furthermore, we stipulate that misclas-
sification in different classes is associated with different risk. Naturally, when the sample
sizes of the populations are imbalanced, the the statistical estimates associated with the small
size samples carry more risk than those based on large samples. Our approach contributes
to the methods for classification of imbalanced classes. Outside of that scenario, misclassifi-
cation for different classes may be associated with dramatically different cost which should
be taken into account when designing a classifier. We comment further on that issue in due
course.

The proposed approach has its foundation in the theory of coherent measures of risk and
risk sharing. Although, this theory is well advanced in the field of mathematical finance
and actuarial analysis, the classification problem does not fit the problem setting analyzed
in those fields and the theoretical results on risk sharing are inapplicable here. The classifi-
cation problem raises new issues, poses new challenges, and requires a dedicated analysis.
We employ non-linear in probability risk functionals specific to each class. We analyze the
structure of the new classifier design problem and establish its theoretical relation to the risk-
neutral design problem. In particular, we show that the risk-sharing classification problem
is equivalent to an implicitly defined optimization problem with unequal, implicitly defined
but unknown weights for each data point. We implement our methodology in a binary clas-
sification scenario on several different data sets and carry out numerical comparison with
classifiers which are obtained using the Huber loss function and other popular loss functions.
In these applications, we use linear support vector machines in order to demonstrate the
proposed approach.

Our paper is organized as follows. In Sect. 2, we introduce the loss function and pro-
vide a formal definition to the problem illustrating it by examples. In Sect. 3, we introduce
the necessary notions; we recall the notion of law-invariant coherent measures of risk and
their dual representation, which illustrates how those risk measures provide robustness to
the solution of a stochastic optimization problem. The main results of our paper are con-
tained in Sect. 4. In Sect. 5, we derive confidence intervals for the misclassification risk as
measured by the coherent measures of risk. In Sect. 6, we address specifically risk-averse
binary classification by proposing risk-averse problem formulation, which can be solved in
an efficient way numerically. In Sect. 7, we refer to some related work in the area of robust
statistics, robust optimization, and measures of risk. Additionally, we discuss the problem
of risk sharing and risk allocation in financial institutions. Finally, Sect. 8 reports on our
numerical experiments.

2 Problem setting

We consider labeled data consisting of k subsets S1, . . . , Sk of n-dimensional vectors. The
cardinality of Si is |Si | = mi , i = 1, . . . , k. Analytically, the classification problem consists
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of identifying a mapping φ, whose image is partitioned into k subsets corresponding to each
class of data, so that φ(·) can be used as an indicator function of each class. We adopt the
following definition.

Definition 1 A classifier is a vector function ϕ : Rn → R
d such that ϕ(x) ∈ Ki for all

x ∈ Si , i = 1, . . . , k, where Ki ⊂ R
d and Ki ∩ K j = ∅ for all i, j = 1, . . . , k and i �= j .

In our discussion, we assume that the classifier belongs to a certain functional family depend-
ing on a finite number of parameters, which we denote by π ∈ R

s . The task is to choose a
suitable value for the parameter π .

Some examples of this point of view are the following. When support vector machine is
formulated, we seek to distinguish two classes, i.e., k = 2. The classifier is a linear function
ϕ(x;π) : Rn → R, defined by setting

ϕ(x;π) = v�x − γ for any x ∈ R
n .

The classifier is determined by the parameters π = (v, γ ) ∈ R
n+1. The regions the classifier

maps to are K1 = [0,+∞), K2 = (−∞, 0).
Another example is given, when we wish to separate many classes (k ≥ 3) by a linear

classifier, which is created on the principle “one vs. all”. Then effectively, our goal is to
determine functions ϕ j (x; ai , bi ) := 〈ai , x〉 − bi , where x is a data point, ai ∈ R

n , i =
1, . . . k − 1, are the normals of the separating planes and bi determine the location of the
i-th plane. Plane i is meant to separate the data points from class j from the rest of the data
points. This means that

ϕ j (x; ai , bi ) =
{
≥ 0 for x ∈ Si
< 0 for x /∈ Si .

(1)

We define a k − 1 × n matrix A whose rows are the vectors ai , and a vector b ∈ R
k−1

whose components are bi . The classifier for this problem can be viewed as a vector function
ϕ(·; A, b) : Rn → R

k−1 by setting ϕ(x; A, b) = Ax − b. The parameter space is of form
π = (A, b) ∈ R

(k−1)(n+1). Requirement (1) means that the regions K j are the orthants

Ki = {z ∈ R
k−1 : zi ≥ 0, z j < 0, j �= i, j = 1, . . . , k − 1}, i = 1, . . . k − 1;

Kk = {z ∈ R
k−1 : zi < 0, i = 1, . . . , k − 1}

This setting may be used for classification in some anomaly detection scenarios. Two
approaches are known. One setting may require to distinguish between several distinct nor-
mal regimes or features of normal operational status. In that case, the class k may contain the
anomalous instances, while classes i = 1, . . . k − 1 represent the normal operation. Another
problem deals with several rare undesirable phenomena with distinct features. In such a sce-
nario, we may associate classes i = 1, . . . k − 1 with those anomalous events and class k
with a normal operation. When kernels are used, then the mapping ϕ(x;π) becomes a com-
position of the embedding mapping from R

n to the new feature space and another classifier
mapping in the feature space.

For a random observation z ∈ R
n , we calculate ϕ(z;π) and note that misclassification

occurs when ϕ(z;π) /∈ Ki , while z ∈ Si for any i = 1, . . . , k. The classification error can
be defined as the distance of a particular record to the classification set, to which it should
belong. This definition is in harmony with the notion of an error in statistics, when a model
is fit to data, in which case the error is defined as the distance of the model prediction to the

123



Annals of Operations Research

Fig. 1 Classification error calculation

realizations of the predicted random variable. Here the distance from a point r to a set K is
defined by using a suitable norm in Rn :

dist(r , K ) = min{‖r − a‖ : a ∈ K }.
The distance is well-defined when the set K is convex and closed.

As the records in every data class Si , i = 1, . . . , k constitute a sample of an unknown
distribution of a random vector Xi defined on a probability space (Ω,F, P), the following
random variables:

Zi (π) = dist(ϕ(Xi ;π), Ki ), i = 1, . . . k, (2)

represent the (random) misclassification of data points in class i when parameter π is used.
These univariate random variables are defined on a common probability space and are rep-
resented by the sampled observations

zij (π) = dist(ϕ(xij ;π), Ki ) with xij ∈ Si j = 1, . . . ,mi .

The distance ofϕ(xij ;π) to Ki is the smallest translation needed to eliminatemisclassification

of the point xij . Figure 1 illustrates how the classification error for a certain binary classifier
is measured. In the support vector machine, the classification error is computed by

dist
(
ϕ(x; v, γ ), Ki

) =
{
max(0, 〈v, x〉 − γ ) for x ∈ S1,

max(0, γ − 〈v, x〉) for x ∈ S2.

We classify every new observation x in Si , if dist
(
ϕ(x; v, γ ), Ki

) = 0, i,= 1, 2. In the case
of SVM, the regions cover the entire image space of the classifier R = K1 ∪ K2. Therefore,
the condition dist

(
ϕ(x; v, γ ), Ki

) = 0, i,= 1, 2, always holds for exactly one class.
Observe that in themulti-class example, the regions Ki , i = 1, . . . k do not cover the entire

image space of the classifier. Therefore, it is possible to observe a future instance x such that
dist
(
ϕ(x; A, b), Ki

)
> 0 for all i = 1, . . . k. In that case, we could classify according to the

smallest distance

x ∈ S j iff dist
(
ϕ(x; A, b), K j

) = min
1≤i≤k dist

(
ϕ(x; A, b), Ki

)
, j ∈ {1, . . . , k}.

Another problem arises, if the the minimum distance is achieved for several classes. The
ambiguity could be resolved in several ways as a sequential classification procedure but this
question is beyond the scope of our study.

If the distribution of the vectors Xi , i = 1, . . . , k, are known, then the optimal risk-neutral
classifier would be obtained by minimizing the expected error. This would be the solution of
the following optimization problem:
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min

{
k∑

i=1

E
[
Zi (π)

] : Zi (π) = dist(ϕ(Xi ;π), Ki ), i = 1 . . . k, π ∈ D.

}
(3)

Here, a closed convex set D ⊆ Rs describes the set of feasible parameters π . Our goal is to
introduce a family of risk-averse classifiers,where the expectation is replaced by law-invariant
coherent measures of risk.

We start with the formulation of an optimization problem for binary classification, in
which the (estimated) expected total error is minimized.

min
v,γ,Z1,Z2

1

m1

m1∑
j=1

z1j +
1

m2

m2∑
j=1

z2j

s. t. 〈v, x1j 〉 − γ + z1j ≥ 0, j = 1, . . . ,m1,

〈v, x2j 〉 − γ − z2j ≤ 0, j = 1, . . . ,m2,

‖v‖ = 1, Z1 ≥ 0, Z2 ≥ 0.

(4)

In this formulation, Z1 and Z2 are random variables expressing the classification error for
class 1 and class 2, respectively. Those variables have realizations z1j and z2j . Note that z1i
and z2i will satisfy Eq. (2) only if we use the Euclidean norm of v in (4).

The soft-margin SVM with parameters M > 0 and δ > 0 is formulated as follows:

min
v,γ,Z1,Z2

M

⎛
⎝ m1∑

j=1

z1j +
m2∑
j=1

z2j

⎞
⎠+ δ‖v‖2

s. t. 〈v, x1j 〉 − γ + z1j ≥ 1, j = 1, . . . ,m1,

〈v, x2j 〉 − γ − z2j ≤ −1, j = 1, . . . ,m2,

Z1 ≥ 0, Z2 ≥ 0.

(5)

In problem (5), the normal vector v of the separating hyperplane can be of any positive length.
Observe that multiplying the solution of problem (5), v and γ , by a positive constant does
not change the separating plane. In problem (5), the estimated expected total classification
error equals

1

m1‖v‖
m1∑
i=1

max(z1i − 1, 0) + 1

m2‖v‖
m2∑
j=1

max(z2j − 1, 0)

This means that the objective function does not necessarily minimize the expected classifi-
cation error although the variables z1j and z2j are indicative of misclassification occurrence.

We propose a new family of risk functionals: coherent measures of risk representing the
point of view that it should be possible to treat misclassification errors for each classes with
different attitude to risk. While the total expected error is a sum of expected misclassification
in each class, the risk in a system measured by a coherent risk measure is not a sum of the
risk of each component. That is why, we do not simply minimize the sum of risks for each
class. We adopt a point of view on optimality of risk allocation as the one in risk sharing
theory in mathematical finance. However, we emphasize that the problem setting and the
results associated with risk sharing of losses in financial institutions are inapplicable to the
classification problem as it will become clear in due course.
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3 Coherent measures of risk

Measures of risk are widely used in finance and insurance. Additionally, the signal to noise
measures, used in engineering and statistics (Fano factor Fano 1947 or the index of dispersion
Cox andLewis 1966) are of similar spirit. An axiomatic theory ofmeasures of risk is presented
in Ogryczak and Ruszczyński (1999), Artzner et al. (1999), Föllmer and Schied (2011),
Kijima andOhnishi (1993), Rockafellar et al. (2006). In a more general setting, risk measures
are analyzed in Ruszczynski and Shapiro (2006). For p ∈ [1,∞] and a probability space
(Ω,F, P), we use the notation Lp(Ω,F, P), for the space of random variables with finite
p-th moments.

Definition 2 A coherent measure of risk is a functional � : Lp(Ω) → R satisfying the
following axioms:

Convexity: For all X , Y , γ ∈ [0, 1], �(γ X + (1− γ )Y ) ≤ γ �(X) + (1− γ )�(Y ).

Monotonicity: If Xω ≥ Yω for P-a.a ω ∈ Ω , then �(X) ≥ �(Y ).
Translation Equivariance: For any a ∈ R, �(X + a) = �(X) + a for all X .
Positive Homogeneity: If t > 0 then �(t X) = t�(X) for any X .

For an overview of the theory of coherent measures of risk, we refer to Shapiro et al. (2014)
and the references therein.

A riskmeasure�(·) is called law-invariant if�(X) = �(Y )whenever the randomvariables
X andY have the same distributions. It is clear that in our context, only law invariantmeasures
of risk are relevant.

The following result is known as a dual representation of coherent measures of risk (cf.
Shapiro et al. 2014). The space Lp(Ω) and the space Lq(Ω) with 1

p + 1
q = 1 are viewed as

paired vector spaces with respect to the bilinear form

〈ζ, Z〉 =
∫

Ω

ζ(ω)Z(ω)dP(ω), ζ ∈ Lq(Ω), Z ∈ Lp(Ω). (6)

For any ζ ∈ Lp(Ω), we can view 〈ζ, Z〉 as the expectation EQ[Z ] taken with respect to the
probability measure dQ = ζdP , defined by the density ζ , i.e., Q is absolutely continuous
with respect to P and its Radon-Nikodym derivative is dQ/dP = ζ . For any finite-valued
coherent measure of risk �, a convex subset A of probability density functions ζ ∈ Lq(Ω)

exists, such that for any random variable Z ∈ Lp(Ω), it holds

�(Z) = sup
ζ∈A

〈ζ, Z〉 = sup
dQ/dP∈A

EQ[Z ]. (7)

This result reveals how measures of risk provide robustness with respect to the changes of
the distribution. Their application constitutes a new approach to robust statistical inference.

For a random variable X ∈ Lp(Ω) with distribution function FX (η) = P{X ≤ η}, we
consider its survival function F̄X (η) = P(X > η) and the left-continuous inverse of the
cumulative distribution function defined as follows:

F (−1)
X (α) = inf {η : FX (η) ≥ α} for 0 < α < 1,

i.e., F (−1)
X (α) is the left α-quantile of X .

We intend to investigate the distribution of classification errors and that is why we have
a preference to small outcomes (small errors). Following Shapiro et al. (2014), the Value at
Risk at level α of a random error X is defined by setting

VaRα(X) = F (−1)
X (1− α).
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The risk here is understood as the probability of the error X being large. This point of view
corresponds to minimizing the probability of misclassification. Although Value at Risk is an
intuitively appealing measure, it is not coherent.

In the theory of measures of risk, a special role is played by the functional called the
Conditional Value-at-Risk and denoted CVaR(·) (also known as Conditional Value at Risk or
CVaR, seeOgryczak andRuszczyński 2002;Rockafellar andUryasev 2002). TheConditional
Value at Risk of X at level α is defined as

CVaRα(X) = 1

α

∫ α

0
VaRt (X) dt . (8)

For the second equality, we refer to Dentcheva and Martinez (2012), Ogryczak and
Ruszczyński (2002). This is the representation (cf. also Shapiro et al. 2014) suitable for
optimization problems. Due to Kusuoka theorem (Kusuoka 2001; Shapiro et al. 2014, Thm.
6.24), every law invariant, finite-valued coherent measure of risk on Lp(Ω) for non-atomic
probability space can be represented as a mixture of Conditional Value-at-Risk at all prob-
ability levels. This result can be extended for finite probability spaces with equally likely
observations.

A popular class of coherent measures of risk include the semideviation of a random
variable. The upper semideviation of order p is defined as

σ+
p [Z ] :=

(
E

[(
Z − E[Z ])p+])1/p, (9)

where p ∈ [1,∞) is a fixed parameter. It is well defined for all random variables Z with
finite p-th order moments. The mean–upper-semideviation measure has the general form

E[Z ] + cσ+
p [Z ], for some constant c ∈ [0, 1]. (10)

The mean-upper-semideviation measure reflects preferences to small realizations of the ran-
dom variables and it aims at penalization of the excess over the expected value when Z
depends on the choice of a decision maker and the choice is taken as to minimize this risk
measure. This measure of risk is suited for our purposes since in the setting of misclas-
sification small values are preferred. Higher value of the constant c corresponds to higher
risk-aversion while c = 0 corresponds to the risk-neutral attitude.

In order to illustrate the connection to robust statistics and robust optimization, we provide
the dual representation of the risk measures which we shall use in our numerical study. For
parameters α, β, c, all contained in [0, 1] and p ≥ 1, we have:

CVaRα(X) = sup{Eζ [Z ] : ζ ∈ L∞(Ω) : ζ(ω) ∈ [0, α−1] a.e.};
(1− β)E[Z ] + βCVaRα(Z)

= sup{Eζ [Z ] : ζ ∈ L∞(Ω) : ζ(ω) ∈ [1− β, 1+ β(1− α)α−1] a.e.};
E[Z ] + cσ+

p [Z ] = sup{Eζ [Z ] : ζ ∈ Lq(Ω) : ζ = 1+ ξ − E[ξ ], ‖ξ‖q ≤ c} (11)

Note that using these measures results in taking the worst expected misclassification when
it is evaluated not only by the empirical probability mass function but all mass functions
satisfying the conditions in (11).

Statistical estimators of spectral law-invariant measures of risk using Kusuoka represen-
tations are proposed in Dentcheva and Penev (2010). Furthermore, central limit theorems for
general composite risk functionals, which incorporate the risk measures used in this paper are
established in Dentcheva et al. (2017). Other classes of coherent measures of risk were pro-
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posed and analyzed in Dentcheva et al. (2010), Krokhmal (2007), Ogryczak and Ruszczyński
(2002), Shapiro et al. (2014) and the references therein.

4 Risk sharing in classification

First, we introduce the notion of a risk-averse classifier and show that risk-averse classifiers
are associated with minimal points of the attainable errors, where the minimality is with
respect to a suitable stochastic order. Let a set of labeled data, a parametric classifier family
ϕ(·;π) with the associated collection of sets Ki , i = 1 . . . , k, and the law-invariant coherent
risk measures �i , i = 1 . . . , k be given. The presumption is that we have different attitude
to misclassification risk in the various classes and the total risk is shared among the classes
according to risk-averse preferences. Risk preferences in classification have been previously
specified via cost-sensitive objective functions which may place different costs on the mis-
classification errors of each class. However, it is difficult to determine a proper weighting
that truly reflects the risk preferences of the decision maker. In this section, we show that
using risk functionals leads to cost-sensitive formulation, where the weighting is implied by
the choice of risk measure.

First, we show that Zi (π) ∈ Lp(Ω,F, P) i = 1, . . . , k under appropriate conditions.

Theorem 1 Assume that Xi ∈ Lp(Ω,F, P), Ki are closed convex sets, i = 1, . . . , k, and
that the function ϕ(·;π) satisfies the following growth condition

‖ϕ(x, π)‖ ≤ C1(π) + C2(π)‖x‖p, x ∈ ∪k
i=1 supp Xi , (12)

where C1(π) and C2(π) are constants depending on π and ‖ϕ(x, π)‖ refers to the Euclidean
norm in R

d . Then Zi (π) ∈ L1(Ω,F, P), i = 1, . . . , k.

Proof The distance functions z �→ dist(z, Ki ), i = 1, . . . , k, are continuous convex functions
(see, e.g., Beer 1993) and dist(z, Ki ) < ∞ for all z ∈ R

n . Furthermore, let x̂i be the norm-
minimal element of Ki . Then

dist(z, Ki ) ≤ ‖z − x̂i‖ ≤ ‖z‖ + ‖x̂i‖.
For all i = 1, . . . , k, we obtain the estimate over the support of the random vector Xi :

dist(ϕ(x;π), Ki ) ≤ ‖ϕ(x;π)‖ + ‖x̂i‖ ≤ C1(π) + C2(π)‖x‖p + ‖x̂i‖.
We conclude that Zi , i = 1, . . . , k, are integrable because ‖Xi‖p is finite. ��

Let Y denote the set of all random vectors (Z1(π), . . . , Zk(π)) obtained as Zi (π) =
dist(ϕ(Xi ;π), Ki ) for some π ∈ D, i.e., Y is the set of all attainable classification errors
considered as random vectors in the corresponding probability space. In the classification
problem, we deal with their representation from the available sample calculated as follows:

zij (π) = dist(ϕ(x j ;π), Ki ), x j ∈ Si , j = 1, . . . ,mi , i = 1, . . . k.

for a given parameter π ∈ D.

Definition 3 A vector w ∈ R
k represents an attainable risk allocation for the classification

problem, if a parameter π ∈ D exists such that

w = (�1(Z1(π)), . . . , �k(Z
k(π))

) ∈ R
k for

(
Z1(π), . . . , Zk(π)

) ∈ Y.
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We denote the set of all attainable risk allocations by X . Assume that a partial order on R
k

is induced by a pointed convex cone K ⊂ R
k , i.e.,

v �K w if and only if w − v ∈ K.

Recall that a point v ∈ A ⊂ R
k is calledK-minimal point of the set A if no pointw ∈ A exists

such that v − w ∈ K. If K = R
k+, then the notion of K-minimal points of a set corresponds

to the well-known notion of Pareto-efficiency or Pareto-optimality in R
k .

Definition 4 Aclassifierϕ(·;π) is calledK-optimal risk-averse classifier, if its risk-allocation
is a K-minimal element of X . If K = R

k+, then the classifier is called Pareto-optimal.

From now on, we focus on Pareto-optimality, but our results are extendable to the case of
more general orders defined by pointed cones.

Definition 5 A risk-sharing classification problem (RSCP) is given by the set of labeled data,
a parametric classifier family ϕ(·;π) with the associated collection of sets Ki , i = 1 . . . , k,
and a set of law-invariant risk measures �i , i = 1 . . . , k. The risk-sharing classification
problem consists of identifying a parameter π ∈ D resulting in a Pareto-optimal classifier
ϕ(·;π).

We shall see that the Pareto-minimal risk allocations are produced by random vectors, which
are minimal points in the set Y with respect to the usual stochastic order, defined next.

Definition 6 A random variable Z is stochastically larger than a random variable Z ′ with
respect to the usual stochastic order (denoted Z �(1) Z ′), if

P(Z > η) ≥ P(Z ′ > η) ∀ η ∈ R, (13)

or, equivalently, FZ (η) ≤ FZ ′(η). The relation is strict (denoted Z �(1) Z ′), if additionally,
inequality (13) is strict for some η ∈ R.

A random vector Z = (Z1, . . . Zk) is stochastically larger than a random vector Z′ =
(Z ′

1, . . . Z
′
k) (denoted Z � Z′) if Zi �(1) Z ′

i for all i = 1, . . . k. The relation is strict if for
some component Zi �(1) Z ′

i .

The random vectors of Y , which are non-dominated with respect to this order will be called
minimal points of Y .

For more information on stochastic orders see, e.g., Shaked and Shanthikumar (2007).
The following result is known for atomless probability spaces. We verify it for a sample

space in order to deal with the empirical distributions.

Theorem 2 Suppose the probability space (Ω,F, P) is finite with equal probabilities of
all simple events. Then every law-invariant risk functional � is consistent with the usual
stochastic order if and only if it satisfies the monotonicity axiom. If � is strictly monotonic
with respect to the almost sure relation, then � is consistent with the strict dominance relation,
i.e. �(Z1) < �(Z2) whenever Z2 �(1) Z1.

Proof Assuming that Ω = {ω1, . . . , ωm}, let the random variable U (ωi ) = i
m for all i =

1, . . . ,m. If Z2 �(1) Z1, then defining Ẑ1 := F−1
Z1

(U ) and Ẑ2 := F−1
Z2

(U ), we obtain

Ẑ2(ω) ≥ Ẑ1(ω) for all ω ∈ Ω . Due to the monotonicity axiom, �(Ẑ2) ≥ �(Ẑ1). The
random variables Ẑi and Zi , i = 1, 2, have the same distribution by construction. This
entails that �(Z2) ≥ �(Z1) because the risk measure is law invariant. Consequently, the risk
measure � is consistent with the usual stochastic order. The other direction is straightforward.

��

123



Annals of Operations Research

This observation justifies our restriction to risk measures, which are consistent with the usual
stochastic order, also known as the first order stochastic dominance relation. Furthermore,
when dealing with non-negative random variables as in the context of classification, then
strictly monotonic risk measures associate no risk only when no misclassification occurs, as
shown by the following statement.

Lemma 1 If � is a law invariant strictly monotonic coherent measure of risk, then

�(Z) > 0 for all random variables Z ≥ 0 a.s., Z �≡ 0

�(Z) < 0 for all random variables Z ≤ 0 a.s., Z �≡ 0.
(14)

Proof Denote the random variable, which is identically equal zero by 0. Notice that �(0) =
�(2·0) = 2�(0),which implies that�(0) = 0. If Z ≥ 0 a.s. and Z �≡ 0, then�(Z) > �(0) = 0
by the strict monotonicity of �. The second statement follows analogously. ��
This statement implies that �i (Zi (π)) ≥ 0, i = 1, . . . k, for all π ∈ D and, therefore, the
attainable allocations lie in the positive orthant, i.e., X ⊆ R

k+. Consequently, the set X has
minimal elements with respect to the Pareto-order. From now on, we adopt the following
assumptions:

(A1) The risk measures �i used for evaluation of classification errors in classes i = 1, ..., k
are coherent, law invariant, and finite-valued.

(A2) The sets Ki , i = 1, . . . k and D ⊆ R
s are non-empty, closed and convex.

(A3) The function ϕ(·;π) satisfies the growth condition (12).

We point out that Assumptions (A2) and (A3) are satisfied for the examples, given in Sect. 1.

Theorem 3 Assume (A1)–(A3). If the function ϕ(x, ·) is continuous for every argument
x ∈ R

n, then the components of the attainable risk allocations �i (Zi (·)), i = 1, . . . k,
are continuous functions. If additionally, each component of the vector function ϕ(x, ·) is an
affine function, then �i (Zi (·)), i = 1, . . . k are convex functions.

Proof Recall again that the distance functions z �→ dist(z, Ki ) are continuous convex
functions and dist(z, Ki ) < ∞ for all z ∈ R

n . Thus, the composition of the distance func-
tion with the continuous function ϕ(x; ·) is continuous, meaning that the random variable
Zi (π) = dist(ϕ(Xi ;π), Ki ) has realizations, which are continuous functions of π . The
variables Zi are integrable due to Theorem 1. Therefore, Zi (·) is continuous with respect
to the norm in the space L1(Ω). Since the risk measures �i (·) are convex and finite, they
are continuous on L1. We conclude that its composition with the risk measure: �i (Zi (·)), is
continuous.

In order to prove convexity, let λ ∈ (0, 1) and let πλ = λπ + (1− λ)π ′.
Let zi (π), zi (π ′) ∈ Ki be the points such that

‖ϕ(x;π) − zi (π)‖ = min
z∈Ki

‖ϕ(x;π) − z‖ (15)

‖ϕ(x;π) − zi (π ′)‖ = min
z∈Ki

‖ϕ(x;π ′) − z‖ (16)

We define zλ = λzi (π) + (1 − λ)zi (π ′). Due to the convexity of Ki , we have zλ ∈ Ki . As
ϕ(x, ·) is affine, we obtain

ϕ(x;πλ) = λϕ(x;π) + (1− λ)ϕ(x;π ′).
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This entails the following inequality for all i = 1, . . . k and all z ∈ R
d :

min
z∈Ki

‖ϕ(x;πλ) − z‖ ≤ ‖ϕ(x;πλ) − ziλ‖ = ‖ϕ(x;πλ) − λzi (π) − (1− λ)zi (π ′)‖
= ‖λ(ϕ(x;π) − zi (π)

)+ (1− λ)
(
ϕ(x;π ′) − zi (π ′)

)∥∥
≤ λ‖ϕ(x;π) − zi (π)‖ + (1− λ)‖ϕ(x;π ′) − zi (π ′))

∥∥
= λ min

z∈Ki
‖ϕ(x;π) − z‖ + (1− λ) min

z∈Ki
(ϕ(x;π ′) − z)

∥∥.
Therefore,

dist(ϕ(x;πλ), Ki ) ≤ λdist(ϕ(x;π), Ki ) + (1− λ)dist(ϕ(x;π ′), Ki ).

The monotonicity and convexity axioms for the risk measures imply that

�i
(
dist(ϕ(X;πλ), Ki )

)
≤ λ�i

(
dist(ϕ(X;π), Ki )

)+ (1− λ)�i
(
dist(ϕ(X;π ′), Ki )

)
for all i = 1, . . . , k. ��
This result implies the existence of Pareto-optimal classifier. Furthermore, the convexity
property allows us to identify the Pareto-optimal risk-allocations by using scalarization tech-
niques.

Corollary 1 Assume (A1)–(A3) and let the function ϕ(x, ·) be affine for every argument x ∈
R
n. Then a parameter π defines a Pareto-optimal classifier ϕ(·, π) for the given RSCP if and

only if a scalarization vector w ∈ R
k+ exists with

∑k
i=1 wi = 1, such that π is a solution of

the problem

min
π∈D

k∑
i=1

wi�i
(
dist(ϕ(Xi ;π), Ki )

)
. (17)

Proof Statement follows form the well-known scalarization theorem in vector optimization
problems (Miettinen 1999) and Theorem 3. ��
Theorem 4 Assume that the risk measures �i are law invariant and strictly monotonic for all
i = 1, . . . k. If a classifier ϕ(·;π) is Pareto-optimal, then its corresponding random vector
(Z1(π), . . . , Zk(π)) is a minimal point of Y with respect to the order of Definition 6.

Proof Suppose that ϕ(·;π) is Pareto-optimal and the point Z(π) = (Z1(π), . . . , Zk(π)) is
not minimal. Then a parameter π ′ exists, such that the corresponding vector Z(π ′) is strictly
stochastically dominated by Z , which implies Zi (π) �(1) Zi (π ′) with a strict relation for
some component. We obtain �i (Zi (π)) ≥ �i (Zi (π ′)) for all i = 1, . . . , k with a strict
inequality for some i due to the consistency of the coherent measures of risk with the strong
stochastic order relation, which contradicts the Pareto-optimality of ϕ(·;π). ��
We consider the sample space Ω = ∏k

i=1 Ωi where (Ωi ,Fi , Pi ) is a finite space with mi

simple events ω j ∈ Ωi , Pi (ω j ) = 1
mi
, and Fi consisting of all subsets of Ωi .

Theorem 5 Assume (A1)–(A3). Suppose each component of the vector function ϕ(x, ·) is
affine for every x ∈ R

n. If the parameter π̂ defines a Pareto-optimal classifier ϕ(·, π̂) for
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the RSCP, then a probability measure μ on Ω exists so that π̂ is an optimal solution for the
problem

min
π∈D

k∑
i=1

mi∑
j=1

μi
jdist(ϕ(xij ;π), Ki ). (18)

Proof Since the parameter π̂ defines a Pareto-optimal classifier ϕ(·, π̂) for the RSCP and
all conditions of Corollary 1 are satisfied, then π̂ is an optimal solution of problem (17)
for some scalarization w. Let Ai denotes the set of probability measures corresponding to
the risk measure �i , i = 1, . . . , k in representation (7). Since the risk measures �i take
finite values on Ωi , the setsAi are non-empty and compact. Thus, the supremum in the dual

representation (7) is achieved at some elements ζ i ∈ Ai . We have ζ ij ≥ 0,
∑mi

j=1
ζ ij
mi

= 1
because ζi are probability densities. We obtain

�i (dist(ϕ(Xi ;π), Ki )) =
mi∑
j=1

ζ ij

mi
dist(ϕ(xij ;π), Ki ).

Setting μi
j = wi

ζ ij

mi
, j = 1, . . . ,mi , i = 1, . . . , k, we observe that the vector μ ∈

Rm1+···mk constitutes a probability mass function. Thus, problem (17) can be reformulated
as (18). ��

This result shows that the RSCP can be viewed as a classification problem in which
the expectation error is minimized. However, the expectation is not calculated with respect
to the empirical distribution but with respect to another measure μ, which is implic-
itly determined by the chosen measures of risk. It is the worst expectation according
to our risk-averse preferences, which are represented by the choice of the measures �i ,
i = 1, . . . , k.

The composite nature of the problem (17) is difficult and that is why we reformulate the
problem. We introduce auxiliary variables Y ∈ L1(Ω,F, P;Rm), i = 1, . . . k, which are
defined by the constraints:

ϕ(Xi ;π) + Y i ∈ Ki ∀i = 1, . . . , k.

Problem (17) can be reformulated to

min
π,Y

k∑
i=1

wi�i (‖Y i‖)

s.t. ϕ(Xi ;π) + Y i ∈ Ki , ∀i = 1, . . . , k,

π ∈ D.

(19)

We show that this problem is equivalent to (17).

Lemma 2 Assume that Ki , i = 1, . . . , k, are non-empty, closed convex sets. For any solution
π̂ of problem (17), random vectors Ŷ i exist, so that (π̂, Ŷ ) solves problem (19) as well, where
Ŷ = (Ŷ k, . . . , Ŷ k) and for any solution (π̂, Ŷ ) of problem (19), the vector π̂ is a solution of
problem (17) as well.
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Proof Observe that for any fixed point π ∈ D, the function
∑k

i=1 wi�i (‖Y i‖) achieves
minimal value with respect to the constraints on the variables Y i using the projections of the
realizations of Xi onto Ki :

Y i (ω) = ProjKi

(
(ϕ(X(ω);π)

)− ϕ(X(ω);π). (20)

Here ProjKi
(z) denotes the Euclidean projection of the point z onto the set Ki . Then,

‖Y i‖ = dist(ϕ(Xi ;π), Ki ) and the objective functions of both problems have the same
value. Therefore, the minimal value is achieved at the same point π̂ and the corresponding
Ŷ i
j is obtained from Eq. (20). ��

Recall that the normal cone to a set D ⊂ R
s is defined as

ND(π) = {a ∈ R
s : 〈a, d − π〉 ≤ 0 for all d ∈ D}.

For brevity, we denote the normal cone to the feasible set of problem (19) by N and the
normal cones to the sets Ki by Ni , i = 1, . . . , k. We formulate optimality conditions for
problem (19).

We denote the realizations of the random vectors Y i , i = 1, . . . , k when π is used, by
yij (π), j = 1, . . .mi , i = 1, . . . , k. More precisely, we have

yij (π) = ProjKi

(
(ϕ(xij ;π)

)− ϕ(xij ;π) j = 1, . . .mi , i = 1, . . . , k.

We suppress the argument π whenever it does not lead to confusion. Additionally, we denote
the Jacobian of ϕ with respect to π by Dϕ(x;π). Consider the sample-based version of
problem (19):

min
π,Y

k∑
i=1

wi�i (‖Y i‖)

s.t. ϕ(xij ;π) + yij ∈ Ki , ∀ j = 1, . . . ,mi , i = 1, . . . , k,

π ∈ D.

(21)

Theorem 6 Assume that the sets Ki , i = 1, . . . , k are closed convex polyhedral cones and
ϕ(x; ·) is an affine vector function. A feasible point (π̂ , Ŷ ) is optimal for problem (21) if
and only if probability mass functions ζ i ∈ ∂�i (0) and vectors gij from ∂‖ŷij‖ exist such
that

0 ∈ −
k∑

i=1

mi∑
j=1

wiζ
i
j (g

i
j )
�Dϕ(Xi ; π̂) +ND(π̂) (22)

wiζ
i
j g

i
j ∈ Ni

(
ϕ(xij ; π̂) + ŷij

)
for all j = 1, . . .mi , i = 1, . . . k. (23)

Proof We assign Lagrangemultipliers λij to the inclusion constraints and define the Lagrange
function as follows:

L(π, Y , λ) =
k∑

i=1

⎛
⎝wi�i (‖Y i‖) +

mi∑
j=1

〈
ϕ(xij ;π) + yij , λ

i
j

〉⎞⎠ .
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Using optimality conditions, we obtain that (π̂, Ŷ ) is optimal for problem (21) if and only if
λ̂ exists such that

0 ∈ ∂(π,Y )L(π̂, Ŷ , λ̂) +N (π̂, Ŷ )

λ̂ij ∈ Ni
(
ϕ(xij ; π̂) + ŷij )

)
.

Considering the partial derivatives of the Lagrangian with respect to the two components,
we obtain

0 ∈
k∑

i=1

mi∑
j=1

(λ̂ij )
�Dϕ(xij ; π̂) +ND(π̂) (24)

0 = wi∂Y�i (‖Y‖) + λ̂i , i = 1, . . . k, (25)

λ̂ij ∈ Ni
(
ϕ(xij ; π̂) + ŷij

)
, j = 1, . . . ,mi , i = 1, . . . k. (26)

We calculate the multipliers λ̂i from the Eq. (25) using elements ζ i ∈ ∂�i (0) and gij from

∂‖ŷij‖. We obtain:

λ̂ij = −wiζ
i
j g

i
j , j = 1, . . . ,mi , i = 1, . . . k.

Notice that gij =
ŷij

‖ŷij‖
whenever ŷij �= 0, otherwise gij ∈ R

d can be any vector with ‖gij‖ ≤ 1.

Substituting the value of λ̂i into (24) and (26), we obtain condition (22) and (23). ��
We note that, we can define again a probability mass function μ by setting μi

j = wiζ
i
j

and interpret the Karush–Kuhn–Tucker condition as follows:

Eμ(gij )
�Dϕ(Xi ; π̂) ∈ ND(π̂)

μi
j g

i
j ∈ Ni

(
ϕ(xij ; π̂) + ŷij

)
for all j = 1, . . .mi , i = 1, . . . k.

Problem (21) can be reformulated as a risk-averse two-stage optimization problem (cf.
Shapiro et al. 2009). The first stage decision is π and the first stage problem is

min
π∈D

k∑
i=1

wi�i
(
Zi (π))

)
. (27)

Given π , the calculation of each realization of Zi (π) amounts to solving the following
problem

zij (π) = min
y∈Ki

‖ϕ(xij ;π) − y‖, j = 1, . . .mi , i = 1, . . . k. (28)

Calculating zij (π)might be very easy for specific regions Ki such as the cones in the example

of the polyhedral classifier. Every component of the solution vector ẑij to problem (28) can
be computed as follows:

(ẑij )� =
{
max{0,−(ϕ(xij ;π))�} for � = i;
max{0, (ϕ(xij ;π))�} for � �= i; � = 1, . . . , k. (29)

Then the optimal value of (28) is

zij (π) =
(

k∑
�=1

(ẑij )
2
�

) 1
2

.
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This point of view facilitates the application of stochastic optimization methods to solve the
problem.

5 Confidence intervals for the risk

In this section, we analyze the risk-averse classification problem when we increase the data
sets and derive confidence intervals for the misclassification risk. We use the results on
statistical inference for composite risk functionals presented in Dentcheva et al. (2017). In
Dentcheva et al. (2017), a composite risk functional is defined in the following way.

�(X) = E
[
f1
(
E
[
f2
(
E
[· · · f� (E [ f�+1 (X)

]
, X
)] · · · , X

)]
, X
)]

(30)

where X is an n-dimensional random vector with unknown distribution, PX . The functions
f j are such that f j (η j , x) : Rn j × R

n → R
n j−1 for j = 1, . . . , � and n0 = 1. The function

f�+1 is such that f�+1(x) : Rn → R
n� .

A law-invariant risk-measure �(X) is an unknown characteristic of the distribution PX .
The empirical estimate of �(X) given N independent and identically distributed observations
of X is given by the plug-in estimate

�(N ) =
N∑

i0=1

1

N

⎡
⎣ f1

⎛
⎝ N∑

i1=1

1

N

⎡
⎣ f2

⎛
⎝ N∑

i2=1

1

N

⎡
⎣ · · · f�

⎛
⎝ N∑

i�=1

1

N
f�+1(Xi� ), Xi�−1

⎞
⎠
⎤
⎦

· · · , Xi1

⎞
⎠
⎤
⎦ , Xi0

⎞
⎠
⎤
⎦

(31)

It is shown in Dentcheva et al. (2017) that the most popular measures of risk fit the structure
(30). It is established that the plug-in estimator satisfies a central limit formula and the limiting
distribution is described. This is the distribution of the Hadamard-directional derivative of
the risk functional � when a normal random variable is plugged in. Recall the notion of
Hadamard directional derivatives of the functions f j

(·, x) at points μ j+1 in directions ζ j+1.
It is given by

f ′j
(
μ j+1, x; ζ j+1) = lim

t↓0
s→ζ j+1

1

t

[
f j
(
μ j+1 + ts, x) − f j

(
μ j+1, x)

]
.

The central limit formula holds under the following conditions:

(i)
∫ ‖ f j (η j , x)‖2 P(dx) < ∞ for all η j ∈ I j , and

∫
dist2(ϕ(Xi ;π), Ki )P(dx) < ∞;

(ii) For all realizations x of Xi , the functions f j (·, x), j = 1, . . . , �, areLipschitz continuous:

‖ f j (η′j , x) − f j (η
′′
j , x)‖ ≤ γ j (x)‖η′j − η′′j‖, ∀ η′j , η′′j ,

and
∫

γ 2
j (x) P(dx) < ∞.

(iii) For all realizations x of Xi , the functions f j (·, x), j = 1, . . . , �, are Hadamard direc-
tionally differentiable.

These properties are satisfied for the mean-semideviation risk measures as shown in
Dentcheva et al. (2017). Furthermore, it is shown that similar construction represents the
Conditional-Value-at-Risk.

123



Annals of Operations Research

For every parameter π the risk of misclassification for a given class i = 1, . . . , k can
be fit to the setting (30) by choosing the innermost function f�+1(x) : R

d → R to be
f�+1(x) = dist(ϕ(x;π), Ki ) whenever ϕ satisfies properties (i)–(iii).

In our setting, each misclassification risk �i

(
dist
(
ϕ(Xi ;π), Ki

))
is estimated by

�
(mi )
i

(‖Ŷ i‖), where (Ŷ i ; π̂) is the solution of problem (21). Denoting the estimated vari-

ance of the limiting distribution of �(mi )
i

(‖Ŷ i‖) (briefly �
(mi )
i ) by σ 2

i , we obtain the following
confidence interval: [

�
(mi )
i − tα,df

σi√
mi

, �
(mi )
i + tα,df

σi√
mi

]
.

Here α is the desired level of confidence, tα,df is the corresponding quantile of the t-
distribution with degrees of freedom d f . The degrees of freedom depend on the choice
if risk measure and can be calculated as d f = mi −�, where � is the number of compositions
in formula (31). The decrease of the degrees of freedom form mi is due to the estimation of
the expected value associated with each composition. The total risk is estimated by

�̂ =
k∑

i=1

wi�
(mi )
i

(‖Ŷ i‖).
Weobtain that �̂ has an approximately normal distributionwith expected value � and variance∑k

i=1
w2
i σ

2
i

mi
.A confidence interval for the entire risk �, associated with the optimal classifier,

is given by ⎡
⎣ �̂ − tα,df

√√√√ k∑
i=1

w2
i σ

2
i

mi
, �̂ + tα,df

√√√√ k∑
i=1

w2
i σ

2
i

mi

⎤
⎦ .

We can use the confidence interval to evaluate how well the risk is estimated. The quantity
w2
i σ

2
i

mi
gives us guidance about the need of additional observations from class i , which would

help to reduce effectively the size of confidence interval of the risk, thus, will help us to
evaluate the risk more precisely.

6 Risk sharing in SVM

We analyze the SVM problem in more detail. We consider only strictly monotonic coherent
measures of risk �1, �2 for the two classes S1 and S2.

The risk-sharing SVM problem (RSSVM) consists in identifying a parameter π = (v, γ ) ∈
R
n corresponding to a Pareto-minimal point of the attainable risk-allocations for the affine

classifier ϕ(z;π) = 〈v, z〉− γ . Due to Corollary 1, we can determine a risk-averse classifier
by solving the following problem:

min
v,γ,Z1,Z2

λ�1(Z
1) + (1− λ)�2(Z

2) (32)

s. t. 〈v, x1j 〉 − γ + z1j ≥ 0, j = 1, . . . ,m1, (33)

〈v, x2j 〉 − γ − z2j ≤ 0, j = 1, . . . ,m2, (34)

〈v, v〉 = 1, (35)

Z1 ≥ 0, Z2 ≥ 0. (36)
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Here λ ∈ (0, 1) is a parameter representing the scalarization and is indicative of the risk
sharing between the classes. The random variables Zi can be represented by a deterministic
vectors stacking all realizations zij as components of it. Abusing notation, we shall use Zi

also for those vectors in Rmi , i = 1, 2.
We note that the normalization of the vector v automatically bounds γ because for any

fixed v, the component γ can be considered restricted in a compact set [γm(v), γM (v)], where
γM = max

1≤ j≤mi , i=1,2
v�xij γm = min

1≤ j≤mi , i=1,2
v�xij . (37)

Thus, in this case, we can set D = R
n .

We also consider a soft-margin risk-averse SVM based on problem (4), although the
classification error might not be calculated properly. The problem reads

min
v,γ,Z1,Z2

{
λ�1(Z

1) + (1− λ)�2(Z
2) + δ‖v‖2: (33), (34), (36)

}
(38)

In this problem, δ > 0 is a small number. The objective function grows to infinity when
the norm of v increases. Thus, we do not need to bound the norm of the vector v. It also
automatically bounds γ , similar to problem (32)–(36).

We obtain a counterpart of the result in Jouini et al. (2008) for the risk sharing of random
losses among constituents. We observe that the parameter (v, γ ) for each Pareto-optimal
classifier can be obtained by solving the following problem:

min
v,γ,Z1,Z2

�1(Z
1) + �2(Z

2)

s. t. 〈v, x1i 〉 − γ + 1

λ
z1i ≥ 0, i = 1, . . . ,m1,

〈v, x2j 〉 − γ − 1

1− λ
z2j ≤ 0, j = 1, . . . ,m2,

〈v, v〉 = 1, Z1 ≥ 0, Z2 ≥ 0.

(39)

Lemma 3 Problem (39) is equivalent to problem (32)–(36).

Proof The equivalence follows from the axiomof positive homogeneity for the riskmeasures:

λ�1(Z
1) = �1(λZ

1) and (1− λ)�2(Z
2) = �2((1− λ)Z2).

Defining new random variables Z̃1 = λZ1 and Z̃2 = (1−λ)Z2, we can rescale the variables
in their respective inequality constraint. ��

Although problem (38) is non-convex due to the presence of constraint (35), we can solve
it by a dedicated numerical method using sequentially local convex approximations. Let v̄

be a fixed point. The non-convex constraint can be approximated locally by using Taylor
expansion:

〈v, v〉 − 1 ≈ 〈v̄, v̄〉 − 1+ 2〈v̄, v − v̄〉 = 2〈v̄, v〉 − 〈v̄, v̄〉 − 1.

If ‖v̄‖ = 1, then we obtain:

〈v, v〉 − 1 ≈ 2(〈v̄, v〉 − 1).

For the sake of brevity, we denote the objective function by f :

f (v, γ, Z1, Z2) = λ�1(Z
1) + (1− λ)�2(Z

2)
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Observe that for a feasible vector (v, γ )with ‖v‖ �= 1, the misclassification errors are 1
‖v‖ Z

1

and 1
‖v‖ Z

2. Thus, using the positive homogeneity property of the risk measures, the true risk
of misclassification is

1

‖v‖
(
λ�1(Z

1) + (1− λ)�2(Z
2)
)
,

We propose the following method for solving problem (38).

Risk averse binary classification method
Step 0 Set � = 1, v0 = 1

m1

∑m1
i=1 x

1
i − 1

m2

∑m2
i=1 x

2
i , calculate γ 0, Z1,0, and Z2,0 as a

solution of the following problem

min
γ,Z1,Z2

f (v0, γ, Z1, Z2)

s. t. 〈v0, x1i 〉 − γ + z1i ≥ 0, i = 1, . . . ,m1,

〈v0, x2j 〉 − γ − z2j ≤ 0, j = 1, . . . ,m2.

(40)

Step 1 Solve the convex approximation problem

min
v,γ,Z1,Z2

f (v, γ, Z1, Z2)

s. t. 〈v�−1, v〉 = 1, (33), (34), (36).
(41)

Denote its solution by ξ̂ � = (v̂�, γ̂ �, Ẑ1,�, Ẑ2,�).
Step 2 If f (ξ̂ �) = f (ξ�−1), then stop; otherwise set

v� = 1

‖v̂�‖ v̂�, γ � = 1

‖v̂�‖ γ̂ �, Zi,� = 1

‖v̂�‖ Ẑ
i,�, i = 1, 2.

Increase � by one and go to Step 1.

Theorem 7 When the method stops, the point (Z1,�, Z2,�, v�, γ �) satisfies the optimal-
ity conditions for problem (38). Otherwise, the method generates a sequence of points{
(Z1,�, Z2,�, v�, γ �)

}∞
�=1 such that every accumulation point satisfies the optimality con-

ditions for problem (38).

Proof First, we formulate optimality conditions for problem (38). Assign Lagrange multi-
pliers μ1 ∈ R

m1+ , μ2 ∈ R
m2+ and μ3 ∈ R to the constraints (33) (re-formulated to ≤), (34),

and (35), respectively. The Lagrange function has the form

Λ(v, γ, Z1, Z2) = λ�1(Z
1) + (1− λ)�2(Z

2) +
m1∑
i=1

μ1
i (−〈v, x1j 〉 + γ − z1i )

+
m1∑
j=1

μ2
j (〈v, x2j 〉 − γ − z2j ) + μ3(〈v, v〉 − 1)

= λ�1(Z
1) + (1− λ)�2(Z

2) −
m1∑
i=1

μ1
i z

1
i −

m2∑
j=1

μ2
j z

2
j

+
m1∑
i=1

μ1
i (−〈v, x1j 〉 + γ ) +

m1∑
j=1

μ2
j (〈v, x2j 〉 − γ ) + μ3(〈v, v〉 − 1).
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If the point (v̄, γ̄ , Z̄1, Z̄2) is optimal, then we have

0 = ∇v,γ Λ(v̄, γ̄ , Z̄1, Z̄2); (42)

0 ∈ ∂Z1,Z2Λ(v̄, γ̄ , Z̄1, Z̄2) +N
R
m1+m2+

(Z̄1, Z̄2), (43)

μ1
i (−〈v, x1j 〉 + γ − z1i ) = 0, i = 1, . . . ,m1, (44)

μ2
j (〈v, x2j 〉 − γ − z2j ) = 0, j = 1, . . . ,m2. (45)

Condition (42) has the form

−
m1∑
i=1

μ1
i x

1
i +

m2∑
i=1

μ2
i x

2
i + 2μ3v̄ = 0 (46)

m1∑
i=1

μ1
i =

m2∑
i=1

μ2
i . (47)

Condition (43) is equivalent to the existence of subgradients ζ 1 ∈ ∂�1(Z̄1) and ζ 2 ∈
∂�2(Z̄2) such that

λζ 1 ≥ μ1 ≥ 0, 〈λζ 1 − μ1, z̄1〉 = 0,

(1− λ)ζ 2 ≥ μ2 ≥ 0, 〈(1− λ)ζ 2 − μ2, z̄2〉 = 0.
(48)

It is easy to see that, for v̄ = v�−1, then conditions (46)–(47)–(48) coincidewith the optimality
conditions for problem (41) at iteration � with optimal Lagrange multipliers μ1, μ2 and
2μ3 ∈ R.

If the method stops at iteration �, we have f (ξ̂ �) = f (ξ�−1). The point ξ�−1 is feasible
for problem (41) at iteration �. Therefore, ξ�−1 is optimal for (41) and satisfies the optimality
conditions for (41). Since ‖v�−1‖ = 1, the point ξ�−1 is feasible for problem (38). Therefore,
the optimality conditions for (38) are also satisfied at ξ�.

Now consider the case when the method generates an infinite sequence of points {ξ�}. For
any solution ξ̂ � of problem (41), we have

1 = 〈v�−1, v̂�〉 ≤ ‖v�−1‖.‖v̂�‖ = ‖v̂�‖.
Thus, if the method does not stop at iteration �, the following inequality holds:

f (ξ�) = 1

‖v̂�‖ f (ξ̂ �) < f (ξ̂ �) < f (ξ�−1).

Consequently, the sequence { f (ξ�)} is monotonically decreasing.
Since ‖v�‖ = 1, then γ �, as well as Z1,�, Z2,� are bounded (cf. (37), (29)). Thus, the

sequence {ξ�} has a convergent subsequenceL ⊂ {1, 2, . . . }. Let ξ∗ = (v∗, γ ∗, Z1∗, Z2∗) be
an accumulation point of {ξ�}. Due to the continuity of f and the monotonicity of { f (ξ�)},
we have

lim
�→∞ f (ξ�) = f (ξ∗).

Furthermore, the point ξ∗ is feasible for (38) because all points ξ� are feasible and the
constraint functions are continuous.

Each point ξ̂ � satisfies the optimality conditions for problem (41). Let ζ 1,� ∈ ∂�1(Ẑ1,�)

and ζ 2,� ∈ ∂�2(Ẑ1,�) be the optimal subgradients from the corresponding condition (48).
Due to the positive homogeneity of the risk measures, it holds
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ζ 1,� ∈ ∂�1(Z
1,�) and ζ 2,� ∈ ∂�2(Z

2,�).

Using the fact that the subdifferential mapping of a convex function is upper semi-continuous
with compact values, we obtain that the sequence {(ζ 1,�, ζ 2,�)}, � ∈ L , has a convergent
subsequence L1 ⊂ L by virtue of Berge theorem, i.e. lim�∈L1(ζ

1,�, ζ 2,�) = (ζ 1∗ , ζ 2∗ ). This
implies that the optimal Lagrange multipliers μ1,�, μ2,� are bounded due to the inequalities
(48) in the optimality conditions. Therefore, the optimal Lagrange multipliers {μ1,�, μ2,�}
are convergent to μ1∗, μ2∗ for a subsequence L2 ⊂ L1. Finally, μ3,� is convergent to some
number μ3∗ for � ∈ L2, which is obtained passing to the limit in Eq. (46). We conclude that
the point ξ∗ satisfies the optimality conditions for (38) with Lagrange multipliers μ1∗, μ2∗, μ3∗
and subgradients (ζ 1∗ , ζ 2∗ ). ��

7 Related work

The design of robust estimators, robust classifiers in particular, has attracted attention of
statisticians as well as of data scientists. Misclassification may lead to different cost distribu-
tion for the different types of errors. An example illustrating this point is the damage caused
by a hurricane. The cost of the hurricane damage depends on features, which are used for
classification. The cost is highly non-linear with respect to those features (see Davis and
Uryasev 2016). Therefore, if we fail to predict correctly that a hurricane will take place in
a certain region, the cost is quite different than the cost induced by an incorrect hurricane
alarm. Furthermore, different predictions of the hurricane’s location lead to different cost.
A risk-averse model prediction would take this fact into account (see, e.g. Chambers and
Quiggin 2000). Another example is classification of credit-worthiness of bank customers. If
a customer, who might be a company requesting a substantial loan, is classified incorrectly
as credit worthy, the bank may experience substantial loss while not providing a loan to a
credit-worthy customer, results in a lost opportunity; both losses are quite different Oguz
et al. (2008)

Different attitude to errors in model fitting was proposed a long time ago in statistics
and this point of view is accepted and used in various approaches, most notably, in robust
statistics. We refer to Huber (2011), El Ghaoui et al. (2003), Gotoh and Uryasev (2017),
Hastie et al. (2009) and the references therein for methods of robust classification design for
binary classification. Support vectormachines are one of themost popular classification tools.
They appear as part of sequential classification methods for multiple classes Sculley et al.
(2011). Recent developments include the use of SVMs as part of deep learning architectures
(Kim et al. 2015; Qi et al. 2016). Other recent papers (Zareapoor et al. 2018), leverage the
power of Deep Belief Networks as input to SVMs in ensemble algorithms. For information
on kernel methods in classification and support vector learning, we refer to Schölkopf et al.
(1999), Maji et al. (2008), Muandet et al. (2012). Additionally, there is a substantial research
effort into incremental learning for SVM and Support Vector Regression (Liang and Li 2009;
Gu et al. 2015a, b).

Many papers deal with robust binary classification. One possibility is provided by the
tool of robust statistics; for example, employing the Huber risk function (Huber 2011). We
refer to Zhang (2004) for detailed discussion on robustness and choice of loss functions.
In Lanckriet et al. (2003) and El Ghaoui et al. (2003), the tools of robust optimization are
employed. The idea there is that the future instance will come from a distribution, which
is close to the observed empirical distribution in some sense. Therefore, a set of acceptable
distributions is constructed, called an uncertainty set, and the worst misclassification error
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is minimized over all distributions in that set. In Lanckriet et al. (2003) and El Ghaoui et al.
(2003), the uncertainty sets are defined by allowing all distributions on the sample space,
which have the samemean and the same covariance as the estimated ones. InMa et al. (2011)
the authors look at the median rather than the expected value and the sum of the two median
errors is minimized. In Katsumata and Takeda (2015), the authors allow for uncertainty sets
of different diameter for each class.

Our proposed approach suggests to minimize the classification error in a risk averse
manner. In Rockafellar et al. (2008), the use of coherent measures of risk for generalized
regression and model fit was proposed. This point of view was also utilized in SVM in Gotoh
and Uryasev (2017). While those works recognize the need of expressing different attitude
to errors in fitting statistical models, the authors propose using one overall measure of risk as
an objective in the regression problem, respectively in the SVM problem. The classification
design based on a singlemeasure of risk does not allow for differentiation between the classes,
while in our view different attitude should be allowed to classification errors for the different
classes.

The topic of risk sharing is a subject of intensive investigations in the community of
economics, quantitative finance and risk management. This is due to the fact that the sum of
the risk of each component in a system does not equal the risk of the entire system. The main
focus in the extant literature on risk-sharing is on the choice of decomposition of a random
variable X into k terms X = X1 + · · · + Xk , so that when each component is measured by
a specific risk measure, the associated total risk is in some sense optimal. The variable X
represents the total random loss of the firm and the question addressed is about splitting the
loss among the constituents. Assigning coherent measures of risk �i to each term Xi , the
adopted point of view is that the outcome

(
�1(X1), . . . , �k(Xk)

)
should be Pareto-optimal

among the feasible allocations.
The main results in risk-sharing theory accomplish the decomposition of X into terms by

looking at the infimal convolution of themeasures of risk. It is observed (see, e.g., Landsberger
and Meilijson 1994; Ludkovski and Rüschendorf 2008) that the random variables Xi , i =
1, . . . , k, which solve this problem, satisfy a co-monotonicity property as follows

(
Xi (ω) − Xi (ω′)

)(
X j (ω) − X j (ω′)

)
≥ 0, for all ω,ω′ ∈ Ω, i, j = 1, . . . , k.

While we adopt similar point of view on optimality of risk allocation, it is clear that the prob-
lem setting and subsequently the results associated with risk sharing in financial institutions
are inapplicable to the classification problem. We cannot expect co-monotonicity properties
of the class errors because not all decomposition of the total random error can be obtained
via some classifier. The presence of constraints in the optimization problem, the functional
dependence of the misclassification error on the classifier’s parameters, and the complex
nature of design problem require dedicated analysis.

8 Numerical experiments

In the previous sections, we have shown the solid theoretical foundation supporting our
approach. In this section, we display the performance of the proposed framework, as well
as its flexibility. To this end, we use several publicly available data sets and compare the
performance of our approach to some existing formulations, in terms of performance metrics
frequently used in classification. Further, we showcase the flexibility of the framework by
exploring the Pareto-efficient frontier of various classifiers derived from our framework.
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Table 1 Data summary

Data set Features Observations Class

Class0 Class1 (%) Balance

WDBC 30 357 211 (37.1) 0.591

pima-indians-diabetes 7 500 267 (34.8) 0.534

seismic-bumps 18 2414 170 ( 6.6) 0.070

In our numerical experiments, we have used the Conditional Value-at-Risk and the mean
semi-deviation of order one.

8.1 Data

We compare our approach to other known approaches on several datasets. More specifically,
we use three data sets obtained from the UCIMachine Learning Repository (Lichman 2013).
These data sets exhibit different degrees of class imbalance, that is the proportion of records
in one class versus that of the other class. A summary of basic characteristics of the data sets
is shown in Table 1.

In the sections to follow, we make reference to the default and target class for each
dataset. This nomenclature is consistent with the group represented by the class itself. In
other words, the default class (Class0) in the WDBC dataset contains the observations where
the diagnosis was “benign”, while the target class (Class1) represents observations with a
“malignant” diagnosis. Similarly, for the other two datasets, the default class represents the
healthy or normal state while the target class represents the class of interest in the context of
the data. For the “pima-indians-diabetes” dataset the target class is the set diabetics amongs
the sample, while for the “seismic-bumps” dataset the target class is the set of shifts where
high energy seismic bumps occurred.

8.2 Model formulations

We consider several scenarios for choices of measures of risk. In the first scenario, we
treat the default class (Class0) in a risk neutral manner, while applying the mean-semi-
deviation measure to the classification error of the target class. We call this loss function
“asym_risk” (see Table 2). In the same table, we provide the risk measure combinations for
other loss functions which we have used in our numerical experiments. The loss functions
called “risk_cvar” and “two_cvar” use a convex combination of the expected error and the
Conditional Value-at-Risk of the classification error. These convex combinations use an
additional model parameter β ∈ (0, 1). The formulation (38) for these loss functions uses
the variational form of the Conditional Value-at-Risk at level α ∈ (0, 1). Table 2 displays the
chosen combinations of risk measure pairs for the binary classification scenario in order to
give an easy overview.

We note that calculation of the first order semi-deviation and the conditional value-at-risk
can be formulated as linear optimization problems. Therefore, their application does not
increase the complexity of RSSVM in comparison to the soft-margin SVM. However, if we
use higher order semi-deviations or higher order inverse risk measures, the problem becomes
more difficult.
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Table 2 Risk measure combinations used as loss functions in the experiments

Loss function Class0—�1(Z
1) Class1—�2(Z

2)

exp_val E[Z1] E[Z2]
joint_cvar βE[Z1 + Z2] + (1− β) CVaRα(Z1 + Z2)

asym_risk E[Z1] E[Z2] + cσ+[Z2]
one_cvar E[Z1] + cσ+[Z1] CVaRα(Z2)

risk_cvar E[Z1] + cσ+[Z1] βE[Z2] + (1− β)CVaRα(Z2)

two_risk E[Z1] + cσ+[Z1] E[Z2] + cσ+[Z2]
two_cvar βE[Z1] + (1− β)CVaRα1 (Z

1) βE[Z2] + (1− β2)CVaRα2 (Z
2)

Note that conditional value-at-risk at level α puts weight on the largest quantiles of the
error distribution (the upperα-portion of them). Thismeans the classifier is focusedmainly on
eliminating the worst classification errors. Depending on our risk-aversion, we could include
small or larger portion of quantiles by controlling the level α. Additionally, taking convex
combinations of the expected value and the conditional value-at-risk (using β > 0), we
include into consideration all quantiles with some additional weight on the largest quantile.
The higher the value of β the less weight it is put on the largest misclassification errors and
β = 1 corresponds to the risk-neutral SVM. The mean-semideviation measure adds weight
to all classification errors which are above average size. As already mentioned, higher value
of the constant c entails larger penalty for deviations above the mean. Furthermore, using
higher order semi-deviations results in a non-linear (form of power function) penalty for
those deviations.

We compare our results against three different benchmarks: two risk-neutral formulations
and one risk-averse formulation with a single risk measure. The first risk-neutral formulation
is the soft-margin SVM as formulated in (4). The second risk-neutral formulation uses the
Huber loss function and leads to the following problem formulation

min
v,γ,Z1,Z2

⎧⎨
⎩ 1

m1

m1∑
i=1

min
(
z1i , (z

1
i )

2)+ 1

m2

m2∑
j=1

min
(
z2j , (z

2
j )
2): (33), (34), (36)

⎫⎬
⎭ .

(49)

The third benchmark uses a single risk measure (50) on the total error as proposed in Gotoh
and Uryasev (2017). It has the following formulation.

min
v,γ,t,Z1,Z2,Y 1,Y 2

β

⎛
⎝ 1

m1

m1∑
j=1

z1j +
1

m2

m2∑
j=1

z2j

⎞
⎠

+ (1− β)

⎛
⎝t + 1

α(m1 + m2)

⎛
⎝ m1∑

j=1

y1j +
m2∑
j=1

y2j

⎞
⎠
⎞
⎠+ δ‖v‖2

s. t. yij ≥ zij − t, j = 1, . . . ,mi , i = 1, 2,

(33), (34), (36), Y 1 ≥ 0, Y 2 ≥ 0.

(50)
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Interestingly, both risk-neutral formulations produce nearly identical results on all data sets.
Subsequently we only report one of them under the name “exp_val”. In the presented figures
and tables below,we refer to the loss function consisting of a single ConditionalValue-at-Risk
measure, as “joint_cvar”.

The problem formulations used in our experiments are the following.

Expected value vs. Conditional Value-at-Risk—“asym_risk”

min
v,γ,t,Z1,Z2,Y

λ

m1

m1∑
j=1

z1j +
1− λ

m2

m2∑
j=1

(y j + z2j )

s. t. y j ≥ z2j − t, j = 1, . . . ,m2,

(33), (34), (35), (36), Y ≥ 0.

(51)

Mean-semi-deviation vs. Conditional Value-at-Risk—“one_cvar”

min
v,γ,t,Z1,Z2,Y 1,Y 2

λ

m1

m1∑
j=1

(y1j + z1j ) + (1− λ)

(
t + 1

αm2

m2∑
j=1

y2j

)

s. t. y1j ≥ z1j −
1

m1

m1∑
j=1

z1j , j = 1, . . . ,m1,

y2j ≥ z2j − t, j = 1, . . . ,m2,

(33), (34), (35), (36), Y 1 ≥ 0, Y 2 ≥ 0.

(52)

Mean-semi-deviation vs. combination of the expectation and CVaR—“risk_cvar”

min
v,γ,t,Z1,Z2,Y 1,Y 2

λ

m1

m1∑
j=1

(y1j + z1j ) +
β(1− λ)

m1

m2∑
j=1

z2j

+ (1− β)(1− λ)

⎛
⎝t + 1

αm2

m2∑
j=1

y2j

⎞
⎠

s. t. y1j ≥ z1j −
1

m1

m1∑
j=1

z1j , j = 1, . . . ,m1,

y2j ≥ z2j − t, j = 1, . . . ,m2,

(33), (34), (35), (36), Y 1 ≥ 0, Y 2 ≥ 0.

(53)

Mean-semi-deviation for both classes—“two_risk”

min
v,γ,Z1,Z2,Y 1,Y 2

λ

m1

m1∑
j=1

(y1j + z1j ) +
1− λ

m2

m2∑
j=1

(y2j + z2j )

s. t. yij ≥ zij −
1

mi

mi∑
j=1

zij , , j = 1, . . . ,mi , i = 1, 2,

(33), (34), (35), (36), Y 1 ≥ 0, Y 2 ≥ 0.

(54)
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Table 3 Main results table for the WDBC dataset: displaying the model parameters and the performance
metrics for each model formulation

exp_val joint_cvar asym_risk one_cvar risk_cvar two_risk two_cvar

F1-score optimized classifiers

lambda 0.70 0.57 0.56 0.60 0.64

alpha_1 0.62

alpha_2 0.55 0.88 0.75 0.62

C0 errors 21 17 16 13 11 15 12

C1 errors 15 11 11 10 9 9 9

FPR 0.05882 0.04762 0.04482 0.03641 0.03081 0.04202 0.03361

Recall 0.92925 0.94811 0.94811 0.95283 0.95755 0.95755 0.95755

Precision 0.90367 0.92202 0.92627 0.93953 0.94860 0.93119 0.94419

F1-score 0.91628 0.93488 0.93706 0.94614 0.95305 0.94419 0.95082

AUC 0.97904 0.98426 0.98569 0.98764 0.98535 0.98442 0.98451

AUC optimized classifiers

lambda 0.43 0.57 0.69 0.37 0.42

alpha_1 0.61

alpha_2 0.65 0.88 0.66 0.61

C0 errors 21 21 18 13 14 23 16

C1 errors 15 13 11 10 13 12 13

FPR 0.05882 0.05882 0.05042 0.03641 0.03922 0.06443 0.04482

Recall 0.92925 0.93868 0.94811 0.95283 0.93868 0.94340 0.93868

Precision 0.90367 0.90455 0.91781 0.93953 0.93427 0.89686 0.92558

F1-score 0.91628 0.92130 0.93271 0.94614 0.93647 0.91954 0.93208

AUC 0.97904 0.98471 0.98697 0.98764 0.98776 0.98629 0.98922

The boldface numbers indicate the best performing model formulation (column) with respect to the specified
performance metric (row). In other words, there is is only one bold face number per row for each of the
performance metrics, F1-score and AUC

Conditional-Value at Risk for both classes—“two_cvar”

min
v,γ,t1,t2,Z1,Z2,Y 1,Y 2

λβ1

m1∑
j=1

z1j + λ(1− β1)

⎛
⎝t1 + 1

αm1

m1∑
j=1

y1j

⎞
⎠

+ (1− λ)β2

m1∑
j=1

z2j + (1− λ)(1− β2)

⎛
⎝t2 + 1

αm2

m2∑
j=1

y2j

⎞
⎠

s. t. yij ≥ zij − ti , j = 1, . . . ,mi , i = 1, 2,

(33), (34), (35), (36), Y 1 ≥ 0, Y 2 ≥ 0.

(55)

8.3 Performance

We perform k-fold cross-validation and all reported results are out of sample. Furthermore,
our method determines only normalized optimal classifiers and all misclassification numbers
and reported risk are computed with respect to such classifiers. In Tables 3, 5, and 7, we
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Fig. 2 ROC plots for the best performing model formulations on the WDBC data: “risk_cvar” with the best
F1-score, “two_cvar” with the best AUC value, and “one_cvar” for the alternate metric

report the F1-score andAUC, alongwith recall (True Positive Rate), precision, as well as false
positive rate (FPR) for all loss functions. Additionally, we report the number of misclassified
observations, as well as the chosen parameters, where applicable. In light of the fact that the
F1-score and AUC are competing metrics, for each dataset we present two set of results, one
optimized for each metric. We use this to highlight the additional flexibility offered by the
proposed method as discussed in the next section.

We recall that precision is the ratio of true positives over the total number of positively
classified points. F1-score, or sometimes referred to as F–measure, is the harmonic mean
between precision and recall.

F1-score = 2 · precision · recall
precision+ recall

AUC stands for Area Under the [Receive Operating Characteristic] Curve, and is defined as
the integral of the curve created by the True Positive Rate and False Positive Rate as functions
of the threshold.

AUC =
∫ ∞

−∞
TPR(T )FPR(T )dT

In Table 3, we show the best value for each metric for each set in bold face. We observe
that for this particular dataset, the best performing model formulation with respect to the
F1-score is the “risk_cvar” model; outperforming the risk neutral formulations by more than
0.04. On the other hand, if we consider the AUC to be the target metric, we notice the
“two_cvar” formulation has the highest value. Further, we note that the “one_cvar” model
has the same parameters for both target metrics.We find this to be unusual in our experiments.
While this formulation does not have the best value for the target metric, it too significantly
outperforms the risk neutral formulations. Further, this formulation does have the best value
for the competing metric in both cases. The respective ROC curves for each of the classifiers
are displayed in Fig. 2. The color on each curve represents the value of the F1-score. High
values are represented by the bright green color, and low values are represented by the dark
red color. The two dotted lines indicate the threshold at which the classifier is set to operate.

We can certainly see the classifier performs very well on this data. Table 4 contains
the calculations of risk, with respect to each model formulation. More specifically, for
each obtained classifier we calculate the value of the risk functionals on the out of the
sample data points during cross-validation. We consider the raw expectation, mean semi-
deviation, as well as the conditional value-at-risk for the α quantiles 0.75, 0.85, and
0.95.
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Table 4 Risk evaluation for the WDBC data set: displaying the expectation of error, mean semi-deviation,
and average value at risk for the α quantiles 0.75, 0.85, and 0.95

Expectation MSD CVaR0.75 CVaR0.85 CVaR0.95

WDBC

exp_val

C0 risk 0.000189 0.000368 0.000252 0.000223 0.000199

C1 risk 0.000343 0.000663 0.000457 0.000403 0.000361

Total 0.000532 0.001030 0.000709 0.000626 0.000560

joint_cvar

C0 risk 0.000158 0.000309 0.000211 0.000186 0.000167

C1 risk 0.000241 0.000470 0.000322 0.000284 0.000254

Total 0.000400 0.000779 0.000533 0.000470 0.000421

asym_risk

C0 risk 0.000121 0.000237 0.000161 0.000142 0.000127

C1 risk 0.000194 0.000378 0.000259 0.000228 0.000204

Total 0.000315 0.000615 0.000420 0.000371 0.000332

one_cvar

C0 risk 0.000085 0.000166 0.000113 0.000100 0.000089

C1 risk 0.000172 0.000335 0.000229 0.000202 0.000181

Total 0.000256 0.000501 0.000342 0.000302 0.000270

risk_cvar

C0 risk 0.000080 0.000157 0.000106 0.000094 0.000084

C1 risk 0.000185 0.000363 0.000247 0.000218 0.000195

Total 0.000265 0.000520 0.000353 0.000312 0.000279

two_risk

C0 risk 0.000125 0.000246 0.000167 0.000148 0.000132

C1 risk 0.000182 0.000356 0.000242 0.000214 0.000191

Total 0.000307 0.000601 0.000410 0.000361 0.000323

two_cvar

C0 risk 0.000085 0.000167 0.000113 0.000100 0.000089

C1 risk 0.000235 0.000460 0.000314 0.000277 0.000248

Total 0.000320 0.000628 0.000427 0.000377 0.000337

Indeed, we can observe that our models reduce the risk for each class with respect to
each risk calculation, compared to the benchmarks. More specifically, we notice that the
“one_cvar” model, which does not attain the best performance in terms of F1-score, but
does, in fact, attain the lowest total risk value. Its value is approximately one half that of
the risk neutral formulation, and that of the other benchmark. The “risk_cvar” model does
perform nearly identically, albeit having at slightly larger values across the board. Further,
we note that the “two_cvar” model, which performs best with respect to the AUC metric
is the worst performing, benchmarks excluded. Looking closely at the corresponding ROC
curve in Fig. 2 one can argue that the performance with respect to the AUC metric, comes at
the expense of robustness and generalization.

Looking at the results on the “pima-indians-diabetes” data set inTable 5weobserve that the
best performing model with respect to F1-score is the again “risk_cvar” model with 0.68581
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Table 5 Main results table for the “pima-indians-diabetes” dataset: displaying the model parameters and the
performance metrics for each model formulation

exp_val joint_cvar asym_risk one_cvar risk_cvar two_risk two_cvar

F1-score optimized classifiers

lambda 0.48 0.51 0.49 0.48 0.44

alpha_1 0.58

alpha_2 0.90 0.68 0.56 0.58

C0 errors 107 92 158 121 125 129 157

C1 errors 80 93 46 65 62 63 48

FPR 0.21400 0.18400 0.31600 0.24200 0.25000 0.25800 0.31400

Recall 0.70149 0.65299 0.82836 0.75746 0.76866 0.76493 0.82090

Precision 0.63729 0.65543 0.58421 0.62654 0.62236 0.61377 0.58355

F1-score 0.66785 0.65421 0.68519 0.68581 0.68781 0.68106 0.68217

AUC 0.83039 0.83243 0.82900 0.83078 0.83033 0.82967 0.82830

AUC optimized classifiers

lambda 0.51 0.54 0.54 0.50 0.60

alpha_1 0.69

alpha_2 0.59 0.86 0.76 0.69

C0 errors 107 87 140 80 79 113 74

C1 errors 80 98 59 99 99 78 106

FPR 0.21400 0.17400 0.28000 0.16000 0.15800 0.22600 0.14800

Recall 0.70149 0.63433 0.77985 0.63060 0.63060 0.70896 0.60448

Precision 0.63729 0.66148 0.59885 0.67871 0.68145 0.62706 0.68644

F1-score 0.66785 0.64762 0.67747 0.65377 0.65504 0.66550 0.64286

AUC 0.83039 0.83279 0.83081 0.83348 0.83332 0.83049 0.83267

The boldface numbers indicate the best performing model formulation (column) with respect to the specified
performance metric (row). In other words, there is is only one bold face number per row for each of the
performance metrics, F1-score and AUC

compared to the 0.66785 of the risk neutral formulations. Similarly, the “one_cvar” model
is again second in this context, at the same time having the largest AUC value for the group.
Surprisingly, the benchmark formulation “joint_cvar” has the lowest score here. Switching
the attention to the AUC section of the table, we notice that “one_cvar” is the best performing
model in that regard aswell;with the “risk_cvar” being secondbest.However, the gain inAUC
value with the changed parameters is minimal with a considerable reduction in the alternate
target metric; “one_cvar” shifting from 0.68581 F1-score to 0.65377 in exchange for 0.0027
gain in AUC, and “risk_cvar” shifting from 0.68781 F1 to 0.65504 for a gain of 0.003.

Figure 4 shows how the empirical distribution of error realizations from applying the
classifier to out-of-sample records on the left, and the overlayed ROC curves for the vari-
ous classifiers on the right. Negative values indicate correctly classified observations, while
positive values indicate misclassification. We compare the select loss functions to each other
and the benchmarks. Looking closely at the ROC curves in Fig. 3, we can see that the AUC
prioritized “one_cvar” actually does not classify at its maximum potential in terms of F1-
score, indicated by the fact that the threshold is not at the lightest green segment of the
curve. This requires additional investigation and exploration. The shape of the ROC curves
for the various classifiers is relatively similar, see right panel of Fig. 4. However, looking
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Fig. 3 ROCplots for the best performingmodel formulations on the “pima-indians-diabetes” data: “risk_cvar”
with the best F1-score, “one_cvar” featuring both parameter sets, and finally the “asym_risk” formulation
featuring the best AUC value
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Fig. 4 Empirical distribution of error realizations comparing risk-averse loss function formulations to bench-
marks [F1-score] on the “pima-indians-diabetes” dataset (left) and the corresponding ROC curves (right)

at the error distribution plot on the left in the figure, we notice that the two benchmarks,
“exp_val” and “join_cvar”, misclassify less of the default class and more of the target class.
It is important to show the similarity of the ROC curves in order to highlight how the choice
of risk measure may impact the convergence to a specific threshold. More specifically, we
see the “two_cvar” formulation underperforming, in relation to the target metric (F1-score)
and the best performing formulation “risk_cvar”, by misclassifying too much of the default
class (Table 6).

Table 7 contains the risk functional evaluation for the “pima-indians-data”. It is interesting
that the “two_risk”model has the lowest total riskwith respect to every risk functional, despite
the fact that is not the best performing model in terms of F1-score or AUC. This leads us to
believe that there may be room for additional exploration with regard to performance metrics
and evaluation.

We continue with the performance evaluation on the third and final dataset, whose main
performance metrics are shown in Table 7. One can immediately observe, that no model
performs particularly well on this dataset. We have chosen this data set for being particularly
imbalanced and containing categorical variables.

Again, we see the “risk_cvar” formulation as having the best F1-score, followed very
closely by the “joint_cvar” formulation. In terms ofAUC, it is the “two_cvar” formulation that
leads group, but again at a significant cost of the F1-score. Looking at Fig. 5, we can see room
for improvements to the this by changing the threshold on the AUC prioritized “two_cvar”
model. We observe that in terms of stability to that respect, the “asy_risk” formulation along
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Table 6 Risk evaluation for the “pima-indians-diabetes” data set: displaying the expectation of error, mean
semi-deviation, and average value at risk for the α quantiles 0.75, 0.85, and 0.95

Expectation MSD CVaR0.75 CVaR0.85 CVaR0.95

pima-indians-diabetes

exp_val

C0 risk 0.164317 0.296266 0.219089 0.193314 0.172965

C1 risk 0.183513 0.318461 0.244684 0.215898 0.193172

Total 0.347830 0.614727 0.463773 0.409212 0.366137

joint_cvar

C0 risk 0.132718 0.242794 0.176957 0.156138 0.139703

C1 risk 0.226791 0.383421 0.302387 0.266812 0.238727

Total 0.359508 0.626215 0.479344 0.422951 0.378430

asym_risk

C0 risk 0.251054 0.431147 0.334738 0.295357 0.264267

C1 risk 0.092539 0.169554 0.123385 0.108869 0.097409

Total 0.343593 0.600701 0.458124 0.404227 0.361676

one_cvar

C0 risk 0.167050 0.296830 0.222733 0.196529 0.175842

C1 risk 0.128815 0.229708 0.171754 0.151547 0.135595

Total 0.295865 0.526538 0.394487 0.348077 0.311437

risk_cvar

C0 risk 0.168882 0.299515 0.225176 0.198685 0.177771

C1 risk 0.123088 0.220300 0.164118 0.144810 0.129567

Total 0.291970 0.519815 0.389294 0.343495 0.307337

two_risk

C0 risk 0.152290 0.269093 0.203053 0.179165 0.160305

C1 risk 0.110126 0.195772 0.146835 0.129560 0.115922

Total 0.262416 0.464865 0.349888 0.308725 0.276227

two_cvar

C0 risk 0.240685 0.415233 0.320913 0.283158 0.253352

C1 risk 0.103057 0.188842 0.137409 0.121244 0.108481

Total 0.343742 0.604075 0.458322 0.404402 0.361833

with “joint_cvar” benchmark have less variation. Turning the attention to the risk functional
evaluation in Table 8, we observe that the “exp_val” benchmark model has the lowest total
on the “seismic-bumps”. However, being that this dataset is very imbalanced, we can see
how significantly different the risk functional evaluation is between the two classes for each
model formulation.

Notice, in Fig. 6, how the “exp_val” benchmark stands alone compared to thewell grouped
risk aware models, which includes the benchmark formulation “joint_cvar”. Similarly, as on
the previous dataset, the ROC curves are very much grouped.

In summary, the F1-score prioritized model consistently provides small but significant
improvement over the baseline models.
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Table 7 Main results table for the “seismic-bumps” dataset: displaying the model parameters and the perfor-
mance metrics for each model formulation

exp_val joint_cvar asym_risk one_cvar risk_cvar two_risk two_cvar

F1-score optimized classifiers

lambda 0.61 0.60 0.59 0.53 0.70

alpha_1 0.92

alpha_2 0.60 0.86 0.84 0.92

C0 errors 471 203 269 248 230 270 201

C1 errors 64 93 83 85 87 83 94

FPR 0.19511 0.08409 0.11143 0.10273 0.09528 0.11185 0.08326

Recall 0.62353 0.45294 0.51176 0.50000 0.48824 0.51176 0.44706

Precision 0.18371 0.27500 0.24438 0.25526 0.26518 0.24370 0.27437

F1-score 0.28380 0.34222 0.33080 0.33797 0.34369 0.33017 0.34004

AUC 0.76157 0.75482 0.76187 0.75595 0.75496 0.75133 0.75629

AUC optimized classifiers

lambda 0.60 0.47 0.47 0.49 0.47

alpha_1 0.56

alpha_2 0.93 0.75 0.58 0.56

C0 errors 471 261 292 812 817 571 633

C1 errors 64 84 82 50 48 62 54

FPR 0.19511 0.10812 0.12096 0.33637 0.33844 0.23654 0.26222

Recall 0.62353 0.50588 0.51765 0.70588 0.71765 0.63529 0.68235

Precision 0.18371 0.24784 0.23158 0.12876 0.12993 0.15906 0.15487

F1-score 0.28380 0.33269 0.32000 0.21779 0.22002 0.25442 0.25245

AUC 0.76157 0.76068 0.76360 0.76489 0.76611 0.76344 0.76637

The boldface numbers indicate the best performing model formulation (column) with respect to the specified
performance metric (row). In other words, there is is only one bold face number per row for each of the
performance metrics, F1-score and AUC

Fig. 5 ROC plots for the best performing model formulations on the “seismic-bumps” data: “risk_cvar” with
the best F1-score, “one_cvar”, “joint_cvar”, “two_cvar” formulation featuring the best AUC value

8.4 Flexibility

Our approach provides additional flexibility which is generally not available for classification
methods like soft-margin SVM. We allow the user to implement a predetermined attitude
toward risk of misclassification, and to explore the Pareto-efficient frontier of classifiers.

123



Annals of Operations Research

Table 8 Risk Evaluation for the “seismic-bumps” data set: displaying the expectation of error, mean semi-
deviation, and conditional value at risk for the α quantiles 0.75, 0.85, and 0.95

Expectation MSD CVaR0.75 CVaR0.85 CVaR0.95

seismic-bumps

exp_val

C0 risk 0.039589 0.072043 0.052786 0.046576 0.041673

C1 risk 0.064462 0.106979 0.085950 0.075838 0.067855

Total 0.104052 0.179022 0.138735 0.122414 0.109528

joint_cvar

C0 risk 0.015641 0.030007 0.020854 0.018401 0.016464

C1 risk 0.131682 0.199685 0.175576 0.154920 0.138613

Total 0.147323 0.229693 0.196430 0.173321 0.155077

asym_risk

C0 risk 0.018930 0.035855 0.025239 0.022270 0.019926

C1 risk 0.099935 0.156758 0.133246 0.117570 0.105194

Total 0.118864 0.192613 0.158485 0.139840 0.125120

one_cvar

C0 risk 0.019387 0.036922 0.025850 0.022809 0.020408

C1 risk 0.116238 0.179858 0.154983 0.136750 0.122355

Total 0.135625 0.216780 0.180833 0.159559 0.142763

risk_cvar

C0 risk 0.015942 0.030445 0.021256 0.018755 0.016781

C1 risk 0.107669 0.164839 0.143559 0.126669 0.113336

Total 0.123611 0.195284 0.164814 0.145424 0.130116

two_risk

C0 risk 0.015797 0.029943 0.021062 0.018584 0.016628

C1 risk 0.088633 0.139315 0.118177 0.104274 0.093298

Total 0.104430 0.169258 0.139239 0.122858 0.109926

two_cvar

C0 risk 0.013332 0.025589 0.017776 0.015685 0.014034

C1 risk 0.110821 0.167536 0.147762 0.130378 0.116654

Total 0.124153 0.193126 0.165538 0.146063 0.130688

We traverse the Pareto frontier by varying λ from 0.4 to 0.7 and observe that the solution is
rather sensitive to the scalarization used in the loss function. In Fig. 7, we show the resulting
error densities from such a traversal. We can observe how varying the weight between the
two risk measures allows us to obtain a family of risk-averse Pareto-optimal classifiers. The
efficient frontier can be used to choose a risk-averse classifier according additional criterion
as the F1-score, AUC, or other similar performance metrics by choosing specific parameter
λ, as discussed in the previous section.

The Pareto frontier looks substantially different when different combinations of risk mea-
sures are used. Further research would reveal the effect of higher order risk measures and
their ability to create a classifier with highly discriminant powers.

We have chosen the probability level for the Conditional Value-at-Risk in a similar way.
We observe that the loss function “one_cvar” consistently provides the best performance.
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Fig. 6 Empirical distribution of error realizations comparing risk-averse loss function formulations to bench-
marks [F1-score] on the “seismic-bumps” dataset (left) and the corresponding ROC curves (right)

Fig. 7 The distribution of error displayed as smoothed histogram for each of five proposed formulations for
the risk-averse SVMproblem e.g. “asym_risk”, “one_cvar”, “risk_cvar”, “two_risk”, and “two_cvar” all using
the same set of λ values, with other parameters fixed, on the “seismic-bumps” dataset

A close second, is the loss function “risk_cvar,” which has a similar structure. Interestingly,
using the same risk measure on both classes does not perform as well.
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