
Annals of Operations Research (2020) 285:295–314
https://doi.org/10.1007/s10479-019-03172-8

S . I . : PROJECT MANAGEMENT AND SCHEDUL ING 2018

Scheduling equal length jobs with eligibility restrictions

Juntaek Hong1 · Kangbok Lee1 ·Michael L. Pinedo2

Published online: 21 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We consider the problem of scheduling independent jobs on identical parallel machines to
minimize the total completion time. Each job has a set of eligible machines and a given
release date, and all jobs have equal processing times. For the problem with a fixed number
of machines, we determine its computational complexity by providing a polynomial time
dynamic programming algorithm.We also present two polynomial time approximation algo-
rithms along with their worst case analyses. Experiments with randomly generated instances
show that the proposed algorithms consistently generate schedules that are very close to
optimal.

Keywords Parallel machine scheduling · Eligibility · Release date · Equal processing time
jobs · Total completion time

1 Introduction

Scheduling problems with jobs that have equal processing times have always received a
certain amount of attention in the past, due to theoretical interest as well as practical appli-
cations, see Lee et al. (2011). In many standardized systems in practice, jobs consistently
have exactly the same processing times, e.g., transmission packets in data communication
networks, Full Truck Loads (FTLs) in transportation by truck, and Twenty-foot Equivalent
Units (TEUs) in container shipments. For more detailed information, see a survey paper by
Kravchenko and Werner (2011). From a theoretical point of view scheduling problems with
equal processing time jobs are also of interest. While many scheduling problems with jobs
that have arbitrary processing times turn out to be NP-hard, their special cases with all jobs
having equal processing times are considerably easier and often polynomial time solvable.
Even though there has been extensive research in the time complexity of scheduling problems
with equal processing times (see, for example, Baptiste et al. 2004), some cases remain still
open from a computational complexity point of view.

B Kangbok Lee
kblee@postech.ac.kr

1 Department of Industrial and Management Engineering, Pohang University of Science and
Technology, Pohang, Gyeongbuk, Korea

2 Department of Information, Operations and Management Sciences, Stern School of Business, New York
University, New York, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-019-03172-8&domain=pdf
http://orcid.org/0000-0003-2561-7819
http://orcid.org/0000-0002-3526-9865

296 Annals of Operations Research (2020) 285:295–314

In most parallel machine scheduling problems, each job can be processed on any machine
when the machine is available. However, recent research has focused on more general prob-
lems with jobs that cannot be processed on just any machine, but only on a specific subset
of the machines. Such a constraint is referred to as an eligibility constraint, see Hwang et al.
(2004). Different terminology has been proposed by other researchers, i.e, multi-purpose
machines by Brucker et al. (1997), processing set restrictions by Glass and Mills (2006), etc.
The reader is referred to a survey paper by Leung and Li (2008). This type of scheduling
problem also serves as an important special case of unrelated parallel machine variants; when
a job is not eligible for a certain machine, its processing time on that machine is regarded as
∞.

Scheduling with equal processing time jobs subject to eligibility constraints has not
received much attention in the literature. Lee et al. (2011) considered a parallel machine
scheduling problem to minimize the makespan with equal processing time jobs subject to
eligibility constraints and developed a polynomial time algorithm. There have been several
results on scheduling with unit processing time jobs subject to eligibility constraints, see
Glass and Mills (2006) and Li (2006).

We consider a problem of scheduling n jobs onm identical parallel machines to minimize
the total completion time. Let J = {1, . . . , n} be the set of jobs and M = {1, . . . ,m} be
the set of machines. Job j can be processed on a subset of the m machines, which is called
the eligible set of job j and is denoted by Mj for j ∈ J . Job j also has a given release
date r j , and all jobs have an equal processing time p. We assume that both r j and p are
integers. According to the well-established α | β | γ notation for scheduling problems, as
described by Pinedo (2016), this problem can be denoted by P | Mj , r j , p j = p | ∑

C j .
When the number of machines is considered a fixed constant, the problem is denoted by
Pm | Mj , r j , p j = p | ∑

C j .
In order to investigate the computational complexity of the problem P | Mj , r j , p j = p |∑
C j , it is important to check the closely related problems, that are its immediate special

and general cases. When the eligibility constraints (Mj) are relaxed, each job is eligible for
processing on any one of the machines and the problem becomes P | r j , p j = p | ∑

C j .
Simons (1983) proved that this relaxed problem can be solved in polynomial time, even with
deadline constraints. Moreover, problems with more general objectives, i.e., P | r j , p j =
p | ∑

w jC j and P | r j , p j = p | ∑
Tj , can be solved in polynomial time as well, see

Brucker and Kravchenko (2005, 2008), respectively. When the release dates of all jobs are
zero, the problem P | Mj , p j = p | ∑

C j can be solved in polynomial time; it is known
that a more general problem R || ∑

C j can be solved in O(n3) time through an assignment
formulation, see Bruno et al. (1974) and Horn (1973). When processing times are arbitrary,
the problem P | Mj , r j | ∑

C j is strongly NP-hard; Lenstra et al. (1977) proved that the
much easier problem 1 | r j | ∑

C j is already strongly NP-hard. When all jobs have unit
processing times, problem P | Mj , r j , p j = 1 | ∑

C j can be solved in polynomial time;
Brucker et al. (1997) proved that the problem with a more general objective, i.e., problem
P | Mj , r j , p j = 1 | ∑

w j Tj can be solved in O(n3) time via an assignment formulation.
However, the computational complexity of the problem P | Mj , r j , p j = p | ∑

C j is not
yet known.

Approximation algorithmswere derived for some hard scheduling problems.An algorithm
is said to be a δ-approximation algorithm for a minimization problem if, for any instance
of the problem, the algorithm generates a solution of which the objective value is at most δ

times the optimum. The δ is referred to as the approximation ratio, or worst case ratio, or
worst case error bound, or approximation factor (Hochbaum 1996). In this paper the term
worst case performance ratio is used for δ. Skutella (2001) proposed a 3/2-approximation

123

Annals of Operations Research (2020) 285:295–314 297

algorithm for R || ∑
w jC j and a 2-approximation algorithm for R | r j | ∑

w jC j , both
being a strongly polynomial time solvable algorithm. Recently, Im and Li (2017) proposed
a better approximation algorithm for R | r j | ∑

w jC j with a worst case performance ratio
of 1.8786, and Li (2017) proposed a better approximation algorithm for R || ∑

w jC j with
a worst case performance ratio of 1.5 − c where c is 1

6000 . We propose a polynomial time
approximation algorithm for P | Mj , r j , p j = p | ∑

C j with a worst case performance
ratio of 1.4.

In Sect. 2, we propose a dynamic programming algorithm for Pm | Mj , r j , p j = p |∑
C j and show that this algorithm runs in polynomial time when m is fixed. In Sect. 3,

a mixed integer programming (MIP) model is proposed for generating an exact solution.
Since the computational complexity of P | Mj , r j , p j = p | ∑

C j is unknown, we provide
two approximation algorithms along with their worst case analyses in Sect. 4. In Sect. 5, a
practical algorithm is proposed and evaluated with randomly generated problem instances,
and its experimental results are analyzed. Section 6 shows that the obtained results can be
generalized to more general settings, and the concluding remarks are presented in Sect. 7.

2 Dynamic programming algorithmwith fixedm

In this section, we develop a polynomial time dynamic programming (DP) algorithm for
Pm | Mj , r j , p j = p | ∑

C j with fixed m. Before developing the DP algorithm, we
introduce additional notation and present two propositions that are useful for the development
and analysis of the algorithm.

2.1 Preliminary

If M := {Mj | j ∈ J }, then, M ⊂ 2M\∅. Let k := |M| and, without loss of generality,
M := {M1, M2, . . . , Mk}. Note that if we consider arbitrary eligibility, k ≤ 2m − 1.

Proposition 1 There exists an optimal schedule in which jobs that have the same eligible set
and that are assigned to the same machine are scheduled in ERD (Earliest Release Date
first) order.

Proof By exchange argument. ��
From Proposition 1, we define a partition of the set of jobs as follows:

J e = { j | Mj = Me} for e = 1, . . . , k.

Let ne := |J e| for e = 1, . . . , k. Thus,
∑k

e=1 n
e = n. We assume that jobs in J e are sorted

in ERD order. Let re(j) denote the release date of the j-th job in J e for j = 1, . . . , ne and
e = 1, . . . , k.

Proposition 2 There exists an optimal schedule in which the completion time of each job is
of the form r j + a · p for some j ∈ J and a ∈ {1, . . . , n}.
Proof If not, we can move the job forward and find a better schedule. ��

From Proposition 2, we define the following set of candidates for the completion times of
the jobs.

Λ = {
t | t = r j + a · p, for j ∈ J , a ∈ {1, . . . , n}}

Thus, |Λ| ≤ n2.

123

298 Annals of Operations Research (2020) 285:295–314

2.2 Dynamic programming algorithm

Nowwe are ready to design a dynamic programming algorithm for the problem.We consider
a partial schedulewith the first be jobs from J e for e = 1, . . . , k inwhich the latest completion
time of machine i is ti for ti ∈ Λ and i = 1, . . . ,m.

Let αi := (ti ; b1i , b2i , . . . , bei , . . . , bki) be the state of machine i where bei jobs among the
first be jobs from J e are scheduled on machine i for e = 1, . . . , k and where

∑m
i=1 b

e
i = be.

Note that if i /∈ Me, then bei = 0. We know that the following restriction suffices:

ti ∈ Λ

bei ∈ {0, 1, . . . , ne}
The state of a partial schedule is a collection of states of all machines and is denoted by
α := (α1, α2, . . . , αm). Let V (α) be the total completion time of the current partial schedule.

Wepropose a dynamic programming formulation for the problemby describing the bound-
ary conditions, the recursive relationship, and the optimal value function.

Boundary conditions

– V (α0) = 0 where α0 := (α0
1, α

0
2, . . . , α

0
m) and α0

i := (0; 0, . . . , 0) for i ∈ {1, . . . ,m}.
– V (α) = ∞ if there exists an i such that ti < 0 or if there exist an e and an i such that

bei < 0.

Recursive relationship

– V (α) = min
{
V

(
α̂(h, f)

)
+ th

∣
∣
∣ f ∈ {1, . . . , k}, h ∈ M f , r f (b f) ≤ th − p, th ∈ Λ

}

where α̂(h, f) = (α̂1, α̂2, . . . , α̂m), b f = ∑m
i=1 b

f
i , and

α̂i = αi for i 	= h

α̂h = (t̂h; b̂1h, . . . , b̂kh)
and

b̂eh = beh for e 	= f

b̂ f
h = b f

h − 1

t̂h ≤ th − p and t̂h ∈ Λ.

If there does not exist a pair of (h, f) for f ∈ {1, . . . , k}, h ∈ M f satisfying r f (b f) ≤ th− p,
then V (α) is defined to be ∞.

Optimal value function

– min{V (α) | be = ne for e ∈ {1, . . . , k}}.
Now we consider the time complexity of the proposed DP algorithm. The number of

possible states is bounded by

(

n2 ×
k∏

e=1

(1 + ne)

)m

≤ O
(
(n2nk)m

)
= O

(
n(2+k)m

)
.

In order to compute the value of a state, by the recursive relationship, we have to try
all h, f and t̂h and find the minimum; this has to be done kmn2 times. Thus, the required
computation is bounded by

123

Annals of Operations Research (2020) 285:295–314 299

kmn2 × O
(
n(2+k)m

)
= O

(
kmn2+(2+k)m

)
.

Since for an arbitrary eligibility case k ≤ 2m − 1, the time complexity is

O
(
m2mn2+(1+2m)m

)
.

For fixed m, the running time of the proposed DP algorithm is polynomial and Pm |
Mj , r j , p j = p | ∑

C j can, therefore, be solved in polynomial time.

3 MIP formulation

Although we proposed in the previous section a DP algorithm that has a polynomial running
time for fixed m, its time complexity is so high that the DP cannot be used in practice.
Therefore, we propose a MIP formulation for generating an exact solution.

There are several types of MIP formulations for scheduling problems. In the existing
scheduling literature, the fundamental differences between the various types of formulations
lie in the choice of decision variables, see Keha et al. (2009). The job-machine assignment
decisions are expressed by binary variables. The job sequence on a given machine is also
expressed by other binary variables. For the job sequence: (i) predecessor variables between
two jobs, (ii) immediate predecessor variables between two jobs, or (iii) position variables
within the sequence are frequently used. Unlike aforementioned variables, time-indexed
variables are also used. Since the model with time-indexed variables is known to have a
strong linear programming relaxation, it can solve small size problems very efficiently. On
the other hand, its problem size is pseudo-polynomial and it may not work well for large size
problems. However, for the problem being considered here, by Proposition 2, we can use a
time-indexed formulation with a polynomial number of variables and constraints.

Recall that Λ = {
t | t = r j + a · p for j ∈ J , a ∈ {1, . . . , n}}. Let λi be the i-th small-

est element in Λ, i.e., Λ = {λ1, λ2, . . . , λq} such that λ1 < λ2 < . . . < λq . Note that
|Λ| = q is bounded by n2(i.e., q ≤ n2). We define the following index set that is useful for
describing the formulation.

Γ r = {h ∈ {1, . . . , q} | λr − p < λh ≤ λr }
for r ∈ {1, . . . , q}. Thus, |Γ r | ≤ n.

We define the following decision variables: xir j = 1 if job j is scheduled on machine i
and its completion time is λr , and xir j = 0 otherwise, for i ∈ M, r ∈ {1, . . . , q}, j ∈ J .

The proposed mathematical programming formulation is as follows:

Minimize
∑

i∈M

q∑

r=1

∑

j∈J

λr xir j (1)

Subject to
∑

i∈M

q∑

r=1

xir j = 1 for j ∈ J (2)

xir j +
∑

h∈Γ r

∑

	∈J\{ j}
xih	 ≤ 1 for i ∈ M, r ∈ {1, . . . , q}, j ∈ J (3)

xir j = 0 for i /∈ Mj , r ∈ {1, . . . , q}, j ∈ J (4)

xir j = 0 for i ∈ M, λr < r j + p (5)

xir j ∈ {0, 1} for i ∈ M, r ∈ {1, . . . , q}, j ∈ J (6)

123

300 Annals of Operations Research (2020) 285:295–314

The objective function (1) describes the total completion time. Constraint set (2) implies
that each job must be scheduled exactly once on one machine. Constraint set (3) implies that,
when job j is finished at time λr on machine i , job j occupies the time period (λr − p, λr]
of machine i so that no other job can be completed at time λh for h ∈ Γ r on machine i .
Constraint set (4) means that each job can only be scheduled on one of its eligible machines.
Constraint set (5) implies that each job can only start at its release date or later. Constraint
set (6) means domain constraints. The number of variables and the number of constraints are
O(mn3) since q ≤ n2.

4 Approximation algorithms

In this section, we propose two approximation algorithms that run in polynomial time. For
convenience of explanation,wefirst propose a simple approximation algorithm, namelyAlgo-
rithm MR (Modified Release dates), and provide a worst case analysis. Then, we present a
more elaborate approximation algorithm, namelyAlgorithm IMR (IterativeModifiedRelease
dates), along with its worst case analysis.

4.1 AlgorithmMR

Let I be an instance of the problem and let σ(I) be an optimal schedule of I . Let z(σ) be
the objective value under schedule σ . Thus, z(σ (I)) is the objective function value of the
optimal schedule of I . We consider now two problem instances that are variations of I :

– IL : r j is redefined as
⌊
r j
p

⌋
× p for j ∈ J

– IU : r j is redefined as
⌈
r j
p

⌉
× p for j ∈ J

Since the release dates of IL and IU are integer multiples of p, by scaling, these can be
regarded as problem instances of P | Mj , r j , p j = 1 | ∑

C j with r j being a nonnegative
integer. Recall that P | Mj , r j , p j = 1 | ∑

C j can be solved through an assignment problem
formulation in polynomial time.

The solution of IL may violate the release dates constraints but its objective function
value serves as a lower bound for the optimal objective function value of the original problem
instance I . Let σ(IL) be an optimal schedule for problem instance IL and σ ′(IL) be a feasible
schedule for the original problem by delaying jobs in schedule σ(IL) minimally.

The solution of IU satisfies all the constraints and thus its objective function value serves
as an upper bound for the optimal objective function value of the original problem instance I .
Let σ(IU) be an optimal schedule for problem instance IU and σ ′(IU) be a feasible schedule
for the original problem instance by minimally moving up jobs from schedule σ(IU).

We have now the following relationships among the objective function values of the
different schedules:

z(σ (IL)) ≤ z(σ (I)) ≤ z(σ ′(IL)) (7)

z(σ (I)) ≤ z(σ ′(IU)) ≤ z(σ (IU)) (8)

Algorithm MR
Choose of σ ′(IL) and σ ′(IU) the better schedule.

Theorem 1 Algorithm MR is a (5/3)-approximation algorithm for P | Mj , r j , p j = p |∑
C j that runs in polynomial time; its worst case performance ratio is tight.

123

Annals of Operations Research (2020) 285:295–314 301

Proof Let σ MR denote the schedule generated by AlgorithmMR. By the definition of σ MR ,

z(σ MR) = min
{
z(σ ′(IL)), z(σ ′(IU))

}
. (9)

We derive two upper bounds for z(σ MR) − z(σ (I)) and one lower bound for the optimal
objective function value, z(σ (I)).

Note that � r jp �× p ≤
 r jp �× p+ p. So, if the optimal solution of IL is delayed by p time
units it becomes a feasible schedule for IU . Thus, z(σ (IU)) ≤ z(σ (IL)) + np. By (7)–(9),
we have

z(σ MR) − z(σ (I)) ≤ np. (10)

Let J ′ be the set of jobs that start in schedule σ ′(IL) immediately at their release dates
and let J ′′ be J\J ′. Since jobs in J ′′ cannot start at their release dates in schedule σ ′(IL),
there must exist at least one scheduled job right before them in schedule σ ′(IL).

When schedule σ ′(IL) is constructed from schedule σ(IL), job j ∈ J ′ is delayed by (r j
mod p) and job j ∈ J ′′ is delayed by at most p. Thus, we have

z(σ ′(IL)) − z(σ (IL)) ≤
∑

j∈J ′
(r j mod p) +

∑

j∈J ′′
p.

By the above inequality, (7) and (9), we have

z(σ MR) − z(σ (I)) ≤
∑

j∈J ′
(r j mod p) +

∑

j∈J ′′
p. (11)

By (7) and the fact that the completion time of each job in J ′ is at least p and the completion
time of each job in J ′′ is at least 2p in schedule σ(IL), we have

z(σ (I)) ≥ z(σ (IL))

≥
∑

j∈J ′
p +

∑

j∈J ′′
2p

= np +
∑

j∈J ′′
p. (12)

Since the completion time of job j in an optimal schedule is at least r j + p, we have

z(σ (I)) ≥ np +
∑

j∈J

r j . (13)

By (12) and (13), we have

z(σ (I)) ≥ np + 1

2

⎛

⎝
∑

j∈J

r j +
∑

j∈J ′′
p

⎞

⎠ . (14)

By (10), (11), (14), and the fact that
∑

j∈J r j ≥ ∑
j∈J ′(r j mod p),

z(σ MR)

z(σ (I))
≤ 1 +

min
{
np,

∑
j∈J ′(r j mod p) + ∑

j∈J ′′ p
}

np + 1
2

(∑
j∈J r j + ∑

j∈J ′′ p
) ≤ 5

3
.

Therefore, Algorithm MR is a (5/3)-approximation algorithm for P | Mj , r j , p j = p |∑
C j .

123

302 Annals of Operations Research (2020) 285:295–314

It takes polynomial time to generate schedules σ(IL) and σ(IU) through an assignment
formulation and it takes linear time tomodify them to get σ ′(IL) and σ ′(IU). Thus, Algorithm
MR is a polynomial time algorithm.

In order to show the tightness of the obtained worst case performance ratio, the following
problem instance and their schedules are presented. Consider two jobswith r1 = 1,M1 = {1},
and r2 = p − 1, M2 = {1}. Since both jobs are only eligible to machine 1, we only need to
consider their starting times.

In problem instance IL , the modified release dates of both jobs are zero. In σ(IL), job
2 can be scheduled earlier. The completion times of jobs 2 and 1 in σ ′(IL) are 2p − 1 and
3p − 1, respectively, and z(σ ′(IL)) = 5p − 2. Similarly, with problem instance IU , the
modified release dates of both jobs are p. In σ(IU), job 2 can be scheduled earlier, and
z(σ ′(IU)) = 5p − 2. However, in the optimal schedule, job 1 is scheduled earlier and the
optimal objective function value is z(σ (I)) = (p + 1) + (2p + 1) = 3p + 2.

lim
p→∞

min{z(σ ′(IL)), z(σ ′(IU))}
z(σ (I))

= 5

3
.

Therefore, the proposed worst case performance ratio of Algorithm MR is tight. ��
This worst case performance ratio is not great, but the algorithm works very well in

practice. Moreover, it is asymptotically optimal as the number of jobs increases. By (10), the
difference between z(σ MR) and z(σ (I)) is bounded by np which is a linear function of n.
However, both z(σ (IU)) and z(σ (I)) are o

(
(n
m)2

) × p. Thus,

lim
n→∞

z(σ MR)

z(σ (I))
≤ 1 + lim

n→∞
z(σ (IU)) − z(σ (I))

z(σ (I))
= 1.

4.2 Algorithm IMR

In AlgorithmMR, the release dates in the original problem instance I are adjusted in order to
be integer multiples of p. In the following algorithm, we consider more general cases where
the release dates are modified to have the same remainder after division by p.

Let I l denote the problem instance that is the same as problem instance I except for r ′
j ;

the modified release dates of job j are

r ′
j =

⌈
r j − l

p

⌉

× p + l

for l ∈ L where L := {l ∈ Z | 0 ≤ l < p}. Thus, I 0 is equivalent to IU and I l can also be
solved optimally through an assignment problem formulation similar to the case of IU . Let
σ(I l) denote an optimal schedule of instance I l and let σ ′(I l) denote a feasible schedule for
the original problem by minimally moving up the jobs from schedule σ(I l).

Algorithm IMR
Choose the best schedule among σ ′(IL) and σ ′(I l) for l ∈ L .

Theorem 2 The worst case performance ratio of Algorithm IMR for P | Mj , r j , p j = p |∑
C j is at most 1.4.

Proof Let σ I MR denote the schedule generated by Algorithm IMR. By the definition of
σ I MR ,

123

Annals of Operations Research (2020) 285:295–314 303

z(σ I MR) = min

{

z(σ ′(IL)),min
l∈L

{
z(σ ′(I l))

}}

. (15)

��
We define a schedule σ l(I) as a schedule from which an optimal schedule for instance I ,

σ(I), can be derived by minimally delaying the jobs such that the starting time of each job
is of the form of a · p + l for some nonnegative integer a.

Let d(l) be the sum of the differences between the completion times of all jobs in σ(I)
and σ l(I). Thus, d(l) := z(σ l(I)) − z(σ (I)).

Lemma 1

min
l∈L d(l) ≤ n(p − 1)/2

Proof of Lemma 1 Suppose Lemma 1 is not true, then d(l) > n(p − 1)/2 for all l ∈ L . Let
C j (σ) be the completion time of job j in schedule σ , and let nl = |{ j ∈ J | C j (σ (I))
mod p = l}| for l = 0, . . . , p − 1. Then

d(0) : 0n0+ (p − 1)n1+ (p − 2)n2+ · · · + 1n p−1 > n(p − 1)/2

d(1) : 1n0+ 0n1+ (p − 1)n2+ · · · + 2n p−1 > n(p − 1)/2

d(2) : 2n0+ 1n1+ 0n2+ · · · + 3n p−1 > n(p − 1)/2

· · ·
d(p − 1) : (p − 1)n0+ (p − 2)n1+ (p − 3)n2+ · · · + 0n p−1 > n(p − 1)/2

Summing the left hand sides yields

p−1∑

l=0

l(n0 + n1 + · · · + n p−1) = np(p − 1)/2

while the summation of the right hand sides yields also np(p−1)/2. Since a strict inequality
must hold, it is a contradiction. Thus, Lemma 1 is true. ��

By Lemma 1,

min
l∈L z(σ l(I)) − z(σ (I)) ≤ n(p − 1)/2

Lemma 2 σ l(I) is a feasible schedule for I l .

Proof of Lemma 2 The job assignment in σ l(I) is the same as the job assignment in σ(I).
Since each job in σ(I) satisfies its release date constraint, the job in σ l(I) also satisfies its
release date constraint in the problem instance I l . Thus, σ l(I) is a feasible schedule for I l .

��
From Lemma 2 it follows that

z(σ (I l)) ≤ z(σ l(I))

From Lemma 1 and the above inequality, it follows that

min
l∈L

{
z(σ (I l))

}
− z(σ (I)) ≤ n(p − 1)/2

123

304 Annals of Operations Research (2020) 285:295–314

From the above inequality, (15), and the fact that z(σ ′(I l)) ≤ z(σ (I l)), it follows that

z(σ I MR) − z(σ (I)) ≤ n(p − 1)/2 (16)

From (16), (11), (14), and the fact that
∑

j∈J r j ≥ ∑
j∈J ′(r j mod p) and z(σ I MR) ≤

z(σ MR), it follows that

z(σ I MR)

z(σ (I))
≤ 1 +

min
{
n(p−1)

2 ,
∑

j∈J ′(r j mod p) + ∑
j∈J ′′ p

}

np + 1
2

(∑
j∈J r j + ∑

j∈J ′′ p
)

≤ 1 +
min

{
1
2np,

∑
j∈J r j + ∑

j∈J ′′ p
}

np + 1
2

(∑
j∈J r j + ∑

j∈J ′′ p
)

Let np = A and
∑

j∈J r j + ∑
j∈J ′′ p = B, then

z(σ I MR)

z(σ (I))
≤ 1 + min{ A

2 , B}
A + B

2

≤ 1 +
4
5 · A

2 + 1
5 · B

A + B
2

= 7

5
.

��
We consider l1 ∈ L\{r j mod p | j ∈ J }, then we can define l2 = argminl{(l1 − l)

mod p | l ∈ {r j mod p | j ∈ J }}. Let r ′
j and r

′′
j denote the modified release dates of job j

in I l1 and I l2 , respectively. Then r ′′
j = r ′

j − Δ where Δ = (l1 − l2) mod p. Since problem

instances I l1 and I l2 are the same except that the release dates of the jobs in I l1 are constantly
larger than the release dates of the jobs in I l2 , σ(I l2) is the shifted schedule of σ(I l1). More
precisely,

C j

(
σ(I l2)

)
= C j

(
σ(I l1)

)
− Δ ∀ j ∈ J

If we minimally move jobs up in both schedules σ(I l1) and σ(I l2), we can obtain the very
same feasible schedule from both, and thus

∑

j∈J

C j

(
σ ′(I l2)

)
=

∑

j∈J

C j

(
σ ′(I l1)

)
.

Therefore, in Algorithm IMR, it suffices to choose l ∈ L := {r j mod p | j ∈ J }. Then
|L| ≤ min{n, p} and thus Algorithm IMR runs in polynomial time.

5 Experimental results

5.1 A practical algorithm

InAlgorithmMR,wemodified the release dates tomake them integermultiples of p and solve
themodified problems through assignment problem formulations. Through themodifications,
we bypass the complexity coming from the release dates and focus on eligibility. However,
as the worst case example of Theorem 1 in Sect. 4.1 shows, simplifying the release dates
may lead to inefficient schedules because no distinction can be made between jobs that have
the same modified release date. Algorithm IMR has to deal with that same issue as well. To
overcome this issue in a practical manner, we propose in Sect. 5.1.1 a perturbation of cost
coefficients used in the assignments for Algorithm MR and Algorithm IMR. In addition, we

123

Annals of Operations Research (2020) 285:295–314 305

consider in Sect. 5.1.2 a simple greedy algorithm that focuses more on release dates than
on eligibility. By combining these algorithms, we propose in Sect. 5.1.3 a more practical
algorithm, namely Algorithm GIMR (Generalized IMR).

5.1.1 A perturbation for assignment problem

We revise hereby only the objective of the assignment formulations for the two approximation
algorithms that solve the modified instances IL and I l , since the constraints are the same as
those in the original assignment problems.

Recall that decision variable xir j is 1 if job j is scheduled on machine i with completion
time λr . Thus, the objective function of the assignment problem is

∑
i∈M

∑q
r=1

∑
j∈J λr xir j .

For the modified instance I l with the modified release dates r j , a candidate for completion
time λr is defined as

λr ∈
{

ap + l | a = 1, . . . ,max

(
r j − l

p

)

+ n

}

.

For the modified instance IL with the modified release dates r j ,

λr ∈
{

ap | a = 0, . . . ,max

(
r j
p

)

+ n

}

.

In the revised formulation, the objective in the assignment problem formulation is

Minimize
∑

i∈M

q∑

r=1

∑

j∈J

cir j xir j

where only the coefficients are different from those in the objective (1) of theMIP formulation
in Sect. 3. The purpose of using cost cir j rather than λr is to avoid any inefficiency emerging
from the differences between the original instance I and the modified instances IL and I l ,
without affecting the original objective.

In the revised formulation, the primary objective of the assignment problem formulation
is the same as the original objective, to minimize the total completion time. The second
objective encourages jobs with earlier original release dates roj to be scheduled earlier among
those jobs with the same r j in the modified instance. This perturbation is achieved by adding
λrε(r j − roj) to the assignment coefficient with a small positive ε. In this way we can avoid
the inefficiency shown in the worst case example of Theorem 1. The third objective is to
encourage jobs with a smaller eligible set size |Mj | to be scheduled earlier among those jobs

with the same roj ; this is achieved by adding −λrε
|Mj |
m to the assignment coefficient. We

assume, without loss of generality, that every job is eligible to at least one machine. Thus
1
m ≤ |Mj |

m ≤ 1.
Therefore, the assignment cost cir j is defined as follows:

cir j =
{∞ if λr < r j + p or i /∈ Mj

λr

(
1 + ε(r j − roj − |Mj |

m)
)

otherwise

where ε = 1
(p+1)(λq+1) .

Now, let the schedule generated by Algorithm IMR with the perturbation idea using cir j
be denoted by σ I MR′

.

123

306 Annals of Operations Research (2020) 285:295–314

Table 1 Information of jobs for the proof of Theorem 3

Group Job index Mj r j

0 j = 1, . . . , F1 { j, j + F1} 0

1 j = F1 + 1, . . . , F2 { j − 2F1 + F2, j − F1} 1

1′ j = 2l + 1 {2l−1 + 1, . . . , 2l }⋃{2l + 1} 1

.

.

.
.
.
.

.

.

.
.
.
.

g j = Fg + 1, . . . , Fg+1 { j − 2Fg + Fg+1, j − Fg} g

g′ j = 2l + g {2l−g + 1, . . . , 2l }⋃{2l + g} g

.

.

.
.
.
.

.

.

.
.
.
.

l − 1 j = Fl−1 + 1 = 2l − 1 {1, 2} l − 1

(l − 1)′ j = 2l + l − 1 {2 + 1, . . . , 2l }⋃{2l + l − 1} l − 1

l j = 2l {1} l

l ′ j = 2l + l {2, . . . , 2l }⋃{2l + l} l

5.1.2 Algorithm Greedy

A greedy algorithm is proposed to prioritize release dates more than eligibility by selecting
jobs according to the Earliest Release Date (ERD) rule and using eligibility for tie breaking.
The procedure is as follows:

Algorithm Greedy

1. Choose the job with the earliest release date among the jobs still to be scheduled. If a tie
occurs, choose the job with the smallest eligible set size.

2. Choose the machine with the earliest available starting time among the eligible machines
of the chosen job. If a tie occurs, choose the machine that has the smallest number of
jobs still to be scheduled and eligible to that machine.

3. Schedule the chosen job to the chosen machine as early as possible.
4. Repeat 1–3 until all jobs are scheduled.

AlgorithmGreedy is not as good as the proposed approximation algorithms such as IMR in
a theoretical sense. The following theoremshows a lower boundof theworst case performance
ratio of Algorithm Greedy.

Theorem 3 The worst case performance ratio of Algorithm Greedy for P | Mj , r j , p j = p |∑
C j is at least 2.

Proof Consider a problem instance of 2l + l jobs and 2l + l machines with the information
of jobs given as in Table 1, where Fx = ∑x

i=1 2
l−i .

Algorithm Greedy will choose jobs in the following group order.

Group 0 → 1 → 1′ → 2 → 2′ → · · ·
According to Algorithm Greedy, the eligible machines of each job in Group g have the
same priority because they have the same earliest available time and the same number of
unscheduled jobs eligible to each machine. Thus, the schedule in Fig. 1a is possible by
Algorithm Greedy. However, the optimal schedule is shown in Fig. 1b. ��

123

Annals of Operations Research (2020) 285:295–314 307

Fig. 1 The worst schedule by Algorithm Greedy and an optimal schedule when l = 5

Let σGreedy denote the schedule generated by Algorithm Greedy. The performance ratio
of this problem instance is

z(σGreedy)

z(σ (I))
=

∑l−1
x=0

{
2l−x−1(1 + x)p

} + (l + 1)p + ∑l
x=1 {p + x}

∑l−1
x=0

{
2l−x−1(p + x)

} + p + l + ∑l
x=1 {p + x}

= 2l+1 p − p + lp + l(l+1)
2

2l p + 2l + p + lp + l(l+1)
2

.

Therefore,

lim
l→∞ lim

p→∞
z(σGreedy)

z(σ (I))
= 2.

It completes the proof. ��

5.1.3 Algorithm GIMR

For practical applications, we consider a combination of two algorithms. Algorithm IMR′
is similar to Algorithm IMR which consolidates release dates of the jobs and considers
the eligibility with consolidated release dates, except for the perturbations of the assignment
problem coefficients. Thus, it is expected that the schedule generated by the algorithmwill be
a reasonable one. On the other hand, Algorithm Greedy pays much more attention to release
dates than to eligibility. Since the two algorithms may behave in a complementary manner,

123

308 Annals of Operations Research (2020) 285:295–314

Table 2 Values used for
parameters

Parameters Values

m {2, 3, 4, 8, 16}

n/m {2, 3, 4, 5, 6, 8}

p {2, 3, 4, 8, 16}

dr {0.25, 0.5, 0.75, 1.0}

dM {0.4, 0.6, 0.8}

Table 3 Experiment results Algorithm IMR′ Greedy GIMR

Average objective ratio 1.0061 1.0063 1.0015

Maximum objective ratio 1.0900 1.1864 1.0615

we design a practical algorithm, Algorithm Generalized IMR (GIMR), for the experiments
as follows.

Algorithm GIMR
Choose between σ I MR′

and σGreedy the better schedule.

5.2 Experimental settings

For the experiments, we randomly generate problem instances. Five parameters are chosen
to investigate whether they have an impact on the performance of the proposed algorithms
and are used in the random generation of problem instances: the number of machines (m),
the ratio of the numbers of jobs to machines (n/m), the equal processing time of all jobs (p),
the density of release dates (dr), and the density of eligibility(dM). The randomly generated
release dates follow a discrete uniform distribution of [0, dr · npm). Note that np

m is the optimal
makespan when all jobs are eligible to all machines and all can start at time zero. With a
small dr value, all release dates are close to zero, while with a large dr value, all release
dates are spread out uniformly. For a randomly generated eligible set, let each machine have
a probability to be included in the eligible set of each job with a probability of dM , while

every job is eligible to at least one machine. Thus, dM ≈ E
[|Mj |

m

]
.

The values of the parameters for the experiments are as described in Table 2.
For each setting of the parameters, 20 problem instances are created, and the total number

of generated instances in all experiments is 36,000.
The experiments are conducted on a desktop computer with OS of Fedora 28 server(Linux

kernel 4.18.9), CPU of AMDRyzen 5 2600X, and RAMof 16GB 3200MHz. The algorithms
are implemented in Python version 3.6.6. The optimization solver Gurobi version 8.0.1 is
utilized.

5.3 Results

The performance of the algorithm is measured by the objective ratio of z(σ A) to z(σ (I))
where σ A is the schedule generated by Algorithm A. The value z(σ (I)) can be obtained by
solving the MIP formulation in Sect. 3 allowing sufficient running time. An overview of the
results is presented in Table 3.

123

Annals of Operations Research (2020) 285:295–314 309

Fig. 2 Average objective ratio as a function of parameters

As for the average objective ratio, Algorithm IMR′ and Algorithm Greedy perform com-
parably. However, as for the maximum objective ratio, Algorithm IMR′ performs in a more
stable manner. Interestingly, both the average and maximum objective ratios of Algorithm
GIMR are much smaller than those of each algorithm, respectively.

5.3.1 Experiment result of GIMR

Figure 2a shows that Algorithm Greedy works relatively well for large m while Algorithm
IMR′ works well for small m. Thus, when m = 8, the performance of Algorithm GIMR
is at its worst. Figure 2b demonstrates that the difference between the performances of
Algorithm IMR and Algorithm Greedy does not depend on the parameter n/m. However,
choosing the better schedule based on the results of the two algorithms greatly decreases
the average objective ratio. Figure 2c shows that the performance of Algorithm Greedy gets
worse and that of Algorithm IMR′ gets better as p increases. However, the performance
of Algorithm GIMR is quite stable and does not depend on p. Figure 2d shows that the
average objective ratios of both algorithms increase as the value of parameter dr increases
and the performance of Algorithm GIMR gets worse with a larger dr . Figure 2e shows the
performance of Algorithm Greedy gets better and that of Algorithm IMR′ gets worse as
dM increases. Overall, the performance of Algorithm GIMR gets better as dM increases.
Granted, the problemwith a larger dM is closer to the problemwithout eligibility constraints.

From Fig. 2, we can say that there are complementary relationships between Algorithm
IMR′ and Algorithm Greedy with respect to all parameters even though each one of the
parameters has a different impact on the performance of Algorithm GIMR.

5.3.2 GIMR vs. MIP

As we discussed, the average objective ratio of GIMR is 1.0015 and it implies that Algo-
rithm GIMR generates an optimal solution or a near optimal solution. On the other hand,

123

310 Annals of Operations Research (2020) 285:295–314

Fig. 3 Comparison of GIMR and MIP with respect to time and average objective ratio

in the experiments, the MIP formulation always optimally solves the problem with small
size instances in a short time. However, when the problem size gets bigger, the required
computation time of the MIP increases very rapidly. Thus, we now compare the performance
measures and the computation times of the GIMR and the MIP with a timelimit.

We compare the results by GIMR and MIP for the largest 240 instances among the exper-
iments conducted, with parameters m = 8, n/m = 16, p = 16, dr ∈ {0.25, 0.5, 0.75, 1.0}
and dM ∈ {0.4, 0.6, 0.8}. Figure 3a shows the objective ratios and the computation times of
all 240 instances by Algorithm GIMR and the MIP. Algorithm GIMR takes 5.88 s on average
with an average objective ratio of 1.0014. The running time is always less than 7s and the
objective ratio is no more than 1.02. Thus, GIMR seems to generate schedules in a robust
manner. The MIP approach with a time limit of 30 s takes 25.24 s on average. The MIP finds
optimal solutions for all but two of the 240 problem instances; the two instances take more
than 30s and have objective ratios greater than 1.19. Because of these bad objective ratios,
the average objective ratio of the MIP approach with the time limit is 1.0017. Moreover, in
spite of the 30s time limit, the MIP finds optimal solutions for 29 instances in more than
30s. Thus, Algorithm GIMR seems to be more robust with respect to the performance and
the computation time.

In order to investigate this pattern more thoroughly, we conducted additional experiments
with larger parameter settings. We generated 180 instances with parameters m = 8, n/m =
32, p = 32, dr ∈ {0.25, 0.5, 0.75} and dM ∈ {0.4, 0.6, 0.8}. The current computational
environment is not able to solve instances with dr = 1, because of a lack of memory; these
instances are not considered. Figure 3b shows the objective ratios of all 180 instances by
Algorithm GIMR and the MIP. Algorithm GIMR takes 41.4 s on average with an average
objective ratio of 1.0004. The running time is always less than 60s and the objective ratio
is less than 1.01. The MIP is applied with a time limit of 300s and it cannot find feasible
solutions for 122 of the 180 instances. Thus, the instances with no solutions do not appear
in Fig. 3b. The MIP approach finds feasible solutions only for 58(32.2%) instances, and all
solutions found are optimal. The experiments with the larger problem instances also show
that Algorithm GIMR works in a more robust manner.

123

Annals of Operations Research (2020) 285:295–314 311

6 Discussion

We consider three generalizations of the approaches described in the previous sections,
namely the DP in Sect. 2, the MIP formulation in Sect. 3, and Algorithm IMR in Sect. 4.

6.1 Generalization of DP

The DP algorithm in Sect. 2 can be applied to a generalization of the problem with uniform
machines, denoted by Qm | Mj , r j , p j = p | ∑

C j after only a minor modification.
In a uniform machine environment, machine i has a positive speed si and the processing
requirement of each job on machine i is p/si for i ∈ M .

First, Proposition 2 can be modified for problem Qm | Mj , r j , p j = p | ∑
C j .

Proposition 3 There exists an optimal schedule in which the completion time of each job
scheduled on machine i is of the form r j + a · p/si , for some j ∈ J and a ∈ {1, . . . , n}.

From Proposition 3, we define the following set of the candidates for the completion times
of the jobs scheduled on machine i .

Λi = {
t | t = r j + a · p/si , for j ∈ J , a ∈ {1, . . . , n}}

For a dynamic programming algorithm, we consider a partial schedule with the first be

jobs from J e for e = 1, . . . , k in which the latest completion time of machine i is ti for
ti ∈ Λi and i = 1, . . . ,m. The state of machine i , αi := (ti ; b1i , b2i , . . . , bei , . . . , bki), is
defined as before except that ti ∈ Λ is changed to ti ∈ Λi . The state of a partial schedule is
defined as a collection of states of all the machines as before.

TheBoundaryConditions and theOptimalValue Function remain the same. TheRecursive
Relationship is changed to

V (α) = min
{
V

(
α̂(h, f)

)
+ th

∣
∣
∣ f ∈ {1, . . . , k}, h ∈ M f , r f (b f) ≤ th − p/sh, th ∈ Λh

}

along with the change of the definition of α̂h . The condition on t̂h in α̂h is also changed to

t̂h ≤ th − p/sh and t̂h ∈ Λh .

The time complexity is the same as the one of Pm | Mj , r j , p j = p | ∑
C j . Thus,

for fixed m, the running time of the modified DP algorithm is still polynomial. Therefore,
Qm | Mj , r j , p j = p | ∑

C j can be solved in polynomial time.

6.2 Generalization of theMIP formulation

TheMIP formulation proposed in Sect. 3 can be extended to the problem of minimizing other
objectives with job j having a nonnegative weight w j and a due date d j .

For the problem of minimizing the total weighted tardiness, the objective becomes

Minimize
∑

i∈M

q∑

r=1

∑

j∈J

w j max{λr − d j , 0}xir j

while all the constraints remain the same. Since w j max{λr − d j , 0} can be computed in
advance for given r ∈ {1, . . . , q} and j ∈ J , it does not increase the problem size.

123

312 Annals of Operations Research (2020) 285:295–314

For the problem minimizing the total weighted number of tardy jobs, the objective
becomes

Minimize
∑

i∈M

q∑

r=1

∑

j∈J

wr j xir j

where

wr j =
{

w j if λr > d j

0 otherwise.

6.3 Generalization of algorithm IMR

Algorithm IMR proposed in Sect. 4.2 can be applied to the problem of minimizing the total
weighted completion time, denoted by P | Mj , r j , p j = p | ∑

w jC j . We can define IL
and I l for l ∈ L from I in the same way. Since P | Mj , r j , p j = 1 | ∑

w jC j can be
solved optimally in polynomial time (see Brucker et al. 1997), the problem of minimizing
the weighted completion time with problem instances IL and I l for l ∈ L can be solved in
polynomial time as well.

The following notation is needed for the more general algorithm and its analysis.

Jl := { j ∈ J | C j (σ (I)) mod p = l} for l ∈ L

zw(σ) :=
∑

j∈J

w jC j (σ)

dw(l) := zw(σ l(I)) − zw(σ(I))

Wl :=
∑

j∈Jl

w j

W :=
p−1∑

l=0

Wl =
∑

j∈J

w j

The previous inequalities for the problem of minimizing the total completion time are
modified as follows. By modifying (11) for the problem, we have

zw(σ MR) − zw(σ(I)) ≤
∑

j∈J ′
w j (r j mod p) +

∑

j∈J ′′
w j p. (17)

By modifying (14), we have

zw(σ(I)) ≥ Wp + 1

2

⎛

⎝
∑

j∈J

w j r j +
∑

j∈J ′′
w j p

⎞

⎠ (18)

In order to modify (16), we first need to modify Lemma 1 as follows.

Lemma 3

min
l∈L dw(l) ≤ W (p − 1)/2

123

Annals of Operations Research (2020) 285:295–314 313

Proof of Lemma 3 Suppose Lemma 3 is not true, then dw(l) > W (p − 1)/2 for all l ∈ L .
Then

dw(0) : 0W0+ (p − 1)W1+ (p − 2)W2+ · · · + 1Wp−1 > W (p − 1)/2

dw(1) : 1W0+ 0W1+ (p − 1)W2+ · · · + 2Wp−1 > W (p − 1)/2

dw(2) : 2W0+ 1W1+ 0W2+ · · · + 3Wp−1 > W (p − 1)/2

· · ·
dw(p − 1) : (p − 1)W0+ (p − 2)W1+ (p − 3)W2+ · · · + 0Wp−1 > W (p − 1)/2

The summation of each side has the same value of Wp(p − 1)/2 and it is a contradiction
since a strict inequality must hold. Thus, the lemma is true. ��

Using a similar argument as the one used to derive (16) and Lemma 3, we have

zw(σ I MR) − zw(σ(I)) ≤ W (p − 1)/2 (19)

By (17), (18), (19) and the fact that
∑

j∈J w j r j ≥ ∑
j∈J ′ w j (r j mod p) and

zw(σ I MR) ≤ zw(σ MR),

zw(σ I MR)

zw(σ(I))
≤ 1 +

min
{
W (p−1)

2 ,
∑

j∈J ′ w j (r j mod p) + ∑
j∈J ′′ w j p

}

Wp + 1
2

(∑
j∈J w j r j + ∑

j∈J ′′ w j p
)

≤ 1 +
min

{
1
2Wp,

∑
j∈J w j r j + ∑

j∈J ′′ w j p
}

Wp + 1
2

(∑
j∈J w j r j + ∑

j∈J ′′ w j p
) .

If A = Wp and B = ∑
j∈J w j r j + ∑

j∈J ′′ w j p, then

zw(σ I MR)

zw(σ(I))
≤ 1 + min{ A

2 , B}
A + B

2

≤ 1 +
4
5 · A

2 + 1
5 · B

A + B
2

= 7

5
.

Note that there are some known approximation algorithms for R | r j | w jC j which is
more general than P | Mj , r j , p j = p | w jC j . Rm | r j | w jC j admits a Polynomial Time
Approximation Scheme (PTAS) (Afrati et al. 1999) and R | r j | w jC j has a 2-approximation
algorithm that uses a convex quadratic programming approach (Skutella 2001). Recently, Im
and Li (2017) proposed a 1.8786-approximation algorithm based on linear programming and
a rounding technique. Whereas those algorithms are complicated to implement, the proposed
algorithm for P | Mj , r j , p j = p | ∑

w jC j is much easier to understand and to implement.

7 Conclusion

We consider a problem of scheduling jobs with equal processing times and different release
dates subject to eligibility constraints to minimize the total completion time. Although the
computational complexity of this problem remains open, a polynomial time DP algorithm is
developed for the problem with a fixed number of machines. Two polynomial time approx-
imation algorithms are presented along with their worst case analyses. The experiments
with randomly generated instances show that the proposed algorithm performs very well in
practice.

As a future research direction, it would be of interest to show whether or not the problem
under consideration and the related problems are polynomial time solvable.

123

314 Annals of Operations Research (2020) 285:295–314

Acknowledgements This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government [grant number NRF-2017R1A2B4011486].

References

Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne, M., Skutella,
M., Stein, C., et al. (1999) Approximation schemes for minimizing average weighted completion time
with release dates. In 40th annual symposium on foundations of computer science, Piscataway: IEEE
(pp. 32–43).

Baptiste, P., Brucker, P., Knust, S., & Timkovsky, V. G. (2004). Ten notes on equal-processing-time scheduling.
Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 2(2), 111–127.

Brucker, P., Jurisch, B., & Krämer, A. (1997). Complexity of scheduling problems with multi-purpose
machines. Annals of Operations Research, 70, 57–73.

Brucker, P., & Kravchenko, S. A. (2005). Scheduling jobs with release times on parallel machines to minimize
total tardiness. Fachbereich Mathematik/Informatik: Universität Osnabrück.

Brucker, P., & Kravchenko, S. A. (2008). Scheduling jobs with equal processing times and time windows on
identical parallel machines. Journal of Scheduling, 11(4), 229–237.

Bruno, J., Coffman, E. G, Jr., & Sethi, R. (1974). Scheduling independent tasks to reduce mean finishing time.
Communications of the ACM, 17(7), 382–387.

Glass, C. A., & Mills, H. (2006). Scheduling unit length jobs with parallel nested machine processing set
restrictions. Computers & Operations Research, 33(3), 620–638.

Hochbaum, D. S. (1996). Approximation algorithms for NP-hard problems. Berlin: PWS Publishing Co.
Horn,W. (1973).Minimizing average flow timewith parallel machines.Operations Research, 21(3), 846–847.
Hwang, H. C., Chang, S. Y., & Lee, K. (2004). Parallel machine scheduling under a grade of service provision.

Computers & Operations Research, 31(12), 2055–2061.
Im, S., & Li, S. (2017). Better unrelated machine scheduling for weighted completion time via random sets

from non-uniform distributions. In Proceedings of the 13th workshop on models and algorithms for
planning and scheduling problems (MAPSP)

Keha,A. B., Khowala, K.,&Fowler, J.W. (2009).Mixed integer programming formulations for singlemachine
scheduling problems. Computers & Industrial Engineering, 56(1), 357–367.

Kravchenko, S. A., & Werner, F. (2011). Parallel machine problems with equal processing times: a survey.
Journal of Scheduling, 14(5), 435–444.

Lee, K., Leung, J. Y. T., & Pinedo, M. L. (2011). Scheduling jobs with equal processing times subject to
machine eligibility constraints. Journal of Scheduling, 14(1), 27–38.

Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling problems. Annals of
Discrete Mathematics (Vol. 1, pp. 343–362). Amsterdam: Elsevier.

Leung, J. Y. T., & Li, C. L. (2008). Scheduling with processing set restrictions: A survey. International Journal
of Production Economics, 116(2), 251–262.

Li, C. L. (2006). Scheduling unit-length jobs with machine eligibility restrictions. European Journal of Oper-
ational Research, 174(2), 1325–1328.

Li, S. (2017). Scheduling to minimize total weighted completion time via time-indexed linear programming
relaxations. In IEEE 58th annual symposium on foundations of computer science (FOCS).

Pinedo, M. L. (2016). Scheduling: Theory, algorithms, and systems. Berlin: Springer.
Simons, B. (1983). Multiprocessor scheduling of unit-time jobs with arbitrary release times and deadlines.

SIAM Journal on Computing, 12(2), 294–299.
Skutella, M. (2001). Convex quadratic and semidefinite programming relaxations in scheduling. Journal of

the ACM (JACM), 48(2), 206–242.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Scheduling equal length jobs with eligibility restrictions
	Abstract
	1 Introduction
	2 Dynamic programming algorithm with fixed m
	2.1 Preliminary
	2.2 Dynamic programming algorithm

	3 MIP formulation
	4 Approximation algorithms
	4.1 Algorithm MR
	4.2 Algorithm IMR

	5 Experimental results
	5.1 A practical algorithm
	5.1.1 A perturbation for assignment problem
	5.1.2 Algorithm Greedy
	5.1.3 Algorithm GIMR

	5.2 Experimental settings
	5.3 Results
	5.3.1 Experiment result of GIMR
	5.3.2 GIMR vs. MIP

	6 Discussion
	6.1 Generalization of DP
	6.2 Generalization of the MIP formulation
	6.3 Generalization of algorithm IMR

	7 Conclusion
	Acknowledgements
	References

