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Abstract
Themassive amount of energy consumed by cloud data centers is detrimentally impacting on
the environments. As such, to work towards “greener” computing, in this paper, we propose
a clustered virtual machine (VM) allocation strategy based on a sleep-mode with a wake-up
threshold. TheVMs in a cloud data center are clustered into twopools, namely, Pool I andPool
II. The VMs in Pool I remain awake at all times, while the VMs in Pool II go to sleep under
a light workload. After a sleep timer expires, the corresponding VM will resume processing
tasks only if the number of waiting tasks reaches the wake-up threshold. Otherwise, the
sleeping VM will remain asleep as a new sleep timer starts. By establishing a queue with an
N -policy and asynchronous vacations of partial servers, we capture the stochastic behavior of
tasks with the proposed strategy, and derive the performancemeasures in terms of the average
latency of tasks and the energy saving rate of the system. Furthermore, we provide numerical
results to demonstrate the impact of the system parameters on the system performance.
Finally, we construct a system cost function to trade off different performance measures, and
develop an intelligent searching algorithm to jointly optimize the number of the VMs in Pool
II, the wake-up threshold and the sleeping parameter.

Keywords Cloud data center · Clustered VM allocation · Wake-up threshold · Sleep-mode ·
Average latency · Energy saving rate

1 Introduction

The energy consumption in cloud data centers has been steadily increasing over the last few
years (Zhou et al. 2018). As a result, the minimization of power and energy consumption in a
cloud environment has become an urgent problem that is now receiving significant attention
(Marek and Hoon 2018).
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Applying a sleep mode is an effective method for reducing energy consumption in cloud
data centers (Khojandi et al. 2018). For the purpose ofminimizing energy consumption during
runtime, Duan et al. (2015) presented a dynamic idle interval prediction scheme to estimate
the future idle interval length of a CPU and thereby choose the most cost-effective sleep
state. Chou et al. (2016) proposed a fine-grain power management scheme for data center
workloads. This proposed scheme could dynamically postpone the processing of some tasks,
create longer idle periods and promote the use of a deeper sleep mode. Luo et al. (2017)
based on flow preemption and power-aware routing, Luo et al. proposed a dynamic adaptive
scheduling algorithm to reduce energy consumption by decreasing the ratio of low utilization
devices and putting more devices into sleep mode. In the literature mentioned above, we note
that a sleep mode was only applied to a physical machine (PM) rather than a virtual machine
(VM). This weakens the application flexibility of sleep modes.

Queuing models with vacations are used as an important way to evaluate the perfor-
mance measures of the cloud data centers with sleep modes (Do et al. 2018). Multiple-server
queueing models with various types of vacations have been studied by many researchers.
Jin et al. (2018) proposed a novel type of M/M/c queue with an N -policy and synchronous
vacations. Tian et al. (2001) analyzed the equilibrium theory for an M/M/c queue with an
N -policy and asynchronous vacations. Jin et al. (2017) proposed a queueing system with
synchronous vacations of partial servers. The research mentioned above has contributed to
enriching the queueing system with an N -policy and synchronous vacations, an N -policy
and asynchronous vacations, as well as asynchronous vacations of partial servers. However,
there has so far been no research on a queueing system with an N -policy and asynchronous
vacations of partial servers.

Teaching–learning-based optimization (TLBO) is an effective tool for function optimiza-
tion (Cao et al. 2016). Since the appearance of TLBO, many researchers have directed their
efforts into improving the searching capability of TLBO algorithms. Yu et al. (2016) an effort
to enhance the performance of TLBO algorithms, Yu et al. introduced the mutation crossover
operation to increase population diversity, and applied the chaotic perturbation mechanism
to make the TLBO algorithm avoid falling into the local optimum. Ji et al. (2017) inspired by
the concept of historical population, Ji et al. added two new process, namely the self-feedback
learning process as well as the mutation and crossover processes to the TLBO algorithm. The
added processes improved the exploration ability of the new algorithm in comparison to the
original TLBO algorithm. Li et al. (2017) in order to enhance the diversification of popula-
tion, Li et al. increased the number of teachers, introduced new students, and performed local
searches around the potentially optimal solutions. To the best of our knowledge, the applica-
tion of the improved TLBO algorithm in the optimization of the VM allocation strategy has
not been studied yet.

Inspired by the research mentioned above, in this paper, we propose a clustered VM
allocation strategy based on a sleep-mode with a wake-up threshold. For one thing, allowing
that all the VMs in a cloud data center go to sleep may degrade the quality of cloud service.
Thus, we divide the VMs in a cloud data center into two pools: Pool I and Pool II. The VMs in
Pool I always stay awake to provide a timely cloud service for processing tasks, whereas the
VMs in Pool II independently go to sleep whenever possible to reduce energy consumption.
Another, for a VM, frequently switching from a sleep state to a awake state may cause
additional energy consumption. To get around this problem, in this paper we make the VMs
inPool II towake up only if the number of taskswaiting in the systembuffer reaches awake-up
threshold and the corresponding sleep timer expires. This wake-up mechanism improves the
energy conservation by delaying the instant at which aVMwakes up. To analyze the proposed
strategy, we first build a type of queuewith an N -policy and asynchronous vacations of partial
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servers by using a matrix-geometric method, and investigate the system performance through
analysis experiments and simulation experiments. Finally, for the purpose of optimizing the
proposed strategy, we construct a cost function to trad off different system performance, and
develop the TLBO algorithm to optimize the system parameters settings.

The rest of this paper is organized as follows. In Sect. 2, we propose a clustered VM
allocation strategy based on a new type of sleep-mode in a cloud environment and build a
system model accordingly. In Sect. 3, we analyze the system model using the method of a
matrix-geometric solution. In Sect. 4, we derive the performance measures in terms of the
average latency of tasks and the energy saving rate of the system with the proposed strategy.
In Sect. 5, we demonstrate the influence of system parameters on the system performance by
using numerical results. In Sect. 6, we develop an intelligent searching algorithm to jointly
optimize the number of the VMs in Pool II, the wake-up threshold and the sleeping parameter.
Finally, Sect. 7 is devoted to the conclusion.

2 VM allocation strategy and systemmodel

In this section, in order to enhance the energy efficiency in a cloud environment, we firstly
propose a clustered VM allocation strategy based on a sleep-mode with a wake-up threshold.
And then, we establish a queue with an N -policy and asynchronous vacations of partial
servers to capture the proposed strategy.

2.1 VM allocation strategy

It should be noted that additional energy will be consumed when a VM frequently switches
from the sleep state to the awake state, while the system performance will be degraded when
all the VMs are put into a sleep-mode. To get around these problems, based on a sleep-mode
with a wake-up threshold, we propose a clustered VM allocation strategy.

The VMs in a cloud data center are clustered into two pools, namely, Pool I and Pool II.
The VMs in Pool I remain awake all the time and operate on a higher speed. The VMs in
Pool II will go to sleep independently when there are no tasks in the system buffer. For the
purpose of improving the energy efficiency of cloud data centers, we introduce a wake-up
threshold to a periodic sleep mode. At the end epoch of a sleep period, if the number of the
tasks gathered in the system buffer reaches or exceeds a certain value, namely the wake-up
threshold, the corresponding VM in Pool II will wake up independently and operate on a
lower speed. Otherwise, the VM in Pool II will begin another sleep period with a new sleep
timer.

Under the proposed strategy, all the VMs are dominated by a control server, where several
sleep timers, a task counter, and a VM scheduler are deployed. When a VM in Pool II is
scheduled to go to sleep from the awake state or begin another sleep period, a sleep timer
with a random value will be started to control the time length of a sleep period. The task
counter keeps working and counts the tasks waiting in the system buffer. At the moment that
a sleep timer expires, the VM scheduler adjusts the state of the corresponding VM according
to the value on the task counter.

Figure 1 illustrates the working flow of a VM with the clustered VM allocation strategy
based on a sleep-mode with a wake-up threshold.
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(a) (b)

Fig. 1 The working flow of a VM with the strategy proposed in this paper

As shown in Fig. 1, the VMs in Pool I remain awake all the time, while the VMs in Pool
II switch between the sleep state and the awake state. Next, we discuss the state transition
for the VMs in Pool II.

1. Awake state to sleep state

For a busy VM in Pool II, the state transition from awake state to sleep state occurs only
at the instant when a task either in Pool I or Pool II is completely processed. When a task
is completely processed in Pool I, if the VM scheduler monitors that the value on the task
counter is zero and there is at least one task being processed in Pool II, one of the tasks being
processed in Pool II will migrate Pool I, and then the evacuated VM in Pool II will go to
sleep. When a task is completely processed in Pool II, if the VM scheduler monitors that
the value on the task counter is zero, the evacuated VM in Pool II will go to sleep directly.
We note that the task-migration considered in this paper is a kind of online VM-migration
between different pools within a cloud data center, and this task-migration is to make the
VMs in Pool II go to sleep earlier.

2. Sleep state to awake state

For a sleeping VM in Pool II, the state transition from sleep state to awake state occurs
only at the end epoch of a sleep period. When a sleep timer expires, if the VM scheduler
monitors that the value on the task counter is equal to or greater than the wake-up threshold,
the corresponding VM in Pool II will wake up to process the first task waiting in the system
buffer on a lower speed. Otherwise, a new sleep timer will be started and the VM in Pool II
will begin another sleep period.
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To summarize, at the moment that a sleep timer expires, the VMs in Pool II will wake up
only if the number of the taskswaiting in the systembuffer reaches thewake-up threshold. The
wake-up mechanism in our proposed strategy effectively improves the energy conservation
via extending sleep time by delaying the instant at which a VM wakes up. This is exactly the
starting point for the sleep-mode with a wake-up threshold within our proposed strategy.

2.2 Systemmodel

According to the proposed VM allocation, we establish a queue with an N -policy and
asynchronous vacations of partial servers. In this system model, the tasks are regarded as
customers, each VM is regarded as an independent server, a sleep period is regarded as a
vacation, and multiple sleep periods are regarded as multiple vacations.

In this system model, the buffer capacity is supposed to be infinite. Moreover, the number
of the VMs in Pool I and Pool II are denoted as c and d , respectively. Let it be the total
number of tasks in the system at instant t . it is called the system level, it � 0. Let jt be the
number of busy VMs in Pool II at instant t . jt is called the system stage, jt = 0, d , where
0, d represents the range of integers from 0 to d .

Thus, the behavior of the system under consideration can be described in terms of the
two-dimensional continuous-time stochastic process as follows:

ξt = {it , jt }, t � 0. (1)

The state-space Ω of the two-dimensional continuous-time stochastic process ξt is given as
follows:

Ω = {(i, 0) : i = 0, c} ∪ {(i, j) : i = c + 1, c + d, j = 0, i − c}
∪ {(i, j) : i � c + d + 1, j = 0, d}. (2)

We assume that all the tasks in the system are homogenous and all the VMs in a pool
are identical, where each task is for one VM. The arrival intervals of tasks are assumed to
have an exponential distribution with parameter λ (λ > 0). In addition, the service times
of tasks processed in Pool I and in Pool II are assumed to be exponentially distributed with
parameters μ1 (μ1 > 0) and μ2 (0 < μ2 < μ1), respectively. Furthermore, the time length
of a sleep timer is assumed to follow an exponential distribution with parameter θ (θ > 0).
Here, the parameter θ is called the sleeping parameter.

Based on the assumptions above, the two-dimensional continuous-time stochastic process
ξt can be seen as a two-dimensional continuous-time Markov chain (CTMC).

Taking c = 2, d = 3 and N = 2 as an example, we show the state transition of the
two-dimensional CTMC ξt in Fig. 2, where N = 2 shows this CTMC with a 2-policy.

We define πi, j as the steady-state probability distribution of the system model for the
system level being equal to i and the system stage being equal to j . πi, j is then given as
follows:

πi, j = lim
t→∞ P{it = i, jt = j}, i � 0, j = 0, d. (3)

And then, we form the row vectors π i as follows:

π i =
⎧
⎨

⎩

πi,0, i = 0, c
(πi,0, πi,1, . . . , πi,i−c), i = c + 1, c + d
(πi,0, πi,1, . . . , πi,d), i � c + d + 1.

(4)
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Fig. 2 The state transition of the the two-dimensional CTMC ξt with c = 2, d = 3 and N = 2

The steady-state probability distribution π of the two-dimensional CTMC is composed
of π i (i � 0). π is given as follows:

π = (π0,π1, . . .). (5)

3 Model analysis

In this section, we first investigate the transition rate matrix of the two-dimensional CTMC.
And then, we derive the steady-state probability distribution of the system model.

3.1 Transition rate matrix

We denote Q as the one-step state transition rate matrix of the two-dimensional CTMC
ξt . According to the system level, we separate the one-step state transition rate matrix Q
of the two-dimensional CTMC ξt into some sub-matrices with different orders. To clearly
represent the sub-matrices, we denote Qk,k′ as the one-step state transition rate sub-matrix
for the system level changing from k (k � 0) to k′ (k′ � 0). Based on the initial system level
k, we discuss the one-step state transition rate sub-matrix Qk,k′ in relation to three cases.

1. Initial system level is k = 0, c: the number of busy VMs in Pool I is k, while the number
of busy VMs in Pool II is 0.

k = 0 means no tasks exist in the system at all. Therefore, the possible state transitions
are from state (0, 0) to state (1, 0) and from state (0, 0) to state (0, 0). If there is a task arrival
at the system, the system level will be increased by one, while the system stage will not
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change, and the transition rate from state (0, 0) to state (1, 0) is λ. If no task arrival occurs
in the system, the system state will be fixed at state (0, 0), and the transition rate is − λ.
Consequently, the sub-matrices Q0,1 and Q0,0 are actually quantities given as follows:

Q0,1 = λ, Q0,0 = − λ.

k = 1, c means all the tasks in the system are receiving service from the VMs in Pool I. If
one of the tasks is completely processed and departs the system, the system level will drop
by one, while the system stage will not change, and the transition rate from state (k, 0) to
state (k−1, 0) is kμ1. If there is a task arrival at the system, the system level will increase by
one, while the system stage will not change, and the transition rate from state (k, 0) to state
(k + 1, 0) is λ. If neither an arrival nor a departure occurs, the system state will be fixed at
state (k, 0), the transition rate is−(λ+kμ1). Consequently, the sub-matricesQk,k−1,Qk,k+1
and Qk,k are also actual quantities given as follows:

Qk,k−1 = kμ1, Qk,k+1 = λ, Qk,k = −(λ + kμ1), k = 1, c.

2. Initial system level is k = c + x, x = 1, d − 1: the number of busy VMs in Pool I is c,
while the number of busy VMs in Pool II is less than or equal to x .

If there is at least one task queueing in the system buffer when a task is completely
processed on a VM, whether the VM belongs to Pool I or Pool II, the task waiting at the head
of the system buffer will be scheduled to the evacuated VM. In this case, the system level
will drop by one, while the system stage will not change. Therefore, the transition rate from
state (k, n) to state (k − 1, n) will be (cμ1 + nμ2), where n (n = 0, x − 1) is the number of
busy VMs in Pool II.

If there are no tasks queueing in the system buffer when a task is completely processed
on a VM, whether the VM belongs to Pool I or Pool II, the number of sleeping VMs will
increase by one. If the evacuated VM belongs to Pool I, one of the tasks receiving service in
Pool II will be migrated to the evacuated VM in Pool I, and the just-evacuated VM in Pool
II will go to sleep. If the evacuated VM belongs to Pool II, the evacuated VM in Pool II will
start sleeping directly. In both of these two cases, both the system level and the system stage
will drop by one. Therefore, the transition rate from state (k, x) to state (k − 1, x − 1) will
be (cμ1 + xμ2).

Consequently, the sub-matrixQk,k−1 is a rectangular (x +1)× x matrix given as follows:

Qk,k−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cμ1

cμ1 + μ2
. . .

cμ1 + (x − 1)μ2

cμ1 + xμ2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, k = c + x, x = 1, d − 1.

Before any of the sleep timers in Pool II expire, if there is a task arrival at the system,
the newly arriving task has to queue in the system buffer. In this case, the system level will
increase by one, while the system stage will not change. Therefore, the transition rate from
state (k, n) to state (k + 1, n) will be λ. Consequently, the sub-matrixQk,k+1 is a rectangular
(x + 1) × (x + 2) matrix given as follows:
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Qk,k+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

λ 0
λ 0

. . .
...

λ 0
λ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, k = c + x, x = 1, d − 1.

At the moment that one of the sleep timers expires, the corresponding VM in Pool II will
decide whether to wake up or continue sleeping according to the number of tasks queueing
in the system buffer. If this number is equal to or greater than the wake-up threshold N ,
the corresponding VM in Pool II will wake up and prepare to process the task waiting at
the head of the queue. In this case, the system level will not change, while the system stage
will increase by one. Therefore, the transition rate from state (k, n) to state (k, n + 1) will
be (d − n)θ , where n (n = 0, x) is the number of busy VMs in Pool II. Otherwise, the
corresponding VM in Pool II will continue sleeping and there will be no state transitions at
all.

Before any of the sleep timers in Pool II expire, if neither an arrival nor a departure occurs,
the system state will not change. When the number of tasks queueing in the system buffer is
equal to or greater than thewake-up threshold N , the transition ratewill be (− hn − (d − n)θ),
where hn = λ + cμ1 + nμ2. When the number of tasks queueing in the system buffer is less
than the wake-up threshold N , the transition rate will be −hn .

Consequently, the sub-matrix Qk,k is a rectangular (x + 1) × (x + 1) matrix given as
follows:

Qk,k = diag (− h0,−h1, . . . ,−hx ) , k = c + x, x = 1,min{N , d} − 1,

Qk,k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−h0 − dθ dθ

. . .
. . .

−hx−N − (d − (x − N ))θ (d − (x − N ))θ

−hx−N+1 0
. . .

. . .

−hx−1 0
−hx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

k = c + x, x = N , d − 1 (N � d).

3. Initial system level is k = c + x, x � d: the number of busy VMs in Pool I is c, while
the number of busy VMs in Pool II is less than or equal to d .

In the case of k = c+d ,Qk,k−1 is a rectangular matrix of order (d+1)×d . In the case of
k = c + x, x � d + 1, Qk,k−1 is square matrices of the order (d + 1) × (d + 1). In the case
of k = c+ x, x � d , Qk,k+1 and Qk,k are all square matrices of the order (d + 1)× (d + 1).
Referencing the discussions in Item (2), the sub-matrices Qk,k−1, Qk,k+1 and Qk,k are given
as follows:
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Qk,k−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cμ1

cμ1 + μ2
. . .

cμ1 + (d − 1)μ2

cμ1 + dμ2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, k = c + d,

Qk,k−1 = diag (cμ1, cμ1 + μ2, . . . , cμ1 + dμ2) , k = c + x, x � d + 1,

Qk,k+1 = diag (λ, λ, . . . , λ) , k = c + x, x � d,

Qk,k = diag (− h0,−h1, . . . ,−hd) , k = c + x, x = d, N − 1 (N > d),

Qk,k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−h0 − dθ dθ

. . .
. . .

−hx−N − (d − (x − N ))θ (d − (x − N ))θ

−hx−N+1 0
. . .

. . .

−hd−1 0
−hd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

k = c + x, x = max{N , d}, N + d − 1,

Qk,k =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−h0 − dθ dθ

−h1 − (d − 1)θ (d − 1)θ
. . .

. . .

−hd−1 − θ θ

−hd

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

k = c + x, x � d + N .

So far, all the sub-matrices in the one step state transition rate matrix Q have been
addressed. In the one-step state transition rate matrixQ, the sub-matricesQk,k−1 are repeated
forever starting from the system level (c+d+1), the sub-matricesQk,k+1 are repeated forever
starting from the system level (c+d), and the sub-matricesQk,k are repeated forever starting
from the system level (c + d + N ). For presentation purposes, the repetitive sub-matrices
Qk,k−1, Qk,k+1 and Qk are represented by B, C and A, respectively. Then, the one step state
transition rate matrix Q is written as follows:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1
Q1,0 Q1,1 Q1,2

. . .
. . .

. . .

Qc+d,c+d−1 Qc+d,c+d C
B Qc+d+1,c+d+2 C

. . .
. . .

. . .

B Qc+d+N−1,c+d+N−1 C
B A C

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Obviously, the obtained form of the one step state transition rate matrixQ is a quasi-birth-
and-death (QBD) matrix, so the CTMC ξt is also called a QBD CTMC (Tian and Zhang
2006).
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Different methods can be used to resolve the steady-state transition probabilities. In our
study, we consider a matrix-geometric solution method which is commonly used to analyze
the QBD CTMC in the steady state.

3.2 Steady-state probability distribution

To analyze the QBD CTMC ξt by using the matrix-geometric solution method, we need to
solve for the minimal non-negative solution of the matrix quadratic equation

R2B + RA + C = 0, (6)

and this solution, called the rate matrix and denoted by R, can be explicitly determined.
In Sect. 3.1, the sub-matrices B, A and C are deduced to be upper-triangular matrices.

Thus, the rate matrix R is an upper-triangular matrix. We denote the unknown element of the
rate matrix R in line u (u = 0, d) column v (v = 0, d) as ru,v , and ru = ru,u (u = 0, d).
The rate matrix R can be written as follows:

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r0 r0,1 r0,2 · · · r0,d−1 r0,d
r1 r1,2 · · · r1,d−1 r1,d

r2 · · · r2,d−1 r2,d
. . .

...
...

rd−1 rd−1,d

rd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7)

And then, using the elements in R, we calculate the elements of R2 as follows:

(R2)u,u = r2u , u = 0, d, (R2)u,v =
v∑

i=u

ru,i ri,v, u = 0, d − 1, v = u + 1, d.

Next, by substituting the R2, R, B, A and C into Eq. (6), we obtain a set of equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(cμ1 + uμ2)r
2
u − (hu + (d − u)θ)ru + λ = 0, u = 0, d

(cμ1 + vμ2)

v∑

i=u

ru,i ri,v − (hv + (d − v)θ)ru,v + (d − v + 1)θru,v−1 = 0,

u = 0, d − 1, v = u + 1, d.

(8)
With the constraint that the traffic load ρ = λ(cμ1 + dμ2)

−1 < 1, we prove that the first
equation of Eq. (8) has two real roots ru (0 < ru < 1) and r∗

u (r∗
u � 1). It should be noted

that the diagonal elements of R are ru (u = 0, d).
It is too arduous to deduce a general expression of ru,v (u = 0, d − 1, v = u + 1, d)

in closed-form. So, based on the last equation of Eq. (8), we recursively compute the off-
diagonal elements starting from the diagonal elements obtained in the first equation of Eq.
(8).

By using the matrix-geometric solution method (Neuts 1981), we have

π i = πc+d+NRi−(c+d+N ), i � c + d + N , (9)
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and the unknown steady-state probability distribution π0, π1, . . ., πc+d+N can be obtained
by solving the augmented matrix equation as follows:

(π0,π1, . . . ,πc+d+N )

(

B[R]
e1

(I − R)−1e2

)

= (
0 1

)
(10)

where e1 is a
(
c + ( d

2 + N
)
(d + 1)

) × 1 vector, all of elements equal 1, e2 is a (d + 1) × 1
vector, all of elements equal 1, 0 is a 1× (

c + ( d+2
2 + N

)
(d + 1)

)
vector, all of elements

equal 0, and

B[R] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1
Q1,0 Q1,1 Q1,2

. . .
. . .

. . .

Qc+d,c+d−1 Qc+d,c+d C
B Qc+d+1,c+d+2C

. . .
. . .

. . .

B Qc+d+N−1,c+d+N−1 C
B RB+A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Finally, we obtain π i (i = 0, c + d + N ) by applying the Gauss–Seidel method (Chen
et al. 2017) to solve Eq. (10), and obtain π i (i � c + d + N + 1) by substituting
πc+d+N obtained in Eq. (10) into Eq. (9). So far, the steady-state probability distribution
� = (π0,π1, . . .) of the system are given mathematically.

4 Performancemeasures

In this section, wemathematically evaluate the performance measures in terms of the average
latency of tasks and the energy saving rate of the system.

We define the average latency of tasks as the average duration from the instant a task
arrives at the system to the instant this task is completely processed.

Based on Little’s law and the steady-state probability distribution of the system model
given in Sect. 3.2, the average latency W of tasks is given as follows:

W = 1

λ

⎛

⎝
c∑

i=0

iπi0 +
c+d∑

i=c+1

i−c∑

j=0

iπi, j +
mw∑

i=c+d+1

d∑

j=0

iπi, j

⎞

⎠ . (11)

mw shown in Eq. (11) is a sufficiently large number that is set with the following condition:

1 −
mw∑

i=0

d∑

j=0

πi, j < ε1 (12)

where ε1 is an arbitrarily small number, such as ε1 = 10−13. The smaller the value of ε1 is,
the more precise the average latency of tasks will be.

We define the energy saving rate of the system as the energy conservation per unit time.
With the proposed strategy, the energy consumption of a VM in the awake state is higher

than that in the sleep state. Indeed, additional energywill be consumedwhen a task ismigrated
from Pool II to Pool I, when a VM in Pool II listens to the system buffer, as well as when a
VM in Pool II wakes up from a sleep state.
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Based on the discussions above and the steady-state probability distribution of the system
model given in Sect. 3.2, the energy saving rate E of the system with our proposed strategy
is given as follows:

E = (ω − ωs)

me∑

i=0

d∑

j=0

(d − j)πi j −
⎛

⎝ωm

c+d∑

i=c+1

d∑

j=1

cμ1πi j

+ ωl

me∑

i=0

d∑

j=0

θ(d − j)πi j + ωu

me∑

i=c+ j+N

d−1∑

j=0

θ(d − j)πi j

⎞

⎠ (13)

where ω (ω > 0) is the energy consumption per unit time for a busy VM in Pool II, ωs (ωs >

0) is the energy consumption per unit time for a sleeping VM in Pool II, ωm (ωm > 0) is
the energy consumption for each task-migration, ωl (ωl > 0) is the energy consumption for
each listening, and ωu (ωu > 0) is the energy consumption for each wake-up from a sleep
state to an awake state. Moreover, me shown in Eq. (13) is a sufficiently large number that is
set with the following condition:

1 −
me∑

i=0

d∑

j=0

πi, j < ε2 (14)

where ε2 is also an arbitrarily small number, such as ε2 = 10−13. The smaller the value of
ε2 is, the more precise the energy saving rate of the system will be.

5 Numerical experiments

In this section, we provide numerical experiments with analysis and simulation to further
analyze the impacts of the system parameters on the system performance in terms of the
average latency of tasks and the energy saving rate of the system.

Based on Eqs. (11) and (13), the analysis results are carried out in Matlab 2016a on
Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz 3.60 GHz, 8.00 GB RAM. Java language
has the object-oriented features supporting the representation of multiple attributes through
the definition of a class. Simulation experiments are implemented in the MyEclipse 2014
environment using Java language. In the simulation experiment, a TASK class is defined to
include the attributes of UNARRIVE, WAIT, RUNHIGH, RUNLOW and FINISH. A VM
class is defined to include the attributes of SLEEP, IDLE, BUSYLOW and BUSYHIGH.

Referencing to Jin et al. (2018), we set the experimental parameters as follows: c+d = 50,
λ = 7.00 s−1, μ1 = 0.20 s−1, μ2 = 0.10 s−1, ω = 0.50 mW, ωs = 0.10 mW, ωm = 0.20
mJ, ωl = 0.15 mJ and ωu = 0.20 mJ.

Figure 3 depicts the resulting average latency W of tasks vs. the sleeping parameter θ for
different numbers d of the VMs in Pool II and different wake-up thresholds N .

Figure 3a indicates that the average latency W of tasks increases with an increase of
the number d of the VMs in Pool II. For a given wake-up threshold and a given sleeping
parameter, the more VMs there are deployed in Pool II, the weaker the system capability
becomes, and the longer the tasks will sojourn in the system. This results in a larger average
latency of tasks.

Figure 3b indicates that the average latency W of tasks increases with an increase in the
value for threshold N . This is due to the fact that, when the number of the VMs in Pool
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(a)N = 11

(b) d = 15

Fig. 3 The average latency L of tasks versus the sleeping parameter θ for different numbers d of the VMs in
Pool II and different wake-up thresholds N

II and the sleeping parameter are given, as the value for the wake-up threshold increases,
the more likely it is that the VMs in Poiol II will continue sleeping, even when their sleep
timers expire. That is to say, more tasks will accumulate in the system buffer before being
processed. Consequently, the average latency of tasks will increase.

From Fig. 2, we also observe that for any number d of VMs in Pool II and any value for the
wake-up threshold N , as the sleeping parameter θ increases, the average latency W of tasks
will initially decrease sharply and then decrease gradually. When the sleeping parameter θ

is smaller (such as 0 < θ < 0.4 for N = 11 and d = 15), the time length of a sleep period is
relatively long, so the tasks arriving during the sleep period have to wait longer in the system
buffer. This leads to a larger average latency of tasks. In this case, the sleeping parameter
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has a greater impact on the average latency of tasks than any of the other factors, such as the
arrival rate of tasks and the service rate of a task on a VM. Thus, the average latency of tasks
will decrease sharply as the sleeping parameter increases.

When the sleeping parameter θ is larger (such as 0.4 < θ < 1.6 for N = 11 and d = 15),
the time length of a sleep period is relatively short, so the tasks arriving during the sleep
period will be processed earlier. This leads to a lower average latency of tasks. In this case,
the arrival rate of tasks and the service rate of VMs play a dominate role in influencing the
average latency of tasks. Thus, the average latency of tasks will decrease gradually as the
sleeping parameter increases.

Figure 4 depicts the resulting energy saving rate E of the system vs. the sleeping parameter
θ for different numbers d of the VMs in Pool II and different wake-up thresholds N .

Figure 4a indicates that deploying either relatively too few or too many VMs in Pool II
will result in a lower energy saving rate E of the system. When the number of VMs in Pool
II is smaller (such as d = 5 for N = 11), even though all the VMs in Pool II are asleep, less
energywill be saved. This leads to a lower energy saving rate of the system.When the number
of VMs in Pool II is bigger (such as d = 25 for N = 11), the system capability is relatively
weaker. This is to say, once a VM in Pool II wakes up, that VM has little opportunity to go
to sleep again. This also leads to a lower energy saving rate of the system.

Figure 4b indicates that a larger value for the wake-up threshold N will result in a higher
energy saving rate E of the system. This is due to the fact that when the number of the VMs in
Pool II and the sleeping parameter are given, the higher the value for the wake-up threshold
is, the later a VM in Pool II will wake up from sleep state, and the longer the VMs in Pool
II will remain asleep. This leads to a higher energy saving rate of the system.

From Fig. 4, we also notice that for any number d of VMs in Pool II and for any value for
the wake-up threshold N , the energy saving rate E of the system decreases as the sleeping
parameter θ increases. The larger the sleeping parameter is, the shorter the time length of a
sleep period is, and the earlier a VM in Pool II will wake up from a sleep state. That is to
say, less energy will be saved. Additionally, the larger the sleeping parameter is, the more
frequently the VM in Pool II listens to the system buffer or wakes up from sleep state. That
is to say, additional energy will be consumed. Consequently, the energy saving rate of the
system will decrease.

Combining the results shown in Figs. 2 and 3, we find that a lower average latency of tasks
can be obtained with a smaller number of VMs in Pool II, a smaller value for the wake-up
threshold and a larger sleeping parameter, whereas a higher energy saving rate of the system
can be obtained with a moderate number of VMs in Pool II, a larger value for the wake-
up threshold, and a smaller sleeping parameter. In the actual application of the proposed
strategy, both the response performance and the energy saving effect should be taken into
consideration. So, the number of the VMs in Pool II, the wake-up threshold and the sleeping
parameter should be jointly optimized to balance the system performance.

6 Performance optimization

In this section, we improve the TLBO algorithm to optimize the proposed strategy.
For the optimization of the proposed strategy, we need to minimize the average latency

of tasks while at the same time maximize the energy saving rate of the system. The criteria
of such optimization problem are a function for the average latency of tasks to be minimized
and another function for the energy saving rate of the system to be maximized. From the
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(a) N = 11

(b) d = 15

Fig. 4 The energy saving rate E of the system versus the sleeping parameter θ for different numbers d of the
VMs in Pool II and different wake-up thresholds N

numerical results illustrated in Sect. 5, we find that the criteria are in conflict: a shorter
average latency of tasks will certainly involve a lower energy saving rate of the system.

Considering the trade-off between the average latency of tasks and the energy saving rate
of the system, we establish a system cost function F(d, N , θ) as follows:

F(d, N , θ) = fwW − feE (15)

where fw and fe are the impact factors for the average latency W of tasks and the energy
saving rate E of the system to the system cost function.
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Table 1 Improved TLBO algorithm to obtain the optimal combination (d∗, N∗, θ∗)

Step 1: Initialize the population size Num, the maximum number itermax of iterations for the
teaching–learning process, the maximal weight ωmax for teacher’s teaching process, the
minimal weight ωmin for teacher’s teaching process, the variation sections of the sleeping
parameter [0, θmax], the number X of total VMs

Step 2: Set the initial number d of VMs in Pool II, the initial value N for the wake-up threshold,
the current optimal combination (d∗, N∗, θ∗), and calculate the corresponding fitness F∗
d = 0, N = 1, (d∗, N∗, θ∗) = (d, N , θmax), F∗ = F(d∗, N∗, θ∗)

Step 3: Initialize grade θi for the i th(i = 1, 2, . . . , Num) student by using cube chaotic equation

θ1 = rand1
% rand1 returns a sample in the interval (− 1, 1) with the uniform distribution %

for i = 2 : Num
θi = 4 ∗ (θi−1)

3 − 3 ∗ θi−1

endfor

for i = 1 : Num
θi = (θi + 1) ∗ θmax/2

endfor

Step 4: Calculate the average grade θmean of current students, select the best grade θteacher as the
teacher’s grade, and calculate the best fitness Fbest :

θmean = mean
i∈{1,...,Num}θi ,

θteacher = argmin
i∈{1,...,Num}

F(d, N , θi ), Fbest = min
i∈{1,...,Num}F(d, N , θi )

Step 5: Set the initial number of iterations as i ter = 1.

Step 6: Update each student’s grade θi (i = 1, 2, . . . , Num) via the teacher’s teaching process:

G = round(1 + rand), ω = ωmax − (ωmax − ωmin)(i ter/itermax)
1/i ter

% round represents the rounding operation. %

% rand returns a sample in the interval (0, 1) with the uniform distribution. %

θ ′
i = ω ∗ θi + rand ∗ (θteacher − G ∗ θmean)

if F(d, N , θ ′
i ) < F(d, N , θi ) then θi = θ ′

i

Step 7: Update each student’s grade θi (i = 1, 2, . . . , Num) via the students’ learning process
among each others:

Randomly select the j th ( j �= i) student,

if F(d, N , θ j ) < F(d, N , θi ) then θi = θi + rand ∗ (θ j − θi )

else θi = θi + rand ∗ (θi − θ j )

endif

Step 8: For the current iteration, select the best fitness Fgbest and the best grade θgbest :

F ′ = min
i∈{1,...,Num}F(d, N , θi )

if F ′ < Fbest then Fgbest = F ′, θgbest = argmin
i∈{1,...,Num}

F(d, N , θi )

else Fgbest = F ′, θgbest = argmin
i∈{1,...,Num}

F(d, N , θi )

endif

Step 9: Check the number of iterations:

if i ter < itermax then i ter = i ter + 1, go to Step 4
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Table 1 continued

Step 10: Update the current optimal combination (d∗, N∗, θ∗):

if Fgbest < F∗ then F∗ = Fgbest , (d∗, N∗, θ∗) = (d, N , θgbest )

Step 11: Check the number of VMs in Pool II:

if d < X then d = d + 1, go to Step 3

Step 12: Check the value for the wake-up threshold:

if N < X then N = N + 1, go to Step 3

Step 13: Output the optimal combination (d∗, N∗, θ∗).

The optimization of the proposed strategy turns to minimize the system cost function and
obtaining the optimal combination (d∗, N∗, θ∗). That is as follows:

(d∗, N∗, θ∗) = argmin F(d, N , θ). (16)

For a synchronous sleep-mode, in order tomake sure that all the taskswaiting in the system
buffer can be processed immediately once all the sleepingVMswake up, themaximumwake-
up threshold N is set as the number of the sleeping VMs. Obviously, the maximum wake-up
threshold N in an asynchronous sleep-mode should not be higher than that in a synchronous
sleep-mode. In the clustered VM allocation strategy based on an asynchronous sleep-mode
proposed in this paper, we set the maximum wake-up threshold N as the number d of the
VMs in Pool II. Therefore, when solving the optimization problem in Eq. (16), the value
range for the wake-up threshold N is [1, d].

We note that it is difficult to express a system cost function in a closed-form, and also it is
difficult to determine themonotonicity of the system cost function.Moreover, we note that the
system cost function is not differentiable and there are possible more than one extreme point
in the system cost function. In a result, the optimum point of the system cost function can not
be searched by using classical numerical methods. In order to jointly optimize the number of
VMs in Pool II, the wake-up threshold and the sleeping parameter with the minimum system
cost function, we turn to an intelligent optimization algorithm, TLBO algorithm.

TLBO is one of the most efficient algorithms for providing good quality solutions in a
reasonable computation time (Buddala and Mahapatra 2018). However, there are still some
drawbacks with the TLBO algorithm, such as low population diversity and poor searching
ability (Wang et al. 2018; Liu et al. 2018). For the purpose of improving the TLBO algorithm,
we introduce a cube chaoticmappingmechanism to disperse the initial grades of students, and
use an exponentially decreasing strategy for the teaching process to enhance the searching
ability of the algorithm. The main steps for the improved TLBO algorithm are given in
Table 1.

For the given system parameters, such as the total number (c+ d) of VMs in a cloud data
center, the arrival rate λ and the service rateμ1 of a task on the VM in Pool I, etc., the optimal
combination (d∗, N∗, θ∗) for the number of VMs in Pool II, the wake-up threshold and the
sleeping parameter can be obtained with the proposed strategy by performing the improved
TLBO algorithm in Table 1.

Using the system parameters given in Sect. 5, and setting Num = 100, itermax = 200,
ωmax = 0.8, ωmin = 0.1, θmax = 2, X = 50, fw = 4 and fe = 1 as an example, we execute
the improved TLBO algorithm given in Table 1. With a different service rates μ2 of a task on
the VM in Pool II, we obtain the optimal combination (d∗, N∗, θ∗) for the number of VMs
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Table 2 Optimization outcomes:
(d∗, N∗, θ∗) and F∗ Service rate μ2 of

a task on the VM
in Pool II

Optimal combina-
tion (d∗, N∗, θ∗)

Minimum system
cost F∗

0.05 (9, 2, 0.0001) 17.2012

0.10 (10, 10, 0.0403) 17.1864

0.15 (11, 4, 0.0945) 17.0491

0.20 (49, 2, 0.2846) 16.1823

in Pool II, the wake-up threshold and the sleeping parameter with the minimum system cost
function F∗ in Table 2.

The cloud capacity, the arrival intensity of tasks and the serving capability of VMs greatly
influence the optimal outcomes in Table 2.With the optimization outcomes shown in Table 2,
we can trade off the average latency of tasks and the energy saving rate of the system in the
proposed strategy.

7 Conclusions

In this paper, we proposed a clustered VM allocation strategy with a novel sleep mode.
Considering the sleep-modewithwake-up threshold in the proposed strategy,we established a
queuewith an N -policy and asynchronous vacations of partial servers. Based on the stochastic
behavior of tasks with the proposed strategy, we built the QBD matrix and resolved the
steady-state transition probabilities using the matrix-geometric solution method. Moreover,
we evaluated the system performance in terms of the average latency of tasks and the energy
saving rate of the system. Numerical results with analysis and simulation show that the
average latency of tasks is lower with a smaller number of the VMs in Pool II, a smaller value
for the wake-up threshold and a larger sleeping parameter, while the energy saving rate of the
system is higher with a moderate number of VMs in Pool II, a larger value for the wake-up
threshold and a smaller sleeping parameter. For this, we constructed a system cost function to
balance different performance measures. By introducing a cube chaotic mapping mechanism
for the grade initialization and an exponentially decreasing strategy for the teaching process,
we developed an improved TLBO algorithm, and optimized the proposed strategy with the
minimum system cost function.
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