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Abstract
Recent advances in pension product development seem to favour alternatives to the risk free
asset often used in the financial theory as a performance standard for measuring the value
generated by an investment or a reference point for determining the value of a financial instru-
ment. To this end, in this paper, we apply the simplest machine learning technique, namely,
a fully nonparametric smoother with the covariates and the smoothing parameter chosen by
cross-validation to forecast stock returns in excess of different benchmarks, including the
short-term interest rate, long-term interest rate, earnings-by-price ratio, and the inflation. We
find that, net-of-inflation, the combined earnings-by-price and long-short rate spread form
our best-performing two-dimensional set of predictors for future annual stock returns. This
is a crucial conclusion for actuarial applications that aim to provide real-income forecasts
for pensioners.

Keywords Benchmark · Cross-validation · Prediction · Stock returns

1 Introduction

One of the key messages of Merton (2014) is that pension forecasts must be in real terms.
Perhaps, the simplest way of accommodating this challenge is to change the benchmark,
i.e., the monetary unit everything is measured in terms of, to inflation rather than the risk
free interest rate often used. In three recent pension product development papers from the
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sponsored project by the Institute and Faculty ofActuaries (IFoA) “Minimizing longevity and
investment risk while optimizing future pension plans”, Donnelly et al. (2018) and Gerrard
et al. (2018, 2019) suggest changing the classical benchmark, i.e., the risk free asset, to
inflation.

The previous contributions did not consider the econometric challenges of using different
benchmarks. The purpose of the current research is to make the first few investigations on
suitable benchmark selection from an econometric perspective. We achieve this by machine
learning based on the cross-validated time series approach of Nielsen and Sperlich (2003) ,
Scholz et al. (2015) and Scholz et al. (2016) to optimize the fully nonparametric statistical
estimation and forecasting of the risky asset returns in excess of four different benchmarks:
the risk free rate, the long-term interest rate, the earnings-by-price ratio, and the inflation. Our
method lets the data speak in themselves via training and learning, while being intuitively
informative so that we can identify the covariates driving the system.We base our procedures
on practitioners’ knowledge and the use of analytically studied, i.e., sound and rigorous,
statistical tools insinuating that we are operating in a glass house, not in a black box!

The paper benefits by a theoretical contribution, that is, a study of the convergence proper-
ties of the local-linear smoother we use to solve the regression problem, but also an important
empirical contribution that follows from the application. In particular, we assess the perfor-
mance of the different benchmarks in terms of forecasting next year’s excess returns given
prominent covariates from the literature, such as dividend-by-price ratio, earnings-by-price
ratio, short interest rate, long interest rate, the term spread, the inflation, as well as this year’s
lagged excess stock return. We apply single benchmarking, where only the stock returns are
adjusted according to the benchmark, or full benchmarking with additionally transformed
covariates using the same benchmark. In summary, our investigations show that the latter
approach uncovers the predictability of earnings which, when combined with the long-short
spread, in real terms result in optimal forecasts with a predictive power of at least 18%. This
is important for long-term saving strategies, where one is interested in real value, corrobo-
rating the change of the classical risk free asset benchmark to inflation, as suggested in the
abovementioned researches.

The remaining of this paper is organized as follows. In Sect. 2, we provide our definition
of machine learning and adapt to our context of long-term stock return prediction. In Sect. 3,
we present our underlying financial model, the adopted local-linear smoother and its theo-
retical properties. In Sect. 4, we present our validation criterion for the model selection. We
then provide in Sect. 5 a description of our dataset and exhibit our empirical findings from
different validated scenarios: we study in Sect. 5.2 a single benchmarking approach with the
dependent variable measured on the original nominal scale and extend in Sect. 5.3 to the
case of both the independent and dependent variables adjusted according to the benchmark
(full benchmarking approach). In Sect. 6, we back-transform the benchmarked prediction
models for excess returns and explore the predictability of the actual stock returns. Section 7
concludes the paper.

2 Machine learning and prediction of long-term stock returns

We define machine learning as a way of working that involves the following key processes.
First, the problem, the audience and the potential client must be articulated. Second, machine
learners must have domain knowledge. This is what distinguishes them from applied statisti-
cians. Machine learners not only know the data very well, but also have a good understanding
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of the area of the problem and well-developed experience within it, therefore they are in a
position to ask for extra data or even, perhaps, manipulate them. Third, new techniques must
be qualified against earlier ones via validation, which should normally be the final selec-
tion criterion. Finally, prior knowledge has to be channeled to the statistical model used for
validation, which then has to be conducted consistently with correct underlying statistical
principles.

Our study follows the aforementioned key processes closely. More specifically, our audi-
ence is the entire community of pension savers wishing for more meaningful and better
communicated pension products. The IFoA, which is the biggest actuarial organization with
33,000 members globally, is our client and sponsor of the work. Our knowledge of how to
conduct machine learning on yearly stock data derives from more than 20 years of practical
and academic work in the area of pensions. We adhere to the principle of outcome selection
via validation; this is our only criterion, besides common sense, when selecting our preferred
models for forecasting stock returns under different benchmarks, than just the short interest
rate, deriving from our knowledge of the pension industry and pension research. In fact, the
inflation benchmark might fit better in what our audience and client look for as the goal of
investing is to increase wealth, or purchasing power. In addition, investors aim to anticipate
the factors that impact portfolio performance andmake decisions based on their expectations;
inflation is one of those factors that affects a portfolio. However, inflation’s varying impact
on stocks confuses the decision to trade positions already held or to take new positions and,
thus, taking out inflation might give a clearer picture.

In this paper, we apply the simplest machine learning technique, namely, a fully nonpara-
metric smoother with the covariates and the smoothing parameter chosen by cross-validation.
Our approach lets the data speak in themselves via training and learning, while being intu-
itively informative so that we can identify the covariates driving the system.

3 The underlying financial model

In this section, we focus on nonlinear relationships between stock returns in excess of a
reference rate or benchmark, Y , and a set of explanatory variables, X . We aim to look into
different benchmark models and their predictability.

We consider a battery of benchmarks including the short-term interest rate, the long-term
interest rate, the earnings-by-price ratio, and the inflation. More specifically, we investigate
stock returns St = (Pt + Dt )/Pt−1 , where Dt denotes the (nominal) dividends paid during
year t and Pt the (nominal) stock price at the end of year t , in excess (log-scale) of a given
benchmark B(A)

t−1:

Y (A)
t = ln

St

B(A)
t−1

,

where A ∈ {R, L, E,C} with, respectively,

B(R)
t = 1 + Rt

100
, B(L)

t = 1 + Lt

100
, B(E)

t = 1 + Et

Pt
, B(C)

t = CP It
C P It−1

,

Rt is the short-term interest rate, Lt the long-term interest rate, Et the earnings accruing to the
index in year t , and CP It the consumer price index for year t . The predictive nonparametric
regression model is

Y (A)
t = m(Xt−1) + ξt , (1)
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where
m(x) = E(Y (A)|X = x), x ∈ R

q , (2)

is an unknown smooth function and ξt is a martingale difference process, i.e., serially
uncorrelated zero-mean random error terms, given the past, of an unknown conditionally
heteroscedastic form σ(x).

Our aim is to forecast the excess stock returns Y (A)
t using popular lagged predictive

variables Xt−1 including the: (i) dividend-by-price ratio dt−1 = Dt−1/Pt−1; (ii) earnings-
by-price ratio et−1 = Et−1/Pt−1; (iii) short-term interest rate rt−1 = Rt−1/100 ; (iv)
long-term interest rate lt−1 = Lt−1/100; (v) inflationπt−1 = (CP It−1−CP It−2)/CP It−2;
(vi) term spread st−1 = lt−1 − rt−1; and (vii) excess stock return Y (A)

t−1. Other popular
explanatory variables could be the consumption, wealth, income ratio or the book-to-market
ratio, which have been used in predictive regressions, as, for example, in Welch and Goyal
(2008) . Currently, we consider only the aforementioned variables due to data restrictions
(see Sect. 5.1).

In the next section, we address the regression problem of estimating the conditional mean
function (2). We present consistency results and asymptotic normality for the local-linear
(LL) smoother which we then implement in Sect. 5.

3.1 The local-linear smoother

Consider a sample of real random variables {(Xt , Yt ), t = 1, . . . , n} which are strictly sta-
tionary and weakly dependent. To measure the strength of dependence in the time series, we
limit ourselves to the strong- or α-mixing1 defined, for example, in Doukhan (1994) , where

ατ = sup
t∈N

sup
A∈F∞

t+τ ,B∈F t−∞
|P(A ∩ B) − P(A)P(B)| ,

F j
i denotes the σ -algebra generated by {Xk, i ≤ k ≤ j}. In addition, ατ approaches zero as

τ → ∞. Note that weakly dependent data rule out, for example, processes with long-range
dependence and nonstationary processeswith unit-roots.We further assume that the sequence
{(Xt , Yt ), t = 1, . . . , n} is algebraic α-mixing, i.e., α = O(τ−(1+ε)) for some ε > 0.

Consider now the prediction problem (1)–(2). A common estimator for m(x) is the
Nadaraya–Watson (NW) estimator (local-constant kernel method) given by

m̂NW (x) = p̂(x)

f̂ (x)
, (3)

where the probability density function of Xt , f (x), is estimated for a given fixed value of
x = (x1, . . . , xq)′ ∈ R

q by

f̂ (x) = 1

n

n∑

t=1

Kh(Xt − x)

and

p̂(x) = 1

n

n∑

t=1

Yt Kh(Xt − x).

1 First proofs of consistency and asymptotic normality for nonparametric regression were introduced in the
statistical literature in a seminal paper on kernel estimation with strong mixing data by Robinson (1983) .
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Kh denotes some kernel function, for example, the product kernel

Kh(Xt − x) =
q∏

s=1

1

hs
k

(
Xts − xs

hs

)
,

which depends on a set of bandwidths (h1, . . . , hq) and higher-order kernels k (the order
ν > 0 of the kernel is defined as the order of the first nonzero moment), i.e., univariate
symmetric functions satisfying

∫
k(u)du = 1,

∫
ulk(u)du = 0 (l = 1, . . . , ν − 1), and∫

uνk(u)du =: κν > 0. Xts denotes the sth component of Xt (s = 1, . . . , q).
Under the standard assumptions of serial dependence with a required rate α as stated

above, bounded density f (x), controlled tail behaviour of conditional expectations, hs → 0
(s = 1, . . . , q) and nHq = nh1 . . . hq → ∞ as n → ∞, Li and Racine (2007) , for example,
show the following result of pointwise convergence.

Theorem 1 Under the given assumptions,

∣∣m̂NW (x) − m(x)
∣∣ = Op

( q∑

s=1

h2s + 1√
nHq

)
.

Several generalizations of Theorem 1 have been proposed in the literature. For exam-
ple, Hansen (2006) proves the uniform and almost sure convergence of the NW estimator,
while Scholz et al. (2016) show the quasi-complete convergence of the estimator in the
case of generated regressors and weakly dependent data. Li and Racine (2007) further
show the asymptotic normality of the estimator by calculating the bias term Bs(x) =
κ2
2 ( f (x)mss(x) + 2 fs(x)ms(x)) / f (x), where subscripts s and ss denote, respectively, first
and second order derivatives, and κ2 = ∫

u2k(u)du.

Theorem 2 Under the given assumptions,

√
nHq

(
m̂NW (x) − m(x) −

q∑

s=1

h2s Bs(x)

)
d→ N

(
0,

κqσ 2(x)

f (x)

)
,

where κ = ∫
k2(u)du.

The extension to the LL estimator m̂LL(x) is almost straightforward. For notational con-
venience, we focus on the case q = 1. Then, upon defining

s j (x) =
n∑

t=1

Kh(Xt − x)(Xt − x) j ,

t j (x) =
n∑

t=1

Yt Kh(Xt − x)(Xt − x) j

for j = 0, 1, 2, we get

m̂LL (x) := t0(x)s2(x) − t1(x)s1(x)

s0(x)s2(x) − s21 (x)
=

∑n
t=1 YtCh(Xt − x)∑n
t=1 Ch(Xt − x)

(4)

with the kernel function

Ch(Xt − x) = 1

nh

∑

s �=t

Kh(Xt − x)(Xs − Xt )Kh(Xs − x)(Xs − x)
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representing a discretized version of C(u) := ∫
K (u)(v − u)K (v)vdv. Note that (4) is of

the same form as (3) and that the kernel C has similar properties to K . Applying Theorem 1
yields the pointwise convergence result for the LL estimator.

Theorem 3 Under the given assumptions,

∣∣m̂LL(x) − m(x)
∣∣ = Op

(
h2 + 1√

nh

)
.

For amultivariate extension and asymptotic normality, refer, for example, toMasry (1996).
Asmany time series exhibit a nonstationary behaviour, the focus of the statistical literature

is broadened in recent years to the so-called locally stationary processes (Dahlhaus 1997).
Processes are locally stationary whenever it is possible to approximate the behaviour of the
process over short periods of time in a stationary way. For example, Vogt (2012) studies
nonparametric models allowing for locally stationary regressors and a regression function
that changes over time. He develops asymptotic theory for the NW estimator which has
rescaled time as one covariate. Vogt (2012) states that his convergence result is not valid in a
forecasting context. However, Cheng et al. (2018) provide predictive models and estimation
theory for the local-constant case and locally stationary regressors. They apply their methods
to monthly stock market data and find improved predictability of their models compared to
traditional linear predictive regressionmodels.Wedonot apply a similar strategy to our annual
data because i) using an additional regressor for rescaled time increases the dimensionality
of our problem and it is not clear whether this is beneficial in our scarce data environment
(curse of dimensionality); ii) most of our regressors do not seem to be highly persistent on
an annual basis.

4 The principle of validation: model selection and the choice of
smoothing parameter

As we use a nonparametric technique, we require an adequate measure of predictive power.
Classical in-sample measures, such as the R2 or adjusted R2, are not appropriate. For exam-
ple, R2 favours the most complex model and is often inconsistent (see Valkanov 2003),
whereas standard penalization for complexity via a degree-of-freedom adjustment becomes
meaningless in nonparametrics as it is unclear what the degrees of freedom are in this setting.
Moreover, in prediction, we are not interested in how well a model explains the variation
inside the sample but, instead, in its out-of-sample performance; hence, we aim to estimate
the prediction error directly.

For the purpose of model as well as bandwidth selection, we use a generalized version of
the validated R2, the R2

V , introduced by Nielsen and Sperlich (2003) based on a leave-k-out
cross-validation. This method of finding the smoothing parameter has shown to be suitable
also in a time series context. Our validation criterion is defined as

R2
V = 1 −

∑
t (Y

(A)
t − m̂−t )

2

∑
t (Y

(A)
t − Ȳ (A)

−t )2
, (5)

where leave-k-out estimators are used: m̂−t for the nonparametric functionm and Ȳ (A)
−t for the

unconditional mean of Y (A). Both are computed by removing k observations around the t th
time point. Here, we use k = 1, that is, the classical leave-one-out estimator. Nevertheless,
it is well-known that cross-validation often requires omitting more than one data point and,
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possibly, additional correction when the omitted fraction of data is considerable (see, for
example, Burman et al. 1994).

R2
V measures the predictive power of a given model compared to the cross-validated his-

torical mean; positive R2
V implies that the predictor-based regression model (1) outperforms

the historical average excess stock return, however this can also take a negative value in the
opposite case (sum of squared differences in the denominator larger than in the numerator).
Moreover, cross-validation not only punishes instances of overfitting, but also allows finding
the optimal (predictive) bandwidth for non- and semi-parametric estimators (see Györfi et al.
1990); more recently, Bandi et al. (2016) have also studied optimality of the cross-validated
bandwidth under stationary or nonstationary behaviour. Hence, in general, R2

V can be used
for both model selection and optimal bandwidth choice.

5 Predicting excess returns based on different benchmarks

5.1 Data

In this paper, we take the long-term actuarial view and base our predictions on annual US data
provided by Robert Shiller. This dataset, which is made available from http://www.econ.yale.
edu/~shiller/data.htm, includes, among other variables, long-term changes of the Standard
and Poor’s (S&P) Composite Stock Price Index, bond price changes, consumer price index
changes, and interest rate data from 1872 to 2015. This is an updated and revised version
of Shiller (1989 , Chapter 26), which provides a detailed description of the data. Various
long-term studies use the same dataset, such as Chen et al. (2012) , Elliott et al. (2013) and
Favero et al. (2011) .

Including structural changes in the modelling process is important, hence the length of
this period allows for this. For example, Harvey et al. (2018) investigate the stability of
predictive regressionmodels and develop a real-timemonitoring procedure for the emergence
of predictive regimes. Rapach andWohar (2004) find significant evidence of structural breaks
in seven out of eight predictive regressions of S&P 500 returns, and three out of eight in CRSP
(Center for Research in Security Prices) equal-weighted returns. Pesaran and Timmermann
(2002) find that a linear predictive model that incorporates structural breaks improves the
out-of-sample statistical forecasting power.

Clearly, there are not many historical years in our records and data sparsity is an important
issue in our approach. It could be argued that using monthly, weekly, or even daily data to
the extent these are available would be preferred. However, it cannot be overlooked that
prediction can be very different for yearly, monthly, weekly and daily data and that a good
model for monthly data might not be for yearly data, and vice versa. We take the long-term
view using yearly data and predict at a one-year horizon as we are interested in actuarial
models of long-term savings and potential econometric improvements of such models (see,
for example, Guillén et al. 2013a, b; Owadally et al. 2013; Bikker et al. 2012; Guillén et al.
2014 , or Gerrard et al. 2014). For this, the methodology we adopt for validating our sparse
long-term yearly data originates from the actuarial literature (see Nielsen and Sperlich 2003).

5.2 Single benchmarking approach

In this section, we consider a single benchmarking approach where only the dependent
variable is adjusted according to some benchmark, as shown in (1), while the independent

123

http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm


228 Annals of Operations Research (2021) 297:221–240

Table 1 Predictive power for dependent variable Y (A)
t : the single benchmarking approach

Benchmark B(A) Explanatory variable(s) Xt−1

Y (A) d e r l π s

Short-term rate −1.5 −1.0 −0.3 4.0 −0.1 −1.4 13.2

Long-term rate −1.8 −0.7 0.0 2.1 −0.1 −1.4 8.8

Earnings-by-price −1.7 −1.4 −1.5 −0.1 −0.9 −1.2 8.7

Inflation −1.3 −0.2 −1.5 1.1 −0.8 10.5 9.9

(Y (A), d) (Y (A), e) (Y (A), r) (Y (A), l) (Y (A), π) (Y (A), s)

Short-term rate −2.3 −2.0 1.9 −2.3 −2.8 9.0

Long-term rate −2.2 −1.8 0.0 −2.5 −3.0 4.4

Earnings-by-price −3.5 −3.7 −2.0 −2.8 −2.8 5.1

Inflation −1.2 −3.2 −0.6 −2.5 10.2 6.9

(d, e) (d, r) (d, l) (d, π) (d, s)

Short-term rate −2.7 3.0 −1.7 −2.4 12.0

Long-term rate −2.3 1.4 −1.4 −2.2 7.6

Earnings-by-price −3.8 −1.6 −2.3 −2.6 6.6

Inflation −2.0 0.9 −1.2 9.7 9.7

(e, r) (e, l) (e, π) (e, s)

Short-term rate 5.4 −0.8 −1.1 13.0

Long-term rate 3.7 −0.3 −0.7 8.6

Earnings-by-price −1.5 −2.4 −2.7 6.4

Inflation 0.0 −2.5 11.5 8.1

(r , l) (r , π) (r , s)

Short-term rate 10.4 2.5 12.2

Long-term rate 5.9 0.5 7.8

Earnings-by-price 6.6 −1.6 8.2

Inflation 6.6 9.7 8.8

(l, π) (l, s)

Short-term rate −2.0 12.5

Long-term rate −2.1 8.1

Earnings-by-price −1.9 8.1

Inflation 10.1 9.3

(π, s)

Short-term rate 10.3

Long-term rate 5.8

Earnings-by-price 5.7

Inflation 16.1

The prediction problem is defined in (1). The predictive power (%) is measured by R2
V as defined in (5).

The benchmarks B(A) considered are based on the short-term interest rate (A ≡ R ), long-term interest rate
(A ≡ L), earnings-by-price ratio (A ≡ E), and consumer price index (A ≡ C). The predictive variables used
are Xt−1, given by the dividend-by-price ratio dt−1, earnings-by-price ratio et−1, short-term interest rate

rt−1, long-term interest rate lt−1, inflation πt−1, term spread st−1, excess stock return Y (A)
t−1, or the possible

different pairwise combinations as indicated
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variable(s) is (are) measured on the original nominal scale. The model (1) is estimated with
a local-linear kernel smoother using the quartic kernel and the optimal bandwidth is chosen
by cross-validation, i.e., by maximizing the R2

V given by (5). Moreover, it should be kept in
mind that the nonparametric method can estimate linear functions without any bias, given
that we apply a local-linear smoother. Thus, the linear model is automatically embedded in
our approach.

We study the empirical findings of R2
V values based on different validated scenarios shown

inTable 1.Overall, we find that the term spread s is in itself themost important predictor under
the different benchmarks. This remains quite the case also when combining with additional
information. Inflation is another predictor that performs well when used concurrently as a
benchmark. Hence, these are aspects where we focus our spotlight on in our discussion.

More specifically, if we constrain prediction to using only one-dimensional covariates,
then the term spread s is the best predictor under the short interest benchmark B(R) with
R2
V = 13.2%, but also does quite well under the inflation benchmark B(C) with R2

V = 9.9%.

Imposing an additional covariate to s has, in general, a decreasing effect on R2
V however

not substantial. Under B(R), R2
V remains in the majority of the combinations within the

range 12.0–13.2%. Under other benchmarks such as, for example, B(L), s yields R2
V in the

range 7.6–8.8%; under B(E), R2
V lies in the range 6.4–8.7%. The two-dimensional covariates

(Y (R), s), (Y (L), s) and (Y (E), s) result in lower predictive power than the previous ranges
under B(R), B(L) and B(E) with, respectively, R2

V values 9%, 4.4% and 5.1%; while still
below the best-performing ranges, (π, s) is found slightly better under B(R), B(L) and B(E)

with, respectively, R2
V values 10.3%, 5.8% and 5.7% . It is worth noting that the occasional

reduction in predictive power in the two-dimensional compared to the one-dimensional case
is not particularly surprising as we use a fully nonparametric smoother that requires more
observations than a linear regression to produce consistent estimates when fitting higher-
dimensional models. Therefore, our cross-validated R2

V might rank one-dimensional better
than two-dimensional models. (Note that this is not the case for a linear model estimated with
OLS based on the usual R2 measure which would always choose the most complex model.)

Remarkable is the case of the predictor π , either in itself or combined with covariates
Y (C), d, e, r , l, under the inflation benchmark B(C) leading to R2

V in the range 9.7–11.5%.
In addition, when put together with the term spread, the resulting combination (π, s) under
B(C) is the clear winner reaching up to R2

V = 16.1%. Given that the inflation benchmark
might be the most important one for many pension product applications, this high predictive
power is appealing. Under the B(R), B(L) and B(E) benchmarks, the performance of covariate
π deteriorates and, in fact, the historical average excess return in these cases surpasses the
predictor-based regression model, as implied by negative R2

V , unless it is combined with
covariate r or s.

Finally, other covariates in themselves or combined also lead to negative R2
V values; such

predictor examples include Y , d, e, l and their pairwise combinations under any benchmark.
On the contrary, the short-term rate r individually or combined with other covariates boosts,
with a few exceptions, the predictive power of our nonparametric regression model.

5.3 Full benchmarking approach

The second step now is to analyze whether an adequate transformation of the explanatory
variables can further improve predictions. Recall that fully nonparametric models suffer in
several aspects by the curse of dimensionality, in particular, as in our framework, where
we confront sparsely distributed annual observations in higher dimensions. In statistics, it
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is well-known that importing more structure in the estimation process can help reduce or
circumvent such problems. For example, Nielsen and Sperlich (2003) investigate an additive
functional structure in the context of predictability of excess stock returns (as proposed in
the statistical literature by Stone 1985). Their results indicate a more complex structure
than additivity, as the fully nonparametric models always do better in terms of validated R2

than the additive counterparts. Scholz et al. (2015) propose a semiparametric bias reduction
method for the purpose of importing more structure based on a multiplicative correction with
a parametric pilot estimate. Alternatively, Scholz et al. (2016) make use of economic theory
saying that the price of a stock is driven by fundamentals and investors should focus on
forward earnings and profitability. They include information on the same years’—instead of
last years’—explanatories and improve predictions.

Here, we propose an extension of the study in Sect. 5.2 using economic structure by
adjusting both the independent and dependent variables according to the same benchmark.
For example, in the full benchmarking approach with an inflation benchmark, both excess
returns and covariates are expressed in terms of inflation; in pension research it is sensible to
employ such a model with all returns and covariates net-of-inflation. This, in turn, provides
a simple scaling when working on long-term forecasts in real terms.

In general, in our full benchmarking approach, the prediction problem is reformulated as

Y (A)
t = m(X (A)

t−1) + ξt , (6)

where we use transformed predictive variables

X (A)
t−1 =

⎧
⎪⎪⎨

⎪⎪⎩

1+Xt−1

B(A)
t−1

st−1

B(A)
t−1

= lt−1−rt−1

B(A)
t−1

,

Y (A)
t−1

(7)

where X ∈ {d, e, r , l, π} and A ∈ {R, L, E,C}. This model can be interpreted as a way
of reducing dimensionality of the estimation procedure as X (A)

t−1 encompasses an additional
predictive variable.

Results of this empirical study are presented in Table 2. We find that, in the majority of the
cases, the full outruns the single benchmarking approach presented in Table 1 in terms of R2

V .
In addition, by full benchmarking, several cases of inability of the predictor-based regression
model to beat the historical average excess return are now surmounted with R2

V becoming
positive. The term spread s retains its superior predictability with perceptible improvement
brought in two-dimensional settings when paired with the dividend-by-price ratio d , the
earnings-by-price ratio e, the short rate r , or the long rate l under the B(C) benchmark, reaching
up to a notable R2

V = 18.7% when using specifically predictors (e(C), s(C)). Otherwise, as
in the single benchmarking approach, we experience some decrease in predictability when
adding covariates to s, with (Y (R), s(R)), (Y (L), s(L)) and (Y (E), s(E)), although resulting in
positive R2

V , still performing worse under B(R), B(L) and B(E).
A fewmore interesting comments relating to benchmarks B(R), B(L) and B(E) are in order.

We find that under B(R) and B(L) the predictive power of, respectively, l(R) and r (L), either
in themselves or when combined with a common covariate such as Y , d, e, π , 2 improves

2 For clarity, it is worth mentioning that s(R) and l(R) (and their combinations with Y , d, e, π ) have,
respectively, the same R2

V by construction of the transformed spread according to (7). For example,

s(R)
t−1 = (lt−1 − rt−1)/B

(R)
t−1 = (1 + lt−1)/(1 + rt−1) − 1 and l(R)

t−1 = (1 + lt−1)/(1 + rt−1), i.e., a

constant difference of 1 that does not affect the R2
V value. Similar is the case of s(L) and r (L).
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considerably from the single benchmarking approach: for example, changing from predictor
l under B(R) to l(R) increases R2

V from −0.1% to 13.2% or from predictor r under B(L)

to r (L) increases R2
V from 2.1% to 8.9%. Nevertheless, the highest predictability power for

these benchmarks is close to that from the single approach originating from s under B(R)

and B(L); similar remark applies in the B(E) benchmark where s(E) is the best predictor
achieving at most the same level of predictability as s under B(E) in the single approach.

We turn now attention to B(C). Here, remarkable in the full approach is the contribution of
the earnings-by-price ratio e(C) whose predictability, contrary to that of e under B(C) in the
single approach, is now put on show. We find that e(C), (Y (C), e(C)), (e(C), s(C)) result in R2

V
of 13.3%, 12.3% and 18.7% against maximum R2

V of 10.5% (π), 10.2% (Y (C), π) and 11.5%
(e, π) from corresponding rows (benchmark B(C)) of Table 1; so there is at least onematching
covariate. Notable contributions from other covariates are those of (d(C), s(C)), (r (C), s(C))

and (l(C), s(C))with R2
V of 16.2%, 16.9% and 16.7% against maximum R2

V of 9.7% (d, s) or
(d, π), 9.7% (r , π) and 10.1% (l, π) from corresponding rows (benchmark B(C)) of Table 1.
Overall, using earnings-by-price as an individual predictor and two-dimensional predictors
that include the term spread capture the best predictive performances; the winning pair is
earnings-by-price ratio and term spread.

5.4 Synopsis and further discussion

In summary, our study indicates that with single benchmarking, the spread in nominal terms
has a significantly higher predictability than the earnings-by-price or even the earnings-by-
price together with the spread. With full benchmarking though, net-of-inflation, i.e., in real
terms, the earnings-by-price beats the spread, with their combination performing best. This
is an important observation as benchmarking fits well in building models net-of-inflation, as
discussed in Donnelly et al. (2018) and Gerrard et al. (2018, 2019), while at the same time
expanding to double benchmarking endows earnings with predictive power. This is a crucial
implication for pension research or other long-term saving strategies, where one should look
at real value and implement double benchmarking including both spread and earnings.

In addition, as part of their comprehensive analysis of a long literature including arti-
cles based on different techniques, variables, and time periods, and sometimes contradicting
results, Welch and Goyal (2008) find that predictive linear regressions using prominent vari-
ables, including our choices, do result in poor predictability, in-sample and out-of-sample.
Nevertheless, following their recommendation, we explore the possibility of an alternative
model approach, here, a simple nonparametric regression model and different benchmarks.
Contrary to them, our method with double benchmarking leads, as highlighted earlier, to
favourable predictive results implying that nonlinear and/or nonparametric models are nec-
essary to represent the complicated relationship between earnings, prices, the yield curve and
the stock returns.

6 Prediction of back-transformed returns

Hitherto in this paper we have focused on predicting the benchmarked excess return. In this
last section, aiming to make our R2

V reports comparable across the different benchmarks, we
back-transform the single and full benchmarked predictionmodels to predict now the original
stock returns ln S and report the corresponding predictive performances. Whilst this is an
important exercise, it does not subdue prediction based on benchmarks as each benchmark
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has its own merit (as we have already discussed, for example, the short-term interest rate
for classical market-timing strategies or the inflation benchmark for wealth and purchasing
power issues of long-term investments); with a back-transform we lose this focus.

Keeping these points in mind, we proceed with a comparability exercise. To this end, from
the stock returns in excess of general benchmark A, Y (A)

t = ln St − ln B(A)
t−1, we directly get

l̂n St = Ŷ (A)
t + ln B(A)

t−1,

where Ŷ is the predicted benchmarked excess return, and thereby redefine our original vali-
dation criterion (5) as

R2
V = 1 −

∑
t

(
ln St − (

l̂n S
)
−t

)2

∑
t

(
ln St − (

ln S
)
−t

)2 ,

where
(
l̂n S

)
−t is the back-transformed stock return prediction from the original leave-one-

out benchmarked return prediction and
(
ln S

)
−t the unconditional mean of ln S. This allows

us to validate in terms of R2
V with the observed ln St . The numbers originating from the single

and full benchmarking approaches are summarized respectively in Tables 3 and 4.
More specifically, we find that the term spread s remains the single most important pre-

dictor under the benchmarks B(R), B(L) and B(E) with a maximum R2
V of 10.5%, while,

consistently with Kothari et al. (2006) who state that lagged earnings exhibit no predictive
power for future annual returns, earnings-by-price e have mostly negative R2

V . However, by
referring to Tables 1 and 3, we see that it becomes generally hard to predict the inflation
benchmark, i.e., inflation losses somehow its good performance; the only combination of
predictors that results in a positive R2

V of 4.5% in this case is inflation together with the term
spread (π, s). This might be attributed to the persistence of inflation in later years of the
time series, i.e., the large R2

V values in Table 1 for the benchmark B(C) are based on a well-
predicted inflation component of the transformed dependent variable. On the other hand, the
predictive power of the benchmark B(E) in Table 3 increases notably, indeed giving the largest
R2
V of 10.5%. The benchmark B(L) seems to be invariant under the back-transformation, i.e.,

the R2
V values are mostly the same as in Table 1, whilst the benchmark B(R) gives generally

smaller R2
V values than in Table 1 and seems to be performing more poorly than B(L).

Focusing now on full benchmarking’s results in Table 4, we find that in many cases
the predictive power increases, however the overall best R2

V remains 10.5% for the same
model as in the single benchmarking approach in Table 3. Again, the benchmark B(L) gives
similar numbers to the original full benchmarking in Table 2, B(R) is slightly worse, and
B(E) performs best. The inflation benchmark B(C) performs much better than in single
benchmarking (Table 3), especially for the predictor variable combination of earnings-by-
price and term spread (e(C), s(C)) with R2

V = 7.5%. The term spread is consistently the best
predictor.

Two comments are in order. First, the superior performance of the earnings-by-price ratio,
i.e., the earnings yield, is not surprising as this is more of a return metric about how much
an investment can earn back for investors. It can offer a direct look into the level of return
the stocks may generate, for which investors are always worried/optimistic. In addition, the
term spread quite expectedly appears to be the best predictor as it traditionally gives good
signals of recession, or just poor returns, or occasionally good and healthy normal returns.
Evidence, for example, from Resnick and Shoesmith (2002) suggests that the value of the
yield spread holds important information about the probability of a bear stockmarket. Second,
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Table 3 Predictive power for back-transformed dependent variable ln St : the single benchmarking approach,
validated on original scale without benchmark in terms of l̂n(St )

Benchmark B(A) Explanatory variable(s) Xt−1

Y (A) d e r l π s

Short-term rate −6.8 −6.2 −5.5 −0.9 −5.2 −6.6 8.7

Long-term rate −1.9 −0.9 −0.1 2.0 −0.2 −1.6 8.7

Earnings-by-price 0.3 0.6 0.6 2.0 1.2 0.8 10.5

Inflation −15.3 −14.0 −15.5 −12.5 −14.7 −1.9 −2.5

(Y (A), d) (Y (A), e) (Y (A), r) (Y (A), l) (Y (A), π) (Y (A), s)

Short-term rate −7.6 −7.3 −3.2 −7.6 −8.1 4.3

Long-term rate −2.4 −1.9 −0.1 −2.6 −3.2 4.3

Earnings-by-price −1.5 −1.6 0.0 −0.7 −0.7 7.0

Inflation −15.2 −17.5 −14.5 −16.7 −2.2 −5.9

(d, e) (d, r) (d, l) (d, π) (d, s)

Short-term rate −8.0 −2.0 −7.0 −7.7 7.5

Long-term rate −2.5 1.2 −1.5 −2.4 7.5

Earnings-by-price −1.8 0.5 −0.3 −0.5 8.5

Inflation −16.1 −12.7 −15.2 −2.8 −2.8

(e, r) (e, l) (e, π) (e, s)

Short-term rate 0.5 −6.0 −6.3 8.5

Long-term rate 3.6 −0.4 −0.9 8.5

Earnings-by-price 0.6 −0.4 −0.7 8.3

Inflation −13.8 −16.6 −0.7 −4.6

(r , l) (r , π) (r , s)

Short-term rate 5.8 −2.6 7.6

Long-term rate 5.7 0.4 7.6

Earnings-by-price 8.5 0.5 10.0

Inflation −6.3 −2.8 −3.8

(l, π) (l, s)

Short-term rate −7.3 8.0

Long-term rate −2.2 8.0

Earnings-by-price 0.1 10.0

Inflation −2.3 −3.3

(π, s)

Short-term rate 5.7

Long-term rate 5.7

Earnings-by-price 7.6

Inflation 4.5
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the fact that from this back-transformation exercise the different benchmarks behave quite
differently when the target is ln S insinuates that the imposed structure matters, in other
words, the benchmarking has a bias-correction effect.

7 Conclusion

In this communication, we define machine learning as a working framework comprising
the following summarized key ingredients: articulation, domain knowledge, final selection
by validation, conduct of validation consistently with underlying statistical principles and
properly channeled prior knowledge. We then apply to forecasting stock returns in excess of
different benchmarks, including the inflation, long interest rate and earnings-by-price ratio
to supplement the short interest rate which is by far the most commonly used in finance.
Indeed, this paper expresses an interest in going beyond this as different benchmarks might
be important, for example, when modelling returns in real terms (inflation benchmark) or
modelling returns in excess of long-term interest rate.

We use predictors such as the dividend-by-price ratio, earnings-by-price ratio, short inter-
est rate, long interest rate, the term spread, the inflation, as well as the lagged excess stock
return.We also investigate the option of full benchmarking, meaning that, not only returns are
benchmarked, but also the covariates used to predict them. The full benchmarking approach
can also be seen as an example of a dimension reduction technique, where more information
is included in the nonparametric prediction without extra cost in the form of increasing prob-
lem dimensionality. From this analysis, we conclude that, in real terms, the combination of
earnings-by-price and long-short rate spread within our nonparametric model setting has the
best predictive outcome, which is important for long-term saving strategies.

In the last part, by back-transforming the benchmarked prediction models, we study the
predictability of the actual stock returns. In this case the inflation benchmark loses its good
performance, however this process uncovers the predictive power of the earnings-by-price
ratio benchmark, which serves as a return metric for investors, and the term spread covariate
which tends to be signalling the market cycles.
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