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Abstract
The cross-efficiency evaluation measures the efficiencies of decision-making units (DMUs)
through both self- and peer-evaluation methods. Since the cross-efficiency is effective in
discriminating among DMUs, this evaluation technique has been widely used in many appli-
cations. In the real world, there are cases in which the observations are difficult to measure
precisely. The existing approaches of fuzzy cross-efficiency evaluation employ the secondary
goal approach to determine the weights for measuring fuzzy cross-efficiencies. However,
the different approaches for determining the weights may produce different fuzzy cross-
efficiencies. In this paper, we propose a novel method that considers all possible weights
of all the DMUs simultaneously to calculate the fuzzy cross-efficiency directly, and the
choice of weights is not required. Since the α-level-based approach is one of the most pop-
ular approaches for developing fuzzy data envelopment analysis models, this approach is
employed to formulate the proposed fuzzy cross-efficiency evaluation. A pair of linear pro-
grams is developed to calculate the fuzzy cross-efficiency. At a specific α-level, solving the
pair of linear programs generates the lower bound and upper bound of the fuzzy efficiency
score. The illustrated examples show that the fuzzy cross-efficiency evaluation method pro-
posed in this paper has discriminative power in ranking the DMUs when the data are fuzzy
numbers.
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1 Introduction

Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies in
a group of decision-making units (DMUs) that consume multiple inputs to produce multiple
outputs. Many applications and theoretical developments of DEAmodels have been reported
since its appearance (for example, the review of Liu et al. 2013). The most prominent feature
of a DEA is to provide a self-evaluation in which each DMU can choose the most favorable
input and output weights to obtain the highest efficiency score. If the score is unity, then this
DMU is nondominated; otherwise, it is dominated. However, the evaluation may lead to the
situation in which many DMUs are evaluated as efficient, and the efficient units cannot be
further discriminated. This would make the task of ranking DMUs more difficult.

Several studies have investigated to tackle this problem (Adler et al. 2002; Kao and Hung
2005; Ramón et al. 2010). Since all DMUs being evaluated have different preferences of DEA
weights, Sexton et al. (1986) and Doyle and Green (1994) proposed the approach of using
a cross-efficiency evaluation to discriminate among the DMUs. The idea of this approach is
that the weights selected by each DMU are applied to calculate the efficiency of every other
DMU. In other words, each DMU is required to be not only self- but also peer-evaluated. In
this case, every DMU has n efficiencies, called cross efficiencies, calculated from the weights
selected by all n DMUs, including itself. The final efficiency of a DMU is the average of the
n efficiency scores. The results are thus more discriminative.

The advantages of cross-efficiency evaluation are ranking the DMUs in a unique order
(Doyle and Green 1994) and effectively discriminating among DMUs (Boussofiane et al.
1991). Due to these advantages, this evaluation technique has been widely used in many
applications, for example, technology selection (Sun 2002), economic-environmental per-
formance (Lu and Lo 2007), supply chain management (Yu et al. 2010), public resource
management (Falagario et al. 2012), resource allocation (Du et al. 2014), portfolio selection
(Lim et al. 2014), premium allocation for academic faculty (Oral et al. 2014), baseball player
ranking (Oukil and Amin 2015), and two-sided mergers and acquisition fits (Shi et al. 2017).

The main difficulty with the cross evaluation is that multiple solutions commonly prevail
in a DEA, which lead to different cross efficiency scores and consequently different rankings
of the DMUs. One remedy, as suggested by Sexton et al. (1986), is to use the secondary goals
to help select a set of weights from the alternative solutions. In addition to the well-known
aggressive and benevolent formulations (Sexton et al. 1986; Doyle and Green 1994) that
use an additional criterion for the selection of weights, other secondary-goal techniques are
proposed and discussed. Örkcü et al. (2015) and Wu et al. (2016) provided good reviews
for the secondary goal approaches in a cross-efficiency evaluation. There is another line of
literature developed in which all the possible weight sets in the weight space were considered
in the proposed approaches, and a cross-efficiency interval was derived for a DMU being
evaluated (Yang et al. 2012; Alcaraz et al. 2013; Ramón et al. 2014; Liu 2018).

In the real world, observations are usually difficult to measure precisely. One way to
manipulate imprecise data directly is to represent the uncertain values by the membership
functions of the fuzzy set theory (Zimmermann 1996). Under the framework of a DEA,
different approaches for measuring efficiency in fuzzy environments have been proposed. A
comprehensive bibliography of these approaches and applications can be found in Hatami-
Marbini et al. (2011) and Emrouznejad and Tavana (2014). However, as indicated in Sirvent
and León (2014), the ranking of DMUs based on the ordering of fuzzy DEA efficiency
scores can be criticized for the same reasons as those resulting from conventional DEA
efficiencies. Dotoli et al. (2015) also noted that the existing fuzzy DEA models do not allow
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for discrimination among the efficient DMUs. A fuzzy cross-efficiency evaluation, which
measures both the fuzzy self- and peer-evaluations, is able to eliminate the weaknesses of
fuzzy DEA models, and this justifies the need for a fuzzy cross-efficiency evaluation for
ranking the performance of DMUs in a fuzzy environment.

While Dotoli et al. (2015), Chen andWang (2016), and Ruiz and Sirvent (2017) developed
their own specific methodologies, these studies share one common property that they all
employed the secondary goal approach to make a choice of weights among the alternative
optimum solutions. Different approaches for determining the weights may produce different
cross-efficiencies. Knowing which method to use depends on the underlying assumptions.
Instead of using the secondary goal approach in those studies, we propose a novel approach
that considers all possible weights of all the DMUs at the same time, which originates from
the idea of Ramón et al. (2014), to calculate the fuzzy cross-efficiency for ranking DMUs
in a fuzzy environment. The advantages of the proposed approach compared to the existing
approaches are that the fuzzy cross-efficiencyof aDMUis calculated directlywithout the need
to calculate the average cross efficiency fromnDMUs, and a choice ofweights is not required.

In the development of a fuzzy DEA, the α-level approach is a technique that is used to
transform fuzzy DEA models into a pair of parametric programs for finding the lower and
upper bounds of the fuzzy efficiency scores (Hatami-Marbini et al. 2011). This approach
is very similar to that of interval programming, where it allows us to specify a model with
interval coefficients (Oliveira and Antunes 2007). At a given α-level, the pair of parametric
programs becomes a pair of conventional linear programs. Solving this pair of linear pro-
grams produces the lower and upper bounds of the fuzzy efficiency score. By enumerating
the different α-levels, the membership function of the efficiency scores can be approximated.
In addition, since convex fuzzy numbers can be represented as forms of α-level sets, any
type of convex fuzzy number can be used as fuzzy input and output data in this approach.
This is the reason why the α-level-based approach is the most popular approach for the
development of a fuzzy DEA and fuzzy cross-efficiencymodels (Hatami-Marbini et al. 2011;
Emrouznejad and Tavana 2014; Dotoli et al. 2015). In this study, the α-level based approach
is incorporated into the idea of Ramón et al. (2014) to investigate the fuzzy cross-efficiency
evaluation for ranking DMUs.

The next section reviews several studies related to the cross-efficiency, fuzzy DEA, and
fuzzy cross-efficiency evaluation. Then, in Sect. 3, we briefly introduce the crisp cross-
efficiency evaluation methodology, and we formulate a fuzzy cross-efficiency evaluation
based on the α-level-based approach in Sect. 4. After that, three examples are used in Sect. 5
to illustrate the fuzzy cross-efficiency measures. Finally, in Sect. 6, some conclusions are
drawn from the discussions in the preceding sections.

2 Literature review

This section is classified into three subsections for the reviews of cross-efficiency evaluation,
fuzzyDEA, and fuzzy cross-efficiency evaluation to provide a simple overview of the existing
literature.

2.1 Cross-efficiency evaluation

Among all methods for discussing the issue of the discriminative power of a DEA, the most
popularly studied method is the cross-efficiency evaluation method (Wu et al. 2016).Despite
the extensive use of the cross-efficiency method, it has some limitations arising from the
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classic DEA. Doyle and Green (1994) stated that non-uniqueness decreases the usefulness
of the cross-efficiency method and recommended the use of a secondary goal for a cross
efficiency evaluation related to the non-uniqueness of the optimal weights in a DEA. They
proposed aggressive and benevolent cross efficiency models to achieve the secondary goal.

Liang et al. (2008) proposed using the DEA game cross-efficiency evaluation method.
Their method contains the DEA game cross efficiency model and an algorithm which can
generate a set of cross-efficiency scores that constitute a Nash equilibrium point for the
DMUs. Lam (2010) developed a methodology that applies discriminant analysis, a super-
efficiencyDEAmodel and amixed-integer linear programmingmethod to choose the suitable
weight sets to be used in computing the cross-evaluation, and each obtained weight set can
reflect the relative strengths of the efficient DMUunder consideration.Wang and Chin (2010)
investigated a neutral DEA model for cross-efficiency evaluation. Their neutral DEA model
determined one set of input and outputweights for eachDMUfrom its own point of viewwith-
out being an aggressive or benevolent formulation for the other DMUs. Ramón et al. (2010)
initiated an idea to avoid the unreasonable weights instead of expecting that their effects
would be cancelled out in the amalgamation of the weights. Specifically, their approach
allows the inefficient DMUs to make a choice of weights that prevented them from using
unrealistic weighting schemes. Jahanshahloo et al. (2011) incorporated a symmetric tech-
nique into theDEA cross-efficiency evaluation and presented a secondary goalmodel that can
choose symmetric weights for DMUs. Örkcü and Bal (2011) exploited a goal programming
method for the second stage of the cross-efficiency evaluation depending on the multiple cri-
teria DEAmodel, which had three different efficiency concepts: the classical DEA, minmax,
and minsum efficiency criteria.

Wang et al. (2012) proposed somealternativeDEAmodels tominimize the virtual disparity
in the cross-efficiency evaluation, and the proposed DEA models determined the input and
output weights of each DMU in a neutral way. Lim (2012) introduced minimax and maximin
formulations of cross-efficiency in the DEA, and the secondary goal was replaced with the
minimization (or maximization) of the best (or worst) cross-efficiency of the peer DMUs. A
bisection algorithmwas developed for finding the cross-efficiency.Wu et al. (2012) developed
aweight-balancedDEAmodel inwhich the secondary goalwas to reduce the large differences
in the weighted data and decrease the number of zero weights. Oral et al. (2015) used the
advantage of multiple optimal solutions to integrate both the first- and second-order voices
of all DMUs and suggested a model that was most appreciative for all DMUs being cross-
evaluated by all others. Örkcü et al. (2015) modified the model of Lam (2010) to reduce the
solution steps during the solution procedure, and the model became a linear programming
model to make it easier to use and to reduce the computational complexity.

Wu et al. (2016) incorporated a target identification model to obtain reachable targets
for all DMUs. Then, several secondary goal models were proposed for the weight selection
considering both the desirable andundesirable cross-efficiency targets of allDMUs.Al-Siyabi
et al. (2018) employed the DEA cross-efficiency evaluation and proposed a mean–variance
goal programming model for minimizing the risk of changing the DEA weights for the
identification of high performing DMUs. Oukil (2018) exploited the properties of multiple
weighting schemes, which were generated over the cross-evaluation process in developing
a methodology, and the robustness of the proposed methodology was evaluated using OWA
combinations involving different minimax disparity models and different levels of optimism
of the decision maker.

Apart from the secondary goal approach, there is an alternative strategy that does not
take into account the choice of an aggressive or benevolent strategy. Instead, all possible
weight sets in the weight space are considered in the computation of the cross efficiency.
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Yang et al. (2012) calculated both the minimal and maximal game cross-efficiency scores
for each given DMU according to the idea of Liang et al. (2008) and gave a measure of the
overall acceptability of the obtained cross-efficiency scores for ranking the DMUs. Alcaraz
et al. (2013) considered all the possible choices of weights that all DMUs could make, and for
each DMU, determined a range for its possible ranking rather than a single ranking. Ramón
et al. (2014) developed a pair of models that allowed for all possible weights for all DMUs
to obtain a cross-efficiency interval for each DMU. The existing order relations for interval
numbers were used to rank the DMUs. Liu (2018) considered the cross-efficiency intervals
and their variances for ranking the DMUs. The aggressive and benevolent formulations were
chosen at the same time, and the signal-to-noise ratio was constructed as a numerical index
for ranking the DMUs. These approaches performed the cross-efficiency evaluations without
the need to make any choice of DEA weights.

2.2 Fuzzy DEA

DEA, which was developed by Charnes et al. (1978), is a well-established nonparametric
approach used to evaluate the relative efficiency of a set of comparable entities with multiple
inputs and outputs. Numerous DEA theoretical and application studies have been reported.
Initially, the DEA was meant to be used with crisp observations. To handle imprecise data,
the notion of fuzziness has been introduced, and several fuzzy formulations of the traditional
DEA models have been proposed.

Kao and Liu (2000) transformed a fuzzy DEA model to a family of conventional crisp
DEA models by applying the α-level-based approach. A pair of parametric programs is
formulated to describe the family of crisp DEA models, by which the membership functions
of the efficiency measures were approximated. Guo and Tanaka (2001) proposed a fuzzy
DEA model for symmetrical triangular fuzzy inputs and outputs. For a given possibility
level, h, it provided an efficiency score that is a nonsymmetrical triangular fuzzy number.
León et al. (2003) utilized possibilistic programming techniques to address fuzzy efficiency.
By using the ranking methods based on the comparison of α-levels, the resulting auxiliary
crisp problems can be solved. Lertworasirkul et al. (2003) developed a possibility approach
for solving a fuzzy DEAmodel, and they transformed the fuzzy DEAmodel into a possibility
linear programming problem by using the possibility measures of the fuzzy event.

Jahanshahloo et al. (2004) investigated a fuzzy ranking method for solving a slack-based
measurement model in a DEA when the input–output data were triangular fuzzy numbers.
Hatami-Marbini et al. (2010) presented a four-phase fuzzy DEA framework based on the
theory of the displaced ideal. Two hypothetical DMUs, namely, the ideal and nadir DMUs,
were constructed and used as reference points to evaluate a set of DMUs based on their
Euclidean distance from these reference points. Shokouhi et al. (2010) introduced a robust
DEAmodel that seeks tomaximize efficiency under the assumption of aworst-case efficiency
defined by the uncertainty set and its supporting constraint, and a Monte-Carlo simulation
is used to compute the conformity of the rankings in the model. Zerafat Angiz et al. (2010)
proposed an α-level based approach to retain the fuzziness of the model by maximizing the
membership functions of the inputs and outputs.

2.3 Fuzzy cross-efficiency evaluation

Fuzzy DEA models lack sufficient discriminative power to rank efficient DMUs with fuzzy
data since theymeasure theDMUs only by self-evaluation. Fuzzy cross-efficiency evaluation,
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which performs fuzzy self- and peer-evaluations, can eliminate the weaknesses of fuzzy DEA
models, and it is an effective tool for ranking DMUs in fuzzy environments. As noted in
Sirvent and León (2014), different approaches exist to calculate the efficiency score in a
fuzzy DEA, and it is not possible to develop a general approach to fuzzy cross-efficiency. In
other words, each method of the fuzzy cross-efficiency evaluation depends on the specific
features of the fuzzy DEA model and the underlying assumptions.

Dotoli et al. (2015) integrated the fuzzyDEA techniquewith the cross-efficiencymethod to
evaluate DMUs under uncertainty, and the secondary goals approach proposed by Doyle and
Green (1994) was applied to deal with the alternate optima for the DEA weights to calculate
the fuzzy cross-efficiency, which was subsequently defuzzified by means of a center of area
method for ranking. Chen and Wang (2016), according to the idea of Dimitris and Yiannis
(2002), measured the fuzzy efficiency score as the self-evaluation. Similar to Dotoli et al.
(2015), the approach of Doyle and Green (1994) was employed for the selection of the
weights to calculate the fuzzy peer-evaluated efficiencies of DMUs, and the averages of the
self- and peer-evaluated efficiencies were regarded as the final cross-efficiency of a DMU
being evaluated. Ruiz and Sirvent (2017) proposed a fuzzy cross-efficiency evaluation based
on the possibility approach by Lertworasirkul et al. (2003), and the idea of Doyle and Green
(1994) was used to develop the aggressive and benevolent formulations for determining the
sets of weights to calculate the fuzzy cross-efficiency of the DMUs.

3 Crisp cross-efficiency

Nomenclature

Edd CCR efficiency score for DMU d vid weight of input i for DMU d
Ẽdd fuzzy CCR efficiency for DMU d xi j input variable i consumed by DMU j

(Edd )
L
α lower bound of fuzzy CCR efficiency

at α-level for DMU d

yr j output variable r produced by DMU j

(Edd )
U
α upper bound of fuzzy CCR efficiency

at α-level for DMU d

Xi j input data i consumed by DMU j

Edk cross-efficiency of DMU k calculated
from weights selected by DMU d

Yr j output data r produced by DMU j

Ēk average cross-efficiency of DMU k X̃i j fuzzy input data i consumed by DMU
j

E A
k aggressive cross-efficiency for DMU k Ỹr j fuzzy output data r produced by DMU

j
E B
k benevolent cross-efficiency for DMU

k

(Xi j )
L
α lower bound of input data i consumed

by DMU j at α-level
Ẽ A
k fuzzy aggressive cross-efficiency for

DMU k

(Xi j )
U
α upper bound of input data i consumed

by DMU j at α-level
Ẽ B
k fuzzy benevolent cross-efficiency for

DMU k

(Yr j )
L
α lower bound of output data r

produced by DMU j at α-level
(E A

k )Lα lower bound of fuzzy aggressive
efficiency for DMU k at α-level

(Yr j )
U
α upper bound of output data r

produced by DMU j at α-level
(EB

k )Uα upper bound of fuzzy benevolent
efficiency for DMU k at α-level

x̂id j variable transformation for vid xi j ,
∀ i, d, j

urd weight of output r for DMU d ŷrd j variable transformation for urd yr j ,
∀ r, d, j
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LetXij and Yrj denote the ith input, i� 1,…,m, and rth output, r � 1,…, s, respectively, of
the jth DMU, j � 1,…, n. The DEA model proposed by Charnes et al. (1978) for calculating
the efficiency of DMU d under the assumption of constant returns to scale, referred to as the
CCR model, is:

Edd � max

s∑

r�1
urdYrd

m∑

i�1
vid Xrd

s.t.
m∑

i�1

vid Xid � 1

s∑

r�1

urdYr j −
m∑

i�1

vid Xi j ≤ 0, j � 1, . . . , n

urd , vid ≥ 0, r � 1, . . . , s, i � 1, . . . ,m (1)

where urd and vid are the weights selected by DMU d to calculate its efficiency Edd . Model
(1) is a linear fractional program that can be transformed into the following linear program:

Edd � max
s∑

r�1

urdYrd

s.t.
m∑

i�1

vid Xid � 1

s∑

r�1

urdYr j −
m∑

i�1

vid Xi j ≤ 0, j � 1, . . . , n

urd , vid ≥ 0, r � 1, . . . , s, i � 1, . . . ,m (2)

Model (2) is a self-evaluation of DMU d. As different DMUs may select different urd
and vid to measure efficiency, the idea of cross-efficiency is to use the weights selected by
all n DMUs to calculate the cross-efficiency of each DMU, and use the average as the final
efficiency measure. To be specific, if v∗

id (i � 1,…,m) and u∗
rd (r � 1,…,s) is an optimal

solution of (2) for a given DMU d. Let Edk denote the efficiency of DMU k calculated from
the weights selected by DMU d. We then have the cross-efficiency

Edk �
∑s

r�1 u
∗
rdYrk∑m

i�1 v∗
id Xik

, (3)

The cross-efficiency of DMU k is the average of Edk , d � 1,…, n, that is,

Ēk � 1

n

n∑

d�1

Edk (4)

Ramón et al. (2014) took all the possible weights into account for all the DMUs simulta-
neously and produced a cross-efficiency interval of each DMUbeing evaluated. Interestingly,
since all the possible weights of all the DMUs were considered at the same time, the lower
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and upper bounds of the cross-efficiency interval for DMU k are calculated only once via the
following aggressive and benevolent models, respectively:

E A
k �min

1

n

(
n∑

d�1

s∑

r�1

urdYrk

)

s.t.
m∑

i�1

vid Xik � 1, d � 1, . . . , n

s∑

r�1

urdYrd − Edd

m∑

i�1

vid Xid � 0, d � 1, . . . , n

s∑

r�1

urdYr j −
m∑

i�1

vid Xi j ≤ 0, d � 1, . . . , n, j � 1, . . . , n

urd , vid ≥ 0, d � 1, . . . , n, r � 1, . . . , s, i � 1, . . . ,m (5)

EB
k �max

1

n

(
n∑

d�1

s∑

r�1

urdYrk

)

s.t.
m∑

i�1

vid Xik � 1, d � 1, . . . , n

s∑

r�1

urdYrd − Edd

m∑

i�1

vid Xid � 0, d � 1, . . . , n

s∑

r�1

urdYr j −
m∑

i�1

vid Xi j ≤ 0, d � 1, . . . , n, j � 1, . . . , n

urd , vid ≥ 0, d � 1, . . . , n, r � 1, . . . , s, i � 1, . . . ,m (6)

The only difference between (5) and (6) is the direction of optimization: one is for mini-
mization and the other is for maximization. The set of weights derived from these twomodels
may not be the same as that obtained from (2). Models (5) and (6) produce the smallest and
largest cross-efficiency scores for DMU k, respectively, while maintaining the efficiency of
DMU d at its current level of Edd . These two models are designed for calculating the cross-
efficiencies when the input and output data are crisp values. If the observations in (5) and (6)
are expressed as fuzzy numbers, then Models (5) and (6) become the fuzzy cross-efficiency
evaluation methods.

In the next section, we adopt the idea of Ramón et al. (2014) to develop a novel fuzzy
cross-efficiency evaluation model, where the observations are represented as fuzzy numbers.

4 Fuzzy cross-efficiency

In a set of DMUs, assume that the input and output data are approximately known and can
be represented as convex fuzzy numbers X̃i j and Ỹr j , respectively. In the case of a fuzzy
environment, Model (2) becomes:

Ẽdd � max
s∑

r�1

urd Ỹrd
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s.t.
m∑

i�1

vid X̃id � 1

s∑

r�1

urd Ỹr j −
m∑

i�1

vid X̃i j ≤ 0, j � 1, . . . , n

urd , vid ≥ 0, r � 1, . . . , s, i � 1, . . . ,m (7)

Similarly,Models (5) and (6)with fuzzy inputs andoutputs can be formulated, respectively,
as

Ẽ A
k � min

1

n

(
n∑

d�1

s∑

r�1

urd Ỹrk

)

s.t.
m∑

i�1

vid X̃ik � 1, d � 1, . . . , n

s∑

r�1

urd Ỹrd − Ẽdd

m∑

i�1

vid X̃id � 0, d � 1, . . . , n

s∑

r�1

urd Ỹr j −
m∑

i�1

vid X̃i j ≤ 0, d � 1, . . . , n, j � 1, . . . , n

urd , vid ≥ 0, d � 1, . . . , n, r � 1, . . . , s, i � 1, . . . ,m (8)

Ẽ B
k � max

1

n

(
n∑

d�1

s∑

r�1

urd Ỹrk

)

s.t.
m∑

i�1

vid X̃ik � 1, d � 1, . . . , n

s∑

r�1

urd Ỹrd − Ẽdd

m∑

i�1

vid X̃id � 0, d � 1, . . . , n

s∑

r�1

urd Ỹr j −
m∑

i�1

vid X̃i j ≤ 0, d � 1, . . . , n, j � 1, . . . , n

urd , vid ≥ 0, d � 1, . . . , n, r � 1, . . . , s, i � 1, . . . ,m (9)

Since the α-level based approach is the most popular approach for the development of
fuzzy DEA models (Hatami-Marbini et al. 2011), this approach is used to formulate the
mathematical models proposed in this study. Denote (Xi j )α � [(Xi j )Lα ,(Xi j )Uα ], (Yr j )α �
[(Yr j )Lα ,(Yr j )

U
α ], and (Edd )α � [(Edd )Lα , (Edd )Uα ] as the α-levels of X̃i j , Ỹr j , and Ẽdd , respec-

tively.
At a specific α-level, Kao and Liu (2000) have shown that the minimal and maximal

efficiency scores for DMU d in (7) are given by the following formulations, respectively:

(Edd )
L
α � max

s∑

r�1

urd (Yrd )
L
α

s.t.
m∑

i�1

vid (Xid )
U
α � 1
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s∑

r�1

urd (Yrd )
L
α −

m∑

i�1

vid (Xid )
U
α ≤ 0

s∑

r�1

urd (Yr j )
U
α −

m∑

i�1

vid (Xi j )
L
α ≤ 0, j � 1, . . . , n, j �� d

urd , vid ≥ 0, r � 1, . . . , s, i � 1, . . . ,m (10)

(Edd )
U
α � max

s∑

r�1

urd (Yrd )
U
α

s.t.
m∑

i�1

vid (Xid )
L
α � 1

s∑

r�1

urd (Yrd )
U
α −

m∑

i�1

vid (Xid )
L
α ≤ 0

s∑

r�1

urd (Yr j )
L
α −

m∑

i�1

vid (Xi j )
U
α ≤ 0, j � 1, . . . , n, j �� d

urd , vid ≥ 0, r � 1, . . . , s, i � 1, . . . ,m (11)

Model (10) is a DEA model with exact data, where the levels of the input and output data
are set unfavorably for DMU d and in favor of the other units. For DMU d, the input data are
adjusted to their upper bounds and the output data to their lower bounds. For the other DMUs,
the inputs are favorably adjusted to their lower bounds and the outputs to their upper bounds.
In this manner, DMU d is placed in the worst possible position compared to the other units.
Contrary to (10), Model (11) has the levels of inputs, and the outputs are adjusted in favor of
DMU d and aggressively against the other units. For DMU d, the inputs and outputs are set to
their lower bounds and upper bounds, respectively. Unfavorably for the other units, the inputs
and outputs are contrarily adjusted to their upper bounds and lower bounds, respectively, and
DMU d is placed the best possible position compared to the other units.

Models (8) and (9) are the aggressive and benevolent formulations which are to find the
smallest and largest cross-efficiency scores for DMU k with fuzzy input and output data. At
a specific α-level, they can be expressed as:

(E A
k )

L
α � min

(Edd )
L
α ≤ edd ≤ (Edd )

U
α

(Xi j )
L
α ≤ xi j ≤ (Xi j )

U
α

(Yr j )
L
α ≤ yr j ≤ (Yr j )

U
α

∀d, i, j, r

(x, y, e) (12)

(EB
k )

U
α � max

(Edd )
L
α ≤ edd ≤ (Edd )

U
α

(Xi j )
L
α ≤ xi j ≤ (Xi j )

U
α

(Yr j )
L
α ≤ yr j ≤ (Yr j )

U
α

∀d, i, j, r

(x, y, e) (13)

where E A
k (x,y,e) and EB

k (x,y,e) are defined in Models (5) and (6), respectively. Note that
E A
k (x,y,e) and EB

k (x,y,e) are two mathematical programs with minimum and maximum oper-
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ations as the objective functions, respectively. Therefore, Models (12) and (13) are two-level
mathematical programs.

Based on each set of xi j , yr j , and edd defined by the first level, the second-level program is
able to calculate the cross-efficiency. In other words, the smallest and largest cross-efficiency
scores are determined by the values of xi j , yr j , and edd in Models (12) and (13), respectively.
These two models can be rewritten as follows:

(E A
k )

L
α � min

(Edd )
L
α ≤ edd ≤ (Edd )

U
α

(Xi j )
L
α ≤ xi j ≤ (Xi j )

U
α

(Yr j )
L
α ≤ yr j ≤ (Yr j )

U
α

∀d, i, j, r

·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 1
n

(
n∑

d�1

s∑

r�1
urd yrk

)

s.t.
m∑

i�1
vid xik � 1, d � 1, . . . , n

s∑

r�1
urd yrd − edd

m∑

i�1
vid xid � 0, d � 1, . . . , n

s∑

r�1
urd yr j −

m∑

i�1
vid xi j ≤ 0, d � 1, . . . , n, j � 1, . . . , n

urd , vid ≥ 0, d � 1, . . . , n, r � 1, . . . ,m, i � 1, . . . ,m
(14)

(EB
k )

U
α � max

(Edd )
L
α ≤ edd ≤ (Edd )

U
α

(Xi j )
L
α ≤ xi j ≤ (Xi j )

U
α

(Yr j )
L
α ≤ yr j ≤ (Yr j )

U
α

∀d, i, j, r

·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max 1
n

(
n∑

d�1

s∑

r�1
urd yrk

)

s.t.
m∑

i�1
vid xik � 1, d � 1, . . . , n

s∑

r�1
urd yrd − edd

m∑

i�1
vid xid � 0, d � 1, . . . , n

s∑

r�1
urd yr j −

m∑

i�1
vid xi j ≤ 0, d � 1, . . . , n, j � 1, . . . , n

urd , vid ≥ 0, d � 1, . . . , n, r � 1, . . . ,m, i � 1, . . . ,m
(15)

Since the inner level and outer level programs of (14) and (15) have the same directions
of optimization, that is, minimization and maximization, respectively, we can combine these
programs into one-level mathematical programs. The objective functions of the inner and
outer programs are treated as the overall objective functions, and the constraints at the two
levels are regarded as the overall constraints. In otherwords,Models (14) and (15) are reduced
to the following formulations:

(E A
k )

L
α � min

1

n

(
n∑

d�1

s∑

r�1

urd yrk

)

s.t.
m∑

i�1

vid xik � 1, d � 1, . . . , n

s∑

r�1

urd yrd − edd

m∑

i�1

vid xid � 0, d � 1, . . . , n

s∑

r�1

urd yr j −
m∑

i�1

vid xi j ≤ 0, d � 1, . . . , n, j � 1, . . . , n

(Edd )
L
α ≤ edd ≤ (Edd )

U
α , d � 1, . . . , n,
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(Xi j )
L
α ≤ xi j ≤ (Xi j )

U
α , i � 1, . . . ,m, j � 1, . . . , n

(Yr j )
L
α ≤ yr j ≤ (Yr j )

U
α , r � 1, . . . , s, j � 1, . . . , n

urd , vid ≥ 0, d � 1, . . . , n, r � 1, . . . , s, i � 1, . . . ,m (16)

(EB
k )

U
α � max

1

n

(
n∑

d�1

s∑

r�1

urd yrk

)

s.t.
m∑

i�1

vid xik � 1, d � 1, . . . , n

s∑

r�1

urd yrd − edd

m∑

i�1

vid xid � 0, d � 1, . . . , n

s∑

r�1

urd yr j −
m∑

i�1

vid xi j ≤ 0, d � 1, . . . , n, j � 1, . . . , n

(Edd )
L
α ≤ edd ≤ (Edd )

U
α , d � 1, . . . , n,

(Xi j )
L
α ≤ xi j ≤ (Xi j )

U
α , i � 1, . . . ,m, j � 1, . . . , n

(Yr j )
L
α ≤ yr j ≤ (Yr j )

U
α , r � 1, . . . , s, j � 1, . . . , n

urd , vid ≥ 0, d � 1, . . . , n, r � 1, . . . , s, i � 1, . . . ,m (17)

Because of the nonlinear terms urd yrk , vid xik ¸ urd yrd , vid xid , urd yr j , vid xi j , and
edd

∑m
i�1 vid xid , Models (16) and (17) are nonlinear programs. In this case we let x̂id j �

vid xi j , ∀i, d, j, and ŷrd j � urd yr j , ∀r , d, j, and multiply the associated terms in the
constraints (Xi j )Lα ≤ xi j ≤ (Xi j )Uα and (Yr j )Lα ≤ yr j ≤ (Yr j )Uα with vid and urd , respec-
tively, that is, vid (Xi j )Lα ≤ x̂id j≤ vid (Xi j )Uα , i � 1,…,m, d � 1,…, n, j � 1,…, n, and
urd (Yr j )Lα ≤ ŷrd j ≤urd (Yr j )Uα , r � 1,…,s, d � 1,…, n, j � 1,…,n. Nevertheless, the
term edd

∑m
i�1 vid xid still needs to be dealt with. Fortunately, we have x̂idd � vid xid

and
∑m

i�1 vid (Xid )Lα (Edd )Lα≤∑m
i�1 edd x̂idd � ∑m

i�1 eddvid xid≤
∑m

i�1 vid (Xid )Uα (Edd )Uα .
By letting ŵidd � edd x̂idd transform the set of constraints, (Edd )Lα ≤ edd ≤(Edd )Uα , d
� 1,…, n, into

∑m
i�1 vid (Xid )Lα (Edd )Lα≤∑m

i�1 ŵidd≤∑m
i�1 vid (Xid )Uα (Edd )Uα , d � 1,…, n,

Models (16) and (17) can be reformulated as follows:

(E A
k )

L
α � min

1

n

(
n∑

d�1

s∑

r�1

ŷrdk

)

s.t.
m∑

i�1

x̂idk � 1, d � 1, . . . , n

s∑

r�1

ŷrdd −
m∑

i�1

ŵidd � 0, d � 1, . . . , n

s∑

r�1

ŷrd j −
m∑

i�1

x̂id j ≤ 0, d � 1, . . . , n, j � 1, . . . , n

m∑

i�1

vid (Xid )
L
α (Edd )

L
α ≤

m∑

i�1

ŵidd ≤
m∑

i�1

vid (Xid )
U
α (Edd )

U
α , d � 1, . . . , n

vid (Xi j )
L
α ≤ x̂id j ≤ vid (Xi j )

U
α , i � 1, . . . ,m, d � 1, . . . , n, j � 1, . . . , n
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urd (Yr j )
L
α ≤ ŷrd j ≤ urd (Yr j )

U
α , r � 1, . . . , s, d � 1, . . . , n, j � 1, . . . , n

urd , vid ≥ 0, d � 1, . . . , n, r � 1, . . . , s, i � 1, . . . ,m. (18)

(EB
k )

U
α � max

1

n

(
n∑

d�1

s∑

r�1

ŷrdk

)

s.t.
m∑

i�1

x̂idk � 1, d � 1, . . . , n

s∑

r�1

ŷrdd −
m∑

i�1

ŵidd � 0, d � 1, . . . , n

s∑

r�1

ŷrd j −
m∑

i�1

x̂id j ≤ 0, d � 1, . . . , n, j � 1, . . . , n

m∑

i�1

vid (Xid )
L
α (Edd )

L
α ≤

m∑

i�1

ŵidd ≤
m∑

i�1

vid (Xid )
U
α (Edd )

U
α , d � 1, . . . , n

vid (Xi j )
L
α ≤ x̂id j ≤ vid (Xi j )

U
α , i � 1, . . . ,m, d � 1, . . . , n, j � 1, . . . , n

urd (Yr j )
L
α ≤ ŷrd j ≤ urd (Yr j )

U
α , r � 1, . . . , s, d � 1, . . . , n, j � 1, . . . , n

urd , vid ≥ 0, d � 1, . . . , n, r � 1, . . . , s, i � 1, . . . ,m. (19)

Models (18) and (19) are linear programs that guarantee globally optimal solutions. The
optimal values of (E A

k )
L
α and (EB

k )
U
α solved from (18) and (19), respectively, are the lower

and upper bounds of the cross-efficiency at a specific α-level.
When the observations are all crisp numbers in (18), Models (18) and (5) have the same

objective function and constraints. The similar case also applies in Models (19) and (6). In
other words, when the observations are all deterministic values in (18) and (19), these two
models boil down to (5) and (6), respectively.

Since the derived cross-efficiency scores of the DMUs are fuzzy numbers, we need to
rank these fuzzy cross-efficiency scores for discriminating the DMUs. In the literature some
methods for ranking fuzzy numbers (Chen and Klein 1997; Chu and Tsao 2002; Abbasbandy
and Hahhari 2009; Wang et al. 2009; Boulmakoul et al. 2017) are discussed. Most of the
ranking methods, which are based on area measurement or the corresponding integral values,
require the exact forms of the membership functions of the fuzzy numbers to be ranked, and
we cannot apply these methods if the membership functions of the fuzzy numbers are not
explicitly known. Since the method of Chen and Klein (1997) does not require the exact
membership functions of the fuzzy numbers, it is an appropriate method for ranking the fuzzy
cross-efficiency scores derived in this study. Chen and Klein (1997) devised the following
index for ranking fuzzy numbers:

I (Ẽ j ) �
∑∞

p�0 ((E j )Uαp
− β)

[∑∞
p�0 ((E j )Uαp

− β) − ∑∞
p�0 ((E j )Lαp

− γ )
] (20)

where β � min j, p{(E j )Lαp
} and γ � max j, p{(E j )Uαp

}. Chen and Klein (1997) believe that
three or four α-levels are sufficient to discriminate the differences. The larger the value of
the ranking index I (Ẽ j ), the larger the fuzzy number is. According to the ranking indices,
we can discriminate the cross-efficiency scores of the DMUs accordingly.
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5 Illustrative examples

In this section we use three examples to illustrate the idea proposed in this paper. Specifically,
the stronger discriminative power of the fuzzy cross-efficiency scores is demonstrated. Gen-
erally, convex fuzzy numbers can be represented as the forms of α-level sets, and any type
of convex fuzzy numbers (for example, trapezoidal fuzzy numbers) can thus be used in the
proposed approach. For simplicity, we use the fuzzy triangular fuzzy numbers to represent
the fuzzy input and output data, which are denoted as (a, b, c), where a, b, and c are the
coordinates of the three vertices of the triangle, for the illustrated examples.

5.1 Example 1

In this example, we have a sample of fiveDMUswith two fuzzy inputs and two fuzzy outputs,
as shown in Table 1. To show the generality of the proposed method, there are crisp input
and output data distributed in DMUs 1, 2, and 3, and these deterministic observations can be
treated as degenerated fuzzy numbers, with only one point in their associated domains.

We need to calculate the CCR efficiency scores of the DMUs first before measuring their
associated cross-efficiencies. By applying Models (10) and (11), the lower bound (Edd )Lα
and upper bound (Edd )Uα of the fuzzy CCR efficiency scores are derived. Enumerating this
process for all DMUs at α � 0.0, 0.1, …, 1.0, we obtain the fuzzy CCR efficiency scores at
different α-levels, as shown in Table 2. Although the inputs and outputs are fuzzy numbers,
DMUs 1, 3, and 5 are evaluated as CCR-efficient at all α-levels, making the ranking task
more difficult.

Now we use (18) and (19) to measure the fuzzy cross-efficiency scores for all DMUs,
with the calculation results for α � 0.0, 0.1, …, 1.0 presented in Table 3. Since they are
derived from (18) and (19) at distinctive α-levels, their associated membership functions are
not explicitly known. In this case the approach of Chen and Klein (1997), which is discussed
in the previous section, is suitable for ranking these fuzzy cross-efficiencies. With the eleven
α-levels of the fuzzy cross-efficiency scores listed in Table 3, the variable of p in (20) is
set to 10, that is, p � 0, 1,…, 10, for the derivation of the ranking index I (Ẽ j ). Putting the
obtained cross-efficiencies into (20), the ranking indices of the five DMUs are calculated,
with the result shown in the second-to-last column of Table 3. Based on the ranking indices,
the fuzzy cross-efficiency scores are discriminated accordingly. Since the larger the ranking
index the larger the cross-efficiency score is: the top one is DMU 5, followed by DMUs 1
and 3 subsequently.

The cross-evaluation method has stronger discriminative power than the self-evaluation
method, in that the nondominatedDMUs,which cannot be discriminated by the lattermethod,

Table 1 Fuzzy inputs and outputs
for DMUs

DMU Inputs Outputs

X1 X2 Y1 Y2

1 (10,11,12) (11,14,16) 10 (13,15,16)

2 30 (17,19,22) (12,15,16) 14

3 (38,39,40) 12 (10,12,13) 25

4 (30,32,45) (28,31,33) (12,18,22) (13,15,17)

5 (22,24,26) (15,17,18) (13,16,17) (29,30,31)
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Table 4 Data used to measure the fuzzy cross-efficiency scores of FMS alternatives

FMS Inputs Outputs

Cost Space Qualitative WIP No. of Tardy Yield

1 (16.17,17.02,17.87) 5 42 (43.0,45.3,47.6) (13.5,14.2,14.9) (28.6,30.1,31.6)

2 (15.64,16.46,17.28) 4.5 39 (38.1,40.1,42.1) (12.4,13.0,13.7) (28.3,29.8,31.3)

3 (11.17,11.76,12.35) 6 26 (37.6,39.6,41.6) (13.1,13.8,14.5) (23.3,24.5,25.7)

4 (9.99,10.52,11.05) 4 22 (34.2,36.0,37.8) (10.7,11.3,11.9) (23.8,25.0,26.3)

5 (9.03,9.50,9.98) 3.8 21 (32.5,34.2,35.9) (11.4,12.0,12.6) (19.4,20.4,21.4)

6 (4.55,4.79,5.03) 5.4 10 (19.1,20.1,21.1) (4.8,5.0,5.3) (15.7,16.5,17.3)

7 (5.90,6.21,6.52) 6.2 14 (25.2,26.5,27.8) (6.7,7.0,7.4) (18.7,19.7,20.7)

8 (10.56,11.12,11.68) 6 25 (34.1,35.9,37.7) (8.6,9.0,9.5) (23.5,24.7,25.9)

9 (3.49,3.67,3.85) 8 4 (16.5,17.4,18.3) (0.1,0.1,0.1) (17.2,18.1,19.0)

10 (8.48,8.93,9.38) 7 16 (32.6,34.3,36.0) (6.2,6.5,6.8) (19.6,20.6,21.6)

11 (16.85,17.74,18.63) 7.1 43 (43.3,45.6,47.9) (13.3,14.0,14.7) (29.5,31.1,32.7)

12 (14.11,14.85,15.59) 6.2 27 (36.8,38.7,40.6) (13.1,13.8,14.5) (24.1,25.4,26.7)

can be discriminated by the former method. This is because the self-evaluation method cal-
culates the efficiency of every DMU from only its own viewpoint, while the cross-evaluation
method calculates the efficiencies from the viewpoints of all DMUs. In most studies, the
final efficiency of a DMU is the average of the n efficiency scores. However, since all the
possible weights of all the DMUs are considered simultaneously, similar to the method of
Ramón et al. (2014), this study calculates the lower and upper bounds of the fuzzy cross-
efficiency only once at a specified α-level. With the different α-levels, the shape of the fuzzy
cross-efficiency can be approximately derived. Although the inputs and outputs are fuzzy
numbers, the methodology proposed in this paper is able to calculate and discriminate the
fuzzy cross-efficiency scores of the DMUs.

5.2 Example 2

In investigating the performance of FMS candidates with fuzzy data, Liu (2008) used the cost
and floor space requirements as the inputs and the improvements in the qualitative factor,
work-in-process (WIP), numbers of tardy jobs, and yield as the outputs. The associated fuzzy
data set was modified from Shang and Sueyoshi (1995). In this section, we also use the data
of Liu (2008), as shown in Table 4, to measure the fuzzy cross-efficiency scores of the twelve
FMS candidates.

To measure the fuzzy cross-efficiency, Models (10) and (11) are first used to calculate
the lower and upper bounds of the fuzzy CCR efficiency scores, respectively, for each FMS
with α � 0.0, 0.1, …, 1.0, and the calculated results are listed in Table 5. Specifically, FMS
candidates 2, 5, and 9 have a perfect efficiency of 1.0, and their ranks are indistinguishable.
Even for those FMScandidateswith different fuzzy efficiency scores, they are not comparable
with each other because they are calculated from their ownweights. Now, every FMSemploys
(18) and (19) to calculate the associated fuzzy cross-efficiency at a specific α-level. Repeating
this process obtains the fuzzy cross-efficiency for all twelve FMS candidates, with the results
shown in Table 6.
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As expected, all efficiencies in the cross-evaluation part are less than or equal to the cor-
responding efficiencies in the self-evaluation part. This is because the efficiencies in the
self-evaluation part are calculated from the most favorable weights, while in the cross-
evaluation part, they are calculated from the weights determined by the twelve FMS
candidates. In particular, No. 9 is the most sensitive to the selection of DEA weights. In
the self-evaluation part, this candidate has a perfect efficiency score of 1.0, while in the
cross-evaluation part, the associated efficiency score is between 0.140 and 1.0. This result
is similar to that of Ramón et al. (2014). When the α-level � 1.0, the dataset of Table 4
becomes the original inputs and outputs of Shang and Sueyoshi (1995), which also served
as an illustrated example of Ramón et al. (2014). In this case, the calculated cross-efficiency
scores shown in Table 6 under the heading of “α � 1.0” are the same as those of Ramón et al.
(2014). This echoes the statement that when the observations are all deterministic numbers
in (18) and (19), these two models boil down to (5) and (6), respectively.

Similar to Example 1, since the derived cross-efficiency scores are fuzzy numbers, Eq. (20)
is applied to derive the associated ranking indices, with the results shown in Table 6 under
the heading of “Index”. The numbers in the last column of Table 6 are the rankings of the
corresponding FMS candidates. Clearly, FMS 5 is in first place from the viewpoint of every
FMS. It is thus the one that should be selected for production.

5.3 Example 3

In this example, the proposed methodology is applied to a practical case for robot selection
in the H-company. The company, whose stock is listed on the Taipei Exchange, is a leading
manufacturer in the closed-circuit television industry (CCTV) in Taiwan, providing a wide
variety of high quality and cost effective products, including LCD monitors, car rear view
cameras, digital video recorders and other peripherals that offer a wide variety of CCTV
applications for industry and transportation vehicles. The modernized production environ-
ment and state-of-the-art equipment allow the company to manufacture different products
on the same production line. Recently, the customer demands for the global market have
changed rapidly, and the company faces fierce competition from competitors. To be able
to fill the diversity of customized orders in the shortest time, the company intends to use a
robotic system to enhance its manufacturing flexibility to satisfy customer demands. Eigh-
teen candidate robots are considered as feasible alternatives for increasing the manufacturing
flexibility. A committee is established to discuss and determine the required input and output
factors for the assessment of the candidate robots, and this committee is also responsible for
the evaluation of the technical and qualitative attributes of the robots and the selection of the
most suitable one.

Themostwidely considered performance attributes for industrial robots are total cost, floor
space, load capacity, repeatability, and velocity (Talluri and Yoon 2000; Karsak and Ahiska
2005). Total cost includes the purchase and estimated operating and maintenance costs of
the robot. The floor space is the total area that the robot system occupies for operations. The
load capacity is the maximum load that the robot can lift, which includes the actual load
and the gripper weight. Repeatability is a measure of the ability of the robot to return to the
target point and is defined as the radius of the circle sufficiently large to include all points
to which the robot actually goes on repeated trials. The velocity of the robot is the distance
covered by the robot arm. The technical characteristics are quantitative performancemeasures
that have been widely used in robot selection problems. However, some factors, such as the
vendor-related attributes, also have a critical effect on the justification and selection of robots.
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Following the idea of Karsak and Ahiska (2005), the vendor’s service quality and throughput
improvement are considered in the decision processes of the H-company.

Since the total cost includes the estimated future operating and maintenance costs, this
item is treated as an uncertain number. Due to the lack of sufficient historical total cost data,
it is not easy to estimate the probability distribution of this item. One approach widely used
in the absence of data is to ask experts for their subjective estimates of the data. The fuzzy
number of the total cost, which can therefore be constructed from the pessimistic, optimistic,
and most possible estimates solicited from the experts, is used to express its uncertainty.

The vendor service quality,which is a subjective judgement of the committee, is a linguistic
variable that is represented by several different linguistic terms. Linguistic terms usually have
meanings that are vague and not mathematically operable. Moreover, in reality, there is no
clear-cut boundary between different linguistic terms. Therefore, using fuzzy numbers instead
of crisp values to represent the linguistic terms is more appropriate (Chen et al. 1992). The
vendor service quality can be classified into five levels. According to Chen et al. (1992),
the fuzzy numbers (0, 0.2, 0.4), (0.2, 0.4, 0.6), (0.4, 0.6, 0.8), (0.6, 0.8, 1), and (0.8, 1, 1)
are used to represent the terms very bad, bad, moderate, good, and very good, respectively.
Similar to the total cost, the factor ‘improvement in throughput’ is uncertain data, which is
also represented as a fuzzy number. The notation used in this paper is (a,b,c) for a triangular
fuzzy number, where a, b, and c are the coordinates of the three vertices of the triangle.

In the performance evaluation, the total cost and floor space are treated as inputs because,
from the committee’s viewpoint, they represent the investment required to purchase and
operate the robotic system. The load capacity, repeatability, velocity, vendor service quality,
and improvement in throughput are regarded as outputs because they are measures that
indicate the ability of the system to perform various tasks with satisfactory quality. In a DEA
analysis, a large value of an output is considered to be better than a small value. Since a
robot with the capability of operating with low repeatability contributes positively to the
performance of the manufacturing processes, we used the inverse of repeatability in the DEA
evaluation. There are 18 robot candidates, with the data shown in Table 7, which is confirmed
by the committee. We use this dataset to illustrate how our model is applied in a practical
application of the fuzzy cross-efficiency evaluation for the selection of a robot.

According to (10) and (11), the data contained in Table 7 are used to calculate the fuzzy
CCR efficiency scores, with the results presented in Table 8. Similar to Examples 1 and 2, ten
candidates are being evaluated as CCR-efficient and cannot be further discriminated among.
Now, we use (18) and (19) to calculate the associated fuzzy cross-efficiency at a specific
α-level for each robot. By executing this process for eleven distinct α-levels, the fuzzy cross-
efficiencies are obtained, with the results shown in columns three to thirteen of Table 9. Since
the fuzzy cross-efficiency score lies in a range, the different values of the α-level show the
different intervals of the scores. Moreover, the greater the value of the α-level, the narrower
the interval is. Specifically, the α-level� 0 shows the range in which the cross-efficiency will
appear, and the α-level � 1.0 shows the cross-efficiency that is the most likely. For example,
while the cross-efficiency of Robot No. 8 in Table 9 is fuzzy, it is impossible for its value to
exceed 0.998 or fall below 0.390. At the other extreme, at the α-level � 1, the most likely
cross-efficiency value of this robot lies within 0.613 and 0.898.

Sincewe have derived the fuzzy cross-efficiency scores of the 18 robot candidates, Eq. (20)
is used to calculate their associated ranking indices. In this example, the parameters are set as
β � 0.134 and γ � 1.0, as in (20) and the ranking indices I (Ẽ j ) of the 18 robot candidates
are calculated, as shown in the second-to-last column of Table 9. Based on the ranking indices,
the 18 robot candidates are ranked accordingly. Since the larger the ranking index, the better
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the robotic system is, clearly, Robot No. 13 is the best, followed by Robots No. 3 and 4. In
other words, Robot No. 13 is the most preferred robot for the committee in the H-company.

6 Conclusion

The traditional self-evaluation DEA models use the most favorable weights determined by a
DMU to calculate its efficiency. They are strong in identifying inefficient units but weak in
discriminating efficient units. To improve the discriminative power and make the efficiency
scores comparable, the cross-evaluation methodology has been proposed in the literature. In
the real world, the observations are usually difficult to measure precisely, or the observations
need to be estimated. When the observations are uncertain, one approach is to represent the
uncertain values by fuzzy numbers. Since the existing fuzzyDEAmodels cannot discriminate
among efficient DMUs, we need to develop a fuzzy cross-efficiency evaluation for ranking
the performance of DMUs in a fuzzy environment.

The existing approaches of fuzzy cross-efficiency evaluation employed the secondary
goals approach to determine the weights for measuring fuzzy cross-efficiencies. However,
the different approaches for determining theweightsmay produce different cross efficiencies.
In this paper, we propose a novel approach that considers all possible weights of all DMUs
at the same time to calculate the fuzzy cross-efficiency directly without the need to calculate
the average cross efficiency from n DMUs. More importantly, a choice of weights is not
required. A pair of two-level mathematical programs is developed to calculate the fuzzy
cross-efficiency. By variable substitutions, this pair of two-level mathematical programs is
transformed into a pair of one-level linear programs, and the lower and upper bounds of the
fuzzy cross-efficiency can thus be easily derived by solving this pair of linear programs. Since
the obtained cross-efficiency scores are fuzzy numbers, a fuzzy number ranking method is
used to derive the ranking indices of the efficiency scores, and the ranking of the DMUs is
determined accordingly.

Three examples are used to illustrate the idea proposed in this paper, and the obtained
results find that all efficiency scores at specific α-levels in the cross-evaluation process are
less than or equal to the corresponding ones in the self-evaluation process. This is because
the efficiencies in the self-evaluation part are calculated from the most favorable weights,
while in the cross-evaluation part, they are calculated from the weights determined by all
DMUs. The illustrated examples demonstrate that the cross-evaluation method proposed
in this paper has discriminative power in ranking the DMUs when the observations are
represented as fuzzy numbers.

In the examples of this study, the fuzzy input and output data are represented as triangular
fuzzy numbers. However, convex fuzzy numbers can be treated as forms of α-level sets; thus,
any type of convex fuzzy number can be applied in this study. This might help initiate more
applications of the fuzzy cross-efficiency evaluation.
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