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Abstract
We propose two modeling approaches to solve single machine preemptive scheduling prob-
lemswith tardiness related objectives. Employing the conventional time-indexed formulation,
we first build a model that explicitly identifies completion times of jobs with varying release
times, due dates, and processing times. The secondmodel adopts the aggregate planning view
and eliminates binary constraints. Under this approach, each job is seen as a unit demand
while its due date is mapped to a period where this unit is demanded. With this mapping, the
periodic job allocation decisions are transformed into periodic production decisions that are
measured by fraction of demand. Consequently, instead of explicit representation of the job
completion times, this model tracks the amounts of production completed and backlogged
via inventory and shortage variables and conservation of units constraints. We establish that
the latter model provides tighter bounds and demonstrate that it provides amore efficient plat-
form for optimization via computational analysis employing four commonly used tardiness
related criteria and a case study from a real life application. Numerical computations reveal
that aggregate planning view becomesmore dominant in terms of computational performance
as the problem size grows.
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1 Introduction

In this paper, we introduce two alternative mathematical modeling approaches for the single
machine preemptive scheduling problems with tardiness related criteria. In a schedule that
allows preemption, a job can be temporarily interrupted for processing of another job with
higher priority. The general structure of the problem involves a finite number of jobs with
known release and due dates. The jobs have varying weights that represent the monetary
penalties associated with the tardiness measures. In practice, these weights are typically
determined based on tangible costs that are explicitly stipulated by contracts, intangible
costs tied to loss of goodwill, or both. Using the notation due to Graham et al. (1979), we
represent this general optimization problem as: 1 | pmtn, ri , di , pi | F , where ri , di , pi , and
F denote the release date, due date, workload requirement for job i , and the tardiness related
objective respectively.

Our work is mainly motivated by our collaboration with a major aviation maintenance,
repair andoverhaul (MRO) company that services landing gear for aircraft. TheMROsector in
general is very particular on timely turnaround times and on-time deliveries as the customers
in this sector are burdened with large capital investments on equipment. For example, delays
in landing gear service deliveries may result in an average cost of 50,000.00 USD per day
for a commercial airline and thousands in tardiness penalties for the service provider—not
to mention less quantifiable costs such as good-will losses. Therefore, finding optimal or
near-optimal solutions are quite critical in such environments for profitability and sustenance
of both the providers and their customers.

The first model introduced in our study adopts the conventional time-indexed formulation
approach that builds on explicit representation of completion times of jobs using time indexed
formulation. Thus, the tardiness of jobs can be directly measured by comparison of the
completion times and the due dates. This approach necessitates the use of binary variables so
as to identify the completion times. As such, we refer to this model as the Binary Preemptive
Scheduling (BPS) Model. The second model that we propose in this paper is built on a quite
different approach that employs the aggregate planning view and referred to as the Aggregate
Preemptive Scheduling (APS) Model. In this approach, each job is seen as a unit demand
while its due date is mapped to a period where this unit is demanded. With this mapping, the
periodic job allocation decisions are transformed into periodic production decisions that are
measured by fraction of demand. Consequently, instead of explicit representation of the job
completion times, the proposed APS model tracks the amounts of production completed and
backlogged via inventory and shortage variables and conservation of units constraints.

In our analysis we establish the equivalency of both models in terms of solving the same
problem. Subsequently, we analytically show that the APS model provides better bounds
compared to the BPS model, which suggests better computational performance for the for-
mer one. We carry out computational experiments using a variety of objectives to investigate
and computationally compare the performances of both models. Specifically, we consider
minimization of total weighted tardiness, total weighted completion times, total weighted
tardiness and earliness, and total weighted number of tardy jobs. The computational results
indicate a categorical dominance for the APS model over the BPS model in terms of com-
putational times and quality of solutions obtained in limited time frames. The advantage of
the APS model becomes more apparent as the number of jobs increases. To demonstrate
the practicality of the APS model, we present a case study from the aviation MRO industry,
where the dimension of the model is extended with the inclusion of overtime decisions. The
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overall analyses presented in this paper establish that APS model is a promising tool for
generating optimal or near-optimal schedules reasonably quickly for real life applications.

1.1 Literature review

Most common tardiness related measures relate to total weighted tardiness (TWT), total
weighted completion times (TWC), total weighted earliness and tardiness (TWET), and total
weighted number of tardy jobs (TWNTJ). Majority of tardiness related objectives either
directly use these objectives or their variations. Therefore, we employ these four measures
as the base to investigate the performance of the proposed models in this paper. Of these
criteria, TWT emerges as probably the most relevant and practical objective from which a
diversity of tardiness related problems emerge. While the majority of reported work focus on
non-preemptive scheduling, a few consider the preemptive case. A comprehensive survey of
single-machine tardiness problems are provided by Sen et al. (2003), and Koulamas (2010).
It is established that the non-preemptive general TWT problem is NP-hard in the strong
sense (Lenstra et al. 1977). Since every preemptive schedule can be transformed into a non-
preemptive schedule with no larger objective value (McNaughton 1959), the complexity of
the non preemptive case also applies to the general TWT problem with preemption (Yuan
and Lin 2005; Bulbul et al. 2007). Recent research that focus on preemptive scheduling and
tardiness either do not consider weights (Tian et al. 2009; Hendel et al. 2009) or assume
identical processing times (Tian et al. 2006; Jaramillo and Erkoc 2017).

The TWC problem can be framed as a special case of the TWT problem, where the release
date of each job is counted as its due date as well. The TWC problem with arbitrary release
dates and no-preemption is identified as a NP-hard problem (Labetoulle et al. 1984). In
earlier papers, Hariri and Potts (1983) and Belouadah et al. (1992) consider preemption for
generating bounds for their branch and bound algorithms that they propose for the general
TWC problem. More recently, Wang et al. (2005) provide a formal proof that shows that the
preemptive TWC problem is also NP-hard in the strong sense. Heuristic solution approaches
are proposed for various versions of this problem including identical processing times (Batsyn
et al. 2013), rolling horizon (Sitters 2010; Schulz and Skutella 2002) and multiple uniform
parallel machines (Leung et al. 2007).

With the advent of the “Just-in-time” paradigm, several researchers have integrated ear-
liness penalties into the TWT problem. Branch and bound based heuristics (Li 1997; Liaw
1999; Vanhoucke et al. 2001) and metaheuristics (Liao and Cheng 2007; Yano and Kim
1991) are proposed for the the problem of minimizing total weighted earliness and tardiness
(TWET).

Similar to the other tardiness related objectives, the majority of research on TWNTJ
assume non-preemption (M’Hallah and Bulfin 2007; Adamu and Adewumi 2014). While the
non-preemptive case is known to beNP-Hard (Karp 1972), the preemptive case is shown to be
maximal pseudopolynomially solvable (Lawler 1990). The work reported on the preemptive
version of this problem is limited by some early studies that consider polynomial algorithms
for the special cases where the jobs have agreeable release and due dates (Lawler 1994;
Baptiste 1999).

While the literature in the area of tardiness related problems is vast and very diverse, only
a select minority of such work has a direct connection with the topics and problems discussed
in this paper. Overall, due to the complexity of the scheduling problems with tardiness related
objectives, the focus in research has been on development of heuristics and bounds. A few
number of papers that consider efficient formulations and exact methods explicitly focus
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on the non-preemptive cases. These papers attempt to improve the exact solution methods
by introducing valid inequalities (Sousa and Wolsey 1992; Berghman and Spieksma 2015),
network based formulation (Pessoa et al. 2010), or bucket indexed formulation (Boland et al.
2016). Similar studies that tackle the preemptive case are virtually nonexistent or limited to
instances of relatively small size. Our paper fills the existing gap in the relevant literature by
introducing effective formulations for the preemptive scheduling problems that can be easily
applied to a variety of tardiness related criteria.

The rest of the paper is organized as follows. Section 2 formally introduces the mathemat-
ical models. Analytical comparison of the models is discussed in Sect. 3. Section 4 presents
the computational experiments using four different tardiness related objective functions and
a case study from a real life application. Finally, Sect. 5 concludes the paper.

2 Mathematical models

Our focus is on the singlemachine preemptive scheduling problemswith a variety of tardiness
related objectives. In this context, processing of a job can be interrupted or temporarily
suspended at any moment in order to allow for another job’s processing. It is assumed that
there is no precedence relationship among jobs, and the objective is always subjected to known
release and due dates across a finite number of jobs. The time horizon is constituted by a set of
discrete periods of equal length, where the time index is represented by t , t ∈ {1, 2, . . . , T }.
We represent this general optimization problem as: 1 | pmtn, ri , di , pi | F , where ri , di , pi ,
F denote the release date, due date, workload requirement for job i , and the tardiness related
objective respectively.

In our approach pi represents the amount of work to complete job i measured in terms
of capacity such as labor hours. In that respect, our interpretation is slightly different than
the conventional approach where pi represents the processing time. We map the maximum
amount of work that can be performed on a job (i.e., capacity) in a given period to α. To
explain the relation between pi and α, consider the example where pi = 1 and α = 0.4. This
indicates that only 0.4work units of job i can be completed in a single period if all the available
capacity is allocated to this job. As such, the processing time for the job is 2.5 periods, that is,
this job can be completed in 2.5 periods with uninterrupted full capacity allocation. Clearly,
any processing time can be easily transformed into the work units measured by pi .

In this setting, unit tardiness (and earliness if applicable) costs may not be identical for all
jobs due to varying value contribution of the jobs or the respective customers. They may also
reflect the tangible contracted penalties. Therefore, jobs are typically weighed differently.
These weights apply in a similar fashion if the problem involves earliness penalties and they
are denoted by wi .

In this section, we introduce two mathematical modeling approaches for this setting. The
first one is based on the traditional time-indexed formulation that employs the sequencing
view. It involves amixed integer programmingmodelwith binary scheduling variables, which
will be referred to as the Binary Preemptive Scheduling (BPS) Model in the rest of the paper.
The second model adopts the principles of aggregate planning and eliminates the binary
variables by employing the work-balance view. We refer to this model as the Aggregate
Preemptive Scheduling (APS) Model.
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Table 1 Decision variables of the
BPS model xit Fraction of a job i assigned during regular time at period t

yi t Binary variable: 1 if job i finishes within period t , 0 otherwise

fi Finish date for job i

li Number of late periods for job i

ei Number of early periods for job i

ui Binary variable: 1 if job i is tardy, 0 otherwise

2.1 The binary preemptive scheduling (BPS) formulation

The BPS model adopts the sequencing view of scheduling and depends on explicit repre-
sentation of the job completion times, which requires use of binary variables. This model
is basically built as a generalization of the mathematical model proposed by Jaramillo and
Erkoc (2017) specifically for the TWT problem, which considers only jobs with identical
processing times. The BPS formulation in our context considers the more general case with
nonidentical workload requirements, and employs binary, continuous, and discrete decision
variables as listed in Table 1.

The binary variable yit tracks the completion times of jobs for a finite set of jobs, N ,
over a planning horizon that consists of T periods; whereas, ui identifies whether or not
job i is completed after its due date. While the continuous variables determine the amount
of allocations of regular capacity xit that are necessary to complete the jobs, the discrete
variables are needed to evaluate the finish dates fi , the number of late periods li , and the
number of early periods ei . The tardiness of job i is captured by the positive lateness, i.e.,
li = wi max{0, fi − di } and the earliness by ei = wi max{0, di − fi }. Using this notation,
we can write down the general BPS model as follows:

minimize:
∑

i∈N
wi Fi ( fi )

subject to: (1)

T∑

t=ri

yi t = 1, ∀i ∈ N (2)

∑

i∈N :ri≥t

xi t ≤ α, ∀t ∈ {1, . . . , T } (3)

T∑

t=ri

xi t = pi , ∀i ∈ N (4)

γ∑

t=ri

xi t ≥ pi yiγ , ∀i ∈ N , ∀γ ∈ {ri , . . . , T } (5)

fi =
T∑

t=ri

t yi t , ∀i ∈ N (6)

li ≥ fi − di , ∀i ∈ N (7)

ei ≥ di − fi , ∀i ∈ N (8)

T · ui ≥ fi − di , ∀i ∈ N (9)
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xit ≥ 0; fi , li , ei , ui ∈ Z
+; yit ∈ {0, 1} ∀i ∈ N , t ∈ {ri . . . , T } (10)

In the general representation, the objective given in (1) minimizes the sum of functions of the
completion times denoted by Fi ( fi ). It is equivalent to li , li +ei , and ui , for the TWT, TWET,
and TWNTJ problems respectively. We note that TWC is a special case of the TWT problem
where the due dates of jobs are equal to their release dates. The first set of constraints
(2) ensure that each job is completed by the end of the planning horizon. Constraint (3)
enforces the regular capacity limit per period designated as α. Constraint (4) ensures that
all required work for each job can only begin after its release date and must be completed
within the planning time horizon and (5) guarantees that no job is marked completed until all
required work is carried out. The constraint set (6) captures the completion time for each job.
Given completion times, constraint (7) tracks the number of tardy periods for the jobs. This
constraint is relevant for the TWT, TWC, and TWET problems. Likewise, constraint (8) sets
the earliness of the jobs, which is to be used in the TWET problem only. Constraint (9) is
needed for the TWNTJ problem only and marks whether a job is tardy or not. We note that
in this case, although ui must be binary, we define it as a positive integer in the model. Since
the objective for the TWNTJ problem degrades with higher values of ui , it is straightforward
to observe that the model will never assign this variable a value greater than 1 at optimality.
We refer to this attribute of the variable as the binary property.

It is also important to observe in the model that for integer values of due dates di and t ,
variables fi , li , and ei possess the integrality property. This follows from the fact that the
right hand sides in constraints (6), (7), and (8) always produce integer values. As such, the
integrality constraints for these variables can be relaxed in implementation of the model.

2.2 The aggregate preemptive scheduling (APS) formulation

The APSmodel employs the work-flow balance approach, where any partial work completed
for a job is analogous to partial production of an order under the aggregate planning context.
This view is enabled by preemption, which allows for partial allocation of workloads of jobs
to the existing capacity across the planning horizon. In this context, any completed work of a
job before its due date is akin to inventory carried over to the next period and any uncompleted
work after the due date is analogous to backlogs. This way, the model maintains the workload
balance for each job instead of explicitly representing the completion times. To enable this
formulation, we introduce two new variables, namely Ii t and Bit , that capture the fraction
of the completed work before the due date and the incomplete work past due for job i in
period t , respectively. The APS model tracks the completion of jobs by means of these two
key variables, which eliminate the need for job completion variables, yi and fi , employed
in the BPS model. In order to use these variables, we need to modify the work allocation
variable, Xit , so that it measures the fraction of workload associated with job i assigned for
processing in period t rather than a general workload unit as is the case in the BPS model.
As such, Xit can take values only in [0, 1].

While the BPS model employs a one-dimensional array to specify the due date for each
job (i.e., di ), the APS model requires a two-dimensional array (i.e., Dit ) in order to assemble
the workload balance constraints. In this model, Dit is a binary input parameter and captures
the due date of job i by taking the value of 1 if the due date for this job is period t and
0 otherwise. Under the aggregate planning view this representation implies that 1 unit (i.e,
100%) job i is demanded in period t if and only if Dit = 1.

Since the completion time variables are eliminated in the new framework, the tardiness and
earliness related variables are controlled via Bit and Ii t respectively. As the backlog variable
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Table 2 Decision variables of the
APS model applied to the TWT
problem

Xit Fraction of work assigned to job i in period t

Ii t Fraction of work completed before the due date for job i in
period t

Bit Fraction of unfinished work after the due date for job i in period
t

Lit Tardiness for job i in period t

Eit Earliness for job i in period t

Ui Lateness for job i

Bit signifies tardiness, we need to map the tardiness measure to this variable. Similar to the
due date parameter, we redefine the tardiness variable using the same two indices as Lit ,
which measures the tardiness of job i in period t . Likewise, the new earliness measure, Eit

will be linked to Ii t . The decision variables for the general version of the APS model are
listed in (Table 2).

Using the new notation, we can write down the APS model as follows:

minimize:
∑

i∈N

T∑

t=ri

wi Fit (Ii t , Bit )

subject to: (11)

Bi,ri − Ii,ri = Di,ri − Xi,ri , ∀i ∈ N (12)

Bit − Ii t = Dit + Bi,t−1 − Xit − Ii,t−1, ∀i ∈ N ,∀t ∈ {ri + 1, . . . , T } (13)
∑

i∈N :ri≥t

pi Xit ≤ α, ∀t ∈ {1, . . . , T } (14)

T∑

t=ri

Xit = 1, ∀i ∈ N (15)

Lit ≥ Bit , ∀i ∈ N ,∀t ∈ {di , . . . , T } (16)

Eit ≥ Ii t − 1 + ε, ∀i ∈ N ,∀t ∈ {ri , . . . , di − 1} (17)

Ui ≥ Bi,di , ∀i ∈ N (18)

Xit , Bit , Ii t ∈ [0, 1] , ∀i ∈ N ,∀t ∈ {ri , . . . , T } (19)

Lit , Eit ,Ui ∈ Z
+, ∀i ∈ N ,∀t ∈ {ri . . . , T } (20)

The objective given in (11) minimizes the sum of functions of the early and late work
completions by Fit , which is equivalent to Lit , Lit + Eit , and Ui , for the TWT, TWET, and
TWNTJ problems respectively. As mentioned earlier, TWC is a special case of the TWT
problem where all due dates are equal to their release dates, that is, di = ri , Di,ri = 1, and
Dit = 0 for all other periods. The first two constraints, namely, (12) and (13), are the work
balance equations which capture the fraction of late work (backlog) for each job. With these
constraints, the model tracks the fraction of work completed before and after the deadline
of each job. Constraint (14) enforces the capacity limit. Constraint (15) ensures that all jobs
must be completed by the end of the planning horizon.

While constraint (16) captures lateness of jobs at each period, constraint (17) determines
the earliness.We note that due to the minimization objective, the model will attempt to assign
the smallest possible values to Lit and Eit . Since Bit ≤ 1, the lower bound for Lit enforced
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Fig. 1 A sample feasible schedule

by constraint (16) cannot be greater than 1. Consequently, it is not difficult to see that at any
optimal solution, the value of Lit must be either 0 or 1, although it is not designated as a
binary variable in the model. As such, Lit functions as a lateness indicator with Lit = 1
indicating that the job is late in period t . Similar to ui of the BPS model, Lit has the binary
property. It is straightforward to observe from (11) and (17) that Eit has the same property
due to similar reasons. In (17), parameter ε represents any infinitesimal strictly positive value,
which ensures that the right hand side is strictly positive if and only if Ii t = 1 indicating that
the job is completed earlier than its due date. In this case, the constraint guarantees that the
job will be regarded early in this period, that is, Eit = 1. Consequently, the tardiness and
earliness of a job can bemeasured by the sum of lateness and earliness indicators respectively
over the time horizon as signified by the objective function. Finally, constraint (18) identifies
whether a job is tardy or not by evaluating the backlog amount at its due date. As we show
in the next section, similar to the BPS model, solution to the APS model provides a feasible
optimal preemptive schedule for a given set of jobs with known release and due dates.

To illustrate how the APS framework functions consider the feasible schedule given in
Fig. 1 as an example. Suppose that the release periods for jobs 1, 2, 3, and 4 be 1, 2, 4 and
7 respectively and the processing times are 2 periods for all jobs except job 3 which has
a processing time of 1.5 periods. Moreover, let the due dates for the jobs be 4, 5, 5, and
9 respectively. The capacity per period is normalized to 1 (α = 1) and as such, in each
period at most half of the required work can be processed for jobs 1, 2, and 4 and at most
two-thirds of the required work can be processed for job 3. Consequently, each block in the
figure represents one-fourth of the required work for the first group of jobs and one-third of
the required work for job 3.

The corresponding values for the APS variables for jobs 1 and 2 obtained from constraints
(12) and (13) are given in Table 3 for this example.We note that while job 1 is 2 periods tardy,
job 2 is 2 periods early in this case. In the example, first period capacity is allocated for job 1
and thus, X1,1 = 0.5. This job is completed with capacity allocations in periods 4 and 6 with
X1,4 = X1,6 = 0.25. Consequently, the completed work from period 1 is carried over as
“inventory” until period 4, at which time the job is due (i.e., D1,4 = 1). After this period one-
fourth of job 1 will be unfinished until period 6, which is captured by B1,4 = B1,5 = 0.25.
Thus, in these periods L1,4 = L1,5 = 1 due to constraint (16) and U1 = 1 due to constraint
(18). On the other hand, B2,t = 0 for job 2 across all periods since this job has no unfinished
work after its due date. Since job 2 is completed in period 3, it has an inventory of 1 unit until
its due date and as such the earliness values in this time interval must also be one because of
constraint (17). It is straightforward from the BPS model that the corresponding values for
its variables for these jobs are y1,6 = 1, f1 = 6, l1 = 2, y2,3 = 1, f2 = 3, e2 = 2.

3 Analytical comparison of themodels

Before moving on to computational analysis, we first discuss the analytic aspects of both
modeling approaches. First, we establish the equivalence of the models indicating that they
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Table 3 APS model variables for jobs 1 and 2

t B1,t I1,t D1,t X1,t L1,t U1 E1,t B2,t I2,t D2,t X2,t L2,t U2 E2,t

1 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0 0

2 0 0.5 0 0 0 0 0 0 0.5 0 0.5 0 0 0

3 0 0.5 0 0 0 0 0 0 1 0 0.5 0 0 1

4 0.25 0 1 0.25 1 1 0 0 1 0 0 0 0 1

5 0.25 0 0 0 1 0 0 0 0 1 0 .5 0 0 0

6 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0

both provide the same optimal solution to the problem of single machine scheduling with
preemption. Later, we examine the structures of both models in terms of their performances
in generating lower bounds.

3.1 Model equivalency

In order to be able to establish that the BPS and the APSmodels can be employed to solve the
same problem, we need to show that both models have equivalent objective functions that are
subject to equivalent constraints resulting in matching optimal solutions. For both models,
the core structure remains the same across all tardiness and earliness related objectives. It
is straightforward to observe in the BPS and APS models, regardless of the objective of
the schedule, the core constraint sets maintain that the entire required work for each job is
assigned to the single resource across the planning period as per (4) and (15) and the limited
capacity of the resource is enforced as per (3) and (14). Consequently, in both representations,
these constraints are sufficient to build a feasible schedule. All other constraints are needed
for optimization purposes and shaped by the objective of the problem. In order to measure
tardiness or earliness, the models must be able to control the completion times. In the case
of TWNTJ, they must track whether a job is tardy or not. Basically, the models differ from
each other in regards to how they perform these functions.

The difference between the models in capturing completion times mainly stems from
how they measure tardiness and earliness. From evaluating the components of the objective
functions, we can observe that the measurement of tardiness (li and Lit ) and earliness (ei
and Eit ) variables do not map directly from one model to the other. While in the BPS model
li (resp. ei ) represents the actual number of tardy (resp. early) periods for job i , the variable
Lit (resp. Eit ) in the APS model tracks the individual periods in which job i is actually tardy
(resp. early). For both objective functions to match one-to-one at optimality, the tardiness
expressions as defined in the BPS and the APS models must return the same value. To show
that, we first make the following observation for any objective function that degrades with
tardiness and/or earliness:

Theorem 1 Given any feasible schedule with completion times fi and due dates di , there
exists a corresponding feasible solution in the APS model, where the following equations
hold for any job i:

li = ( fi − di )
+ =

T∑

t=ri

Lit (21)
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ei = (di − fi )
+ =

T∑

t=ri

Eit (22)

ui = Ui (23)

Moreover, the solution that satisfies the above equation provides the best possible objective
value corresponding to this feasible schedule for the APS model.

Proof Observe that in the APS model, the only constraint related to the non-negative integer
variable Lit is given by (eq. 16), which enforces a lower bound determined by Bit . In the same
model, Bit is constrained to satisfy the work balance equations given by (12) and (13). These
constraints also involve the work assignment variables Xit . Note that the work assignment
values in the BPS model (xit ) can be directly mapped to the APS model by Xit = xit/pi .
Due to the constraints in the BPS model, we can easily verify that the mapped Xit values
satisfy constraints (14) and (15) in the APS model. As such, when ( fi − di )+ = 0, job i
is not tardy and with Xit values mapped from the BPS model, we can easily construct a
feasible solution for the APS model where Bit = 0 and Lit = 0 for t ≥ di . On the other
hand, ( fi − di )+ > 0 implies that there is unfinished work for job i in periods di to fi . In
this case, it is straightforward to observe that due to (12) and (13), Bit > 0 must be enforced
for t ∈ [di , fi ] implying that Lit > 0 must also hold. Specifically, although Lit can take any
integer value in [1,∞) for di < t ≤ fi as Bit ≤ 1 by definition, it can be easily verified that
equation (21) holds only if Lit = 1 are selected. These scenarios correspond to the feasible
solutionwhere Lit values take their lowest feasible values indicating that the best outcome for
the objective function that degrades in tardiness can be achieved with this particular solution.
The proof for the equations (22) and (23) follows from the relations between Ii t and Eit and
between Bdi t and Ui that are similar to that of Bit and Lit and as such, can be carried out in
a similar way. ��

An important implication of the above result is that in the APS model, at optimality, the
values that Lit and Eit can be either 0 or 1. As such, these variables have the binary property.
From the practical perspective, they count tardy and early periods for job i respectively
resulting in the measures of tardiness and earliness as defined in the BPS model. A key
conclusion that we derive from the above observation is that any optimal solution to the BPS
model can be mapped to a feasible solution in the APS model, where Lit and Eit take binary
values.We know from (14) and (15) that any solution to the APSmodel is a feasible schedule.
Since any feasible schedule can be represented by a feasible solution in the BPS model, the
APS model cannot generate an optimal solution that is better than that of the BPS model.
Hence, we have the following conclusion:

Corollary 1 The optimal schedule obtained by the BPS model must be also optimal for the
APS model, and the reverse is also true.

3.2 Lower bounds

The difference in the performance between the models is primarily the result of each model’s
ability to produce tight lower bounds. Tighter bounds typically help with the convergence
performance of the solution process. In this section we investigate and compare the lower
bounds that can be produced by the BPS and APS models. Particularly, we focus on the
lower bounds obtained by linear relaxation where all integrality constrains are relaxed. We
let LBBPS and LBAPS denote the objective function values obtained by the lower bounds
of the BPS and APS models respectively.
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As explained in the previous section, the integrality constraints for fi , li , and ei in the
BPS model can be relaxed without any loss in optimality due to their integrality property. As
such, it is sufficient to replace the integrality constraint for yit with 0 ≤ yit ≤ 1 for all jobs
over the planning horizon so as to obtain the LP relaxation. The tardiness indicator ui must
be relaxed the same way for the TWNTJ instances. The LP relaxation for the APS model
is achieved by the removal of integrality constraints for variables Lit , Eit , and Uit . We first
make the following conclusion regarding the LP relaxation of both models:

Theorem 2 Any feasible solution to the LP relaxation of the BPS model or the APS model
corresponds to a feasible schedule.

The proof follows from the fact that the LP relaxation generates fractional values only
for the variables that track the tardiness measures, not the feasibility of the schedules. The
latter one is ensured by constraints (3) and (4) in the BPS model and constraints (12–15)
in the APS model. None of these constraints involve any integer variables, and hence, they
are not affected by the LP relaxation. Consequently, even though a feasible solution to the
LP relaxation may be infeasible for either models, it still must correspond to a feasible
schedule. For example, it is not difficult to see that in the relaxed BPS model, the schedule
given in Fig. 1 is feasible and the minimum total tardiness measure that it can provide is
zero, where completion times, fi , are 1.5, 2.5, 4.67 respectively. Under the relaxed APS
model, the minimum total tardiness measure for the same schedule is 0.5 (L1,1 = 0.25 and
L1,2 = 0.25). Clearly these values are not feasible for the BPS and APSmodels. The feasible
objective value for this schedule would be 2 in both the BPS (with completion times 6, 3, 5,
and 8 respectively) and the APS (with L1,1 = 1 and L1,2 = 1) models.

For any feasible schedule obtained by the LP relaxation, we can easily derive the feasible
completion-time and tardiness variables for the MIP models. In what follows, we represent
the values of the variables in the relaxed models using the ·̂ notation. It is straightforward
to deduce that the constraints regarding tardiness related measures will be binding when
we solve the LP relaxations. Since the objective values are nondecreasing in tardiness and
earliness measures, their comparisons can be based on these measures.

For anygiven feasible schedule, the objective function in the relaxedBPSmodel is captured
by

LBBPS =
∑

i∈N
wi Fi (̂li , êi , ûi ) (24)

where f̂i , l̂i , êi , and ûi are obtainedby the boundary equations in (6–9) respectively. Similarly,
in the APS model we get

LBAPS =
∑

i∈N

T∑

t=1

wi Fit (L̂i t , Êi t , Ûi ) (25)

where L̂i t , Êi t , and Ûi are obtained by the boundary equations in (16–18) respectively.
These boundary values enable us to compare the lower bounds of the objective values

across both formulations. Since the objective values are nondecreasing in tardiness and ear-
liness measures, their comparison can be based on these measures.

Theorem 3 For any given feasible schedule (i.e., any congruous xit and Xit values), the
tardiness and earliness values that can be generated by the LP relaxation of the BPS model
are no greater than those generated by the LP relaxation of the APS model. Namely, the
following inequalities always hold for a given feasible schedule:
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l̂i ≤
T∑

t=di

L̂i t ≤ li ∀i ∈ N (26)

êi ≤
di∑

t=ri

Êi t ≤ ei ∀i ∈ N (27)

ûi ≤ Ûi ≤ ui ∀i ∈ N (28)

Proof We first focus on the tardiness comparison. It is straightforward to observe that if a
job is not tardy in a given schedule, both LP relaxations result in zero tardiness for that job
and thus, (26) is satisfied. Next, we focus only on the tardy jobs. Inequality (26) implies that
the following must hold for any tardy job i :

T∑

t=ri

t ŷi t − di ≤
T∑

t=di

B̂i t (29)

Recall that B̂i t variables represent the fraction of unfinished jobs in the APS model and
they can be easily computed from (13) for given values of Xit . The computation of the best
values for ŷi t for a given feasible schedule is less straightforward. Observe that f̂i is a convex
combination of all periods from ri to T and determined by ŷi t values in this range. Since
smaller completion time leads to lower tardiness, the relaxed BPS model will attempt to
assign higher ŷi t values to the earlier periods so as to reduce the completion time. However,
constraint set (5) imposes upper bounds for this variable. We can easily deduce that at the
release date the constraint must be binding and thus, we have:

ŷi,ri = xi,ri
pi

= Xi,ri (30)

Accordingly, the best value for ŷi,ri+1 should be Xi,ri + Xi,ri+1 only if this summation is
less than 1 − ŷi,ri due to constraint (2). Otherwise, its value must be 1 − ŷi,ri . Generalizing
this pattern, we can represent the ŷi t values that minimize the relaxed BPS objective for a
given feasible schedule with the following recursive function:

ŷi t = Xi,ri + min

(
1 −

t−1∑

τ=ri

ŷiτ , ŷi,t−1 + Xit

)
∀t ∈ [ri + 1, T ] (31)

To prove that (29) always holds, it will be sufficient to show that it holds when the left
hand side takes its largest feasible value. We can easily deduce that, for given Xit , the upper
bound for the convex combination given in the left hand side can be attained when

ŷi,di = 1 − B̂i,di (32)

where 1− B̂i,di represents the fraction of work completed for a job by its due date. Observe
that (31) implies that the ŷi t values are determined cumulatively up to a period in which they
are complemented to 1. Their values must be zero beyond this period. It is straightforward to
deduce that this point is reached at or before the actual completion time in the relaxed model.
Let di + z be any arbitrary period, where z ≥ 0 and

ŷi,di+z = 1 −
di+z−1∑

τ=ri

ŷiτ (33)
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and as such, ŷi t = 0 for t > di + z. Note that z ≤ fi − di . In this representation we can
calculate ŷi,di+1 as follows:

ŷi,di+1 = 1 − B̂i,di + Xi,di+1 = 1 − B̂i,di+1 (34)

since Xi,di+1 = B̂i,di − B̂i,di+1. We can generalize this result to ŷi t = 1− B̂i t for di ≤ t < z.
Consequently, we can rewrite (29) as follows:

z−1∑

j=0

((1 − B̂i,di+ j )(di + j)) +
⎛

⎝1 −
z−1∑

j=0

(1 − B̂i,di+ j )

⎞

⎠ (di + z) − di ≤
T∑

t=di

B̂i t (35)

which reduces to
z−1∑

j=0

((1 − B̂i,di+ j )( j − z)) + z ≤
T∑

t=di

B̂i t (36)

It is clear that the first term in the left hand side is nonpositive and − ∑z−1
j=0(1− B̂i,di+ j )

is an upper bound for it. Replacing this term, we get

−
z−1∑

j=0

(1 − B̂i,di+ j ) + z ≤
T∑

t=di

B̂i,t (37)

which reduces to
z−1∑

j=0

B̂i,di+ j ≤
T∑

t=di

B̂i,t (38)

The above inequality clearly holds implying that (29)must also hold.As such,we conclude
the proof for (26) indicating that LP relaxation of the APS model provides tighter bounds on
tardiness compared to the LP relaxation of the BPS model.

Next,we consider the early jobs. In this case, the objective improveswith larger completion
times. It is straightforward to deduce from the BPS model that in the relaxed version zero
earliness penalty is attained for yi,di = 0, which is not prevented by any constraint if job i is
early. That is, LP relaxation of the BPS model always generates an earliness measure of zero
for any given feasible schedule. On the other hand, the same measure in the APS model is
provided by

∑di
t= f̂i

ε. Consequently, (27) must always hold for any given feasible schedule.

Finally, the comparison of the count of number of tardy jobs in the relaxed models results
in

T∑

t=ri

t ŷi t − di ≤ T B̂i,di (39)

The proof of this inequality follows from the proof of (29) as T B̂i,di ≥ ∑T
t=di B̂i t due to the

fact that B̂i t values are nonincreasing in t . ��
The results obtained in this section so far establish that (i) LP relaxation of both models

results with feasible schedules (but not feasible solutions for the original models), (ii) any
feasible solution in one model can be mapped to a feasible solution in the other, and (iii) for
any feasible schedule, LP relaxation of the APS model leads to higher tardiness and earliness
measures in comparison to the LP relaxation of the BPS model. These observations lead us
to the following induction:
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Table 4 Parameter generating
expressions

Model parameters Expressions

Release date-ri UNIF{1, . . . , 2n}
Due date-di ri + 	1/α
+UNIF{1, . . . , a2}
Tardiness penalty (weight)-wi UNIF{1, . . . , a1}
Capacity-α UNIF[0.15, 0.5]
Required work-pi UNIF[0.6, 1.4]

a1 = n, a2 = 	pi /α


Corollary 2 The optimal objective value for the LP relaxation of APS is always greater than
or equal to the optimal objective value obtained by the LP relaxation of the BPS model. That
is, LBAPS ≥ LBBPS always holds.

This conclusion establishes the APSmodel’s dominance over the BPSmodel in producing
tighter lower bounds. With tighter bounds it is plausible to expect better computational
performance from theAPSmodel.We infer from the proof of Theorem 3 that the performance
of theAPSmodel should especially be superior for the tardiness penalties in comparison to the
earliness penalties since the gaps between the lower bounds are more significant in capturing
tardiness and the number of tardy jobs. To put this expectation into test, we have carried out
an extensive computational study which is discussed in the next section.

4 Computational experiments

We design and perform numerical analysis so as to evaluate the computational performance
of the BPS and the APSmodels for the most commonly used tardiness objectives that include
total weighted tardiness (TWT), total weighted completion time (TWC), total weighted tar-
diness and earliness (TWTE), and total weighted number of tardy jobs (TWNTJ). We aim to
investigate the computational performance of both models specially with respect to the prob-
lem size (i.e. number of jobs). Our goal is to demonstrate that the proposed APS formulation
significantly improves the computational performance. To this end, we perform numerical
experiments that test bothmodels under different conditionswith respect to their convergence
performances, computational times, and optimality gaps. We consider five problem sizes in
all cases with n = 10, 20, 40, 80, and 160 jobs. All problem instances are solved by both
models in the experimentation.

We employ a set of expressions to generate all the parameters necessary to create the
problem instances. To be consistent with the existing literature, we borrow the expressions
from earlier research due to Yang et al. (2004) and Jaramillo and Erkoc (2017), and modify
them to our context. Main random variables in the system are generated by a uniform distri-
bution in order to enable diversity across all instances. Table 4 lists all the specific parameter
generating expressions used in our analysis. For any given problem instance, the time horizon
parameters T are derived by the makespan of the non-delay and non-preemptive schedule
constructed via the earliest release date first (ERD) rule. Overall, 20 instances are generated
for each problem size. Consequently, a total of 200 instances are obtained to test the perfor-
mance of both models for each objective function under study. All instances generated for
the BPS and APS models are solved using AMPL and CPLEX 12.6. All computations are
performed on a PC with an I7-3770 Processor with 3.40 GHz and 16 GB of RAM.
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Due to computational complexity, not all the instances are solvable in reasonable amounts
of time. Therefore, we set a fixed time limit for the execution of both models. Specifically,
the computational runs are set to initiate a time-out sequence at 3600 s (1 hour) for the
solution procedure. Although a time limit is present, we note that the total time typically
exceeds this limit due to post-processing of the solver that finalizes the last iteration. In all
the numerical experiments, the lower bound from theAPSmodel is used as reference to assess
the computational efficiency for both models; this is necessary for fair comparison since the
BPS model generates smaller bounds in all cases. The disparity of optimality gaps across
both models is also investigated in parallel so as to examine the convergence performances.

4.1 Total weighted tardiness (TWT)

We investigate the results of all 100 instances on each model (200 runs total) for the total
weighted tardiness (TWT) problem represented by 1|pmtn, ri , pi | ∑i wi li . Objective func-
tions

∑
i∈N wi li and

∑
i∈N

∑T
t=1 wi Lit are employed in (1) and (11) respectively. In the

BPS model, constraints (8) and (9) and variables ei and ui are redundant and therefore not
used in the computations. Likewise, constraints (17) and (18) along with variables Ei andUi

are not employed in the APS model.
In our numerical analysis, we tracked the number of instances that were solved optimally

by each model within the given time frame. It was observed that the BPS model was able to
converge to the optimal solution in 18 of the 100 instances (18%); 14 of those in instances
with 10 jobs and 4 with 20 jobs. In all other cases, the solution process was timed out.
Moreover, the BPS model converged to a feasible solution in only 4 out of 20 instances
with 160 jobs. In order to have sufficient number of solutions for comparison, we generated
additional instances until we obtained 20 feasible solutions for this case. On the other hand,
the APS model implementation resulted with optimal solutions in 40 instances (40%); all
20 instances with 10-job problems, 17 instances with 20 jobs, and 3 instances with 40 jobs.
In contrast to the BPS model, the APS model was able to produce feasible solutions for
all instances with 160 jobs. The results indicate a significant difference in convergence to
optimality in favor of the APS model. As expected, in both cases, the number of optimally
solved instances decreases as the problem size (i.e., the number of jobs) increases.

In order to further our investigation on convergence performance, we measure the opti-
mality gaps generated by both models. In this respect, we measure the optimality gap as the
percent deviation of the best solution from the lower bound obtained by the end of the given
time frame. As depicted in Fig. 2, the APS model generates significantly lower optimality
gaps suggesting better performance on convergence.

Next, we compare the computational time performances. Measures of computational time
performance include the minimum, average, and maximum values reported for each problem
size. In addition, in order tomake a fair comparison of the quality of the solutions,we calculate
their gaps relative to the lower bounds obtained by the APS model since this model provides
tighter bounds consistently. We refer to this measure as the APSLB Gap and recorded the
minimum, average, and maximum values for this measure. In both measures, the averages
include instances that converged to optimal solutions or timed out with feasible solutions.
Table 5 presents the results of the computational tests using the aforementioned measures.
The “TO” column in the table lists the number of instances for which the timeout has been
reached.

The results indicate a significant difference in computational time performance where the
APS formulation dominates the BPS formulation in all instances as illustrated by Table 5
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Fig. 2 Optimality gaps for the TWT problem

Table 5 Computational test results for the TWT objective (100 instances)

Jobs BPS APS

Computational time (s) APSLB gap (%) Computational time (s) APSLB gap (%)

TO Min Avg Max Min Avg Max TO Min Avg Max Min Avg Max

10 6 0.20 1207 3611 0.00 0.06 0.95 0 0.031 9.95 135.2 0.00 0.00 0.00

20 16 5.15 3020 4027 0.00 1.99 10.1 3 0.717 685.5 3820 0.00 0.42 3.67

40 20 3602 3638 4118 0.98 9.19 18.0 17 356.4 3573 4420 0.00 2.99 5.53

80 20 3600 3664 4076 13.9 27.1 48.2 20 3601 4085 5110 2.17 5.28 8.68

160 20 3604 3672 4306 47.33 63.42 91.2 20 3601 3687 4189 1.71 27.68 95.15

and Fig. 3. We observe that with relatively small size problems (i.e., 10 jobs), while it takes
several minutes for the BPS model to reach at optimality, the APS achieves the same result
within a matter of seconds on average. Specifically, while the average computational time
for the 14 instances solved optimally by the BPS model for 10 jobs is 178.57 s, the APS
model provides optimal solutions in all 20 instances with an average computational time of
9.95 s. For 20 jobs, the BPS model took 550.68 s on average to converge to the optimal
solution in 4 instances, whereas the APS model achieved optimal solution in 17 instances
with an average time of 146.27 s. As the problem size increases, the convergence performance
degrades significantly for the BPS model. For more than 20 jobs the average optimality gap
stays above 9.0%. By contrast, the average optimality gap with the APS stays under 6% upto
80 jobs and 28% for instances of 160 jobs. Overall, the APS model provided solutions with
objective function values that are 0.06%, 1.59%, 6.40%, 22.97%, and 57.74% lower than the
BPS model for 10, 20, 40, 80, and 160 jobs respectively. Clearly, the dominance of the APS
model becomes more apparent and stronger as the problem size increases.

4.2 Total weighted completion time (TWC)

We investigate the total weighted completion times (TWC) problem using the same 100
instances on eachmodel (200 runs total). This problem is denotedby1|pmtn, ri , pi | ∑i wiCi ,
where Ci represents the completion time (makespan) for job i . This problem can be modeled
as a special case of the TWT model where due dates match the release dates of the jobs.
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Fig. 3 APSLB gaps for the TWT problem

Fig. 4 Optimality gaps for the TWC problem

This way, all jobs are essentially late and the minimization process is determined only by the
completion times of each job. Therefore,Ci variables can be directly mapped to and replaced
by the tardiness variables li and Lit in both models respectively. Consequently, we use the
same objective functions, constraints, and variables that we employ for the TWT problem
discussed in the previous subsection.

In this case, the BPSmodel was able to find the optimal solution in 20 of the 100 instances
while the APS model produced optimal solutions in 36 instances. While the BPS model was
able to converge to the optimal solution in 16 instances of 10 jobs and 4 instances of 20
jobs, the APS model resulted with optimal solutions for all 20 instances of 10 jobs and 16
instances of 20 jobs. Both models fail to converge to optimality within the given time frame
in all instances of 40 or more jobs. Similar to the TWT case, the BPS model converged to
feasible solutions in only 4 out of 20 instances and again we employed additional instances
to obtain a total of 20 feasible solutions. This approach was repeated for the TWET and
TWNTJ problems in the case of 160 jobs.

Figure 4 compares the optimality gaps. Similar to the TWT case, the APSmodel generates
significantly lower optimality gaps in comparison to the BPS model. Results pertaining to
computational times and convergence are summarized in Table 6.
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Table 6 Computational test results for the TWC objective (100 instances)

Jobs BPS APS

Computational time (s) Relative gap (%) Computational time (s) Relative gap (%)

TO Min Avg Max Min Avg Max TO Min Avg Max Min Avg Max

10 4 0.14 1033 3640 0.00 0.01 0.23 0 0.109 24.51 258.7 0.00 0.00 0.00

20 16 11.59 2971 4830 0.00 0.99 8.04 4 3.040 1010 4071 0.00 0.43 3.73

40 20 3602 3628 3989 2.63 6.45 13.03 20 3623 4031 4417 2.34 3.56 5.57

80 20 3603 3648 3919 5.68 16.8 41.14 20 3601 3985 4795 2.06 4.65 6.84

160 20 3605 3618 3652 34.54 56.24 81.25 20 3604 3694 4077 2.94 45.25 96.61

Fig. 5 APSLB gaps for the TWC problem

The results presented in Table 6 reveal that as the problem size increases, the convergence
performance on the BPS model degrades significantly, and the average optimality gap stays
above 16% for more than 40 jobs. On the other hand, the optimality gap with the APS model
remains under 5% on instances of upto 80 jobs. In terms of the maximum values reported for
the optimality gap with 160 jobs, the BPS model appears to produce slightly lower values
than the APS model (81.25% vs. 96.61% respectively); this data artifact is the result of the
lack of actual data from the BPS runs for 160 jobs which resulted in only 4 instances with
feasible integer solutions and 16 instances for which the time limit was surpassed without
the solver reaching an integer feasible solution.

Relative gaps for both models are depicted in Fig. 5. OF the optimally solved instances of
10 jobs, the BPS model required an average of 386.81 CPU seconds whereas the APS model
converged to optimality within 24.51 CPU seconds on average. Objective function values are
0.01%, 0.57%, 3.00%, 12.68%, and 74.08% lower in the APS model results than in the BPS
model results for 10, 20, 40, 80, and 160 jobs respectively. The pattern for the gap between
the two models are similar to the TWT problem with a somewhat dampened scale, which
can be explained by the induction that the TWC problem should not be more complex than
its generalized TWT version.

4.3 Total weighted earliness and tardiness (TWET)

The total weighted earliness and tardiness problem aims to find an optimal schedule that
minimizes the total cost of earliness and tardiness for a given set of jobs by determining
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work allocations that result with completion times as close as possible to their due dates.
We consider equal penalties for earliness and tardiness for the same job as we intend to
maintain a balanced influence of both penalty types on computational performances. The
TWET problem can be represented by 1|pmtn, ri , pi | ∑i wi (ei + li ) in this context. As
such, the objective functions are now

∑
i∈N wi (ei + li ) and

∑
i∈N

∑T
t=1 wi (Eit + Lit ) in

(1) and (11) respectively. In the BPS model, constraint (9) and variable ui are not needed and
thus, they are not used in the computations. In the APS model constraint (18) and variable
Ui are not needed and therefore not used in the computations.

Results from solving 100 instances show that the BPS model was able to find the optimal
solution in 20 of the 100 instances while the APS model produced optimal solutions in 40
instances out of 100. The BPS model provided 16 and 4 optimal solutions for instances with
10 and 20 jobs respectively, and no optimal solutions for the instances of 40 jobs or larger.
The APS model was able to reach optimality in all instances of 10 jobs, 17 instances of 20
jobs, and 3 instances of 40 jobs. We note that these are the same instances that were also
optimally solved in the TWT case. This is not too surprising as the two problems differ only
by the inclusion of the earliness penalties.

Figure 6 compares the optimality gaps between the two models. Comparing to the TWT
cases, we observe that optimality gaps are wider for the TWET problem. This is expected
as the TWET problem involves additional constraints and variables pertaining to earliness.
However, interestingly, the growth in the optimality gap is more significant for the BPS
model. This observation indicates that the increased complexity widens the performance gap
between two models. This is more evident in Table 7 that summarizes the results related to
computational times and APSLB gaps.

The average APSLB gap increases at an increasing pace in comparison to the TWT case
for the BPS model. It quickly rises to 19.5% for 40 jobs and continues to increase with larger
sizes. On the other hand, the gap stays well below 9% up to 80 jobs in the APS model. The
comparison of the relative gaps are depicted in Fig. 7.

In terms of computational time performances we again observe that the convergence
performance degrades significantly for the BPS model relative to the APS model. But this
time at an increasing pace in comparison to the TWT problem. We observe that while the
average computational time for the 14 instances solved optimally by the BPS model for 10
jobs is 207.85 s, the APSmodel provides optimal solutions in all 20 instances with an average
computational time of 15.44 s.

Fig. 6 Optimality gaps for the TWET problem
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Table 7 Computational test results for the TWET objective (100 instances)

Jobs BPS APS

Computational time (s) Relative gap (%) Computational time (s) Relative gap (%)

TO Min Avg Max Min Avg Max TO Min Avg Max Min Avg Max

10 4 0.05 1093 3607 0.00 0.00 0.00 0 0.093 11.91 149.8 0.00 0.00 0.00

20 16 3.28 2941 3604 0.00 1.29 8.17 3 3.040 840.2 3991 0.00 0.50 4.18

40 20 3600 3605 3635 0.43 19.5 50.5 17 583.6 3587 4255 0.00 3.06 6.21

80 20 3600 3611 3648 44.7 63.8 82.9 20 3601 3638 3676 1.97 8.21 18.1

160 20 3604 3652 3968 56.36 72.72 85.54 20 3606 3663 4076 2.46 31.95 97.16

Fig. 7 APSLB gaps for the TWET problem

4.4 Total weighted number of tardy jobs (TWNTJ)

The total weighted number of tardy jobs (TWNTJ) problem, denoted by 1|pmtn, ri , pi |∑
i wi ui , is only concerned about the jobs that are tardy regardless of how large the tardiness

is. Therefore, constraints and variables related to earliness and tardiness are not needed in
this problem. Specifically, in the BPS model, constraints (7) and (8) and variables ei and li
are omitted. In the APS model, constraints (16) and (17) and variables Lit and Eit are also
dropped from the computations. For this problem, the objective functions are

∑
i∈N wi ui

and
∑

i∈N wiUi in (1) and (11) respectively.
As in all previous cases, the number of instances that were solved optimally by eachmodel

was again significantly different. In this case, however, the total number of instances solved
optimally was significantly higher than the number of optimal instances reported for the other
problems. The BPSmodel was able to find the optimal solution in 50% of the instances (50 of
the 100 instances) while the APSmodel produced optimal solutions in 88% (88 instances out
of 100). The higher number of outcomes with optimal solutions may be explained by the fact
that the TWNTJ is known to be maximal pseudo-polynomially solvable (Lawler 1990). The
APS model optimally solved all problem instances up to 80 jobs and 8 out of 20 instances
for 160 jobs.

As illustrated by Fig. 8, the difference in optimality gaps between two models continues
to be significant as the problem size increases. As indicated in Table 8, the optimality gap for
the APS stays quite low under 8%. Overall, the objective function values obtained by the APS
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Fig. 8 Optimality gaps for the TWNTJ problem

Table 8 Computational test results for the TWNTJ objective (100 instances)

Jobs BPS APS

Computational time (s) Relative gap (%) Computational time (s) Relative gap (%)

TO Min Avg Max Min Avg Max TO Min Avg Max Min Avg Max

10 0 0.05 0.96 2.28 0.00 0.00 0.00 0 0.015 0.116 0.281 0.00 0.00 0.00

20 0 1.06 17.30 132.2 0.00 0.00 0.00 0 0.078 0.920 2.888 0.00 0.00 0.00

40 10 18.51 2111 3995 0.00 0.49 5.81 0 2.263 9.436 32.17 0.00 0.00 0.00

80 20 3602 3683 4267 0.00 1.38 8.76 0 13.04 315.2 2671 0.00 0.00 0.00

160 20 3607 3880 4931 0 12.4 25.91 12 554.8 2475 3636 0.00 7.89 54.93

model are 0.49% and 1.38% lower than by the BPS model for 40 and 80 jobs respectively.
Clearly, the gap in this respect ismuch smaller between bothmodels compared to the previous
cases. However, as indicated in the table, there is still significant difference in computational
time performance. We observe that the average computational times for the optimally solved
instances in the BPS model are 0.96, 17.30, and 520.44 CPU seconds for 10, 20, and 40 jobs
respectively. These values turned out to be much lower for the APS model at 0.12, 0.92, and
9.43 CPU seconds respectively.

4.5 Case study: early start penalties with overtime option

Numerical experiments presented so far show how the performance of the APS formulation
is consistently and substantially better performing in comparison to the BPS formulation.
In this section, we present an implementation of the APS model for a real industry case.
As mentioned in the Introduction Section, our study is initially motivated by our earlier
collaboration with a MRO service provider that is specialized on landing gear overhauls.
The business of landing gear overhaul service operates within a very competitive market
where failure to meet deadlines represents significant losses for airlines, and in turn loss of
business for the overhaul service provider (OSP). The customers, who are most usually the
airline companies, have strict expectations regarding the overhaul turnover times since any
not-in-use (or grounded) equipment usually costs them tens of thousands of dollars daily.
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The periodic overhauls are typically enforced by regulatory agencies such as the Federal
Aviation Administration (FAA) in the U.S.A. Such agencies restrict the total flight hours
for a landing gear set and therefore enforce overhaul deadlines on the commercial aircraft
users. The airlines typically attempt to use their equipment to the fullest limit for revenue
management purposes and require from the OSP to deliver their services just in time to
minimize interruptions in equipment use. In a perfect world, the overhaul start and finish
dates always stay within the airline’s scheduled time frame (e.g., 30 to 60 day turnaround
time depending on the type of the equipment); however, this is not always possible due to
capacity limitations of theOSP.Usually, the latest date an overhauled landing gear is delivered
back to the airline is considered a hard constraint due to regulations. Since the OSP does not
have much flexibility on late delivery, they may negotiate earlier starts (release dates) with
the customers in return for discounts (or early start penalties) that aim to compensate the
loss of the customer for grounding their equipment earlier. Consequently, the OSP faces the
problem of minimizing the early start penalties.

In this case study, we focus on the scheduling problem for the so called “regional shop”
of the OSP which services the landing gear only for narrow-body aircraft. The shop has
orders for overhauling 82 landing gear sets from 4 major customers over a period that spans
from the last quarter of 2017 to the first quarter of 2019. The jobs have known due dates
and the desired release dates are set at 30 days before the due dates, which is typically a
standard for narrow-body aircraft. All jobs have similar standard work requirements. We
tackle the problem as a single processor preemptive scheduling problem as the majority of
the overhaul processes can be interrupted in favor of higher priority work. We note that this
is not an exact mapping of the real problem since in reality overhaul procedure involves
multiple parallel and serial sub-processes and unexpected tasks that may emerge during the
execution of these processes. The single machine scheduling solution basically serves as an
approximation which is used as (i) a reference for business development (e.g., negotiating
release dates and new contracts) and (ii) an initial benchmark for workload allocation and
overtime planning at tactical level. Clearly, while this solution approach provides a useful
reference for tactical planning for release dates and overtime capacity, adjustments are often
necessary at the operational level, where detailed schedules are determined and executed.

Although the problem configuration in this case study is not strictly a tardiness problem,
the early-start configuration of the OSP schedule in fact represents amirror case of a tardiness
problem. Using this property, we can transform the original release and due dates into their
mirror equivalents to generate the equivalent tardiness problem and solve it using the APS
model. Basically, we reverse the time line and obtain themirror values for the release, and due
dates, namely rm and dm from the actual release and due dates; ra and da . Figure 9 illustrates
this process, where rm = T − da + 1 and dm = T − ra + 1. With this transformation the
start dates can be mapped by the mirrored finish dates, that is, sa = T − fm + 1.

Since the shop has the option of working overtime, we need to incorporate the overtime
decisions in to the APS model. For this reason, we introduce new parameters αo and Co that
represent the overtime capacity limit at each period and unit cost of using overtime capacity
respectively. A new decision variable Vt is defined to denote the amount of overtime capacity
used in period t . Thus, we modify the objective function for the APS and constraint (14) as
follows:
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Fig. 9 Schematic of the date correspondence between actual and mirror schedules

Fig. 10 Actual due dates (dai )

minimize:
∑

i∈N

T∑

t=1

wi Lit +
T∑

t=1

CoVt (40)

∑

i∈N
pi Xit ≤ α + Vt , ∀t ∈ {1, . . . , T } (41)

Finally, we need to add the following constraint to enforce the overtime capacity limit:

Vt ≤ αo, ∀t ∈ {1, . . . , T } (42)

The earliness penalties are set based on the criticality of the customers for the OSP and
as such, four distinct weights are considered. To protect the privacy of the OSP, we slightly
modified all cost related data and significantly scaled them down for ease of representation.
The actual due dates are depicted in Fig. 10 and all other input values used in the modified
APS model are presented in Table 9. Processing time to finish each job is scaled to 120 hours
(with full capacity allocation). The objective of the ensuing model is to produce an overhaul
schedule that minimizes the cost of early start penalties and overtime incurred by the OSP.

With a time limit of 3600 CPU seconds, the APS model was able to provide an objective
function value with an optimality gap of 2.67%. The model produced an optimality gap
of 6.5% within the first minute for this problem and converged to 2.67% after one hour. As
expected, the convergence occurred with diminishing return. Likewise, the objective function
value was convex decreasing in time. It produced an objective value of 1247 within the first
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Table 9 Parameters and expressions of the case study

Mirror model parameters Expressions

Time horizon-Tm 630 Days

Release date-rmi T − dai + 1; ∀i ∈ N

Due date-dmi T − (dai − 30) + 1; ∀i ∈ N

Tardiness penalty (weight)-wi 4-For customer 1 with 41 jobs

1-For customer 2 with 16 jobs

2-For customer 3 with 13 jobs

1.5-For customer 4 with 12 jobs

Allowed Regular Time Capacity-α 16-Based on two 8-hour shifts per day

Cost of overtime-Co 0.65-Per overtime hour

Allowed Overtime capacity-αo 4-Based on maximum 4 hours of overtime per day

Fig. 11 Convergence of the APS model

minute, converged to 1207 at around 2400 CPU seconds and did not improve until the time
limit is reached. This indicates only a 3.2% gain from the first minute, which supports our
analytical and computational observations made earlier. When we increased the time limit
to 12 CPU hours we observed that the optimality gap did not improve significantly with
outcomes of 2.14% and 2.12% at 5 and 12 hours respectively. The objective function value
remained to be 1207. Figure 11 depicts the convergence performance.

5 Conclusions

We propose two modeling approaches that can be used to solve a variety of tardiness related
problems on a single machine layout where preemption is allowed. Following the conven-
tional time-indexed formulation, we first build a model using binary variables that explicitly
identifies completion times of a finite set of jobswith varying release times, due dates, and pro-
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cessing times. We refer to this model as the Binary Preemptive Scheduling (BPS) model. The
second model, which we call the Aggregate Preemptive Scheduling (APS) model, adopts the
aggregate planning view and eliminates binary constraints resulting in significantly improved
computational efficiency. Under this approach, each job is mapped to a unit demand and the
due date of the job is represented by a period with a unit demand corresponding to the same
job. Subsequently, the work units allocated to the processor are transformed into production
decisions measured by fraction of demand. Consequently, instead of identifying the finish
times of jobs, the proposed APS model tracks the amount of production completed and
backlogged via the inventory and shortage variables and conservation of units constraints.

We compare the proposed models both analytically and computationally. First, we estab-
lish the equivalency of both models and show that APS formulation provides tighter lower
bounds compared to the BPS formulation. Next, we carry out computational experiments
for both models and test their computational performances under commonly used tardiness
related objective functions including total weighted tardiness (TWT), total weighted comple-
tion time (TWC), total weighted earliness and tardiness (TWET), and total weighted number
of tardy jobs (TWNTJ). The computational results reveal a considerable difference between
the performances of the formulations, where the BPS model is outperformed with clear lead
by the APS model in all tested tardiness objectives in terms of computational times and
quality of solutions obtained in set time frames. The advantage of the APS model becomes
more apparent as the problem size increases.

Finally,we demonstrate the performance of the proposedAPSmodel on a problemadopted
from a real life application in the aviation MRO industry. The case problem involved 82 jobs
with release and due dates across a planning horizon of 630 days. The model in this case was
modified by additional variables and constraints so as to incorporate overtime decisions. The
computation resulted in a solution with a reasonably small optimality gap under an hour.

Our overall study establishes that theAPSmodel is a promising tool for generating optimal
or near-optimal schedules and capacity allocation plans reasonably quickly for real life appli-
cations. The proposed models can be generalized to and tailored for other scheduling settings
where preemption is allowed. To name a few, flow shop and project scheduling problems are
interesting extensions in this direction. Our results also indicate that with the tighter bounds
it provides, the APS modeling is a promising optimization approach for other scheduling
objectives such as minimizing the maximum lateness and minimizing the makespan.
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