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Abstract
In this article, a mathematical programming problem under affinely parameterized uncer-
tain data with multiple objective functions given by SOS-convex polynomials, denoting by
(UMP), is considered; moreover, its robust counterpart, denoting by (RMP), is proposed by
following the robust optimization approach (worst-case approach). Then, by employing the
well-known ε-constraint method (a scalarization technique), we substitute (RMP) by a class
of scalar problems. Under some suitable conditions, a zero duality gap result, between each
scalar problem and its relaxation problems, is established; moreover, the relationship of their
solutions is also discussed. As a consequence, we observe that finding robust efficient solu-
tions to (UMP) is tractable by such a scalarization method. Finally, a nontrivial numerical
example is designed to show how to find robust efficient solutions to (UMP) by applying our
results.
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1 Introduction

Consider the following mathematical programming problem with multiple objective func-
tions:
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(MP) min
(
f1(x), . . . , f p(x)

)

s.t. gi (x) ≤ 0, i = 1, . . . ,m,

where f j : R
n → R, j = 1, . . . , p, and gi : R

n → R, i = 1, . . . ,m, are convex
polynomials.

• If p = 1, the model problem (MP) deduces to a scalar one, and admits a hierarchy of
semidefinite programming (SDP) relaxations, which is the well-known Lasserre hierar-
chy of SDP relaxations.More broadly speaking, theLasserre hierarchy of SDP relaxations
is often used to solve nonconvex polynomial optimization problems with compact feasi-
ble sets (Lasserre 2009a, b), and it has finite convergence generically as shown in Helton
and Nie (2010). In particular, if the involving functions are SOS-convex polynomials (see
Definition 2.1), then (MP) enjoys an exact SDP relaxation in the sense that the optimal
values of (MP) and its relaxation problem are equal; moreover, the relaxation problem
attains its optimum under the Slater condition (Lasserre 2009b, Theorem 3.4).

• If p ≥ 2, and the involving functions are SOS-convex polynomials (the reason why we
consider SOS-convex polynomials is that deciding whether a polynomial is SOS-convex
or not can be equivalently rewritten as a feasibility problem of a semidefinite program-
ming problem, which can be efficiently validated), Lee and Jiao (2018) contributed an
article on how to find efficient solutions of (MP) by employing the ε-constraint method,
which is a scalarization technique, i.e., solving a scalar objective problem, where one of
the objective functions is minimized while all the other objective functions are bounded
from above by means of additional constraints.

On the other hand, the data of many real-world optimization problems are often uncertain
(that is, they are not known exactly at the time of the decision) due to lack of information,
estimation errors or prediction errors. Recently, the robust optimization approach, which
associates an uncertain mathematical program with its robust counterpart, has emerged as a
powerful deterministic approach for studying mathematical programming with data uncer-
tainty; see, for example, Beck and Ben-Tal (2009), Ben-Tal and Nemirovski (1998), Ben-Tal
et al. (2009), Chuong (2016), Doolittle et al. (2018), Ide and Schöbel (2016), and Wiecek
and Dranichak (2016) and the reference therein.

Indeed, the robust optimization approach (also known as worst-case approach) is amethod
that deals with optimization problems, in which a certain measure of robustness is sought
against uncertainty that can be represented as deterministic variability in the value of the
parameters of the problem itself and/or its solution; see, for example, Crespi et al. (2018),
Lee and Lee (2018), and Wiecek and Dranichak (2016). It is well known that a robust
convex quadratic optimization problem under ellipsoidal data uncertainty enjoys exact SDP
relaxation as it can be equivalently reformulated as a semidefinite programming problem (see
Ben-Tal and Nemirovski 1998). In the same vein, a robust convex quadratic optimization
problems under restricted ellipsoidal data uncertainty can be equivalently reformulated as a
second-order cone programming problem (see Goldfarb and Iyengar 2003).

In this paper, we are interested in the study of finding robust efficient solutions to (MP) in
the face of data uncertainty, where the involving functions are still SOS-convex polynomials.
Thismodel problemunder data uncertainty in the constraints can be captured by the following
problem:

(UMP) min
(
f1(x), . . . , f p(x)

)

s.t. gi (x, ui ) ≤ 0, i = 1, . . . ,m,
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where ui is an uncertain parameter and ui ∈ Ui for some nonempty compact and convex
uncertain set Ui ⊆ R

qi , qi ∈ N, and the uncertain data is affinely parameterized in the sense
that (Jeyakumar et al. 2015)

gi (·, ui ) := g0i (·) +
qi∑

r=1

uri g
r
i (·),

ui := (u1i , . . . , u
ti
i , uti+1

i , . . . , uqii ) ∈ Ui ⊆ R
ti+ × R

qi−ti ,

where gri , r = 0, . . . , ti , are SOS-convex polynomials and gri , r = ti + 1, . . . , qi , are affine
functions, for all i = 1, . . . ,m.

Following the robust optimization approach, the robust counterpart of (UMP) is given by

(RMP) min
(
f1(x), . . . , f p(x)

)

s.t. g0i (x) +
qi∑

r=1

uri g
r
i (x) ≤ 0, ∀ui ∈ Ui , i = 1, . . . ,m.

• For the case p = 1, finding robust optimal solutions, that are immunized against data
uncertainty, has become an important research topic in convex optimization and has
recently been extensively studied in the literature; see, for example, Bertsimas et al.
(2011), Chuong and Jeyakumar (2018), and Jeyakumar et al. (2013) and the references
therein.

• However, in the case of p ≥ 2, as far as we know, it seems that there are not so many
results on finding efficient solutions that are immunized against data uncertainty, notwith-
standing the fact that some results focusing on theoretical research are investigated; see,
for example, Chuong (2016), and Lee and Lee (2018) and the references therein. This
motivates us to contribute the present research paper.

In this paper, we make the following contributions to the robust multiobjective convex
optimization (RMP):

(i) By employing the ε-constraint method (Chankong and Haimes 1983; Ehrgott 2005),
we substitute (RMP) to a class of scalar problems, and each scalar problem enjoys a
zero duality gap in the sense that the optimal value of the scalar objective problem and
its associated relaxation problems are equal under the Slater condition and the strict
feasibility condition (see Theorem 3.1).

(ii) We do the study of finding efficient solutions of (RMP) (see Theorem 3.3 and The-
orem 3.4). A nontrivial numerical example is designed to show how to find efficient
solutions of (RMP).

The outline of the paper is organized as follows. Section 2 presents some notations and
preliminaries. Section 3 states the main results of the paper on how to find efficient solutions
of (RMP). Section 4 provides a numerically tractable example. Finally, conclusions are given
in Sect. 5.

2 Notation and preliminaries

First of all, let us recall some notations and preliminaries. R
n denotes the Euclidean space

with dimension n.The non-negative orthant ofR
n is denoted byR

n+.Let Sn be the set of n×n
symmetric matrices. For a matrix X ∈ Sn, X is positive semidefinite denoted by X � 0, if
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zT Xz ≥ 0 for any z ∈ R
n . We denote by Sn+ the set of n×n symmetric positive semidefinite

matrices. For M, N ∈ Sn, 〈M, N 〉 stands for trace(MN ).

The space of all real polynomials onR
n is denoted byR[x];moreover, the space of all real

polynomials on R
n with degree at most d is denoted by R[x]d . The degree of a polynomial

f is denoted by deg f . We say that a real polynomial f is sum of squares, if there exist
real polynomials q�, � = 1, . . . , r , such that f = ∑r

�=1 q
2
� . The set consisting of all sum

of squares of real polynomials with degree at most d is denoted by �2
d . For a multi-index

α ∈ N
n, let |α| := ∑n

i=1 αi , and let N
n
d := {α ∈ N

n : |α| ≤ d}. xα denotes the monomial
xα1
1 · · · xαn

n . The canonical basis of R[x]d is denoted by

vd(x) := (xα)α∈Nn
d

= (1, x1, . . . , xn, x
2
1 , x1x2, . . . , x

2
n , . . . , x

d
1 , . . . , xdn )T , (1)

which has dimension s(n, d) := (
n+d
d

)
. Given a polynomial f ∈ R[x] with vector of

coefficients ( fα), let supp( f ) ⊂ N
n denote the support of f , i.e., the set {α ∈ N

n : fα �= 0}.
The Newton polytope of f ∈ R[x] is the convex hull of supp( f ). Given an s(n, 2d)-vector
y := (yα)α∈Nn

2d
with y0 = 1, let Md(y) be the moment matrix of dimension s(n, d), with

rows and columns labeled by (1). For example, for n = 2 and d = 1,

y = (yα)α∈N2
2

= (1, y1,0, y0,1, y2,0, y1,1, y0,2)
T and M1(y) =

⎛

⎝
1 y1,0 y0,1
y1,0 y2,0 y1,1
y0,1 y1,1 y0,2

⎞

⎠ .

In what follows, for convenience, we denote Md(y) :=∑α∈Nn
2d
yαBα,where y = (yα)α∈Nn

2d

with y0 = 1, and for each α ∈ N
n
d , Bα is an s(n, d) × s(n, d) symmetric matrix, which is

understood from the definition of Md(y).
We now recall the notion of SOS-convex polynomials.

Definition 2.1 (Ahmadi and Parrilo 2012, 2013; Helton and Nie 2010) A real polynomial f
on R

n is called SOS-convex if the polynomial

f (x) − f (y) − ∇ f (y)T (x − y)

is a sum of squares polynomial in R[x; y] (with respect to variables x and y).

Observe that an SOS-convex polynomial is convex. However, the converse is not true, which
means that there exists a convex polynomial which is not SOS-convex (Ahmadi and Parrilo
2012, 2013). In addition, the problem which related by SOS-convex polynomials can be
checked numerically by solving a semidefinite program.

The following proposition shows to confirm whether a polynomial can be written as a
sum of squares via semidefinite optimization methods.

Proposition 2.1 (Lasserre 2009a) A polynomial f ∈ R[x]2d has a sum of squares decom-
position if and only if there exists Q ∈ Ss(n,d)

+ such that f (x) = 〈vd(x)vd(x)T , Q〉 for all
x ∈ R

n .

Consider a polynomial f ∈ R[x]2d , and let vd(x)vd(x)T :=∑α∈Nn
2d
xαBα.Then f (x) =

∑
α∈Nn

2d
fαxα is a sum of squares if and only if we can solve the following semidefinite

feasibility problem (Lasserre 2009a):

Find X ∈ Ss(n,d)
+ such that 〈Bα, X〉 = fα, ∀α ∈ N

n
2d .
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3 Finding efficient solutions of (RMP)

In this section, we focus on the study of finding efficient solutions of (RMP). Now, let us
recall the robust multiobjective SOS-convex polynomial optimization problem

(RMP) min f (x) := ( f1(x), . . . , f p(x)
)

s.t. g0i (x) +
qi∑

r=1

uri g
r
i (x) ≤ 0, ∀ui ∈ Ui , i = 1, . . . ,m.

Let K := {x ∈ R
n : gi (x, ui ) ≤ 0, ∀ui ∈ Ui , i ∈ I } be the set of feasible solutions

of (RMP), where I := {1, . . . ,m}. Let 2d := max{deg f1, . . . , deg f p, degg1(·, u1), . . . ,
deggm(·, um)}.

Hereafter, we consider the problem (RMP) with restricted spectrahedron data uncertain
sets (Chieu et al. 2018; Chuong 2017, 2018), which are compact and convex sets given by
for each i ∈ I ,

Ui :=
{
ui ∈ R

qi : A0
i +

qi∑

r=1

uri A
r
i � 0,

×
(
u1i , . . . , u

ti
i , uti+1

i , . . . , uqii

)
∈ R

ti+ × R
qi−ti

}
,

where Ar
i , r = 0, 1, . . . , qi , are si × si symmetric matrices with some si ∈ N.

Now, we recall the notions of (robust) efficient solutions, which can be seen in (Wiecek
and Dranichak 2016, Section 4) .

Definition 3.1 A point x̄ ∈ K is said to be a robust efficient solution of (UMP); equivalently,
x̄ ∈ K is an efficient solution of (RMP), if

f (x) − f (x̄) /∈ −R
p
+\{0}.

In the present paper, we adopt the famous ε-constraint method—one kind of scalarization
methods—to study the problem (RMP). Indeed, the ε-constraintmethodwasminutely studied
by Chankong and Haimes (1983) (see also Ehrgott 2005) and improved by Ehrgott and
Ruzika (2008); moreover, it is shown to be an effective method to find efficient solutions of
multicriteria optimization problem.

Now, we substitute (RMP) by the scalar problems as follows:

(RP j (ε)) min f j (x)

s.t. fk(x) ≤ εk, k �= j,

g0i (x) +
qi∑

r=1

uri g
r
i (x) ≤ 0, ∀ui ∈ Ui , i ∈ I ,

where ε ∈ R
p.Note that the component ε j is unrelated for (RP j (ε)), the convention involving

it here will be convenient for our later analytic. For each j = 1, . . . , p, let K j (ε) := {x ∈
K : fk(x) ≤ εk, k �= j} be the feasible set of (RP j (ε)).
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Let j ∈ {1, . . . , p} be any fixed. Then, the corresponding sum of squares relaxation dual
problem of (RP j (ε)) with degree 2d is the following problem:

(RD j (ε)) sup
γ j ,μk ,λ

r
i

γ j

s.t. f j +
∑

k �= j

μk( fk − εk) +
m∑

i=1

qi∑

r=0

λri g
r
i − γ j ∈ �2

2d ,

λ0i A
0
i +

qi∑

r=1

λri A
r
i � 0,

γ j ∈ R, μk ≥ 0, k �= j,

λ0i ≥ 0, (λ1i , . . . , λ
ti
i , λ

ti+1
i , . . . , λ

qi
i ) ∈ R

ti+ × R
qi−ti , i ∈ I .

Thanks to Proposition 2.1, (RD j (ε)) can be rewritten as the following semidefinite program-
ming problem:

(SDD j (ε)) sup
γ j ,X ,

μk ,λ
r
i

γ j

s.t. ( f j )0 +
∑

k �= j

μk(( fk)0 − εk) +
m∑

i=1

qi∑

r=0

λri (g
r
i )0 − γ j = 〈B0, X〉,

( f j )α +
∑

k �= j

μk( fk)α +
m∑

i=1

qi∑

r=0

λri (g
r
i )α = 〈Bα, X〉, α �= 0,

λ0i A
0
i +

qi∑

r=1

λri A
r
i � 0,

γ j ∈ R, X ∈ Ss(n,d)
+ , μk ≥ 0, k �= j,

λ0i ≥ 0, (λ1i , . . . , λ
ti
i , λ

ti+1
i , . . . , λ

qi
i ) ∈ R

ti+ × R
qi−ti , i ∈ I .

The dual problem of (SDD j (ε)) can be stated as follows:

(SDP j (ε)) inf
y∈Rs(n,2d)

Zi�0

∑

α∈Nn
2d

( f j )α yα

s.t.
∑

α∈Nn
2d

( fk)α yα − εk ≤ 0, k �= j,

∑

α∈Nn
2d

(gri )α yα + 〈Ar
i , Zi 〉 ≤ 0, i ∈ I , r = 0, 1, . . . , ti ,

∑

α∈Nn
2d

(gri )α yα + 〈Ar
i , Zi 〉 = 0, i ∈ I , r = ti + 1, . . . , qi ,

∑

α∈Nn
2d

yαBα � 0, y0 = 1.

Let v(·) be the optimal value of the problem (·), correspondingly. For example, v(RP j (ε))

stands for the optimal value of the problem (RP j (ε)).
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Definition 3.2 For each fixed j = 1, . . . , p, we say that the Slater condition holds for
(RP j (ε)), if there exists x̂ ∈ R

n such that

fk(x̂) − εk < 0, k �= j, and gi (x̂, ui ) < 0, ∀ui ∈ Ui , i ∈ I .

Definition 3.3 We say a strict feasibility condition holds, if for each i ∈ I , there exists
ûi ∈ R

ti+ × R
qi−ti such that A0

i +∑qi
r=1 û

r
i A

r
i � 0.

The following lemma, which includes the information on the nonemptiness of solution
set of our problem and will play an important role in Theorem 3.1 (see below), was studied
by Belousov and Klatte (2002).

Lemma 3.1 (Belousov and Klatte 2002) Let f , g1, . . . , gm be convex polynomials on R
n .

Let F := {x ∈ R
n : gi (x) ≤ 0, i = 1, . . . ,m}. Suppose that inf x∈F f (x) > −∞. Then,

argminx∈F f (x) �= ∅.

It is alsoworthmentioning that, recently,Helton andNie (2010) gave an important property
of SOS-convex polynomials, which also plays an important role in the proof of Theorem 3.1.

Lemma 3.2 (Helton and Nie 2010, Lemma 8) Let f be an SOS-convex polynomial. Suppose
that there exists x̄ ∈ R

n such that f (x̄) = 0 and ∇ f (x̄) = 0. Then, f is a sum of squares
polynomial.

Below, we give a zero duality gap result for (RP j (ε)), (SDD j (ε)), and (SDP j (ε)), under
the Slater condition and the strict feasibility condition. Note that the proof is motivated by
(Chieu et al. 2018, Theorem 4.3).

Theorem 3.1 For each fixed j = 1, . . . , p, if the Slater condition and the strict feasibility
condition for (RP j (ε)) hold, then

v(RP j (ε)) = v(SDD j (ε)) = v(SDP j (ε)).

Proof Let j ∈ {1, . . . , p} be any fixed. We first claim that

v(RP j (ε)) ≤ v(RD j (ε)).

Let γ j := v(RP j (ε)) ∈ R. Since the Slater condition for (RP j (ε)) holds, by the Lagrangian
duality for convex optimization problems (Boyd and Vandenberghe 2004), we see that

γ j = inf
x∈Rn

{ f j (x) : fk(x) ≤ εk, k �= j, gi (x, ui ) ≤ 0,∀ui ∈ Ui , i ∈ I }
= inf

x∈Rn
{ f j (x) : fk(x) ≤ εk, k �= j, max

ui∈Ui
gi (x, ui ) ≤ 0, i ∈ I }

= max
μ∈Rp−1

+ ,λ∈Rm+
inf
x∈Rn

max
u∈U Ψ (x, u, μ, λ), (2)

where u = (u1, . . . , um) ∈ U :=∏m
i=1 Ui and

Ψ (x, u, μ, λ) :=
⎧
⎨

⎩
f j (x) +

∑

k �= j

μk( fk(x) − εk) +
m∑

i=1

λi gi (x, ui )

⎫
⎬

⎭
.

Note that gi (·, ui ) is convex for each fixed ui and gi (x, ·) is concave for each fixed x . Since
U is compact and convex, by the convex-concave minimax theorem (Rockafellar 1970), we
have for each μ ∈ R

p−1
+ and λ ∈ R

m+,

inf
x∈Rn

max
ui∈Ui

Ψ (x, u, μ, λ) = max
ui∈Ui

inf
x∈Rn

Ψ (x, u, μ, λ).

123



810 Annals of Operations Research (2021) 296:803–820

This, together with (2), yields

γ j = max
μ∈Rp−1

+ ,λ∈Rm+,u∈U
inf
x∈Rn

Ψ (x, u, μ, λ).

So, there exist μ̃k ≥ 0, k �= j, λ̃i ≥ 0, and ũi ∈ Ui , i ∈ I , such that

γ j = inf
x∈Rn

⎧
⎨

⎩
f j (x) +

∑

k �= j

μ̃k( fk(x) − εk) +
m∑

i=1

λ̃i gi (x, ũi )

⎫
⎬

⎭
.

Let Φ(x) := f j (x) + ∑
k �= j μ̃k( fk(x) − εk) + ∑m

i=1 λ̃i gi (x, ũi ) − γ j . Since f�, � =
1, . . . , p, and gi (·, ūi ), i ∈ I , are SOS-convex polynomials, so is Φ(x). Moreover, since
inf x∈Rn Φ(x) = 0, by Lemma 3.1, there exists x̄ ∈ argminx∈Rn Φ(x) such that Φ(x̄) = 0,
and so, ∇Φ(x̄) = 0. It follows from Lemma 3.2 that Φ(x) is a sum of squares polynomial,
i.e,

f j +
∑

k �= j

μ̃k( fk − εk) +
m∑

i=1

λ̃i gi (·, ũi ) − γ j ∈ �2
2d . (3)

On the other hand, for each i = 1, . . . ,m, as ũi = (ũ1i , . . . , ũi ) ∈ Ui ,

A0
i +

qi∑

r=1

ũri A
r
i � 0, i ∈ I . (4)

Let λ0i := λ̃i and λri := λ̃i ũri , i ∈ I , r = 1, . . . , qi . It follows from (3) and (4) that

f j +
∑

k �= j

μ̃k( fk − εk) +
m∑

i=1

λ̃i gi (·, ũi ) − γ j

= f j +
∑

k �= j

μ̃k( fk − εk) +
m∑

i=1

(λ̃i g
0
i +

qi∑

r=1

λ̃i ũ
r
i g

r
i ) − γ j

= f j +
∑

k �= j

μ̃k( fk − εk) +
m∑

i=1

qi∑

r=0

λri g
r
i − γ j ∈ �2

2d

and

λ̃i

(

A0
i +

qi∑

r=1

ũri A
r
i

)

= λ̃i A
0
i +

qi∑

r=1

λ̃i ũ
r
i A

r
i = λ0i A

0
i +

qi∑

r=1

λri A
r
i � 0.

It means that (γ j , μ,λ1, . . . ,λm) ∈ R×R
p−1
+ × (R+ ×R

t1+ ×R
q1−t1)×· · ·× (R+ ×R

tm+ ×
R
qm−tm ) is feasible for (RD j (ε)), where λi := (λ0i , λ

1
i , . . . , λ

qi
i ), i ∈ I . So, we have

v(RP j (ε)) = γ j ≤ v(RD j (ε)).

Moreover, v(RD j (ε)) = v(SDD j (ε)) obviously holds by the construction of (RD j (ε)) and
(SDD j (ε)).

Note that (SDD j (ε)) and (SDP j (ε)) are dual problems to each other. So, by the usual
weak duality for semidefinite programming (Vandenberghe and Boyd 1996), we see that
v(SDD j (ε)) ≤ v(SDP j (ε)).
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To finish the proof of this theorem, it remains to show that v(RP j (ε)) ≥ v(SDP j (ε)). Let
x be any feasible solution of (RP j (ε)) and let γ j := f j (x). Then fk(x) ≤ εk, k �= j, and

gi (x, ui ) = g0i (x) +
qi∑

r=1

uri g
r
i (x) ≤ 0, ∀ui ∈ Ui , i ∈ I ,

where for each i ∈ I , the compact and convex set Ui ⊂ R
qi is given by

Ui =
{

ui ∈ R
qi : A0

i +
qi∑

r=1

uri A
r
i � 0, (u1i , . . . , u

ti
i , uti+1

i , . . . , uqii ) ∈ R
ti+ × R

qi−ti

}

.

It follows from the strict feasibility condition and the strong duality theorem for semidefinite
programming (Vandenberghe and Boyd 1996) that there exist Zi � 0, i ∈ I , such that

gri (x) + 〈Ar
i , Zi 〉 ≤ 0, i ∈ I , r = 0, 1, . . . , ti ,

gri (x) + 〈Ar
i , Zi 〉 = 0, i ∈ I , r = ti + 1, . . . , qi .

Let y := (1, x1, . . . , xn, x21 , x1x2, . . . , x
2d
1 , . . . , x2dn )T . Then we have

f j (x) =
∑

α∈Nn
2d

( f j )α yα = γ j ,

fk(x) − εk =
∑

α∈Nn
2d

( fk)α yα − εk ≤ 0, k �= j,

and for each i ∈ I ,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gri (x) + 〈Ar
i , Zi 〉 =

∑

α∈Nn
2d

(gri )α yα + 〈Ar
i , Zi 〉 ≤ 0, r = 0, 1, . . . , ti ,

gri (x) + 〈Ar
i , Zi 〉 =

∑

α∈Nn
2d

(gri )α yα + 〈Ar
i , Zi 〉 = 0, r = ti + 1, . . . , qi .

Moreover, yyT =∑α∈Nn
2d
yαBα � 0 with y0 = 1. So, (y, Z1, . . . , Zm) is a feasible solution

of (SDP j (ε)), and hence, we see that

γ j = f j (x) =
∑

α∈Nn
2d

( f j )α yα ≥ v(SDP j (ε)).

It means that v(RP j (ε)) ≥ v(SDP j (ε)). Thus, we obtain the desired result. ��

Remark 3.1 In Theorem 3.1, it is worth mentioning that we can prove that v(RP j (ε)) =
v(RD j (ε)) under the Slater condition for (RP j (ε)) (the strict feasibility condition is not
necessary) due to the weak duality relationship between (RP j (ε)) and (RD j (ε)); however,
for the simplicity of the proof of Theorem 3.1, we would omit the detailed proof.

In what follows, we recall a result obtained by Lasserre (2009b), and we will use the result
in the proof of Theorem 3.2; indeed, the result is an extension of Jensen’s inequality to a
class of linear functionals that are not necessarily probability measures when one restricts its
application to the class of SOS-convex polynomials.
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Lemma 3.3 (Lasserre 2009b) Let f ∈ R[x]2d be SOS-convex, and let y = (yα)α∈Nn
2d
satisfy

y0 = 1 and
∑

α∈Nn
2d
yαBα � 0. Let L y : R[x] → R be a linear functional defined by

Ly( f ) :=∑α∈Nn
2d

fα yα, where f (x) =∑α∈Nn
2d

fαxα. Then

Ly( f ) ≥ f (Ly(x)),

where L y(x) := (Ly(x1), . . . , Ly(xn)).

The following theorem provides a way to find an optimal solution to problem (RP j (ε))

from an optimal solution of (SDP j (ε)).

Theorem 3.2 For each fixed j = 1, . . . , p, assume that the Slater condition for (RP j (ε)) and
the strict feasibility condition hold. If (ȳ, Z̄1, . . . , Z̄m) is an optimal solution of (SDP j (ε)),

then x̄ := (L ȳ(x1), . . . , L ȳ(xn)) is an optimal solution of (RP j (ε)).

Proof Let j ∈ {1, . . . , p} be any fixed. Assume that (ȳ, Z̄1, . . . , Z̄m) is an optimal solution
of (SDP j (ε)). Then, we have

∑

α∈Nn
2d

( fk)α ȳα − εk ≤ 0, k �= j,

∑

α∈Nn
2d

(gri )α ȳα + 〈Ar
i , Z̄i 〉 ≤ 0, i ∈ I , r = 0, 1, . . . , ti , (5)

∑

α∈Nn
2d

(gri )α ȳα + 〈Ar
i , Z̄i 〉 = 0, i ∈ I , r = ti + 1, . . . , qi , (6)

∑

α∈Nn
2d

ȳαBα � 0, ȳ0 = 1. (7)

Let (u1i , . . . , u
qi
i ) ∈ Ui , i ∈ I , be any given. Then for each i ∈ I , A0

i +∑qi
r=1 u

r
i A

r
i � 0. It

follows from (5) and (6) that

0 ≥
∑

α∈Nn
2d

(g0i )α ȳα + 〈A0
i , Z̄i 〉 ≥

∑

α∈Nn
2d

(g0i )α ȳα −
〈 qi∑

r=1

uri A
r
i , Z̄i

〉

≥
∑

α∈Nn
2d

(g0i )α ȳα +
qi∑

r=1

uri
∑

α∈Nn
2d

(gri )α ȳα

= L ȳ(g
0
i +

qi∑

r=1

uri g
r
i ).

(8)

Note that for each i ∈ I , g0i +∑qi
r=1 u

r
i g

r
i is SOS-convex. Since ȳ satisfies (7), by Lemma 3.3,

we see that for each i ∈ I ,

L ȳ

(

g0i +
qi∑

r=1

uri g
r
i

)

≥
(

g0i +
qi∑

r=1

uri g
r
i

)

(L ȳ(x1), . . . , L ȳ(xn)) = g0i (x̄) +
qi∑

r=1

uri g
r
i (x̄).

This, together with (8), yields that

g0i (x̄) +
qi∑

r=1

uri g
r
i (x̄) ≤ 0, i ∈ I . (9)
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Also, by a similar argument as above, it shows that

fk(x̄) − εk ≤ 0, k �= j . (10)

So, from (9) and (10), x̄ is a feasible solution of (RP j (ε)) as for each i ∈ I , (u1i , . . . , u
qi
i ) ∈ Ui

is arbitrary. Moreover, by a similar argument as (9), we see that
∑

α∈Nn
2d

( f j )α ȳα ≥ f j (x̄).
It follows from Theorem 3.1 that

∑

α∈Nn
2d

( f j )α ȳα = v(SDP j (ε)) = v(RP j (ε)) ≤ f j (x̄) ≤
∑

α∈Nn
2d

( f j )α ȳα.

Thus, x̄ is an optimal solution of (RP j (ε)). ��
The following proposition, which is called the ε-constraint method and plays a key role

for our main result, shows that an efficient solution of (RMP) is related to an optimal solution
of (RP j (ε̄)) for all j = 1, . . . , p with the same ε̄.

Proposition 3.1 (Chankong and Haimes 1983; Ehrgott 2005) A feasible solution x̄ is an
efficient solution of (RMP) if and only if there exists ε̄ ∈ R

p such that x̄ is an optimal
solution of (RP j (ε̄)) for all j = 1, . . . , p.

Now, we give a theorem, which shows that how we can find efficient solutions of (RMP);
also known as robust efficient solutions of (UMP), by using the ε-constraint method.

Theorem 3.3 Let x̄(0) ∈ K be any given. Assume that for j = 1, . . . , p,

x̄( j) ∈ argmin
x∈K j (ε̄( j))

f j (x) �= ∅,

where ε̄( j) := ( f1(x̄( j−1)), . . . , f p(x̄( j−1))) ∈ R
p. Then, x̄(p) is a robust efficient solution of

(UMP).

Proof For j = 1, . . . , p, let x̄( j) ∈ argminx∈K j (ε̄( j))
f j (x). Note that for each j = 1, . . . , p,

the feasible set of (RP j (ε̄( j))) is as follows:

K j (ε̄( j)) := {x ∈ K : fk(x) ≤ fk(x̄( j−1)), k �= j}.
Since for each j = 1, . . . , p, x̄( j) ∈ K j (ε̄( j)),

fk(x̄( j)) ≤ fk(x̄( j−1)), k �= j . (11)

Moreover, since for each j = 1, . . . , p, x̄( j) ∈ argminx∈K j (ε̄( j))
f j (x),

f j (x̄( j)) ≤ f j (x) (12)

for any x ∈ K j (ε̄( j)). Since for each j = 1, . . . , p, x̄( j−1) ∈ K j (ε̄( j)), from (12), we see
that

f j (x̄( j)) ≤ f j (x̄( j−1)), j = 1, . . . , p. (13)

So, by (11) and (13), we obtain

f j (x̄(p)) ≤ f j (x̄(p−1)) ≤ · · · ≤ f j (x̄(1)) ≤ f j (x̄(0)), j = 1, . . . , p. (14)

Hence, we see that for each j = 1, . . . , p, x̄(p) ∈ K j (ε̄(p)) ⊆ K j (ε̄( j)). So, we have for
each j = 1, . . . , p,

f j (x̄(p)) ≥ min
x∈K j (ε̄(p))

f j (x) ≥ min
x∈K j (ε̄( j))

f j (x) = f j (x̄( j)).
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Since, by (14), for each j = 1, . . . , p, f j (x̄(p)) ≤ f j (x̄( j)), we have for each j = 1, . . . , p,

f j (x̄(p)) = f j (x̄( j)) and x̄(p) ∈ argmin
x∈K j (ε̄(p))

f j (x).

It means that x̄(p) is an optimal solution of (RP j (ε̄(p))) for all j = 1, . . . , p. Thus, by
Proposition 3.1, we obtain the desired result. ��

Immediately, according to Theorems 3.2 and 3.3, we obtain the following theorem, which
shows that finding efficient solutions of (RMP) is tractable under the Slater condition and
the strict feasibility condition.

Theorem 3.4 Let x̄(0) ∈ K be any given. Assume that for j = 1, . . . , p,
(
ȳ( j), (Z̄( j))1, . . . , (Z̄( j))m

) ∈ argmin{(SDP j (ε̄( j)))} �= ∅,

where for each j = 1, . . . , p, ε̄( j) := ( f1(x̄( j−1)), . . . , f p(x̄( j−1))) ∈ R
p and x̄( j) :=

(L ȳ( j) (x1), . . . , L ȳ( j) (xn)). Assume that for each j = 1, . . . , p, the Slater condition for
(RP j (ε̄( j))) and the strict feasibility condition hold. Then (L ȳ(p) (x1), . . . , L ȳ(p) (xn)) ∈ K is
a robust efficient solution of (UMP).

Proof Assume that for j = 1, . . . , p,
(
ȳ( j), (Z̄( j))1, . . . , (Z̄( j))m

)
is an optimal solution

of (SDP j (ε̄( j))). Since for each j = 1, . . . , p, the Slater condition and strict feasibility
condition hold for (RP j (ε̄( j))), by Theorem 3.2, for each j = 1, . . . , p,

x̄( j) := (L ȳ( j) (x1), . . . , L ȳ( j) (xn)) ∈ argmin
x∈K j (ε̄( j))

f j (x).

Thus, by Theorem 3.3, x̄(p) = (L ȳ(p) (x1), . . . , L ȳ(p) (xn)) is a robust efficient solution of
(UMP). ��
Remark 3.2 Let j ∈ {1, . . . , p} be any fixed, and let k ∈ {1, . . . , p} with k �= j . Since the
Slater condition for (RP j (ε)) depends on the parameter ε, it often occurs that the Slater
condition fails for some given ε. in order to see this more clearly, let us first consider the
following robust SOS-convex optimization scalar problem

min
x∈Rn

fk(x)

s.t. g0i (x) +
qi∑

r=1

uri g
r
i (x) ≤ 0, ∀ui ∈ Ui , i = 1, . . . ,m.

(15)

It is worth mentioning that the problem (15) enjoys a zero duality gap in the sense that the
optimal values of the problem (15) and its associated relaxation problems are equal, and
an optimal solution of the problem (15) can be found by solving an associated semidefinite
programming problem under the suitable constraint qualification (Chieu et al. 2018). If εk
is chosen as the optimal value of the problem (15), i.e., εk = fk(x∗), where x∗ ∈ K is
an optimal solution of the problem (15), then we clearly see that the Slater condition for
(RP j (ε)) does not hold, and so, it may not enjoy a zero duality gap between the problem
(RP j (ε)) and its associated relaxation dual problems. In spite of its fault, we still use the
Slater condition, since it is usually easier to check the validity of the Slater condition than
other weaker regular condition, e.g., stability (see Geoffrion 1971). In turn, to overcome
the fault of the Slater condition, we shall give more restrictive assumptions on the objective
functions, e.g., strict convexity (see Lee and Jiao 2018).

123



Annals of Operations Research (2021) 296:803–820 815

4 A numerical example

In this section, we design an example to illustrate how to find efficient solutions for a robust
multicriteria SOS-convex polynomial optimization problem with a detailed calculation pro-
cess by using our results.

Example 4.1 Consider the following 2-dimensional robust multiobjective SOS-convex opti-
mization problem:

(R̃MP) min ( f1(x1, x2), f2(x1, x2))

s.t. g01(x1, x2) + u11g
1
1(x1, x2) + u21g

2
1(x1, x2) ≤ 0, ∀(u11, u

2
1) ∈ U1,

g02(x1, x2) + u12g
1
2(x1, x2) ≤ 0, ∀u12 ∈ U2,

where

f1(x1, x2) = x81 + 2x21 − 2x1x2 + x22 , f2(x1, x2) = x41 − x2,

g01(x1, x2) = x21 + x22 − 2, g11(x1, x2) = x1, g21(x1, x2) = x2,

g02(x1, x2) = 3x21 − 6x1, and g12(x1, x2) = x22 .

Here, the uncertain sets U1 and U2 are given by

U1 =
{

(u11, u
2
1) ∈ R

2 : A0
1 +

2∑

r=1

ur1A
r
1 � 0

}

, U2 =
{
u12 ∈ R+ : A0

2 + u12A
1
2 � 0

}
,

where A0
1 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , A1
1 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , A2
1 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ , A0
2 =

⎛

⎝
1 2 0
2 1 0
0 0 1

⎞

⎠ , and A1
2 =

⎛

⎝
0 −1 0

−1 0 0
0 0 0

⎞

⎠ . Then, by simple calculations, we see that

U1 = {(u11, u21) ∈ R
2 : (u11)

2 + (u21)
2 ≤ 1} and U2 = {u12 ∈ R : 1 ≤ u12 ≤ 3}.

Let (û11, û
2
1) = (0, 0) ∈ U1, and let û12 = 2 ∈ U2. Then, we see that the strict feasibility

condition holds. In addition, f1, f2, g01, g
0
2, and g12 are SOS-convex polynomials, and g11

and g21 are affine functions. Moreover, by simple calculations, the robust feasible set K can
be found as follows:

K := {x ∈ R
2 : g1(x, u1) ≤ 0, ∀u1 ∈ U1, g2(x, u2) ≤ 0, ∀u2 ∈ U2}

=
{

(x1, x2) ∈ R
2 : x21 + x22 − 2 + max

(u11,u
2
1)∈U1

{
u11x1 + u21x2

} ≤ 0,

×3x21 − 6x1 + max
u12∈U2

{
u12x

2
2

} ≤ 0

}

= {(x1, x2) ∈ R
2 : x21 + x22 ≤ 1, (x1 − 1)2 + x22 ≤ 1}.
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Now, we substitute (R̃MP) by the ε-constraint problems as follows:

(RP j (ε̄( j))) min
(x1,x2)∈K

f j (x1, x2)

s.t. fk(x1, x2) ≤ ε̄( j), k �= j,

where for each j = 1, 2, ε̄( j) is given by ε̄(1) := f2(x̄(0)) and ε̄(2) := f1(x̄(1)), respectively.
Here, x̄(0) ∈ K is given, and x̄(1) ∈ argminx∈K1(ε̄(1))

f1(x), where K1(ε̄(1)) = {x ∈ K :
f2(x) ≤ f2(x̄(0))}.
We now consider the following sum of squares relaxation dual problem of (RP j (ε̄( j))):

(RD j (ε̄( j))) sup
γ j ,μk ,λ

r
i

γ j

s.t. f j +
∑

k �= j

μk( fk − εk) +
2∑

r=0

λr1g
r
1 +

1∑

r=0

λr2g
r
2 − γ j ∈ �2

8 ,

⎛

⎜
⎝

λ01 0 λ11

0 λ01 λ21

λ11 λ21 λ01

⎞

⎟
⎠ � 0,

⎛

⎝
λ02 2λ02 − λ12 0

2λ02 − λ12 λ02 0

0 0 0

⎞

⎠ � 0,

γ j ∈ R, μk ≥ 0, k �= j, λ01, λ
0
2, λ

1
2 ≥ 0, λ11, λ

2
1 ∈ R.

Since f j + ∑k �= j μk( fk − εk) + ∑2
r=0 λr1g

r
1 + ∑1

r=0 λr2g
r
2 − γ j ∈ �2

8 , there exist real
polynomials q�, � = 1, . . . , r , such that

f j (x) +
∑

k �= j

μk( fk(x) − εk) +
2∑

r=0

λr1g
r
1(x) +

1∑

r=0

λr2g
r
2(x) − γ j =

r∑

�=1

q�(x)
2. (16)

Note that, by Proposition 2.1, there exists X ∈ Ss(4)+ (= S15+ ) such that

f j (x) +
∑

k �= j

μk( fk(x) − εk) +
2∑

r=0

λr1g
r
1(x) +

1∑

r=0

λr2g
r
2(x) − γ j (17)

= 〈v4(x)v4(x)T , X〉 ∀x ∈ R
2. (18)

However, the Newton polytope of the polynomial (17) is easily seen to be the convex hull of
the points (8, 0), (0, 2), (0, 0). It follows from (Reznick 1978, Theorem 1) that the Newton
polytope of q� is the convex hull of the points (4, 0), (0, 1), (0, 0), and so, the polynomials
q� in the sum of squares decomposition of (16) will have at most 6 distinct monomials,
i.e., v4(x) = (1, x1, x2, x21 , x

3
1 , x

4
1 )

T in (18), further, the full sum of squares decomposition
can be computed by solving a much smaller semidefinite programming problem. With this
fact we formulate the semidefinite programming problems for (RD j (ε̄( j))), j = 1, 2, as
follows:
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Table 1 Efficient solutions of (R̃MP) for given 25 points x̄(0) ∈ K .

No. x̄(0) ε̄(1) x̄(1) ε̄(2) x̄ : efficient sol.

1 (1.0000, 0.0000) 1.0000 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

2 (0.9962, 0.0872) 0.8977 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

3 (0.9848, 0.1736) 0.7670 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

4 (0.9659, 0.2588) 0.6117 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

5 (0.9397, 0.3420) 0.4377 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

6 (0.9063, 0.4226) 0.2521 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

7 (0.8660, 0.5000) 0.0625 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

8 (0.8192, 0.5736) −0.1233 (0.0616, 0.1233) 0.0076 (0.0616, 0.1233)

9 (0.7660, 0.6428) −0.2984 (0.1485, 0.2989) 0.0447 (0.1485, 0.2989)

10 (0.7071, 0.7071) −0.4571 (0.2245, 0.4596) 0.1057 (0.2244, 0.4596)

11 (0.6428, 0.7660) −0.5953 (0.2859, 0.6020) 0.1817 (0.2859, 0.6020)

12 (0.5736, 0.8192) −0.7109 (0.3320, 0.7231) 0.2633 (0.3320, 0.7231)

13 (0.5000, 0.8660) −0.8035 (0.5000, 0.8660) 0.3879 (0.5000, 0.8660)

14 (0.4264, 0.8192) −0.7861 (0.4264, 0.8192) 0.3372 (0.4264, 0.8192)

15 (0.3572, 0.7660) −0.7498 (0.3572, 0.7660) 0.2950 (0.3572, 0.7660)

16 (0.2929, 0.7071) −0.6997 (0.3278, 0.7113) 0.2547 (0.3278, 0.7113)

17 (0.2340, 0.6428) −0.6398 (0.3043, 0.6484) 0.2111 (0.3043, 0.6484)

18 (0.1808, 0.5736) −0.5725 (0.2762, 0.5783) 0.1676 (0.2762, 0.5783)

19 (0.1340, 0.5000) −0.4997 (0.2440, 0.5032) 0.1267 (0.2440, 0.5032)

20 (0.0937, 0.4226) −0.4225 (0.2083, 0.4244) 0.0901 (0.2083, 0.4244)

21 (0.0603, 0.3420) −0.3420 (0.1697, 0.3428) 0.0588 (0.1697, 0.3428)

22 (0.0341, 0.2588) −0.2588 (0.1290, 0.2591) 0.0336 (0.1290, 0.2591)

23 (0.0152, 0.1736) −0.1736 (0.0867, 0.1737) 0.0151 (0.0867, 0.1737)

24 (0.0038, 0.0872) −0.0872 (0.0436, 0.0872) 0.0038 (0.0436, 0.0872)

25 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

(SDD1(ε̄(1))) sup
γ1,X ,
μ2,λ

r
i

γ1

s.t. X11 = −μ2ε2 − 2λ01 − γ1, 2X12 = λ11 − 6λ02,

2X13 = −μ2 + λ21, 2X14 + X22 = 2 + λ01 + 3λ02,

X23 = −1, X33 = 1 + λ01 + λ12, 2X16 + 2X25 + X44 = μ2,

X66 = 1, X15 + X24 = X34 = X35 = X26 + X45 = 0,

X36 = 2X46 + X55 = X56 = 0,
⎛

⎜
⎝

λ01 0 λ11

0 λ01 λ21

λ11 λ21 λ01

⎞

⎟
⎠ � 0,

⎛

⎜
⎝

λ02 2λ02 − λ12 0

2λ02 − λ12 λ02 0

0 0 0

⎞

⎟
⎠ � 0,

γ1 ∈ R, X ∈ S6+, μ2 ≥ 0, λ01, λ
0
2, λ

1
2 ≥ 0, λ11, λ

2
1 ∈ R,
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Fig. 1 a Efficient solutions of (R̃MP) at Table 1. b Efficient solutions of (R̃MP) for given 1000 points

(SDD2(ε̄(2))) sup
γ2,X ,
μ1,λ

r
i

γ2

s.t. X11 = −μ1ε1 − 2λ01 − γ2, 2X12 = λ11 − 6λ02,

2X13 = −1 + λ21, 2X14 + X22 = 2μ1 + λ01 + 3λ02,

X23 = −μ1, X33 = μ1 + λ01 + λ12, 2X16 + 2X25 + X44 = 1,

X66 = μ1, X15 + X24 = X34 = X35 = X26 + X45 = 0,

X36 = 2X46 + X55 = X56 = 0,
⎛

⎜
⎝

λ01 0 λ11

0 λ01 λ21

λ11 λ21 λ01

⎞

⎟
⎠ � 0,

⎛

⎜
⎝

λ02 2λ02 − λ12 0

2λ02 − λ12 λ02 0

0 0 0

⎞

⎟
⎠ � 0,

γ2 ∈ R, X ∈ S6+, μ1 ≥ 0, λ01, λ
0
2, λ

1
2 ≥ 0, λ11, λ

2
1 ∈ R.

Solving the above semidefinite programming problems using the MATLAB optimiza-
tion package CVX (Grant and Boyd 2013) together with the SDP-solver SDPT3 (Toh
et al. 1999), we can find optimal solutions for the dual problem of (SDD j (ε̄( j))),

j = 1, 2. For example, letting x̄(0) = (1, 0) ∈ K and ε̄(1) = f2(x̄(0)) =
1, we obtain an optimal solution (ȳ, Z̄1, Z̄2) of the dual problem of (SDD1(ε̄(1))),
where

ȳ = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

Z̄1 ≈
⎛

⎝
0.6672 −0.0003 −0.0000

−0.0003 0.06665 −0.0000
−0.0000 −0.0000 0.6663

⎞

⎠ , and Z̄2 ≈
⎛

⎝
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

⎞

⎠ .
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It follows from Theorem 3.2 that x̄(1) = (L ȳ(x1), L ȳ(x2)) = (0, 0) is an optimal solution of
(RP1(ε̄(1))). Now, let ε̄(2) = f1(x̄(1)) = 0. Note that

K2(ε̄(2)) = {x ∈ K : f1(x) ≤ f1(x̄(1))} = {(0, 0)},
i.e., x̄(2) = (0, 0) is an optimal solution of (RP2(ε̄(1))). It means that x̄ := x̄(2) = (0, 0) is an

efficient solution of (R̃MP). In order to find more efficient solutions of (R̃MP), we give 25
points x̄(0) in the boundary of K , and then we get the efficient solutions of (R̃MP) in Table 1.

An illustration of the found efficient solutions of (R̃MP) is given in Fig. 1a.Moreover, we give
1000 points x̄(0) in K . The efficient solutions of (R̃MP) for above points x̄(0) are described
in Fig. 1b.

5 Conclusions

In this paper, we proved that finding efficient solutions in robust multiobjective optimiza-
tion with SOS-convex polynomials is tractable by using the ε-constraint method and the
techniques on SOS-convex polynomials. Notwithstanding the fact that the uncertain set U is
restrict to affinely parameterized data uncertain one, it will be very interesting yet difficult
to investigate the case of more general uncertain set U .
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