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Abstract
With the modernization and intelligent of industrial equipment and systems, the chal-
lenges of dynamic characteristics, failure dependency and uncertainties have aroused by 
the increasing of system complexity. Besides, various types of components may follow dif-
ferent life distributions which bring the multiple life distributions problem in systems. In 
order to model the impact of time dependency and epistemic uncertainty on the failure 
behavior of system, this paper combines the flexible dynamic modeling with the uncer-
tainty expression. Its advantages are intuitively graphical representation and reasoning that 
brought by evidential network (EN). After that, the discrete time dynamic evidential net-
work (DT-DEN) is introduced to analyze the reliability of complex systems, and the net-
work inference mechanism is clearly defined. The evidence theory and original definition 
and inference mechanism of conventional EN is firstly recommended, and the DT-DEN is 
further presented. Furthermore, the multiple life distributions are synthesized into the DT-
DEN to tackle the epistemic uncertainty and mixed life distribution challenges. Specifi-
cally, the dynamic logic gates are converted into equivalent DENs with distinguished con-
ditional mass tables, and then the belief interval of system reliability can be calculated by 
network forward reasoning. Finally, the availability and efficiency of the proposed method 
is verified by some numerical examples.

Keywords  Evidence theory · Dynamic evidential networks · Epistemic uncertainty · 
Multiple life distribution
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�	� An evidential network (EN)
N	� Node set of EN
E	� Edge set of EN
M	� Belief mass set of EN
�
→

	� A dynamic evidential network (DEN)
N
→

	� Node set of DEN
E
→

	� Edge set of DEN
M

→
	� Belief mass set of DEN

M(X)	� Belief mass assignment of variable X
�(⋅)	� Set of parent nodes
Δ	� Length of each time slice
�(⋅)	� State transition matrix
BN	� Bayesian network
CN	� Credal network
EN	� Evidential network
DT-DEN	� Discrete time dynamic evidential network
BDD	� Binary decision diagram
DFT	� Dynamic fault tree
P-box	� Probability box
BPA	� Basic probability assignment
CMT	� Conditional mass table
CBMT	� Conditional belief mass table
DAG	� Directed acyclic graph
CSP	� Cold spare gate
HSP	� Hot spare gate
FDEP	� Functional dependent gate

1  Introduction

In modern complex industrial systems, increasing complexity and interaction of systems and 
components makes failure dependency and dynamic behavior have become the core issues 
that influence the reliability of systems (Peng et al. 2018; Zhang et al. 2018a). Some clas-
sical static and dynamic methods have been widely used to solve these issues. i.e. binary 
decision diagram (BDD) (Pliego Marugán et al. 2017; Bryant 2018) expands to sequential 
and ordered binary decision diagram (SBDD, OBDD) (Khadiev and Khadieva 2017), fault 
tree (FT) model (Kabir 2017) corresponds to dynamic fault tree (DFT) model (Volk et al. 
2018; Li et al. 2015) and fuzzy DFT, Bayesian networks (BNs) (Zarei et al. 2017) extends to 
the dynamic Bayesian networks (DBN) (Khakzad et al. 2017). In the meantime, the lifetime 
distribution of different types of components will be various, some mixed extension methods 
should be induced to analyze the reliability and evaluate the lifetime of these systems.

Another significant issue that has plagued engineers is the uncertainties caused by insuf-
ficient fault data, small sample data, and lack of knowledge of systems which means unknown 
function and structure of systems precisely, this is also called epistemic uncertainty. The inevi-
table aleatory uncertainty can be conducted by classical probability theory, but there is no 
unified approach to deal with the epistemic uncertainty problem. In recent years, the inter-
val-valued approach, fuzzy theory and evidence theory are commonly used theories that have 
been continually improved to adapt different kinds of engineering systems (Wei et al. 2015). 
Based on the structure of BN, Misuri et al. (2018) compared the evidence theory-based BN, 
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which also called evidential networks (EN), with the generalized BN, called Credal networks 
(CN), for epistemic uncertainty and imprecision information assessment, and the methods 
are used to tackle uncertainty in security assessment of critical infrastructures. For hybrid 
uncertainty, Li and Mahadevan (2016) proposed a new framework for model-based sensitiv-
ity analysis which can deal with both parameter uncertainty and model uncertainty. Simon 
and Bicking (2017) combined the evidence theory and probability-boxes (P-boxes) with BN 
to present a hybrid method for system reliability assessment on consideration of aleatory and 
epistemic uncertainty. Sun et al. (2017) provided a linear-time algorithm to compute the state 
distribution of multi-state components, and the redundancy allocation problem is studied for 
multi-state series–parallel systems with consideration of interval-bounded epistemic uncer-
tainties. Weber and Simon (2008) firstly proposed the DEN and used it in system reliabil-
ity analysis. Xiahou et al. (2018) have taken some extension of DEN for multi-state system 
modeling and system reliability computing with consideration of epistemic uncertainty, the 
importance measure is also conducted by formulating it into optimization problems. A syn-
thesis of DEN and improved multi-attribute decision making method was demonstrated by 
Duan et al. (2017) and used for fault diagnosis of complex systems. Rahman et al. (2018) used 
a deterministic sampling method in dynamic event tree to quantify the impact of aleatory and 
epistemic uncertainty for system probabilistic safety assessment. Through extension of belief 
rules and uncertainty measures, Deng and Jiang (2018) presented a new evidential network-
based framework for system dependence assessment and human reliability analysis. All those 
evidence theory-based methods are facing a computational problem which caused by discrete 
uncertainty quantification mechanism of evidence variables. To solve these problems, Zhang 
et al. (2018b) described a continuous representation of epistemic uncertainty by using Johnson 
p-boxes method. For the unified expression of different types of epistemic uncertainties, Lv 
et al. (2018) proposed a definition of evidence-based fuzzy variables and established an uncer-
tainty qualification model for unifying multiple types of epistemic uncertainty. The authors 
have done some contributions on the reliability analysis of complex multi-state systems with 
epistemic uncertainty based on EN and P-box theory (Mi et al. 2016, 2018; Li et al. 2018a, b).

Although the aforementioned methods have partially solved the existing problems in real 
industrial fields, it is also confronted with many mixed challenges, such as how to model and 
quantify the comprehensive influence for system reliability or failure behavior by synthetic 
impact of uncertainty, dynamic property, and dependency of systems. In this paper, a discrete 
time dynamic evidential network (DT-DEN) is induced to deal with the epistemic uncertainty 
and dependency analysis of system, the system dynamic characteristics and multiple life dis-
tributions are also considered in the presented method. The remainder of this paper is organ-
ized as follows. The conventional evidential network is introduced in Sect. 2. The DT-DEN 
is formulated in Sect. 3, and the inference mechanism of commonly used logic relationships 
between nodes in evidential networks is clearly redefined. Section 4 shows two illustration 
examples to investigate the efficiency and validity of the presented method. A brief conclusion 
is summarized in Sect. 5.

2 � Conventional evidential networks and its application

2.1 � Evidence theory

Evidence theory, also known as belief function theory, was first proposed by Dempster and 
further expanded and developed by Shafer (Mi et al. 2018). Three critical functions, i.e. 
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mass function, belief function and plausibility function are defined on a discrete frame of 
discernment � , which includes all the n possible states of variable X. The mass function 
m(X) (also called basic probability assignment (BPA)) is defined based on the power set of 
� that is 2� which includes all possible subsets of � . Each subset AX on the power set sat-
isfying m

(
AX

)
> 0 is called a focal element on � . The mass function should satisfy those 

two conditions: (1) m(∅) = 0 and (2) 
∑

X∈2� m
�
AX

�
= 1 which means the sum of BPA of 

focal elements on power set 2� is 1.
The belief function of event Y: Bel(Y) is defined as the sum of all the masses that sup-

port event Y, and can be calculated from mass function m by

The plausibility function of event Y: Pl(Y) is defined as the sum of all the masses that 
not contradict event Y, and expressed as

Then the epistemic uncertainty can be represented by the gap between Bel(Y) and Pl(Y) , 
which can be expressed as an interval [Bel(Y),Pl(Y)].

2.2 � Basic definition of EN

Evidential network (EN) can express system uncertainty by using directed acyclic graph 
(DAG) in random and epistemic method. An EN is composed by a couple of sets, which 
can be denoted by �=((N,E),M) , where (N,E) is the DAG that composed by note set N and 
edge set E, M is a set of belief masses that corresponding to each note in DAG. The rela-
tionship between a node and its parent nodes can be quantified by conditional belief mass 
table (CBMT). Then, for an intermediate node, the belief probability assignment (BPA) 
can be obtained by the marginalization of CBMT. But for a root node, the prior BPA need 
to be defined.

2.2.1 � Belief mass assignment of root node in EN

A discrete variable X can be represented by a node X ∈ N which is on the basis of frame 
of discernment �X , and there are q mutually exclusive and independent hypotheses 
Hl ∈

{
H1,… ,Hq

}
 on the frame of discernment �X . The power set 2�X has 2q elements, 

each element is a focal element of �X , then the set of focal elements can be shown as 
AX
1
=
{
H1

}
,… ,AX

q
=
{
Hq

}
,AX

q+1
=
{
H1,H2

}
,… ,AX

2q−1
=
{
∪iHi

}
. Furthermore, a mass 

function m(X) should be defined on �X to describe the difference between focal elements, 
which can be expressed as m(X) ∶ 2� → [0, 1] . It is a mapping function that used to map each 
element on power set 2�X into a certain number m(X) which belongs to interval [0, 1]. The cer-
tain m(X) represents the accuracy belief degree of a focal element. Based on expert opinions, 
imprecise probabilities or objectively collected data, the belief mass assignment (BMA) M(X) 
can be obtained and defined by the following equation,

(1)Bel(Y) =
∑
AX⊆Y

m
(
AX

)

(2)Pl(Y) =
∑

AX∩Y≠∅
m
(
AX

)

(3)M(X) =
[
m(X ⊆ ∅),m

(
X ⊆ AX

1

)
,… ,m

(
X ⊆ AX

i

)
,… ,m

(
X ⊆ AX

2q−1

)]
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where m(∅) = 0 and 
∑

AX
i
∈2𝛺 m

�
X ⊆ AX

i

�
= 1.

Based on the above definition, for a node X with n mutually exclusive and independent 
states, the BMA can be defined as,

where 
∑

xi∈2
𝛺 m

�
X ⊆ xi

�
= 1 and m

(
X ⊆ xi

) ≥ 0.

2.2.2 � Inference mechanism of EN

For a multi-state EN with n root nodes X1,X2,… ,Xn as shown in Fig. 1, the corresponding 
states of nodes are x1, x2,… , xn . Suppose that node Xi has li states, the frame of discernment is 
�Xi

 , the leaf node Y has ly states, which defines the frame of discernment �Y , and the set of its 
parents is defined as �(Y) . Based on Cartesian product, the CBMT is used to express the infer 
relationship between root nodes Xi and leaf node Y . The CBMT of leaf node Y can the inferred 
by the following equation when the BPAs of root nodes are known (Mi et al. 2018; Simon and 
Sallak 2018).

where 1 ≤ j ≤ ly, 1 ≤ i ≤ n and 1 ≤ ki ≤ li.

The BPA of leaf node Y can be obtained by,

For an EN with 3 nodes, suppose the root nodes X1 and X2 have 3 states, and the state 
space is � = {0, 1, {0, 1}} , where state {0, 1} represents an uncertain state, which means 
the state of Xi(i = 1, 2) cannot be sure to be success “0” or failure “1”. For a EN with logic 
AND and OR gates under evidence theory, the conditional mass tables (CMTs) of leaf 
node Y can be shown as Tables 1, 2.

(4)M(X) =
[
m
(
X = x1

)
,m

(
X = x2

)
,… ,m

(
X = xn

)]

(5)

�(Y��(Y) ) =

⎡⎢⎢⎢⎢⎢⎣

m
�
Y = y1

���X1 = x1
1
,… ,Xn = x1

n

�
, … , m

�
Y = y1

���X1 = x
l1
1
,… ,Xn = x

ln
n

�

m
�
Y = yj

���X1 = x1
1
,… ,Xn = x1

n

�
, … , m

�
Y = yj

���X1 = x
l1
1
,… ,Xn = x

ln
n

�

⋮ ⋮

m
�
Y = yly

���X1 = x1
1
,… ,Xn = x1

n

�
, … , m

�
Y = yly

���X1 = x
l1
1
,… ,Xn = x

ln
n

�

⎤⎥⎥⎥⎥⎥⎦

(6)

m
(
Y = yj

)
=

∑
X1⊆2

𝛺X1

⋮

Xn⊆2
𝛺Xn

m
(
Y = yj

|||X1 = x
k1
1
,…Xi = x

ki
i
,… ,Xn = xkn

n

)

⋅ m
(
X1 = x

k1
1

)
⋅ ⋯ ⋅ m

(
Xi = x

ki
i

)
⋅ ⋯ ⋅ m

(
Xn = xkn

n

)

Fig. 1   An EN with n root nodes
1X 2X nX

Y

⋅ ⋅ ⋅
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Therefore, the relationship between basic probability assignment (BPA) of the states of 
leaf node Y and the states of root nodes can be expressed by,

For an EN that shown as Fig. 2 which has n root nodes Xi (i = 1,…, n) and m intermedi-
ate nodes Yj (j = 1,…, m), the variables of root nodes Xi and intermediate nodes Yi are rep-
resented by xi(i = 1, 2,… , n) and yj(j = 1, 2,… ,m) , then the ki-th state of root nodes can 
be expressed as xi,ki

(
1 ≤ ki ≤ li

)
 . The kj-th state of intermediate node is yj,kj

(
1 ≤ kj ≤ lj

)
 . 

The variable of v-th state of leaf node is Tv(v = 1, 2,… , q) . Based on the previous inference 
mechanism shown in Eq. (7), the probability of leaf node T on failure state Tv can be 
expressed by a probability interval, which is,

(7)

m
(
Y = yj

|||X1 = x
k1
1
,…Xi = x

ki
i
,… ,Xn = xkn

n

)

=
m
(
Y = yj,X1 = x

k1
1
,… ,Xi = x

ki
i
,… ,Xn = x

kn
n

)

m
(
X1 = x

k1
1
,… ,Xi = x

ki
i
,… ,Xn = x

kn
n

)

(8)[P]
(
T = Tv

)
=
[
Bel

(
T = Tv

)
,Pl

(
T = Tv

)]

Table 1   CMT of EN with 
“AND” logic relationship

X1 X2 Y(AND) 0 1

0 1 {0, 1} Bel Pls Bel Pls

0 0 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0 0
0 {0, 1} 1 0 0 1 1 0 0
1 0 1 0 0 1 1 0 0
1 1 0 1 0 0 0 1 1
1 {0, 1} 0 0 1 0 1 0 1
{0, 1} 0 1 0 0 0 0 1 1
{0, 1} 1 0 0 1 0 1 0 1
{0, 1} {0, 1} 0 0 1 0 1 0 1

Table 2   CMT of EN with “OR” 
logic relationship

X1 X2 Y(OR) 0 1

0 1 {0, 1} Bel Pls Bel Pls

0 0 1 0 0 1 1 0 0
0 1 0 1 0 0 0 1 1
0 {0, 1} 0 0 1 0 1 0 1
1 0 0 1 0 0 0 1 1
1 1 0 1 0 0 0 1 1
1 {0, 1} 0 1 0 0 0 1 1
{0, 1} 0 0 0 1 0 1 0 1
{0, 1} 1 0 1 0 0 0 1 1
{0, 1} {0, 1} 0 0 1 0 1 0 1
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The plausibility probability of intermediate node that represents the upper bound of 
interval, is defined as Eq. (9),

The lower bound of interval is the belief reliability of intermediate node, and can be 
computed by using the following equation,

The plausibility probability of leaf node Pl(T = Tv) can be calculated by Eq. (11),

And the belief probability of leaf node Bel(T = Tv) is

3 � DT‑ DEN models for system reliability analysis

3.1 � DT‑DEN modeling

DEN can be seen as a prolongation of EN on temporal dimension, then from the definition 
of EN in Sect. 2, A DEN can be represented as 𝜁

→
=
((
N
→
,E

→

)
,M

→

)
< E0,E→

>, 𝜉0 is the 
initial state or observation model with model state Xt which contains obervation variables and 
latent variables. The obervation variable represents the leaf node in EN, and latent varialbes 
are root nodes and intermediate nodes. When X(0) represents the initial state of components 
and system, �

→
 is the transmit model of DEN. In a temporal slice of DEN, the obervation vari-

able is related to the latent variables which are correlated with the other variables in current 
temporal slice and the latent variables in previous temporal slice. There are 5 steps to built 
DT-DEN model.

Step 1 State definition. Assume that the system mission time is T, and it can be equally 
divided into K intervals, and each time slice has a length of Δ = T∕K . Then the timeline can 

(9)Pl(Y = YV ) =
∑

x1,…xn∩YV≠∅
m(y = yV |x1, x2,… xn)m(x1)m(x2)⋯m(xn)

(10)Bel(Y = YV ) =
∑

x1,…xn⊆YV

m(y = yV |x1, x2,… xn)m(x1)m(x2)⋯m(xn)

(11)Pl(T = TV ) =
∑

y1,…yn∩TV≠∅
m(T = TV |y1, y2,… yn)m(y1)m(y2)⋯m(yn)

(12)Bel(T = TV ) =
∑

y1,…yn⊆TV

m(T = TV |y1, y2,… yn)m(y1)m(y2)⋯m(yn)

Fig. 2   The inference diagram of 
an EN 1X 2X nX⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

( )kPls T( )kBel T

( ),j kBel Y ( ),j kPls Y1Y 2Y mY

T
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be divided into K + 1 intervals including [(p − 1)Δ, pΔ),… , [T ,∞)(1 ≤ p < K) which are 
defined as the state space of nodes in BN. Let Xi,[(p−1)Δ,pΔ] represents the failure state that sys-
tem or component Xi is failed at time slice [(p − 1)Δ, pΔ) , and Xi,[T ,∞) means Xi will not fail 
(success) at mission time T.

Step 2 Building the dynamic fault tree model. By analyzing the function structure and fail-
ure process of practical engineering system, a DFT model can be built.

Step 3 Mapping the DFT model to DEN. The structure of DEN will be the same as BN, the 
differences are embodied in the CMTs on time slice. Therefore, based on the mapping rule of 
DFT to BN, the events in DFT can be mapped to the corresponding nodes in DEN.

Step 4 The mass assignment of node in DEN. After the modeling of DEN, the temporal 
dimension should be divided into K intervals, which means the state space of each root node 
will has K + 1 state, and the failure probability distribution of these states will be the prior 
mass assignments of root nodes. And the CMTs can be gotten and used to express the fail-
ure logic relation between root nodes in DEN. The different CMTs corresponding to different 
logic gate in DFT will be discussed in the following sections.

Step 5 System reliability calculation by using DEN model inference.
When the failure probability density function (PDF) of Xi is fXi

(t) , and node Xi is a root 
node with two states, where 1 represents failure state and 0 is working state. The prior mass 
assignment (probability distribution) can be expressed as the following equation,

When considering the epistemic uncertainty in system or component reliability parameter, 
an uncertain state {0, 1} is induced and it is transmitted through the time line on whole life 

cycle. The PDF of component can be represented by interval variable, that is fXi
(t)=

[
f
−
Xi

, f̄Xi

]
 . 

Then for each time interval, the error can be defined as,

Then the prior mass assignment of node X in Eqs. (13) and (14) with consideration of epis-
temic uncertainty can be further expressed as,

The BMA on temporal dimension will be shown in Fig. 3, and the probabilistic infer-
ence of EN on temporal dimension can be shown in Fig. 3.

(13)m
(
Xi,[(p−1)Δ,pΔ) = 1

)
= �

pΔ

(p−1)Δ

fXi
(t)dt, 1 ≤ k ≤ n

(14)m
(
Xi,[T ,∞) = 1

)
= ∫

∞

T

fXi
(t)dt

(15)m
(
Xi,[(p−1)Δ,pΔ) = {0, 1}

)
= ∫

pΔ

(p−1)Δ

f̄Xi
(t)dt − ∫

pΔ

(p−1)Δ

f
−
Xi

(t)dt

(16)m
(
Xi,[(p−1)Δ,pΔ) = 1

)
= ∫

pΔ

(p−1)Δ

f
−
Xi

(t)dt

(17)m
(
Xi,[(p−1)Δ,pΔ) = 0

)
= 1 − ∫

pΔ

(p−1)Δ

f̄Xi
(t)dt
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3.2 � DT‑DEN with multiple life distribution

In terms of the epistemic uncertainty in system and the different failure distribution of 
basic events, the failure rates of root nodes of EN for complex system are expressed in 
interval variables. The typical life distributions of components and the corresponding 
failure rate function can be represented as the following equations,

(1)	 For component which lifetime obeys exponential distribution with failure rate � which 
can be computed by using expert elicitation and fuzzy set theory (Duan, et al. 2017), 
the failure rate function is a constant interval, and

	 The failure probability function of exponential distribution is

(2)	 For component which lifetime obeys two-parameter Weibull distribution with shape 

parameter � and scale parameter [𝜂] =
[
𝜂
−
, 𝜂̄

]
 , the failure rate function and failure prob-

ability function can be represented as

(3)	 For component which lifetime obeys lognormal distribution with location parameter 

[𝜇] =

[
𝜇
−
, 𝜇̄

]
 and shape parameter � , the failure rate function and failure probability 

function will be
	 

(18)
[
𝜆exp

]
(t) =

[
𝜆
−
exp

, 𝜆̄exp

]

(19)Fexp(t) = 1 − exp
(
−
[
�exp

]
t
)

(20)�Wb(t) =

[
�

�

](
t

[�]

)�−1

(21)FWb(t) = 1 − exp

{
−

(
t

[�]

)�
}

(22)�Logn(t) =

1

t�
√
2�

exp

�
−

1

2

�
ln t−[�]

�

�2
�

∫ +∞

t

1

t�
√
2�

exp

�
−

1

2

�
ln t−[�]

�

�2
�
dt

Fig. 3   The BMA on temporal dimension
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The parameters for Weibull distribution and lognormal distribution can be calculated 
by using the coefficient of variation (COV) method (Mi, et al. 2016).

As for the epistemic uncertainties are expressed by the interval parameters in multiple 
lifetime distributions, the system failure probability will be calculated by using the follow-
ing equation, 

3.3 � Inference mechanism of DT‑DEN

3.3.1 � The relationship between EN and Markovian behavior

For node X, corresponding to a component with the exponential distribution, Xk and Xk+1 
are used to express the random variable X being on time slice k and k + 1, respectively. 
Assume that the failure rate of X at time t is �X = �X(t) , the epistemic uncertainty can be 
induced by failure rate interval [�

X
, �X] . Then the following three discussions about condi-

tional confidence probability of X need to be conducted (Duan, et al. 2017).

(1)	 When the component is working at time k, which means the state of node X is “0”, 
after the transition time it may fail on state “1”, or with uncertain state {0, 1}. Then 
the transition mass distribution at time k + 1 will become

(2)	 When the component failed at time k, the state of node X is “1”, the transition mass 
distribution at time k + 1 will be

(3)	 When the component is uncertain at time k, then the state of node X is {0, 1}, the 
transition mass distribution after the transition time will be

(23)FLogn(t) = ∫
t

0

1

t�
√
2�

exp

�
−
1

2

�
ln t − [�]

�

�2
�
dt

(24)
[
PS

]
=
[
P
−
S
, P̄S

]
=
[
Bel

(
FS

)
,Pl

(
FS

)]

(25)m(Xk+1 = 1|Xk = 0) = �
X

(26)m(Xk+1 = {0, 1}|Xk = 0) = �X − �
X

(27)m(Xk+1 = 0|Xk = 0) = 1 − �X

(28)m(Xk+1 = 0|Xk = 1) = 0

(29)m(Xk+1 = {0, 1}|Xk = 1) = 0

(30)m(Xk+1 = 1|Xk = 1) = 1

(31)m(Xk+1 = 1|Xk = {0, 1}) = �
X

(32)m(Xk+1 = 0|Xk = {0, 1}) = 0

(33)m(Xk+1 = {0, 1}|Xk = {0, 1}) = 1 − �
X
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According to the discussions from Eq. (25) to Eq. (33), the (state transition matrix) con-
ditional belief mass table (CMT) of root nodes can be obtained and expressed as Eq. (34) 
(Duan et al. 2017)

From Sect. 2.2.1, a priori belief mass assignment of X at time slice k can be defined as

Then the state mass distribution of component X after a time slice can be calculated by,

All those works are based on two hypothetical preconditions: (1) the topology of the 
DEN does not change over time, (2) the inference of DEN satisfies the condition of first-
order Markov model, which means the current state of system is only related to the imme-
diately preceding temporal slice. On the basis of these two assumptions, the DEN can be 
seen as the expansion of the EN on temporal dimension, and the node measures can be 
intuitively represented by Fig. 4.

(34)

�

�
X
k+1���X

k

�
=

⎡⎢⎢⎢⎣

m(Xk+1 = 0�Xk = 0) m(Xk+1 = 1�Xk = 0) m(Xk+1 = {0, 1}�Xk = 0)

m(Xk+1 = 0�Xk = 1) m(Xk+1 = 1�Xk = 1) m(Xk+1 = {0, 1}�Xk = 1)

m(Xk+1 = 0�Xk = {0, 1}) m(Xk+1 = 1�Xk = {0, 1}) m(Xk+1 = {0, 1}�Xk = {0, 1})

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣

1 − �X �
X

�X − �
X

0 1 0

0 �
X

1 − �
X

⎤⎥⎥⎥⎦

(35)�
�
Xk

�
=

⎧⎪⎨⎪⎩

m
�
Xk = 0

�
= P

−
X

m
�
Xk = 1

�
= 1 − P̄X

m
�
Xk = {0, 1}

�
= P̄X − P

−
X

(36)�
(
Xk+1

)
= �

(
Xk

)
⋅�

(
Xk+1|||X

k
)

Fig. 4   Computing nodes of Bel 
and Pls measures

kX +1kX

( )kBel X

( )kPls X

( )+1kBel X

( )+1kPls X

Fig. 5   The equivalent DEN of 
logic “AND” and “OR” X1,k

X2,k

X1,k+1

X2,k+1

Yk+1
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3.3.2 � CMTs determination for DEN with multiple dynamic logic relation

As for system dynamic characteristic in engineering systems, the commonly used modeling 
method is dynamic fault tree method which uses dynamic logic gates to represent the logic 
relation between components, i.e. cold spare gate (CSP), hot spare gate (HSP), functional 
dependent gate (FDEP), etc. From what have discussed in Sect. 3.1, the logic gates in FT and 
DFT can be translated to the equivalent DEN. For the static logic “AND” and “OR” gates, 
the equivalent DEN can be shown as Fig. 5. The CMTs at the k-th time interval are shown as 
Tables 3 and 4, respectively.

Based on the logic of CSP and HSP gates, the equivalent DEN can be obtained and shown 
in Fig. 6. The corresponding CMTs at the k-th time interval can be shown as Tables 5 and 6, 
respectively.

For the dynamic FDEP gate in DFT, the equivalent DEN and CMT are given in Fig. 7 and 
Table 7, respectively.

3.3.3 � Calculation of system reliability

For a DT-DEN, X(0) represents the initial state of components and system, E
→

 is the transmit 
model of DEN. Suppose that the latent variable is Xk , and the observation variable is Yk , for 
the initial slice to k-the slice, the mass assignment of output Yi will be,

where m(Xi|Xi−1) represent the transmit model, it is generally supposed to be not change 
over time. Then the mass assignment of Yk from (k-1)-th temporal slice to k-th slice can be 
gotten by Eq. (37) and,

The upper limit of system failure probability interval Pl(Yi = Yv) is the plausibility mass of 
leaf node, and can be calculated by the following Eq. (39),

The lower limit of system failure probability interval Bel(T = Tv) is the belief mass of leaf 
node, which can be computed by Eq. (40),

(37)�
(
Y1∶k

)
= �

(
X0

) k∏
i=1

�
(
Xi|Xi−1

)
�
(
Yk|Xk

)

(38)�
(
Yk−1∶k

)
= �

(
Xk−1

)
�
(
Xk|Xk−1

)
�
(
Yk|Xk

)

(39)Pls
(
Y1∶k

)
= �

(
X0

) k∏
i=1

�
(
Xi|Xi−1

)
Pls

(
Yk|Xk

)

(40)Bel
(
Y1∶k

)
= �

(
X0

) k∏
i=1

�
(
Xi|Xi−1

)
Bel

(
Yk|Xk

)

Fig. 6   The equivalent DEN of 
logic “CSP” and “HSP” X1,k

X2,k

X1,k+1

X2,k+1

Yk+1
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4 � Numerical examples: application of DT‑DEN

4.1 � Example 1: a simple DEN

For the EN in Fig. 8, the root nodes X1 and X2 are independent, the logic relationship 
with leaf node Y is shown in Table 1. Assume that the node has three states, including 
state 0, state 1 and state {0, 1}, which represent working state, failure state, and uncer-
tain state respectively. Suppose that the root nodes obeys exponential distribution with 
failure rates of �1 = 0.002 and �2 = 0.005 , from Sect. 2.2.2, when considering the epis-
temic uncertainty in system, the failure rates can be obtained and ��

1
= [0.0019, 0.0021] 

and ��
2
= [0.00475, 0.00525] . The initial state probabilities of root nodes X1 and X2 are 

listed in Table 8.
By using the inference method of EN in Sect. 3.3, the belief probability and plausi-

bility probability of leaf node Y can be obtained and listed in Table 9.
Suppose that the state transition matrix of root nodes X1 and X2 are A1 and A2 , where

Then the state probability of root nodes X1 and X2 at t = 2000  h can be gotten by 
Eqs. (25)–(34), and listed in Table 10.

Then the belief probability and plausibility of leaf node Y at time t + 1 can be com-
puted and listed in Table 11. And the evidential reliability curve of root nodes can be 
obtained and shown as Fig. 9.

4.2 � Example 2: a DEN with multiple lifetime distributions

To further illustrate the application of this induced DT-DEN method, the reliability of 
sample system with dynamic characteristics and multiple lifetime distribution is imple-
mented in this section. The DFT of the sample system can be built as Fig. 10, based on 
the DT-DEN modeling method in Sect.  3.1, the corresponding DEN can be built and 
shown in Fig. 10.

(41)A1=

⎡⎢⎢⎣

0.9979 0.0019 0.0002

0 1 0

0 0.0019 0.9981

⎤⎥⎥⎦

(42)A2=

⎡⎢⎢⎣

0.99475 0.00475 0.0005

0 1 0

0 0.00475 0.99525

⎤⎥⎥⎦

Fig. 7   The equivalent DEN of 
logic “FDEP” Trk

Xk

Trk+1

Xk+1

Yk+1X'k+1
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In this numerical example, the lifetime of component X1 is supposed to satisfy the 
following two scenarios: (1) X1 follows exponential distribution with the failure rate 
[�X1

] = [6.08e − 5, 9.12e − 5]∕h ; (2) X1 follows a two-parameter Weibull distribution 
with sharp parameter β and scale parameter η. Based on the general accelerated life 
test, the interval reliable life of X1 is gotten as tWb

R=0.95
= 2100 h and tWb

R=0.5
= 4200 h. 

Then the reliable life of Weibull distribution is tWb
R

= �(− lnR(t))1∕� (Mi, et al. 2016), 

Fig. 8   Node mass inference of 
DEN on temporal dimension ( )+1kPls Y

( )+1kBel Y2,kX

kY

2, +1kX

+1kY

1,kX 1, +1kX

Table 8   Initial state probabilities 
of root nodes

Root node State

0 1 {0, 1}

X1 0.9916 0.0084 0
X2 0.9954 0.0019 0.0027

Table 9   The state probability of 
leaf node

Leaf node State

Bel Pls

0 1 0 1
Y 0.99728 0.00002 0.99998 0.00272

Table 10   State probability of 
root nodes at t = 2000 h

Root node State

0 1 [0, 1]

X1 0.0148 0.9779 0.0073
X2 2.6662e−05 0.9999 4.6376e−05

Table 11   State probability of leaf 
nodes at t = 2000 h

Leaf node State

Bel Pls

0 1 0 1
Y 0.0148 0.9778 0.0222 0.9851



330	 Annals of Operations Research (2022) 311:311–333

1 3

the parameters of X1 can be calculated as β = 3.76 and η = 4630.46. When the com-
ponents X2 and X3 follows exponential distributions, the failure rates are given as 
intervals [�X2

] = [�X3
] = [6.08e − 5, 9.12e − 5]∕h . Based on the multiple lifetime dis-

tribution inference mechanism and system reliability calculation method in Sect.  3, 
the belief and plausibility reliability of system can be computed. The reliability cal-
culation results are compared with the directly sampling result, which are shown in 
Figs. 11 and 12.

From Fig.  11, the upper and lower bound of system reliability calculated by directly 
sampling are within the region of the results by DT-DEN, which verify the validity of this 
method. From Fig. 12, the lifetime distributions of components are supposed to be differ-
ent, and the result has verified the feasibility of DT-DEN method to solve the multiple life 
distributions problem with the combination of uncertainty problems in system reliability 
analysis.

Fig. 9   The calculation result of evidential reliability

CSP

T

X3

X1

X2

X1,k

X2,k

X1,k+1

X2,k+1 Tk+1

X1,k

X3,k X3,k+1

AND

Fig. 10   The mapping relation of DFT to DEN
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5 � Conclusions

In this paper, through the discussion of evidence theory and conventional evidential net-
work, a DT-DEN method is introduced to implement the reliability analysis of industrial 
complex systems that faces with the intricate problems, i.e. dependency and dynamic of 

Fig. 11   System reliability (Exp distribution)

Fig. 12   System reliability (Exp and Wb distributions)
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failure behavior, components follow different life distributions, epistemic uncertainty 
induced by lack of data and imprecise knowledge, etc. The issues about epistemic uncer-
tainty, dynamic failure behavior and mixed life distribution have received special attention 
in this paper. It has been proven that the evidence theory can express and quantify epis-
temic uncertainty in a simple and clear means, and the EN which converted by Bayesian 
network can demonstrate the intuitively graphical representation and probability reason-
ing. In terms of the advantages of EN, taking into account of the dynamic failure behav-
ior and multiple life distribution problem, the DT-DEN is introduced and used to con-
duct reliability analysis of complex systems. The DT-DEN is transformed by DFT, and 
the probability inference of dynamic logic gates is expressed by a series of corresponding 
CMTs. The results indicate the validity and effectiveness of the presented method. In the 
future work, the optimization and application of the method in real industrial systems will 
catch our focus, and we also devote ourselves to find a better unified expression of hybrid 
uncertainties.
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