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Abstract
The validity of performance evaluation is determined by, and therefore greatly influenced
by, the accuracy of data set. To address such imprecise and negative data problems widely
spread in the real world, this paper proposes a second-order cone based robust data envelop-
ment analysis (SOCPR-DEA) model, which is more robust to data variety. Further, this new
computational tractable model is applied to analyze 13 new-energy vehicle (NEV) manu-
facturers from China. The findings support that the SOCPR-DEA model could well mitigate
the deficiency caused by data variety, and the evidence from Chinese NEV industry shows
that a focus strategy is more likely to enhance a firm’s efficiency especially at its emerging
stage, and the efficiency is more sensitive with production cost than other factors such as
research and development, sales income, earnings per share, and predicted income. In addi-
tion, this paper also gives some industrial implications and policy suggestions based on these
interesting findings.
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1 Introduction

Since 2015, China has replacedUS as the largest new-energy vehicle country, and the Civilian
AutoOwnership of 2017 reached1.8million, takingmore than50%share of thewholeworld’s
amount. The rapid development of China’s new-energy vehicle (NEV) industry comes from
the pressure of national energy security and urban pollution control and emission reduction, as
well as the desire from energy transformation and automobile industry revitalization (Fig. 1).
However, this “corner overtaking” of China’s NEV industry was widely criticized for its
high relying on the support from both central and local governments (Lu et al. 2014), let
alone that a large number of manufacturers defrauded financial subsidies as their important
profit model (Lu et al. 2017). From the other side, there is still a long way for China’s NEV
industry to go before its large-scale industrialization and sustainable development, due to
the immature key technologies (e.g. power battery, electric motor, and electronic controlling
system), the insufficient charging infrastructure, and the imperfect user experience (Liu et al.
2018) . Although it is a consensus that firms should keep focusing on R&D to improve the
quality of NEV products, most existing research mainly explored the entire NEV industry
issues at the macro or medium level (Liu and Kokko 2013; Zhang and Qin 2018), while such
studies on evaluating firm performances haven’t yet been paid enough attention.

To carry out the performance evaluation of NEV firms, the classic methodology of Data
EnvelopmentAnalysis (DEA)firstly proposed byCharnes et al. (1978) , can bewell employed
for its strength in evaluating andmeasuring the relative efficiencies of a set of decision-making
units (DMUs) that use multiple inputs to produce multiple outputs. Recently, the application
of DEA to the energy industry especially the new-energy vehicle industry increased a lot, see
Sueyoshi et al. (2017). When applying DEA models, how to improve the classical models to
address the extensive uncertain issues in real-life environment is an increasingly important
problem (Emrouznejad and Yang 2018). For example, the fuzzy DEA model (Wen 2015;
Omrani et al. 2018), the stochastic DEA model (Cooper et al. 1996; Zhou et al. 2017; Chen
et al. 2018), the chance-constrained DEA model (Chen and Zhu 2019). However, most of
these models need to specify a probability distribution function for the error process, which
may not be realistic (Talluri et al. 2006).

By considering data variety in real-world problems, a more robust DEA model should be
not only translation invariant, but also immune to data uncertainty. For example, when the
efficiencies of EV manufactures are under evaluation, variables such as net profit, earnings

Fig. 1 The background of NEV industry’s rapid development in China
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per share (EPS) are usually considered. For some EV companies, these variables maybe
zero value or even negative value. For example, EPS is the monetary value of earnings per
outstanding share of common stock for a company. The formula of EPS is:

EPS = Net Income − PreferredDividends

AverageCommon Shares
.

Therefore the negative EPS means a company’s Net Income is less than the Preferred Div-
idends, or sometimes, the Net Income is negative. This phenomenon is common for small
companies, and sometimes it is a result of economic depression. From the financial statements
of the Xiamen King Long United Automotive Industry Company Limited (KING LONG),1

the EPS from 2013 to 2016 are 0.75,− 0.17, 0.44 and 0.31. In order to address the negative
data − 0.17, the DEA model should be translation invariant. Moreover, if we want to eval-
uate the efficiency of EV manufacture companies in 2017, the value of some variables such
as profit, can only be obtained by prediction which are not accurate, as some data are not
available since the financial statement are usually published at the end of the year. Hence, in
order to address the inaccurate data problem, the DEA model should be more robust.

Therefore, we integrate the technique of robust optimization to some particular classical
DEAmodelwith translation invariance property, so as to transform it into a second-order cone
programming without any further assumptions on the type of data distribution. Furthermore,
the Chinese NEV industry is a great example, to test the validation and verification of our
improved DEA model, vice versa, the empirical analysis also gives some useful insights for
the emerging industry.

This paper is structured as follows: following Sect. 1, Sect. 2will firstly review the classical
DEA models and multi-objective DEA (MDEA) model , and will then apply the robust
optimization technique to MDEA model to develop the R-MDEA model. This is followed
by integrating the R-MDEA model with the chance-constrained DEA model and proposing
our new model named as the second-order cone based robust data envelopment analysis
(SOCPR-DEA) model in the Sect. 3. Section 4 will make a practical evaluation on 13 new-
energy vehicle manufacturers in China by applying the SOCPR-DEA model. Conclusions
and directions for future research are discussed in the Sect. 5.

2 Multi-objective DEAmodel and robust optimizationmodel

2.1 Multi-objective DEAmodel

The classical DEA models are expressed in model (1) by introducing three parameters to
determine the type of the model. Specifically, in the case of σ1 = 0, σ2 = 0, σ3 = 0, the
model is C2R, constant returns to scale. In the case of σ1 = 1, σ2 = 0, the model is BC2,
variable returns to scale. In the case of σ1 = 1, σ2 = 1, σ3 = 0, the model is FG, decreasing
returns to scale. In the case of σ1 = 1, σ2 = 1, σ3 = 1, the model is ST, increasing returns
to scale (Yan and Wei 2011).

max μy0 − σ1μ0

s.t. ωx j − μy j + σ1μ0 ≥ 0, j = 1, . . . , n,

ωx0 = 1,
ω ≥ 0, μ ≥ 0, σ1σ2(−1)σ3μ0 ≥ 0.

(1)

1 http://money.finance.sina.com.cn/corp/go.php/vFD_FinancialGuideLine/stockid/600686/ctrl/2013/
displaytype/4.phtml.

123

http://money.finance.sina.com.cn/corp/go.php/vFD_FinancialGuideLine/stockid/600686/ctrl/2013/displaytype/4.phtml
http://money.finance.sina.com.cn/corp/go.php/vFD_FinancialGuideLine/stockid/600686/ctrl/2013/displaytype/4.phtml


324 Annals of Operations Research (2020) 292:321–339

The dual form and the production possibility set of model (1) is expressed in model (2)
and model (3). Certainly they satisfy the basic optimization theories, e.g., the strong duality
theorem, etc.

min θ

s.t.
n∑

j=1
x jλ j ≤ θx0,

n∑

j=1
y jλ j ≥ y0,

σ1

(
n∑

j=1
λ j + σ2(−1)σ3λn+1

)

= σ1,

λ j ≥ 0, j = 1, . . . , n, n + 1.

(2)

T =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x, y) :

n∑

j=1
x jλ j ≤ x,

n∑

j=1
y jλ j ≥ y,

σ1

(
n∑

j=1
λ j + σ2(−1)σ3λn+1

)

= σ1,

λ j ≥ 0, j = 1, . . . , n, n + 1.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3)

However, the classical DEA model can only maximize (minimize) the outputs (inputs)
when the inputs (outputs) are fixedwhile neglecting the differences of inputs (outputs) among
different DMUs. Strictly speaking, the efficiency measured in classical DEA models is the
single criterion efficiency which only considers the DMU that is being evaluated. To describe
the efficiency more objectively, Chambers et al. (1998) proposed the directional distance
functionmodel (DDFmodel), and explained the duality relationship between the DDFmodel
and the profit function .

max β

s.t.
n∑

j=1
λ j xi j ≤ xio − βgxi , i = 1, . . . ,m,

n∑

j=1
λ j yr j ≥ yro + βgyr , r = 1, . . . , s,

n∑

j=1
λ j = 1,

λ j ≥ 0, j = 1, . . . , n,

(4)

where G = (gx , gy) ∈ R
m+ × R

s+ is the non-negative directional input–output vector. Model
(4) is the general form of the DDF model. Using duality theory, Chambers et al. (1998) show
that theDDF is the lower bound of the profit inefficiencymeasure (theMahler inequality), and
in this sense, the profit inefficiency can be decomposed into the technical inefficiency part and
the allocative inefficiency part. Based on the theorywork of theDDFmodel, a number of profit
inefficiency measures have been investigated (Aparicio et al. 2014). Further, in comparison
with the radial direction models (e.g., CCR, BCC), the DDF model can be classified into the
slacks-based category. The slacks-based measure model (SBM) was first proposed by Tone
(2001), and further investigated by Tone and Tsutsui (2010) and You and Jie (2016).
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min ρ =
1− 1

m

m∑

i=1

s−i
xio

1− 1
s

s∑

r=1

s+r
yro

s.t.
n∑

j=1
λ j xi j = xio − s−

i , i = 1, . . . ,m,

n∑

j=1
λ j yr j = yro + s+

r , r = 1, . . . , s,

n∑

j=1
λ j = 1,

λ j ≥ 0, j = 1, . . . , n, s−
i , s+

r ≥ 0.

(5)

The main virtues of the SBMmodel are units invariant, monotone decreasing with respect
to input excess and output shortfall, and the efficiency value measured by the SBM model is
between nil and unity. Furthermore, in contrast to the classical CCR model, the dual side of
the SBM model can also be interpreted as profit maximization.

Based on the previous work of the DDF model and the SBM model, Estellita Lins et al.
(2004) proposed the Multi-Objective DEA (MDEA) model.

max ω = 1
s

s∑

r=1
ηs − 1

m

m∑

i=1
θi

s.t.
n∑

j=1
xi jλ j − θi xi0 ≤ 0, i = 1, . . . ,m,

−
n∑

j=1
yr jλ j + ηr yr0 ≤ 0, r = 1, . . . , s,

0 ≤ θi ≤ 1, ηr ≥ 1,
n∑

j=1
λ j = 1,

λ j ≥ 0, j = 1, . . . , n.

(6)

Theorem 1 DMUj0 is MDEA efficient if and only if ω = 0, θi = 1, ηr = 1, i = 1, . . . ,m,
r = 1, . . . , s (Estellita Lins et al. 2004).

As Theorem 1 indicates, if DMU j0 is MDEA efficient, the value of the objective function
is nil. Conversely, because 0 ≤ θi ≤ 1, ηr ≥ 1, we may conclude that as ω increases, the
efficiency of a given DMU decreases. The advantage of the MDEA model over the classical
DEA models in detail could be referred in Estellita Lins et al. (2004).

It is noted that theMDEAmodel can be seen as a extension of theDDFmodel and the SBM
model and it inherits all the virtues of the two models. First, if we set gxi = xio, g

y
r = yro

in model (4), the constraints in model (6) can be seen as the combination of the constraints
in model (4) and model (5). In the DDF model, whatever gxi , gyr might be, the constraints
in model (4) were β related. Obviously, both the SBM model and the MDEA overcame this
little flaw. Second, the efficiency value measured in the DDFmodel was also β related, while
the efficiency value of efficient DMUs is nil and unity in the MDEA model and the SBM
model respectively. Third, the structure of the MDEA model is simpler than that of the SBM
model. Moreover the MDEA model possesses the translation invariance property so as to
address the negative and zero data problem. Therefore, we here use the MDEA model as our
basic model for further analysis.
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2.2 Robust multi-objective DEAmodel

Model (4) shows the case where the inputs and outputs are deterministic. However, when
there exists some uncertain factors in the inputs and outputs set, model (4) is not useful.
Therefore in this section we develop a robust multi-objective DEA model to address the
nondeterministic data problem.

Robust optimization is one of the main methods of dealing with uncertain program, which
is first proposed by Soyster (1973). The arise of robust optimization is due to the drawbacks
of the stochastic program, which are often hard or impossible to solve directly. Solutions of
robust optimization often perform well when analyzed under stochastic models of parameter
variation. The development of the robust optimization can be divided into two stages. One is
based on scenarios,which is proposed byMulvey et al. (1995), and later researched byLaguna
(1998), Malcolm and Zenios (1994) and Vassiadou and Zenios (1996). The main drawback
of the scenario based robust optimization programming is that it changes the structure of the
original deterministic program. The other method is based on the property of convex sets (Yu
and Li 2000; Leung et al. 2002).

Besides, Ben-Tal and Nemirovski (1998) have developed the basic framework of robust
optimization by defining the uncertain set with the intersection of ellipsoids. El Ghaoui
and Lebret (1997) have extended the Ben-Tal and Nemirovski’s method to the least-squares
problems with uncertain data. Bertsimas and Sim (2004) has introduced a Γi -based method
by transforming the uncertain problem into a linear program. The main difference between
these set based robust models is due to their disparate uncertain sets. Ben-Tal and Nemirovski
(1998) use ellipsoidal uncertainty sets while the uncertainty set proposed by Bertsimas and
Sim (2004) is a polyhedron that encode a budget of uncertainty in terms of cardinality
constraints.

Because D. Betasimas’s robust optimization model is a linear optimization model, more
research on robust DEA model followed from D. Betasimas’ idea (Shokouhi et al. 2010;
Sadjadi and Omrani 2008; Gharakhani et al. 2011). However, there are many advantages
when the uncertainty set is “ellipsoid” (Ben-Tal and Nemirovski 1999).

Furthermore, a polyhedron is a special case of the ellipsoid family, and the corresponding
robust program could be transformed into a linear program when the ellipsoid uncertainty
degenerates to a polyhedron (Ben-Tal and Nemirovski 1999). Based on the MDEA model,
we propose a robust multi-objective DEA (R-MDEA) model by introducing the Ben-Tal and
Nemirovski’s robust optimization idea into the classical DEA models.

Considering the uncertain inputs and outputs set, we could impose constraints on the
model such as xi j , yr j ∈ �, where � is the uncertain set. The uncertainty set � can be
constructed as follows

� =
{

[A; 0] = [A0; 0] +
L∑

l=1

ζ [Al; 0]|ζ ∈ Z L

}

,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11 · · · x1n − x10 · · · 0 0 · · · 0
x21 · · · x2n 0 · · · 0 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xm1 · · · xmn 0 · · · − xm0 0 · · · 0
− y11 · · · − y1n 0 · · · 0 y10 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− ys1 · · · − ysn 0 · · · 0 0 · · · ys0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Let A0 be the nominal value matrix of A, Al be the basic shift, Z = {
ζ |ζ ∈ Zl

}
be the

perturbation set. Thus, the MDEA model containing the uncertain set can be transformed
into a semi-infinite program. However, the form of the uncertain set can be constructed by
various perturbation sets Z ; therefore it is possible only to consider Z for the construction of
a complete uncertain set. Consequently, the MDEA model containing the uncertain set can
be expressed as follows:

max ω = 1
s

s∑

r=1
ηs − 1

m

m∑

i=1
θi

s.t.
n∑

j=1
xi jλ j − θi xi0 ≤ 0, i = 1, . . . ,m,

−
n∑

j=1
yr jλ j + ηr yr0 ≤ 0, r = 1, . . . , s,

0 ≤ θi ≤ 1, ηr ≥ 1,
n∑

j=1
λ j = 1,

λ j ≥ 0, j = 1, . . . , n,

x, y ∈ �,

� =
{

[A; 0] = [A0; 0] +
L∑

l=1
ζl [Al ; 0]|ζ ∈ Z L

}

.

(7)

In general, setting

� =
{

[A; 0] = [A0; 0] +
L∑

l=1

ζl [Al; 0]|ζ ∈ Z L

}

ZL =
{
ζ ∈ RL |∃u ∈ RK s.t. Pζ + Qu + p ∈ K

}
,

(8)

where K ∈ RN is a closed convex cone. Also note that P and Q arematrices with coefficients
that are known.

Proposition 1 Any ellipsoidal uncertainty � = {A = Π(ζ)|‖Pζ‖2 ≤ 1} could be repre-
sented by (8).

Proof Set [A0; 0] = P0, [Al ; 0] = Pl , then the original uncertainty set� could be expressed
as� = {A= P0+∑L

l=1 ζl Pl |ζ ∈ ZL},where Z L ={ζ ∈RL|∃u∈RK s.t. Pζ +Qu+p ∈K
}
.

We analyze � in two steps. First let us denote by r ji i th row of A j , j = 0, . . . , L , and
let Ri be the matrix with the columns r1i , . . ., rLi , so that the i th row of Π(ζ) is exactly
r0i + Riζ . Second, let us set some parameters in Z L be Q = 0,p = [0, . . . , 0, 1]T , and
K is a Lorentz cone. Therefore, any ζ in Z L could be transformed as ‖Pζ‖2 ≤ 1. In
conclusion, we finally get � = ∏L

l=1 �l is constraint-wise uncertainty with ellipsoid �l :
�l = {A|AT el = rl + Rlζl , ‖ζ‖2 ≤ 1, l = 1, . . . , L}. The Proposition follows. ��

Theorem 2 If Z = {
ζ ∈ RL |∃u ∈ RK s.t. Pζ + Qu + p ∈ K

}
, here K ∈ RN , the MDEA

model (7) containing the uncertain set can be converted from a semi-infinite program into a
cone-constrained MDEA model (R-MDEA model):
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max ω = 1
s

s∑

r=1
ηs − 1

m

m∑

i=1
θi

s.t. pT α +
n∑

j=1
x0i jλ j − θi x0i0 ≤ 0, i = 1, . . . ,m,

pTα −
n∑

j=1
y0r jλ j + ηr y0r0 ≤ 0, r = 1, . . . , s,

QTα = 0,

(PTα)l +
n∑

j=1
xli jλ j − xlx0θi ≤ 0, i = 1, . . . ,m,

(PTα)l −
n∑

j=1
ylr jλ j + ylr0ηr ≤ 0,

α ∈ K∗ = {y|yT z ≥ 0,∀z ∈ K
}
,

0 ≤ θi ≤ 1, ηr ≥ 1,
n∑

j=1
λ j = 1,

λ j ≥ 0, j = 1, . . . , n.

(9)

Proof Setting β = (λ1, . . . , λn, θ1, . . . , θm, η1, . . . , ηs) as the feasible solution of model (7),

then supζ∈Z
{
(A0β) +∑L

l=1 ζl(Alβ)
}

≤ 0. Further, we could get

max
{
(Alβ)T ζ |Pζ + Qu + p ∈ K

}
≤ −A0β. (10)

That is, β is a feasible solution of model (2) only when (10) is established. Applying the dual
cone theorem (Boyd and Vandenberghe 2004), the dual cone program of (10) can be written
as

min
α

{
pTα|QTα = −Alβ, α ∈ K∗

}
≤ −A0β. (11)

The inequality (10) is established if and only if there exists an α that satisfies (11). In other
words, β is a feasible solution of model (7) if and only if there exists an α that satisfies (11).
Then, we find that

pTα + A0β = pTα +
n∑

j=1

x0i jλ j − θi x
0
i0 ≤ 0, i = 1, . . . ,m,

pTα −
n∑

j=1

y0r jλ j + ηr y
0
r0 ≤ 0, r = 1, . . . , s,

QTα = 0, α ∈ K∗,

PTα + Alβ = (PTα)l +
n∑

j=1

xli jλ j − xlx0θi ≤ 0, i = 1, . . . ,m,

(PTα)l −
n∑

j=1

ylr jλ j + ylr0ηr ≤ 0.

The theorem follows. Therefore, we finally construct the R-MDEA model as (9). ��
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3 The design of the SOCPR-DEAmodel

In this section, we integrate the R-MDEA model in the previous section and techniques of
the chance constrained optimization, to propose the SOCPR-DEA model.

Suppose that there are n decision-making units : DMU1, DMU2, . . ., DMUn , coupled with
m random input variables, X̃ j = (x̃1 j , . . . , x̃m j ), j = 1, . . . , n, s represents the number of
random output variables, Ỹ j = (ỹ1 j , . . . , ỹs j ), j = 1, . . . , n. Setting the confidence level as
1 − α, 0 ≤ α ≤ 1, the multi-objective chance-constrained model can be written as

min (θ1, · · · , θm,−η1, . . . ,−ηs)

s.t. P

(
n∑

j=1
x̃i jλ j ≤ θi x̃i0

)

≥ 1 − α, i = 1, . . . ,m,

P

(
n∑

j=1
ỹr jλ j ≥ ηr ỹr0

)

≥ 1 − α, r = 1, . . . , s,

ηr ≥ 1, 0 ≤ θi ≤ 1, i = 1, · · · ,m, r = 1, . . . , s,
n∑

j=1
λ j = 1, λ j ≥ 0, j = 1, . . . , n.

(12)

Because model (12) is a multi-objective program, we could define maxω = 1
s

∑s
r=1ηr−

1
m

∑m
i=1θi as a substitution to the objective function of (12). Furthermore, DMU j0 is (1−α)∗

100%efficient if and only ifω = 0. The previous approach for solving the chance-constrained
MDEA model involves specifying a probability distribution function (e.g., normal) for the
error process. However, because the probability distribution of these random variables cannot
always be known in advance, the solution will deviate from the actual result. Assume that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̃11 x̃12 · · · x̃1n

x̃21 x̃22 · · · x̃2n

. . . . . . . . . . . . . . . . . . . . .

x̃m1 x̃m2 · · · x̃mn

ỹ11 ỹ12 · · · ỹ1n

ỹ21 ỹ22 · · · ỹ2n

. . . . . . . . . . . . . . . . . . . . .

ỹs1 ỹs2 · · · ỹsn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x011 x012 · · · x01n
x021 x022 · · · x02n
. . . . . . . . . . . . . . . . . . . . .

x0m1 x0m2 · · · x0mn

y011 y012 · · · y01n
y021 y022 · · · y02n
. . . . . . . . . . . . . . . . . . . . .

y0s1 y0s2 · · · y0sn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
l∑

l=1

ζl

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xl11 xl12 · · · xl1n

xl21 xl22 · · · xl2n
. . . . . . . . . . . . . . . . . . . . .

xlm1 xlm2 · · · xlmn

yl11 yl12 · · · yl1n

yl21 yl22 · · · yl2n
. . . . . . . . . . . . . . . . . . . . .

yls1 yls2 · · · ylsn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where ζ ∈ ZL and

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x011 x012 · · · x01n
x021 x022 · · · x02n
. . . . . . . . . . . . . . . . . . . .

x0m1 x0m2 · · · x0mn

y011 y012 · · · y01n
y021 y022 · · · y02n
. . . . . . . . . . . . . . . . . . . .

y0s1 y0s2 · · · y0sn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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is the nominal value matrix of random input and output variables.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xl11 xl12 · · · xl1n
xl21 xl22 · · · xl2n
xlm1 xlm2 · · · xlmn

. . . . . . . . . . . . . . . . . . . .

yl11 yl12 · · · yl1n
yl21 yl22 · · · yl2n
. . . . . . . . . . . . . . . . . . . .

yls1 yls2 · · · ylsn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is the basic shift matrix, and Z = {ζ |ζ ∈ ZL
}
is the perturbation set.

Accordingly, the first chance constraint of the original problem can be expressed as

n∑

j=1

x̃i jλ j − θi x̃i0

=
n∑

j=1

(

x0i j +
L∑

l=1

ζl x
l
i j

)

λ j − θi

(

x0i0 +
L∑

l=1

ζl x
l
i0

)

=
⎛

⎝
n∑

j=1

x0i0λ j − θi x
0
i0

⎞

⎠+
L∑

l=1

ζl

⎛

⎝
n∑

j=1

xli jλ j − θi x
l
i0

⎞

⎠ ≤ 0, i = 1, . . . ,m. (13)

Similarly, the second chance constraint of the original problem can be expressed as

⎛

⎝−
n∑

j=1

y0r jλ j + ηr y
0
r0

⎞

⎠+
L∑

l=1

ζl

⎛

⎝
n∑

j=1

ylr jλ j + ηr y
l
r0

⎞

⎠ ≤ 0, r = 1, . . . , s. (14)

Therefore, setting the confidence level as (1−α), 0≤α≤1, model (12) can be converted
into

max ω = 1
s

s∑

r=1
ηs − 1

m

m∑

i=1
θi

s.t. P

{(
n∑

j=1
x0i0λ j−θix0i0

)

+
L∑

l=1
ζl

(
n∑

j=1
xli jλ j −θixli0

)

≤0
}

≥1−α, i=1,. . . ,m,

P

{(

−
n∑

j=1
y0r jλ j+ηry0r0

)

+
L∑

l=1
ζl

(
n∑

j=1
ylr jλ j+ηrylr0

)

≤0
}

≥1−α, r=1,. . . ,s,

ηr ≥ 1, 0 ≤ θi ≤ 1, i = 1, . . . ,m, r = 1,. . . , s,
n∑

j=1
λ j = 1, λ j ≥ 0, j = 1, . . . , n.

(15)

Assume that {ζl} are independent variables that satisfy E(ζl) = 0, ‖ζl‖ ≤ 1, l = 1, . . . , l.
It is noted that for any ζl ∈ [a, b], this constraint can be mapped to the interval [−1, 1] by
first transforming it into [ a−b

2 , b−a
2 ] and later scaling the result by b−a

2 .
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Setting

β1 =
L∑

l=1

ζl

⎛

⎝
n∑

j=1

xli jλ j − θi x
l
i0

⎞

⎠ ≤ θi x
0
i0 −

n∑

j=1

x0i0λ j ,

β2 =
L∑

l=1

ζl

⎛

⎝−
n∑

j=1

ylr jλ j + ηr y
l
r0

⎞

⎠ ≤ −ηr y
0
r0 +

n∑

j=1

y0r0λ j ,

we get

STD(β1) =

√
√
√
√
√

L∑

l=1

⎛

⎝
n∑

j=1

xli jλ j − θi xli0

⎞

⎠

2

E(ζ 2
l ) ≤

√
√
√
√
√

L∑

l=1

⎛

⎝
n∑

j=1

xli jλ j − θi xli0

⎞

⎠

2

,

STD(β2) =

√
√
√
√
√

L∑

l=1

⎛

⎝−
n∑

j=1

ylr jλ j + ηr ylr0

⎞

⎠

2

E(ζ 2
l ) ≤

√
√
√
√
√

L∑

l=1

⎛

⎝−
n∑

j=1

ylr jλ j + ηr ylr0

⎞

⎠

2

.

Therefore, the chance constraints become

P

⎧
⎪⎪⎨

⎪⎪⎩
β1 ≤

√
√
√
√
√

L∑

l=1

⎛

⎝
n∑

j=1

xli jλ j − θi xli0

⎞

⎠

2
⎫
⎪⎪⎬

⎪⎪⎭
≥ 1 − α,

P

⎧
⎪⎪⎨

⎪⎪⎩

β2 ≤

√
√
√
√
√

L∑

l=1

⎛

⎝−
n∑

j=1

ylr jλ j + ηr ylr0

⎞

⎠

2
⎫
⎪⎪⎬

⎪⎪⎭

≥ 1 − α,

which may be satisfied by setting the threshold Ω as shown below.

Ω

√
√
√
√
√

L∑

l=1

⎛

⎝
n∑

j=1

xli jλ j − θi xli0

⎞

⎠

2

≤ θi x
0
i0 −

n∑

j=1

x0i0λ j ,

Ω

√
√
√
√
√

L∑

l=1

⎛

⎝−
n∑

j=1

ylr jλ j + ηr ylr0

⎞

⎠

2

≤ −ηr y
0
r0 +

n∑

j=1

y0r jλ j .

It is noted that as Ω increases, the possibility of the following variable increases:

β1 ≤ θi x
0
i0 −

n∑

j=1

x0i0λ j ,

β2 ≤ −ηr y
0
r0 +

n∑

j=1

y0r jλ j .

Lemma 1 Setting zl , l = 1, . . . , L as known coefficients, {ζl} , l = 1, . . . , L are
independent variables that satisfy E({ζl}) = 0, |ζl |, then for any Ω ≥ 0, we have

P

{

ζ |∑L
l=1zlζl >Ω

√∑L
l=1z

2
l

}

≤ exp
(
−Ω2

2

)
(Ben-Tal et al. 2009).
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Corollary 1 Replacing the constraints in model (15) with

Ω

√
√
√
√
√

L∑

l=1

⎛

⎝
n∑

j=1

xli jλ j − θi xli0

⎞

⎠

2

≤ θi x
0
i0 −

n∑

j=1

x0i jλ j ,

Ω

√
√
√
√
√

L∑

l=1

⎛

⎝−
n∑

j=1

ylr jλ j + ηr ylr0

⎞

⎠

2

≤ −ηr y
0
r0 +

n∑

j=1

y0r jλ j ,

we can guarantee that

P

⎧
⎨

⎩

⎛

⎝
n∑

j=1

x0i0λ j − θi x
0
i0

⎞

⎠+
L∑

l=1

ζl

⎛

⎝
n∑

j=1

xli jλ j − θi x
l
i0

⎞

⎠ > 0

⎫
⎬

⎭
≤ exp

(

−Ω2

2

)

,

P

⎧
⎨

⎩

⎛

⎝−
n∑

j=1

y0r0λ j + ηr y
0
r0

⎞

⎠+
L∑

l=1

ζl

⎛

⎝
n∑

j=1

ylr jλ j + ηr y
l
r0

⎞

⎠ > 0

⎫
⎬

⎭
≤ exp

(

−Ω2

2

)

.

In particular, when Ω >

√
2 ln

( 1
α

)
, the violating probability is less than α.

Now,we consider a commonperturbation set Z={ζ ∈ RL||ζl |<1, l=1, . . . , L, ‖ζ‖2<Ω
}

(Ben-Tal et al. 2009). It is clear that Z is an intersection of the unit box with a ball of radius
Ω that is centered at the origin. We have two reasons to choose Z as a perturbation set: One
reason is that the unit box limits each component of the perturbation vector ζ between [−1, 1],
which ensures that each uncertain data ai j is confined within the interval [a0i j − âi j , a0i j + âi j ].
The other reason is that the ball of radiusΩ centered at the origin guarantees an immunization

of 1 − exp
(
−Ω2

2

)
× 100%.

Further, Ben-Tal et al. (2009) pointed out that the constraints of the robust program:

min
{
cT x + d|P(Ax ≤ b) ≤ α, (A,b) ∈ �

}
,

� =
{

[ai ; bi ] = [a0i ; b0i ] +
L∑

l=1

ζl [ali ; bli ]|ζ ∈ Z

}

,

can be converted to following secondary cone constraint: zl + ωl = bl − (αl)T x, l =
1, . . . , L,

∑L
l=1 |zl | + Ω

√∑L
l=1 ω2

l ≤ b0 − (α0)T x. Moreover, the probability of a feasible
solution under the new constraints is also feasible to the original program, and the probability

is no lower than 1− exp
(
−Ω2

2

)
. Accordingly, the multi-objective chance-constrained DEA
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model can ultimately be converted to

max ω = 1
s

s∑

r=1
ηs − 1

m

m∑

i=1
θi

s.t. zli + ωli = −
n∑

j=1
λ j xli j + θi xli0, i = 1, . . . ,m,

zlr + ωlr =
n∑

j=1
λ j ylr j − ηr ylr0, r = 1, · · · , s,

L∑

l=1
|zli | + Ω

√
L∑

l=1
ω2
li ≤ −

n∑

j=1
λ j x0i j + θi x0i0, i = 1, . . . ,m,

L∑

l=1
|zlr | + Ω

√
L∑

l=1
ω2
lr ≤

n∑

j=1
λ j y0r j − ηr y0r0, r = 1, . . . , s,

ηr ≥ 1, 0 ≤ θi ≤ 1, i = 1, · · · ,m, r = 1, . . . , s,
n∑

j=1
λ j = 1, λ j ≥ 0, j = 1, . . . , n.

(16)

Similar to the definition of an efficient DMU in an MDEA model, if DMU j0 is efficient
in MDEA, the objective function value is 0, which implies that ω = 0, θi = 1, ηr = 1,i = 1,
. . ., m, r = 1, . . . , s.

4 A case study of Chinese NEV industry

In this section,wewill apply the newSOCPR-DEAmodel to carry out an efficiency evaluation
by using 13 manufacturers from Chinese NEV industry as the case. The case study will not
only test the validation and verification of SOCPR-DEA model, but also help to identify the
main influence factors that concern the development of Chinese NEV industry.

As illustrated in the first column of Table 1, 13 Chinese new-energy vehicle manufactures
as the DMUs to carry out the efficiency evaluation. The 13 auto manufacturers are the
main NEV firms in China which contribute most authorized NEV products approved by
the Ministry of Industry and Information Technology, covering both passenger cars and
buses. With reference to the criteria of variables selection in Lee et al. (2012) and taking the
suitability of SOCPR-DEA model into consideration, we select two inputs as research and
development expenses (hereafter referred to as R&D) and production cost (hereafter referred
to as PC), as well as three outputs as sales income (hereafter referred to as SI), earnings per
share (hereafter referred to as EPS) and the predicted income of 2018 (hereafter referred to
as PI), and PI is an ideal index that reflects the development prospects for different DMUs.
The data of R&D, PC, SI, and EPS is collected from the third quarter financial statement of
2016 for these manufactures, which is different from the prediction of security companies
for PI value source. This divergence of data sources brings different data attributes as the
deterministic former ones and the non-deterministic latter one, which calls for the application
of robust DEA models for their strength in dealing with uncertain data issues.

The raw data of six variables for 13 manufacturers is displayed in Table 1, from which
we can see that the unit of R&D, PC, SI, PI, and RC is “Ten-thousand Yuan”, while EPS is
measured by “Yuan Per Share”. What’s more, some manufacturers haven’t yet invested in
R&D and some others are even in a deficit EPS situation, this higher variance sets a higher
threshold to select a proper evaluation method. Fortunately, the new constructed SOCPR-
DEA model has a conspicuous strength on translation invariance property, which makes it
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could bewell equipped to solve such issueswith unprecise and inconsistent data. TakingBYD
as an example, there are three different predicted PI values in 2016 as 11,736 thousands yuan
from China Ping An Insurance (Group) Company Limited (PINGAN), 15,343.4 thousands
yuan from Soochow Securities Company Limited (SCS), and 10,605.2 thousands yuan from
UBS Securities Company Limited (UBS). To smooth the variance among three predictions,
we adopt the method of arithmetic average to get the mean value of 12,561.5 thousands yuan
and a 2020.5 thousands yuan variance.

4.1 The efficiency analysis for 13 NEVmanufacturers

By using the SOCPR-DEA model to calculate the input–output ratio of different manufac-
turers, their efficiencies is shown in the last column of Table 1, from which we can see
that five manufacturers as GWM, LIFAN, YUTONG, ZHONGTONG and ASIASTAR have
the most efficient performances for their perfect efficiency values (the values equal to 1),
three manufacturers as DFM, ANKAI, and BYD have a more efficient performances for
their higher efficiency values (more than 0.4), while SAIC ranks as the last one for a 0.0386
efficiency value. It may be a surprising finding that SAIC, the largest automobile manufac-
turer of China has the lowest efficiency value because of the scale economies effect and its
huge net profit. Nevertheless, if we focus on the NEV area of SAIC by comparing with its
huge R&D investment and moderate sales revenue, our research finding is consistent with
its practical performance. As the first automobile manufacturer in China which develops all
the three electric vehicle technology roadmaps (the pure electric vehicle, the plug-in hybrid
electric vehicle, and the fuel cell electric vehicle), SAIC has invested more than six billions
yuan on R&D from 2009 to 2015,2 however, this was returned by only about two thousands
sales in 2014 and ten thousands sales in 2015.3

4.2 The sensitivity analysis among the efficiency and different variables

To excavate the relationship between the total efficiency and different variables, a sensitivity
analysis was carried out through re-calculating the efficiencies of DMUs after deleting one
variable at a time. The following Fig. 2 is constituted by 6 subgraphs, from left top to right
bottom these 6 subgraphs are listed from subgraph 1 to subgraph 6. Subgraph 1 represent the
default scenario including all the five variables, and subgraphs 2 to subgraph 6 represent the
efficiency variance by eliminating R&D, PC, SI, EPS, and PI respectively. Figure 2 shows
that the elimination of R&D, SI, EPS, and PI doesn’t change the corresponding efficiency
so much, while the efficiency is more sensitive with PC, and this is further confirmed by a
rank-sum test displayed in Table 2. Since the null hypothesis is that the efficiency change
caused by variable elimination is not significant, it is rejected only by PC variable with
the 5% confidence through the P value judgement, while other variables have to accept the
null hypothesis. Taking the variable of R&D as an example, the test shows that more R&D
investment would not result in a higher efficiency. In fact, as Chinese NEV industry is still
at an early stage, there is a long way to go before R&D outputs being transformed into
technology capabilities or even marketing sales.

2 Data source: http://www.ccstock.cn/gscy/gongsi/2016-11-03/A1478105064141.html.
3 Data source: http://finance.qq.com/a/20160114/053577.htm.
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Fig. 2 Sensitivity analysis of variables to the efficiency

Table 2 Sensitivity analysis for each variable

Variable eliminated R&D PC SI EPS PI

Sig. 0.7196 0.0041 0.6816 0.4119 0.2592

4.3 Practical contribution

The practical contributions of this paper are concluded below: Regarding the efficiencies
of 13 NEV manufacturers, GWM (focusing on Sport Utility Vehicles), LIFAN (focusing
on family cars), YUTONG (focusing on buses), ZHONGTONG (focusing on buses), and
AISASTAR (focusing on coaches) have the largest efficiency value, while SAIC, BYD, and
DFM with diverse products show lower efficiency performance. This phenomenon indicates
that a focus strategy is more likely to enhance a firms efficiency especially at an emerging
stage because of the absence of scale economies effect.

Regarding the sensitivity of different variables, PC reduction is the most effective way to
improve a firm’s efficiency. This can be realized through the following two measures:

– manufacturers could specialize in a small number of competitive products to upgrade
production equipment and optimize manufacturing process, and expand its marketing
channels to attract a large group of customers, so as to quickly form the scale economies
effect;

– manufacturers could invest more on R&D to improve their technologies of both key
components and NEVs for the lower sensitivity of R&D, so as to form their core com-
petitiveness through the cumulative effect.

From the perspective of policy support, the comparison amongGWM,LIFAN,YUTONG,
ZHONGTONG, AISATAR, SAIC, BYD, and DFM ironically reflects that a prudential,
focused and resource-based strategy is better for a higher firm efficiency due to the low R&D
capability, inconsistent technical standards, and immature infrastructure facilities. Thus, we
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suggest that the former comprehensive financial subsidy policy should be diverted to such
critical areas as key technologies R&D, intellectual property protection, and charging facili-
ties construction in the nearest future.

5 Conclusions and research prospects

5.1 Conclusions

To evaluate the economic performance for firms struggling in an emerging industry, this
paper concerned more on data variety issues, proposed a second-order cone based robust
data envelopment analysis (SOCPR-DEA) model, and carried out an empirical study by
using 13 manufacturer cases from Chinese NEV industry. To elaborate, this paper has the
following theoretical contributions.

Exploring a new robust DEA model: comparing with traditional DEA models, this paper
developed a SOCPR-DEA model to evaluate the huge emerging uncertain issues in our
real-life environment. Based on the M-DEA model, this paper firstly constructed a RM-
DEA model framework through absorbing the robust optimization technique, and then
transformed RM-DEA model into the final SOCPR-DEA model by integrating with the
chance-constrained DEA model. The SOCPR-DEA model, which is computationally cheap,
can effectively address imprecise and negative data problems and easily calculate efficiency
evaluation issues by means of many mature software via inner point methods (e.g. CVX).

Taking advantage of the ellipsoidal uncertainty set: although the linear programming based
classical robust models have a cheap computation virtue, it neglects the complex properties
of uncertainty sets. To make up this defect, the SOCPR-DEA model proposed in this paper
has completely utilized the advantages of ellipsoidal uncertainty set to well represent the
uncertainties in our real-world. On the one hand, ellipsoidal uncertainty sets could form a
relativelywide family including polytopes (bounded sets given by finitely linear inequalities),
and this can be used to well approximate many cases of complicated convex sets. On the other
hand, an ellipsoid is given parametrically by the moderate size data; hence it is convenient
to represent “ellipsoidal uncertainty” as the input.

5.2 Future directions

There are some flaws in the paper such as the non-exhaustive consideration about the inner
network of production processes for our focus on dealingwith data variety issues; however, to
combine the SOPER-DEA model with network DEA models deserves further investigates.
Secondly, this research only focuses on Chinese NEV industry, other emerging industries
such as hydraulic, photovoltaic, wind, ocean and solar energy could be evaluated more in the
future, so as tomake a comparison among different industries, and generalizemore interesting
implications for policy-makers reference. In addition, due to the imperfect statistical data
and inconsistent statistical standards for different NEV manufacturers, we can only select
six variables to carry out the efficiency evaluation, the validity deficiency could be mitigated
in future studies by improving data collection and conducting more extensive fieldwork.
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