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Abstract
We propose a randomized gradient method for handling a convex function whose gradient
computation is demanding. The method bears a resemblance to the stochastic approxima-
tion family. But in contrast to stochastic approximation, the present method builds a model
problem. The approach is adapted to probability maximization and probabilistic constrained
problems. We discuss simulation procedures for gradient estimation.

Keywords Convex optimization · Stochastic optimization · Probabilistic problems

1 Introduction

Wedealwith approximatemethods for the solution of smooth convex programmingproblems.
First, we consider minimization over a polyhedron:

min φ(T x) subject to Ax ≤ b, (1)

where φ : IRn → IR is a convex function whose gradient computation is demanding. The
vectors are x ∈ IRm, b ∈ IRr , and the matrices T and A are of sizes n × m and r × m,
respectively. For the sake of simplicity we assume that the feasible domain is not empty and
is bounded. We then consider the minimization of a linear cost function subject to a difficult
convex constraint:
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min cT x subject to Ăx ≤ b̆, φ(T x) ≤ π, (2)

where the vectors c, b̆ and the matrix Ă have compatible sizes, and π is a given number. The
approach we discuss is easily extended to convex functions from the linear ones.

Amotivation for the above forms are the classic probabilitymaximization and probabilistic
constrained problems, where φ(z) = − log F(z) with a logconcave distribution function
F(z). We briefly overview a couple of closely related probabilistic programming approaches.
For a broader survey, see Fábián et al. (2018). Given a distribution and a number p (0 <

p < 1), a probabilistic constraint confines search to the level set L(F, p) = { z | F(z) ≥ p }
of the distribution function F(z). Prékopa (1990) initiated a novel solution approach by
introducing the concept of p-efficient points. The point z is p-efficient if F(z) ≥ p and there
exists no z′ such that z′ ≤ z, z′ �= z, F(z′) ≥ p. Prékopa et al. (1998) considered problems
with random parameters having a discrete finite distribution. They began with enumerating
p-efficient points and based on them, built a convex relaxation of the problem.

Dentcheva et al. (2000) formulated the probabilistic constraint in a split form: T x = z
with z ∈ L(F, p); and constructed a Lagrangian dual by relaxing the constraint T x = z. The
resulting dual functional is the sum of the respective optimal objective values of two simpler
problems. The first auxiliary problem is a linear programming problem, and the second one is
theminimization of a linear function over the level setL(F, p). Based on this decomposition,
the authors developed a method, called cone generation, that finds new p-efficient points in
the course of the optimization process.

As minimization over the level set L(F, p) entails a substantial computational effort, the
master part of the decomposition framework should succeed with as few p-efficient points as
possible. Efficient solutionmethodswere developedbyDentcheva et al. (2004) andDentcheva
and Martinez (2013); the latter applies regularization to the master problem. Approximate
minimization over the level set L(F, p) is another enhancement. Dentcheva et al. (2004)
constructed approximate p-efficient points through approximating the original distribution
by a discrete one. More recently, van Ackooij et al. (2017) employed a special bundle-type
method for the solution of the master problem, based on the on-demand accuracy approach
of de Oliveira and Sagastizábal (2014). This means working with inexact data and regulating
accuracy in the course of the optimization. Approximate p-efficient points with on-demand
accuracy were generated employing the integer programming approach of Luedtke et al.
(2010).

Our former paper Fábián et al. (2018) focussed on probabilitymaximization, and proposed
a polyhedral approximation of the epigraph of the probabilistic function. This approach is
analogous to the use of p-efficient points (has actually been motivated by that concept).
The dual function is constructed and decomposed in the manner of Dentcheva et al. (2000),
but the nonlinear subproblem is easier. In Dentcheva et al. (2000), finding a new p-efficient
point amounts to minimization over the level set L(F, p). In contrast, a new approximation
point in Fábián et al. (2018) is found by unconstrained minimization, with considerably less
computational effort.Moreover, a practical approximation schemewas developed in the latter
paper: instead of exactly solving an unconstrained subproblem occurring during the process,
just a single line search is sufficient. The approach is easy to implement and endures noise
in gradient computation.

In the present paper, we extend the inner approximation approach of Fábián et al. (2018) to
a randomized method handling gradient estimates. The motivation is our experience reported
in that former paper: when solving probability maximization problems, most computational
efforts were spent on computing gradients. (Computing a single component of the gradient
vector required an effort comparable to that of computing a distribution function value). We
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conclude that easily computable estimates for the gradients are well worth using, even if the
iteration count increases due to estimation errors.

The paper is organized as follows. In Sect. 2 we work in an idealized setting, under the
following assumptions:

Assumption 1 The function φ(z) is twice continuously differentiable, and real numbers
α, ω (0 < α ≤ ω) are known such that

α I � ∇2φ(z) � ωI (z ∈ IRn).

Here ∇2φ(z) is the Hessian matrix, I is the identity matrix, and the relationU � V between
matrices means that V −U is positive semidefinite.

Assumption 2 Given z ∈ IRn , the function value φ(z) and the gradient vector ∇φ(z) can be
computed exactly.

We present a brief overview of the models and of the column generation approach proposed
in Fábián et al. (2018) to the unconstrained problem (1). The epigraph of the convex function
φ(z) is approximated by a convex combination of finitelymany points (obtained by evaluating
the function value in the known iterates.) New points (columns in a model problem) are
generated by unconstrained minimization of a probabilistic function. The column generation
problem is solved with a gradient descent method. Due to Assumption 1, an approximate
solution is sufficient, taking a limited number of descent steps.

In Sect. 3 we extend the method to gradient estimates, replacing Assumption 2 with

Assumption 3 Given z, u ∈ IRn , the function value φ(z) can be computed exactly, and the
norm ‖∇φ(z)− u‖ can be estimated with a pre-defined relative accuracy. Moreover, realiza-
tions of an unbiased stochastic estimate G of the gradient vector ∇φ(z) can be constructed
such that E(‖G−∇φ(z)‖2) remains below a pre-defined tolerance. (Higher accuracy in case
of norm estimation, and tighter tolerance on variance entail larger computational effort.)

We develop a randomized version of the column generation method, and present reliability
considerations based on Assumption 1.

In Sect. 4 we deal with the convex constrained problem (2), still in the idealized setting
of Assumption 1. We consider a parametric version of an unconstrained problem of the
form (1). We present an approximation scheme for the constrained problem that requires
the approximate solution of a short sequence of unconstrained problems. Initial problems
in this sequence are solved with a large stopping tolerance, and the accuracy is gradually
increased. This approximation scheme is first developed in a deterministic form (based on
the deterministic method of Sect. 2), and then extended to admit the randomized method of
Sect. 3. Reliability considerations are presented for the randomized scheme.

The approach is adapted to probabilistic programming problems in Sect. 5. Here we con-
sider φ(z) = − log F(z) with a nondegenerate n-dimensional standard normal distribution
function F(z). Assumption 1 obviously does not hold for every z ∈ IRn with a probabilistic
φ(z). However, as illustrated in Fábián et al. (2018), Assumption 1 holds for the points of a
bounded ball around the origin. (The ratio α

ω
decreases as the radius of the ball increases.)

Owing to the specialities of the probabilistic function, the column generation process can be
guaranteed to remain in a ball of sufficiently large radius. Such a procedure was sketched
in Fábián et al. (2018). That construction provides a theoretical justification for limiting our
investigations to a bounded ball, but it does not yield usable estimates for the values α and ω.
While efficiency considerations of the previous sections are inherited to probabilistic prob-
lems, reliability considerations cannot be based on Assumption 1. The quality of a model is
measured by different means, based on special features of the probabilistic function.
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Section 6 contains an overview of algorithms for the estimation of multivariate normal
probability distribution function values and gradients. We discuss the numerical integration
algorithm of Genz (1992), and the variance reduction Monte Carlo simulation algorithms of
Deák (1980, 1986), Szántai (1976, 1985, 1988) andAmbartzumian et al. (1998), mentioning
related works. These variance reduction Monte Carlo simulation algorithms have originally
been developed to be used in primal-type methods for probabilistic constrained problems.
An abundant stream of research in this direction has been initiated by the models, methods
and applications pioneered by Prékopa and his school. Based on these algorithms, a gradient
estimate satisfying Assumption 3 can be constructed by a two-stage sampling procedure, as
mentioned in Sect. 6.5.

Section 7 describes a computational experiment. The aim is to demonstrate theworkability
of the randomized column generation scheme of Sect. 3, in case of probabilistic problems.

2 Column generation in an idealized setting

In this section we work in the idealized setting of Assumptions 1 and 2. We formulate the
dual problem and construct polyhedral models of the primal and dual problems. We follow
the construction in Fábián et al. (2018), though monotonicity of the probabilistic objective
was exploited there, and variable splitting was based on z ≤ T x. In the present idealized
setting, we apply the traditional form of variable splitting: problem (1) is written as

min φ(z) subject to Ax − b ≤ 0, z − T x = 0. (3)

This problem has an optimal solution because the feasible domain of (1) is nonempty and
bounded, by assumption. Introducing the multiplier vector − y ∈ IRr ,− y ≥ 0 to the con-
straint Ax − b ≤ 0, and −u ∈ IRn to the constraint z − T x = 0, the Lagrangian dual of (3)
can be written as

max
{
yT b − φ�(u)

}
subject to ( y, u) ∈ D, (4)

where

D :=
{
( y, u) ∈ IRr+n | y ≤ 0, T T u = AT y

}
. (5)

According to the theory of convex duality, this problem has an optimal solution. For a recent
treatise on Lagrangian duality, see, e.g., Chapter 4 of Ruszczyński (2006).

2.1 Polyhedral models

Suppose we have evaluated the function φ(z) at points zi (i = 0, 1, . . . , k); we introduce
the notation φi = φ(zi ) for respective objective values. An inner approximation of φ(·) is

φk(z) = min
k∑

i=0

λiφi such that λi ≥ 0 (i = 0, . . . , k),
k∑

i=0

λi = 1,
k∑

i=0

λi zi = z.

(6)

If z /∈ Conv(z0, . . . , zk), then let φk(z) := +∞. A polyhedral model of problem (3) is

min φk(z) subject to Ax − b ≤ 0, z − T x = 0. (7)
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We assume that (7) is feasible, i.e., its optimum is finite. This can be ensured by proper
selection of the initial z0, . . . , zk points. The convex conjugate of φk(z) is

φ�
k (u) = max

0≤i≤k

{
uT zi − φi

}
. (8)

As φ�
k (·) is a cutting-plane model of φ�(·), the following problem is a polyhedral model of

problem (4):

max
{
yT b − φ�

k (u)
}

subject to ( y, u) ∈ D. (9)

2.2 Linear programming formulations

The primal model problem (6)–(7) will be formulated as

min
k∑

i=0
φiλi

such that λi ≥ 0 (i = 0, . . . , k),
k∑

i=0
λi = 1,

k∑
i=0

λi zi − T x = 0,

Ax ≤ b.

(10)

The dual model problem (8)–(9), formulated as a linear programming problem, is just the
LP dual of (10):

maxϑ + bT y

such that y ≤ 0,

ϑ + zTi u ≤ φi (i = 0, . . . , k),

−T T u + AT y = 0.

(11)

Let ( λ0, . . . , λk, x ) and ( ϑ, u, y ) denote respective optimal solutions of the problems (10)
and (11)—both existing due to our assumption concerning the feasibility of (7) and hence
(10). Let moreover

z =
k∑

i=0

λi zi . (12)

Observation 4 We have

(a) φk(z) = ∑k
i=0 φiλi = ϑ + uT z,

(b) ϑ = −φ�
k (u),

(c) φk(z) + φ�
k (u) = uT z and hence u ∈ ∂φk(z).

Sketch of proof

(a) The first equality follows from the equivalence of (10) on the one hand, and (6)–(7) on
the other hand. The second equality is a straight consequence of complementarity.
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(b) follows from the equivalence between (11) on the one hand and (8)–(9) on the other hand.
(c) The equality is a consequence of (a) and (b). This is Fenchel’s equality between u and

z, with respect to the model function φk(·). On u being a subgradient, see, e.g., Section
23 in Rockafellar (1970).

2.3 A column generation procedure

We give a brief overview of the approximation scheme of Fábián et al. (2018). An optimal
dual solution (i.e., shadow price vector) of the current model problem is ( ϑ, u, y ). Given
a vector z ∈ IRn , we can add a new column in (10), corresponding to zk+1 = z. This is an
improving column if its reduced cost

ρ(z) := ϑ + uT z − φ(z) (13)

is positive. It is easily seen that the reduced cost of z is non-negative. Indeed,

ρ(z) ≥ ϑ + uT z − φk(z) = 0 (14)

follows from φk(·) ≥ φ(·) and Observation 4(a).
In the context of the simplex method, the Markowitz column-selection rule is widely

used. The Markowitz rule selects the vector with the largest reduced cost. Coming back to
the present problem (10), let

R := max
z

ρ(z). (15)

The column with the largest reduced cost can, in theory, be found by a steepest descent
method applied to the function −ρ(z). In a practical approach, only a limited number of line
search steps are performed, starting from z. The efficiency of this practical approach can be
estimated on the basis of the following well-known theorem:

Theorem 5 Let Assumption 1 hold for the function f : IRn → IR. We minimize f (z) over
IRn using a steepest descent method, starting from a point z0. Let z1, . . . , z j , . . . denote the
iterates obtained by applying exact line search at each step. Then we have

f
(
z j
)

− F ≤
(
1 − α

ω

) j [
f
(
z0
)− F ]

, (16)

where F = minz f (z).

This theorem can be found e.g., in Chapter 8.6 of Luenberger and Ye (2008). Ruszczyński
(2006) in Chapter 5.3.5, Theorem 5.7 presents a slightly different form. The following corol-
lary was obtained in Fábián et al. (2018):

Corollary 6 Let β (0 < β � 1) be given. In O (− logβ) steps with the steepest descent
method, we find a vector ẑ such that

ρ (̂z) ≥ (1 − β) R. (17)

This can be shown by substituting f (z) = −ρ(z), z0 = z in (16), and applying (14). The
objective function −ρ(z) inherits Assumption 1 from φ(z). Performing j steps with j such
that (1 − α

ω
) j ≤ β yields an appropriate ẑ = z j .

In view of the Markowitz rule mentioned above, the vector ẑ in Corollary 6 is a fairly
good improving vector in the column generation scheme.
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To check near-optimality of the current solution, we use the usual LP stopping rule: the
reduced cost of any candidate vector should be below a fixed optimality tolerance. Of course
we do not know R, but let

B := 1

1 − β
ρ (̂z) , (18)

with the β and ẑ of Corollary 6.We stop the column generation procedure whenB falls below
the optimality tolerance. When applying this bound, we work with a fixed β throughout the
process, e.g., let β = 0.5. For the present special linear programming problem (10), this is
not just a heuristic rule:

Observation 7 R (and hence B) is an upper bound on the gap between the respective optima
of the model problem (10) and the original convex problem (3).

Proof We have

R = max
z

ρ(z) = φ�(u) − φ�
k (u). (19)

(The second equality follows from the definition of the conjugate function).
Since (u, y) is a feasible solution of the dual problem (4), it follows that (19) is an upper

bound on the gap between the respective optima of the dual model problem (9) and the dual
problem (4). The observation follows from convex duality. 
�
Remark 8 Prescribing a loose optimality tolerance on B results in an early termination of
the column generation process. Common experience with LP problems is that computational
effort is substantially reduced by loosening the stopping tolerance.

Remark 9 Looking at the column-generation approach from a dual viewpoint we can see
a cutting-plane method. This relationship between the primal and dual approaches is well
known, see, e.g., Frangioni (2002, 2018). Details for the present case were worked out in the
research report Fábián and Szántai (2017), a former version of the present paper.

The dual viewpoint admits a visual justification of the convergence of the sequence of the
optimal dual vectors u. (Moreover, the cutting-plane method can be regularized, but we do
not consider regularization in this paper.)

3 Working with gradient estimates

First we extend Theorem 5. Let f : IRn → IR be such that Assumptions 1 and 3 hold. We
wish to minimize f (z) over IRn using a stochastic descent method. Let z◦ ∈ IRn denote an
iterate, and g◦ = ∇ f (z◦) the corresponding gradient.

Let σ 2 > 0 be given. According to Assumption 3, realizations of a random vector G◦ can
be constructed, satisfying

E
(
G◦) = g◦ and E

(∥∥G◦ − g◦∥∥2) ≤ σ 2
∥∥g◦∥∥2 . (20)

From (20) follows

E
(∥∥G◦∥∥2) = E

(∥∥G◦ − g◦∥∥2)+ ∥∥g◦∥∥2 ≤ (σ 2 + 1)
∥∥g◦∥∥2 . (21)

We consider the following randomized form of Theorem 5:
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Theorem 10 Under the above assumptions, we perform a steepest descent method using
gradient estimates: at the current iterate z◦, a gradient estimate G◦ is generated and a line
search is performed in that direction. We assume that gradient estimates at the respective
iterates are generated independently, and (20)–(21) hold for each of them.

Having started from the point z0, and having performed j line searches, let z1, . . . , z j

denote the respective iterates. Then we have

E
[
f
(
z j
)]

− F ≤
(
1 − α

ω(σ 2 + 1)

) j (
f
(
z0
) − F) , (22)

where F = minz f (z).

Proof LetG0, . . . , G j−1 denote the respective gradient estimates for the iterates z0, . . . , z j−1.
To begin with, we focus on the first line search whose starting point is z◦ = z0. Here z◦

is a given (not random) vector. We adapt the proof of Theorem 5, presented in Chapter 8.6
of Luenberger and Ye (2008), to employ the gradient estimate G◦ instead of the gradient g◦.
From ∇2 f (z) � ωI , it follows that

f
(
z◦ − tG◦) ≤ f

(
z◦
)− t g◦ T G◦ + ω

2
t2 G◦ T G◦

holds for any t ∈ IR (a consequence of Taylor’s theorem). Considering expectations on both
sides, we get

E
[
f (z◦ − tG◦)

] ≤ f (z◦) − t ‖g◦‖2 + ω
2 t

2 E
(∥∥G◦∥∥2)

≤ f (z◦) − t ‖g◦‖2 + ω
2 t

2 (σ 2 + 1) ‖g◦‖2

according to (21). We consider the respective minima in t separately of the two sides. The
right-hand side is a quadratic expression, yielding minimum at t = 1

ω(σ 2+1)
. Inequality is

inherited to minima, hence

min
t

E
[
f
(
z◦ − tG◦)] ≤ f

(
z◦
) − 1

2ω(σ 2 + 1)

∥∥g◦∥∥2 . (23)

For the left-hand side, we obviously have

E
[
min
t

f
(
z◦ − tG◦)] ≤ min

t
E
[
f
(
z◦ − tG◦)] . (24)

(This is analogous to the basic inequality comparing the wait-and-see and the here-and-now
approaches for classic two-stage stochastic programing problems, see, e.g., Chapter 4.3 of
Birge and Louveaux 1997).

Let z′ denote the minimizer of the line search on the left-hand side of (24), i.e., f
(
z′
) =

mint f (z◦ − tG◦). (Of course z′ is a random vector since it depends on G◦.) Substituting
this in (24) and comparing with (23), we get

E
[
f
(
z′
)] ≤ f

(
z◦
) − 1

2ω(σ 2 + 1)

∥∥g◦∥∥2 .

Subtracting F from both sides results in

E
[
f
(
z′
)]− F ≤ f

(
z◦
)− F − 1

2ω(σ 2 + 1)

∥∥g◦∥∥2 . (25)
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Coming to the lower bound, a well-known consequence of α I � ∇2 f (z) is
∥∥g◦∥∥2 ≥ 2α

(
f
(
z◦
) − F)

(see Chapter 8.6 of Luenberger and Ye 2008). Combining this with (25), we get

E
[
f
(
z′
)]− F ≤ f

(
z◦
)− F − α

ω(σ 2 + 1)

(
f
(
z◦
) − F)

=
(
1 − α

ω(σ 2 + 1)

) (
f
(
z◦
) − F) . (26)

As we have assumed that z◦ is a given (not random) vector, the right-hand side of (26)
is deterministic, and the expectation on the left-hand side is considered according to the
distribution of G◦.

Now, let us examine the (l+1)th line search (for 1 ≤ l ≤ j−1) where the starting point is
z◦ = zl and the minimizer is z′ = zl+1. Of course (26) holds with these objects also, but now
both sides are random variables, depending on the vectors G0, . . . , Gl−1. (The expectation
on the left-hand side is a conditional expectation.) We consider the respective expectations
of the two sides, according to the joint distribution of G0, . . . , Gl−1. As the random gradient
vectors were generated independently, we get

E
[
f
(
zl+1

)]
− F ≤

(
1 − α

ω(σ 2 + 1)

)(
E
[
f
(
zl
)]

− F
)

, (27)

where the left-hand expectation is now taken according to the joint distribution ofG0, . . . , Gl .
This technique of proof is well known in the context of stochastic gradient schemes, see, e.g.,
Nesterov and Vial (2008).

Finally, (22) follows from the iterative application of (27). 
�
Coming back to problem 1, let Assumptions 1 and 3 hold for the objective function φ(z).

We show that the column generation scheme of Sect. 2.3 can be implemented as a randomized
method using gradient estimates. Specifically, we need to approximately solve the column
generation subproblem (15).

Corollary 11 Let a tolerance β (0 < β � 1) and a probability p (0 < p � 1) be given. In
O(− log(β p)) steps with the stochastic descent method, we find a vector ẑ such that

P
(

ρ (̂z ) ≥ (1 − β)R
)

≥ 1 − p.

Proof We apply Theorem 10 to f (z) = −ρ(z). This function inherits Assumptions 1 and 3
from φ(z). Let 
 = 1− α

ω(σ 2+1)
with some σ > 0. We assume that gradient estimates at the

respective iterates are generated independently, and (20)–(21) hold for each of them.
Substituting z0 = z in (22) and taking into account (14), we get

E
[
ρ(z j )

]
≥
(
1 − 
 j

)
R.

The gapR is obviously non-negative. In caseR = 0, the starting iterate z0 = z of the steepest
descent method was already optimal, due to (14). In what follows we assumeR > 0. A trivial
transformation results in

E

[
1 − ρ(z j )

R

]
≤ 
 j .
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By Markov’s inequality, we get

P

(
1 − ρ(z j )

R ≥ β

)
≤ 
 j

β
,

and a trivial transformation yields

P
(

ρ(z j ) ≤ (1 − β)R
)

≤ 1

β

 j .

Hence

P
(

ρ(z j ) > (1 − β)R
)

≥ 1 − 1

β

 j .

Performing j steps with j such that 
 j ≤ β p yields an appropriate ẑ = z j . 
�

Remark 12 Gradients of the function−ρ(z) have the form∇φ(z)−u. The further the column
generation procedure progresses, the smaller the norm ‖∇φ(z)− u‖ gets (see Observation 4
(c)).

To satisfy the requirement (20) on variance, better and better estimates are needed. We
control accuracy according to Assumption 3.

3.1 Bounding the optimality gap and reliability considerations for the randomized
column generation scheme

By analogy with the deterministic scheme, let

B := 1

1 − β
ρ (̂z) , (28)

with the β and ẑ of Corollary 11. Concerning the gap between the respective optima of the
model problem (10) and the original convex problem (3), the reliability

P
(B ≥ ‘gap’

)
(29)

is at least 1 − p with the p of Corollary 11.
Assume that our initial model included the columns z0, . . . , zι. In the course of the column

generation scheme, we select further columns according to Corollary 11, with gradient esti-
mates generated independently. Let the parameters σ and β be fixed for the whole scheme,
e.g., set β = 0.5. On the other hand, we keep increasing the reliability of the individual steps
during the process, i.e., let p = pκ (κ = ι + 1, ι + 2, . . .) decrease with κ .

Example 13 Given the number ι of the initial columns, let pκ = (κ − ι + 9)−2 (κ =
ι + 1, ι + 2, . . .). Then we have

∏∞
κ=ι+1 (1− pκ ) = 0.9. (This is easily proven. We learned

it from Szász 1951, Volume II., Chapter X., Section 642).

To achieve reliability 1− pκ set in Example 13, we need to make O(log κ) steps with the
stochastic descent method when selecting the column zκ .

We terminate the column generation process when B of (28) gets below the prescribed
accuracy. With the setting of Example 13, the terminal bound is correct with a probability at
least 0.9, regardless of the number of new columns generated over the course of the procedure.
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3.2 On stochastic gradient methods

The aim of this section is to place Theorem 10 and the column generation scheme into
the broader context of stochastic gradient methods. The idea of stochastic approximation
goes back to Robbins and Monro (1951). Important contributions include Ermoliev (1969),
Gaivoronski (1978), Nemirovski and Yudin (1978, 1983), Nesterov (1983, 2009), Ermoliev
(1983), Ruszczyński and Syski (1986), Uryasev (1988), Pflug (1988, 1996), Polyak (1990),
Polyak and Juditsky (1992), Benveniste et al. (1993), Nemirovski et al. (2009), Lan (2012).
The approach is attractive from a theoretical point of view, but early forms might perform
poorly in practice. Recent forms combine theoretical depth with practical effectiveness.

We consider the problem

min f (x) subject to x ∈ X , (30)

where X ⊂ IRn is a convex compact set, and f : IRn → IR is a convex differentiable
function. Our original problem (1) is easily transformed to this form.

Stochastic gradient methods are iterative, and a starting point x1 ∈ X is needed. Let xk ∈
X denote the kth iterate, and let Gk be a random estimate of the corresponding gradient gk =
∇ f (zk). Gradient estimates for different iterates are assumed to be based on independent,
identically distributed samples. The next iterate is computed as

xk+1 = ΠX (xk − hkGk) , (31)

where hk > 0 is an appropriate step length, and ΠX denotes projection onto the feasible
domain, i.e., ΠX (x) = argminx′∈X ‖x − x′‖.

Methods differ in the construction of gradient estimates and in the determination of step
lengths. Establishing an appropriate stopping rule is also a critical issue.Many of themethods
apply averaging (like the example method sketched below), and some employ the dual space
also.

As a recent example of the stochastic gradient approach, we sketch the robust stochastic
approximationmethod ofNemirovski andYudin. It is assumed that, given x ∈ X , realizations
of a random vector G can be constructed such that E(G) = ∇ f (x), and E(‖G‖2) ≤ M2

holds with a constant M independent of x.
Nemirovski andYudin prove different convergence results; from our present point of view,

the most relevant one is the following. Suppose that we wish to perform N steps with the
above procedure, and set step length to be constant:

hk = diag(X)

M
√
N

, (32)

where diag(X) is the longest (Euclidean) distance occurring in X . Then we have

E
(
f (xN )

)
− F ≤ M · diag(X)√

N
, (33)

where F denotes the minimum of (30), and

xN =
N∑
j=1

λN
j x j with λN

j = h j∑N
j=1 h j

. (34)

Our presentAssumption 1 ismuch stronger thanmere differentiability, hence the convergence
estimate of Theorem 10 is naturally stronger than (33).
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We proved Theorem 10 for unconstrained minimization (over IRn). In our approach, the
constraint Ax ≤ b in the convex problem (1) was taken into account through a column gener-
ation scheme. Comparing the column generation scheme with the above stochastic gradient
approach, a solution of the linear programmingmodel problem (10) is analogous to the iterate
averaging (34) and the projection in (31). The analogy is not complete. Having solved the lin-
ear programming model problem, we perform an approximate line search instead of a simple
translation by −hkGk . Larger effort of an individual step in the column generation scheme
pays off when gradient estimation is taxing as compared to function value computation.

Having pondered a reviewer comment concerning further combinations of column gen-
eration and stochastic gradient schemes, we see a high potential in this approach. Different
combinations of the column generation and stochastic gradient schemes may be efficient for
functions with different characteristics.

4 Handling a difficult constraint

We work out an approximation scheme for the solution of the convex constrained problem
(2). This scheme consists of the solution of a sequence of problems of the form (1), with a
tightening stopping tolerance.

We consider the linear constraint set Ax ≤ b of problem (1). The last constraint of this
set is ar x ≤ br , where ar denotes the r th row of A, and br denotes the r th component of b.
Assume that this last constraint is a cost constraint, and let cT = ar denote the cost vector.
We consider a parametric form of the cost constraint, namely, cT x ≤ d , where d ∈ IR is a
parameter.

Let Ă denote the matrix obtained by omitting the r th row in A, and let b̆ denote the vector
obtained by omitting the r th component in b. Using these objects, we consider the problem

min φ(T x) subject to Ăx ≤ b̆, cT x ≤ d, (35)

with the parameter d ∈ IR. This parametric form of the unconstrained problem will be
denoted by (1: br = d).

Letχ(d) denote the optimal objective value of problem (35), as a function of the parameter
d . This is obviously a monotone decreasing convex function. Let I ⊂ IR denote the domain
over which the function is finite. We have either I = IR or I = [ d,+∞) with some
d ∈ IR. Using the notation of the unconstrained problem, we say that χ(d) is the optimum
of (1: br = d) for d ∈ I.

Coming to the constrained problem (2), we may assume π ∈ χ(I). Let d� ∈ I be a
solution of the equation χ(d) = π , and let l�(d) denote a linear support function to χ(d) at
d�. In this section we work under.

Assumption 14 The support function l�(d) has a significant negative slope, i.e., l�′ � 0.

From l�′ < 0, it follows that the optimal objective value of (2) is d�. (This slope will be
used in estimating the number of Newton steps required to reach a prescribed accuracy; see
Corollary 19, below. That is why we need it to be significantly negative.)

Remark 15 Assumption 14 is reasonable if the right-hand-side value π has been set by an
expert, on the basis of preliminary experimental information. (A near-zero slope l�′ means
that a slight relaxation of the probabilistic constraint allows a significant cost reduction.)

We find a near-optimal d̂ ∈ I using an approximate version of Newton’s method. The
idea of regulating tolerances in such a procedure occurs in the discussion of the Constrained
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Newton Method in Lemaréchal et al. (1995). Based on the convergence proof of the Con-
strained NewtonMethod, a simple convergence proof of Newton’s method was reconstructed
in Fábián et al. (2015). We adapt the latter to the present case.

First, we describe a deterministic approximation scheme. A randomized version is worked
out in Sect. 4.2.

4.1 A deterministic approximation scheme

Let Assumptions 1 and 2 hold. A sequence of unconstrained problems (1: br = d�) (� =
1, 2, . . .) is solved with increasing accuracy. Over the course of this procedure, we build a
single model φk(z) of the nonlinear objective φ(z), i.e., k is ever increasing. Columns added
during the solution of (1: br = d�) are retained in the model and reused in the course of the
solution of (1: br = d�+1).

Given the �th iterate d� ∈ I, we need to estimate χ(d�)with a prescribed accuracy. This is
done by performing a column generation scheme with the master problem (10: br = d�). Let
B� denote an upper bound on the gap between the respective optima of the model problem
(10: br = d�) and the convex problem (1: br = d�). Such a bound is constructed according
to the expression (18).

Let moreover χ� denote the optimum of the model problem. With these objects we have

χ� ≥ χ(d�) ≥ χ� − B�. (36)

The column generation process with the master problem (10: br = d�) is terminated if χ�

and B� satisfy a stopping condition, to be discussed below.
Let d0, d1 ∈ I, d0 < d1 < d� be the starting iterates. The sequence of the iterates will

be strictly monotone increasing, and converging to d� from below.

4.1.1 Near-optimality condition for the constrained problem

Given a tolerance ε (π � ε > 0), let d̂ ∈ I be such that

d̂ ≤ d� and χ(d̂ ) ≤ π + ε. (37)

Let x̂ be an optimal solution of (35: d = d̂ ). Then x̂ is an ε-feasible solution of (2) with
objective value d̂ . Exact feasible solutions of (2) have objective values not less than d� ≥ d̂.

4.1.2 Stopping condition for the unconstrained subproblem

Let δ (0 < δ � 1
2 ) denote a fixed tolerance. (We can set e.g., δ = 0.25 for the whole

process).
Given iterate d� ∈ I, d� ≤ d�, we perform a column generation scheme with the master

problem (10: br = d�). The process is terminated if either

(i) χ� − π ≤ ε, or

(i i) B� ≤ δ (χ� − π)

(38)

holds. Taking into account (36), we conclude:
If (i) occurs then d̂ := d� satisfies the near-optimality condition (37), and the Newton-like

procedure stops.
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Fig. 1 The graph of the function
χ(d), and the construction of the
next iterate

If (ii) occurs then χ� satisfies

χ� ≥ χ(d�) ≥ χ� − δ (χ� − π). (39)

A new iterate will be constructed in the latter case.

4.1.3 Finding successive iterates

Given � ≥ 1, assume that we have bounded χ(d�−1) and χ(d�), as in (39). The graph of the
function χ(d) is shown in Fig. 1. Thick segments of the vertical lines d = d�−1 and d = d�

indicate confidence intervals for the function values χ(d�−1) and χ(d�), respectively. Let
l� : IR → IR be the linear function determined by the upper endpoint of the former interval,
and the lower endpoint of the latter one. Formally,

l�(d�−1) := χ�−1 ≥ χ(d�−1) and l�(d�) := χ� − δ (χ� − π) ≤ χ(d�), (40)

where the inequalities follow from (39).
Due to the convexity of χ(d) and to Assumption 14, the linear function l�(d) obviously

has a negative slope l ′� ≤ l�′ � 0. Moreover l�(d) ≤ χ(d) holds for d� ≤ d .
The next iterate d�+1 will be the point satisfying l�(d�+1) = π . Of course d� < d�+1 ≤ d�

follows from the observations above.

Remark 16 In a Newton-like scheme, the selection of the starting iterates strongly affects
efficiency. Let us first consider the selection of d1. An expert familiar with the model may
easily set a budget slightly overtight. In the absence of such expert, we can resort to heuristics,
evaluating χ(d) in a set of test points.

Once d1 has been set, we can consider d0. A good choice for d0 is one that results in a
large d2. We have to take into account the accuracy of our evaluation of χ(d1) on the one
hand, and the slope of χ(d) on the other hand. A possible way of organizing the selection
process is the following. First, we evaluate χ(d1) by solving the problem (35: d = d1). In
the course of the solution, we build a model of the objective function. This model can then
be used to estimate the slope of χ(d).
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4.1.4 Convergence

Let the iterates d0, d1, . . . , ds and the linear functions l1(d), . . . , ls(d) be as defined above.
We assume that s > 1, and the procedure did not stop before step (s + 1). Then we have

χ� − π > ε ( j = 0, 1, . . . , s). (41)

To simplify the notation, we introduce the linear functions L�(d) := l�(d) − π ( j =
1, . . . , s). With these, (40) transforms into

L�(d�−1) = χ�−1 − π and L�(d�) = (1 − δ)(χ� − π) ( j = 1, . . . , s). (42)

Positivity of the above function values follows from (41). Moreover, the derivatives satisfy

L ′
� = l ′� ≤ l�′ � 0 ( j = 1, . . . , s) (43)

due to the observations in the previous section.

Theorem 17 We have

γ s−1 · |L ′
1|

|l�′| · L1(d1) ≥ Ls(ds) with γ :=
(

1

2(1 − δ)

)2

. (44)

Proof The following statements hold for j = 1, . . . , s − 1. From (42), we get

L�+1(d�)

L�(d�)
= χ� − π

(1 − δ)(χ� − π)
= 1

1 − δ
. (45)

By definition, we have

L�(d�) + (d�+1 − d�) L
′
� = L�(d�+1) = 0.

It follows that d�+1 − d� = L�(d�)

|L ′
�| . Using this, we get

L�+1(d�) = L�+1(d�+1) + (d� − d�+1) L
′
�+1 = L�+1(d�+1) + L�(d�)

|L ′
�|

|L ′
�+1|.

Hence

L�+1(d�)

L�(d�)
= L�+1(d�+1)

L�(d�)
+ |L ′

�+1|
|L ′

�|
. (46)

From (45), we have

1

1 − δ
= L�+1(d�+1)

L�(d�)
+ |L ′

�+1|
|L ′

�|
≥ 2

√
L�+1(d�+1) |L ′

�+1|
L�(d�) |L ′

�|
.

(This is the well-known inequality between means.) It follows that
(

1

2(1 − δ)

)2

L�(d�) |L ′
�| ≥ L�+1(d�+1) |L ′

�+1|. (47)

By induction, we get
(

1

2(1 − δ)

)2(s−1)

L1(d1) |L ′
1| ≥ Ls(ds) |L ′

s |. (48)

Applying |L ′
s | ≥ |l�′| we obtain (44). 
�
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Example 18 Let δ = 0.25, then γ = ( 1
2(1−δ)

)2 < 0.5.

Corollary 19 With the setting of Example 18, the number of Newton-like steps needed to reach
the stopping tolerance ε does not exceed

N (ε) = log

( |L ′
1|

|l�′| · L1(d1)

ε

)
. (49)

Note that |l�′| � 0 due to Assumption 14.
Given a problem, let us consider the efforts of its approximate solution as a function of

the prescribed accuracy ε. According to (49), that is on the order of log 1
ε
.

4.2 A randomized version of the approximation scheme

Let Assumptions 1 and 3 hold.
Concerning the function χ(d), let Assumption 14 hold. Our aim, in principle, is the same

as it has been in the deterministic case: find d̂ ∈ I such that π + ε ≥ χ(d̂) ≥ π holds with a
pre-set tolerance ε. In the present uncertain environment, however, we may have to content
ourselves with d̂ such that π +ε ≥ χ(d̂) > π −ε holds. This problem statement is justifiable
if the function χ(d) is not constant for d > d�. Let Assumption 20, below, hold.

Assumption 20 For our stopping tolerance ε, there exists (an unknown) d�
ε ∈ I such that

χ(d�
ε ) = π − ε.

Let q (0.5 � q < 1) denote a pre-set reliability. Using the randomized column generation
scheme, a sequence of unconstrained problems (1: br = d�) (� = 1, 2, . . .) is solved,
each with reliability q , and with an accuracy determined by the Newton-like approximation
scheme. As in the deterministic case, we build a single model φk(z) of the nonlinear objective
φ(z), i.e., k is ever increasing. Let k�−1 denote the number of columns at the outset of the
solution of problem (1: br = d�).

Given the �th iterate d� ∈ I, we estimateχ(d�) by performing a columngeneration scheme
with the master problem (10: br = d�). Applying the procedure of Sect. 3.1, we obtain an
estimate B� for the gap between the respective optima of the model problem (10: br = d�)
and the convex problem (1: br = d�). Keeping to the setting of Example 13, we set the
reliability parameter to q = 0.9, obtaining P(B� ≥ ‘gap’ ) ≥ 0.9. (Note that the columns
with indices up to k�−1 belong to the initial model, hence in terms of Sect. 3.1, we have
ι = k�−1.)

Let moreover χ� denote the optimum of the model problem. With these objects we have

χ� ≥ χ(d�) and P
(
χ(d�) ≥ χ� − B�

) ≥ 0.9. (50)

We proceed in accordance with the deterministic scheme. The present stochastic scheme
actually coincides with the deterministic one, provided the gap is estimated correctly in the
unconstrained problem. In the stochastic scheme, however, we may underestimate the gap,
meaning that B� is not an upper bound. Consequently the inequality χ(d�) ≥ χ� − B� may
not hold in (50). In such a case, d�+1 > d� and hence χ�+1 < π may occur. If the latter
is observed, then we step back to the previous iterate, i.e., set d�+2 = d�. We then carry on
with the Newton-like procedure; first resolving the model problem (10: br = d�+2) with
reliability q = 0.9.
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4.2.1 Stopping condition for the unconstrained subproblem

In accordance with the above discussion, we now formulate the stopping condition of the
column generation process at the Newton-like step �. Solution with the master problem
(10: br = d�) is terminated if χ� and B� satisfy one of the following conditions:

(α) χ� < π,

(β) π ≤ χ� < π + ε and B� ≤ ε,

(γ ) π + ε ≤ χ� and B� ≤ δ (χ� − π).

(51)

If condition (α) occurs, then we step back to the previous iterate d�−1.
If condition (β) occurs, then we stop the Newton-like process.
If condition (γ ) occurs, then we carry on to a new iterate d�+1 > d�, like we did in the

deterministic scheme.

4.2.2 Convergence and reliability

Let the unconstrained subproblems each be solved with a reliability of q = 0.9, and let δ, γ
be set according to Example 18. Moreover, let us assume that the randomized Newton-like
scheme did not stop in L steps. The aim of this section is to show that, provided L is large
enough, an ε-optimal solution of the constrained problem has been reached with a high
probability.

According to our assumption, case (β) did not occur in the stopping condition of the
previous section. Let us define ‘correct’ and ‘incorrect’ steps, depending on the starting point
d�:

– In case d� ≤ d�: We call step � correct if d�+1 ≤ d� and 0.5 · L�(d�) |L ′
�| ≥

L�+1(d�+1) |L ′
�+1| also holds, otherwise we call step � incorrect.

– In case d� > d�:
We call step � correct if a backstep occurs (i.e., if d�+1 = d�−1), otherwise we call it
incorrect.

A step is correctwith a probability at least q = 0.9; this follows from the proof of Theorem17,
namely the expression (47).

If the difference between the number of the correct steps and the number of the incorrect
steps exceeds N (ε), then an ε-optimal solution of the constrained problem has been reached,
according to Corollary 19.

Let Z� be the random variable

Z� =
⎧⎨
⎩
0 if step � is correct,

1 if step � is incorrect
(� = 1, . . . , L).

As a step is correct with a probability at least q = 0.9, we have E(Z�) ≤ 0.1, and hence
E(
∑L

�=1 Z�) ≤ 0.1L .
The difference between the number of the correct steps and the number of the incorrect

steps is L − 2
∑L

�=1 Z�. In order to show that the difference likely exceeds N (ε), we need
an upper bound on the probability that

∑L
�=1 Z� is significantly larger than E(

∑L
�=1 Z�).

Though all the gradient estimates were generated independently, there may be some inter-
dependence among the random variables Z1, . . . , ZL , because of the time structure of the
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process. But this interdependence is weak in the following sense. Suppose that we are at
the beginning of the process. Given 0 < k ≤ L , we know that step k will be correct with a
probability at least 0.9, no matter what happens in steps 1, . . . , k − 1. In particular,

P
[
Zk = 1

∣∣ Z� = 1 (� ∈ Ik)
] ≤ 0.1 holds for every Ik ⊆ {1, . . . , k − 1}. (52)

The condition in the above probability represents the event that Z� = 1 occurs for every
� ∈ Ik . In case k = 1, the condition is empty, and (52) reduces to P(Z1 = 1) ≤ 0.1.

Generalized Chernoff–Hoeffding bounds were proposed by Panconesi and Srinivasan
(1997). Intuitive proofs of such bounds, based on a simple combinatorial argument, were
given by Impagliazzo and Kabanets (2010). (In this latter paper, concentration bounds are
also explained in terms of successes of random experiments, just our present situation.) We
are going to use a Chernoff-type bound, Theorem 1.1 in Impagliazzo and Kabanets (2010):

Theorem 21 Let Z1, . . . , Zn be Boolean random variables such that, for some p ∈ [0, 1],
P [ Z� = 1 (� ∈ A) ] ≤ p|A| holds for every A ⊆ {1, . . . , n}, (53)

where |A| denotes the cardinality of A.
Then, for any κ ∈ [p, 1], we have

P

[
n∑

�=1

Z� ≥ κn

]
≤ e−nD(κ||p), (54)

where D(·||·) is the relative entropy function, satisfying D(κ||p) ≥ 2(κ − p)2.

It is easy to see that our objects satisfy the precondition (53) with p = 0.1. Indeed, it follows
from the repeated application of (52). A formal proof may apply induction on n. For n = 1,
we have P(Z1 = 1) ≤ 0.1. Now let us assume that (53) holds for 1 ≤ n < k. The statement
for n = k follows from (52), by setting Ik = A ∩ {1, . . . , k − 1}.

As the precondition of Theorem21 holds, we have (54)with n = L, p = 0.1 and κ = 1/3.
Simple computation shows that, for L ≥ 22,

P

[
L∑

�=1

Z� <
1

3
L

]
≥ 0.9. (55)

As we have seen, the difference between the number of the correct steps and the number
of the incorrect steps is L − 2

∑L
�=1 Z� which exceeds L/3 if

∑L
�=1 Z� < 1/3L in (55)

holds. We sum up the discussion in

Proposition 22 Let the unconstrained problems each be solved with a reliability of q = 0.9;
let δ, γ be set according to Example 18; and let L = max{ 22, 3N (ε) } with N (ε) defined in
Corollary 19.

Assume that the randomizedNewton-like scheme did not stop in L steps. Then an ε-optimal
solution of the constrained problem has been reached with a probability at least 0.9.

Remark 23 If case (β) occurred in the stopping condition of the previous section, then further
checks are needed to ensure reliability.

Remark 24 The stopping toleranceprescribed for the unconstrained subproblems is ever tight-
ened in accordance with the progress of the Newton-like approximation scheme. However,
the prescribed tolerance is never tighter than δ · ε = 0.25ε.
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5 Adapting the approach to probabilistic problems

In this section we consider φ(z) = − log F(z)with a nondegenerate n-dimensional standard
normal distribution function F(z).Assumption1does not holdwith such a function.However,
as illustrated in Fábián et al. (2018), Assumption 1 holds over any bounded ball around the
origin. (The ratio α

ω
decreases as the radius of the ball increases.) Moreover, a construction

was sketched in Fábián et al. (2018) that limits the column generation process to a ball of
sufficiently large radius. That construction does not yield usable estimates for the values α

and ω.
When applied to probabilistic problems, we look on Corollaries 6 and 11 merely as a

means of justification of the efficiency of the procedure. The gap between the respective
optima of the model problem and the original probabilistic problem is measured by different
means, to be described presently. In this setting we may perform just a single line search in
each column generation problem.

In order to apply the procedures described in the previous sections, we need Assumption 3
to hold, with the relaxation that function values φ(z) are computed with a high accuracy
(instead of exactly). In the present case of a probabilistic φ(z), high-precision computation
of log F(z) is impractical in points z with a low F(z). Hence we need a technical assumption
that helps keeping the process in a region where high-precision computation of φ(z) is
possible.

Assumption 25 Asignificantly high probability can be achieved. Specifically, a feasible point
ž is known such that F( ž) ≥ 0.5.

By including ž ofAssumption 25 among the initial columns of themaster problem,we always
have F(z) ≥ 0.5 with the current solution z defined in (12). Hence φ(z) can be computed
with a high accuracy.

We perform a single line search in each column generation subproblem, starting always
from the current z. It means that a high-quality estimate can be generated for the gradi-
ent, which designates the direction of the line search. Once the direction of the search is
determined, we only work with function values (there is no need for any further gradient
information in the current column generation subproblem). The line search is performed
with a high accuracy over the region L(F, 0.5) = { z | F(z) ≥ 0.5 } which includes the
optimal solution of the probability maximization problem (3).

We can carry on with the line search even if we have left the safe region L(F, 0.5).
Given a point ẑ along the search ray, let p̂ > 0 be such that p̂ ≤ F( ẑ) holds almost surely.
(Simulation procedures generally provide a confidence interval together with an estimate.)
If the vector ẑ is to be included in the master problem (10) as a new column, then we set
the corresponding cost coefficient as φ = − log p̂. Under such an arrangement, our model
remains consistent, i.e., the model function φk(z) is almost surely an inner approximation of
the probabilistic function φ(z).

5.1 A bounded formulation

Exploiting monotonicity of the function φ(z) = − log F(z), the unconstrained problem with
variable splitting is formulated with inequality between z and T x:

min φ(z) subject to Ax − b ≤ 0, z − T x ≤ 0. (56)

A further speciality of the normal distribution function is the existence of a bounded box
Z outside which the probability weight can be ignored. Including the constraint z ∈ Z in
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(56) results in a closely approximating problem:

min φ(z) subject to Ax − b ≤ 0, z − T x ≤ 0, z ∈ Z. (57)

Observation 26 The difference between the respective optima of problems (56) and (57) is
insignificant.

Proof Let z be a part of a feasible solution of (56), and let us consider the box (z +N ) ∩Z,
where N denotes the negative orthant. In case this box is empty, we have F(z) ≈ 0 due to
the specification of Z. Taking into account Assumption 25, such z cannot be a part of an
optimal solution of (56).

In case the box (z + N ) ∩ Z is not empty, let Πz denote its ’most positive’ vertex. We
have Πz ∈ Z, Πz ≤ z, and F(Πz) ≈ F(z). If F(z) < 0.5, then, due to Assumption 25
again, z cannot be a partial optimal solution of (56).

In the remaining case of F(Πz) ≈ F(z) ≥ 0.5, we have φ(Πz) ≈ φ(z). Moreover Πz is
a partial feasible solution of (57), due to Πz ∈ Z, Πz ≤ z. 
�

Remark 27 We could build duals and models of the above forms in the manner of Sect. 2.
Observation 26 allows us to restrict z to Z in the dual formulation (4). Formally, this would
mean working with the restricted functions

φZ (z) =
⎧⎨
⎩

φ(z) if z ∈ Z,

+∞ otherwise
and φ�

Z (u) = max
z∈Z {uT z − φ(z)} (58)

instead of φ(z) and φ�(u), respectively.
In a pure form of this bounded scheme, new columnswould always be selected fromZ. An

obvious drawback of such a scheme is that Theorem 5 does not apply to the resulting bounded
optimization problem. In Sect. 5.2 we develop a hybrid scheme, including a restriction to Z
in the master problem, but selecting new columns by unconstrained maximization.

5.2 A hybrid form of the column generation scheme

Introducing new variables z′ ∈ IRn , we transform (57) to

min φ(z) subject to Ax − b ≤ 0, z′ − T x ≤ 0, z′ ∈ Z, z = z′. (59)

The above problem has the general pattern of (3), hence the dual problem can be formulated
in the manner of Sect. 2, relaxing the equality constraint z = z′. Model problems are then
formulated according to Sects. 2.1 and 2.2. Hence the columns zi (i = 0, . . . , k) may, in
theory, fall outside Z, but their convex combination is restricted to Z.

We implemented this procedure. In our experiments reported in Sect. 7, the restriction
z′ ∈ Z was never active in any optimal solution of the master problem.

Let z ∈ Z denote the current primal iterate, obtained in the form (12) using an optimal
solution of the model problem. Let g = ∇φ(z) be the corresponding gradient. Let moreover
( ϑ, u ) be part of an optimal dual solution of the current model problem. Finally, letR denote
the gap between the respective optima of the model problem and the original probabilistic
problem.
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Observation 28 With the above objects, we have:

R ≤
(
φk(z) − φ(z)

)
+ max

z∈Z (u − g)T (z − z). (60)

Proof An adaptation of Observation 7 to the present bounded setting is

R = max
z∈Z

{
ϑ + uT z − φ(z)

}
.

Applying φ(z) ≥ φ(z) − gT (z − z) we get

R ≤ ϑ − φ(z) + gT z + max
z∈Z (u − g)T z = φk(z) −

(
ϑ + uT z

)
+ ϑ − φ(z) + gT z

+max
z∈Z (u − g)T z.

The above equality is a consequence of Observation 4 (a). 
�

The exact gradient g is of course not known, but we can construct a gradient estimate
together with a confidence interval, as will be described in Sect. 6.5. Given an error tolerance
Δ > 0, a probability p (0 < p � 1) and the iterate z ∈ Z, we obtain a gradient estimate
G together with a confidence interval I. (The former is a random vector, the latter is an
n-dimensional interval having random dimensions. The interval has the vector as a center.)
The random objects satisfy the following rules:

E(G) = g, P
(
g ∈ I ) ≥ 1 − p and diag

(I) ≤ Δ, (61)

where diag denotes the largest distance in the interval.
The following observation shows that we can use G to estimate the maximum on the

right-hand side of (60).

Observation 29 The objects of (61) admit the following estimate:

max
z∈Z (u − g)T (z − z) ≤ max

z∈Z (u − G)T (z − z) + Δ · diag(Z)

holds with a probability at least 1 − p. (62)

Proof Based on the confidence interval, a pessimist estimate of the left-hand side of (62)
could be obtained by solving the (nonconvex) quadratic programming problem

max (u − g)T (z − z) such that z ∈ Z, g ∈ I. (63)

Insteadof the quadratic programmingproblem,we just solve the linear programmingproblem

max (u − G)T (z − z) such that z ∈ Z. (64)

Let
(
z̀, g̀

)
denote an optimal solution of (63), and let ẑ denote an optimal solution of (64).

The difference between the respective optima is

(u − g̀)T ( z̀ − z) − (u − G)T (̂z − z) ≤ (u − g̀)T ( z̀ − z) − (u − G)T ( z̀ − z)

= (G − g̀)T ( z̀ − z), (65)

the inequality being a consequence of the selection of ẑ. The estimate (62) follows by the
Cauchy–Bunyakovsky–Schwarz inequality. 
�
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To sum up the above discussion: based on a gradient estimate G satisfying (61), it is easy
to compute

B :=
(
φk(z) − φ(z)

)
+ max

z∈Z (u − G)T (z − z) + Δ · diag(Z). (66)

According to Observations 28 and 29, we have P(B ≥ ‘gap’ ) ≥ 1 − p.

5.3 Regulating accuracy and reliability when solving an unconstrained probabilistic
problem

Given iterate z, we wish to construct an estimate G for the corresponding gradient. We have
two objectives.

– We need Corollary 11 to ensure efficiency of a descent step in the course of column
selection. Hence (20) should hold with an appropriate σ between the vectors g◦ = g−u
and G◦ = G − u. Specifically,

E
(∥∥G − g

∥∥2) ≤ σ 2 ‖g − u‖2 (67)

should hold.
– We need (61) to hold with appropriate parameters Δ and p to ensure that the bound B is

tight and reliable. We slightly re-formulate the definition of B in (66) as follows:
(
φk(z) − φ(z)

)
+ max

z∈Z

(
(u − g) + (g − G)

)T
(z − z) + Δ · diag(Z). (68)

Concerning p, we increase reliability with each master iteration, as we did in the general
case of Sect. 3.1. Having added κ columns, we prescribe the reliability 1 − pκ , with pκ set
according to Example 13.

In setting the parameters σ and Δ, we aim to find a balance between the error of the
polyhedral model function on the one hand, and the error of the gradient estimation on
the other hand. According to Observation 4 (c), u ∈ ∂φk(z) holds. Taking into account
g = ∇φ(z), the vector u− g in (67) and (68) represents the gradient error of the polyhedral
model function φk(z). Similarly, φk(z) − φ(z) in (68) represents the error in function value.
On the other hand, the vector G − g in (67) and (68) represents the error of the gradient
estimate G.

A balance between those two types of error is found by a two-stage procedure. We begin
with estimating the order of the magnitude of ‖u − g‖, and then refine the estimation as
needed.

6 Estimation of themultivariate normal probability distribution
function values and gradients

If a multivariate probability distribution function is differentiable everywhere then its partial
derivatives have the general formula

∂F(z1, . . . , zn)

∂zi
= F(z1, . . . , zi−1, zi+1, . . . , zn | zi ) fi (zi ) (69)

where F(z1, . . . , zn) is the probability distribution function of the random variables
ξ1, . . . , ξn , and fi (z) is the probability density function of the random variable ξi . F(z1, . . . ,
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zi−1, zi+1, . . . , zn | zi ) is the conditional probability distribution function of the random vari-
ables ξ1, . . . , ξi−1, ξi+1, . . . , ξn , given that ξi = zi . See Formula (6.6.22) on page 203 of the
book by Prékopa (1995).

It is known that any conditional probability distribution of the multivariate normal proba-
bility distribution is also normal. Therefore fromFormula (69) it follows that we can calculate
the multivariate normal probability distribution function values and their partial derivatives
by the same procedure. This is the reason why in this section we give a list of possible
procedures for the estimation of multivariate probability distribution function values only.

6.1 Genz’s method

Thismethodwas published inGenz (1992). In this paperGenzwas dealingwith the estimation
of themultivariate normal probability content of a rectangle, which is amore general problem
than the calculation of multivariate probability distribution function values.

The main idea is to transform the integration region to the unit cube [0, 1]n by a sequence
of elementary transformations. This comes at the expense of a slightly more complicated
integrand.

The sequence begins with the Cholesky transformation which transforms the components
of the multivariate normally distributed random vector into independent random variables,
however the integration limits become more complicated. Then the integration variables
are transformed further by the inverse function of the one dimensional standard normal
probability distribution function. The effect of this transformation is that all integrands will
be equal one but the integration limits become even more complicated. Finally, by a simple
linear transformation, the integration region changes to the unit cube [0, 1]n and the integrand
functions will be the differences of the earlier complicated integration limits.

We remark that the i-th integrand function is always independent of the i-th integrand vari-
able and can be pulled out of one integral which allows explicit integration of the innermost
integral. This way the numerical integration may be carried out on the unit cube [0, 1]n−1.

This sequence of transformations has also forced a priority ordering on the components
of x which makes the problem amenable to the application of subregion adaptive algorithms.
The method works best if the components are presorted so that the innermost integration has
the most “weight”.

Genz describes three different methods for solving this transformed integral. The first
method is based on a polynomial approximation of the integrand. For better performance,
the unit cube is split into subregions which are subsequently partitioned further whenever
the approximation is not accurate enough. The second method uses quasi-random integration
points. Finally, the third method uses pseudo-random integration points, which results in
error estimates that are statistical in nature.

6.2 Deák’s method

This method was first published in Deák (1980) and later in Deák (1986). Its main thrust
is to decompose the normal random vector into two parts, a direction and a distance from
the origin. This decomposition can be used both in the generation of sample points and in
the calculation of the probability content of a rectangle. It is well known that the direction
is uniformly distributed on the n-dimensional unit sphere, the distance from the origin has a
chi-distribution with n degrees of freedom and they are independent of each other.
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A simple Monte Carlo method is to generate N sample points uniformly distributed on
the n-dimensional unit sphere, determine the probability content of the intersection of the
rectangle in issue with the generated directions and finally average them. The determination
of the probability content of the intersection can be done simply by applying a code to
calculate the probability distribution function of the chi-distribution. The advantage of this
method is that it counts the probability content of the rectangle not in a ’point to point’ way,
rather in a ’line section to line section’ way.

In addition it is easy to apply some type of antithetic random variables technique to
reduce the variance further. Deák devised an improvement over this scheme that is intended
to distribute a large number of directions as uniformly as possible on the unit sphere.

A set of n directions is chosen first and converted into an orthonormal system, that is, n
unit vectors which are mutually orthogonal. From each orthonormal system {s1, . . . , sn} one
obtains 2k

(n
k

)
directions by computing the sum

d(v, l1, . . . , lk) = 1√
k

k∑
j=1

v j sl j ,

where v = (v1, . . . , vk) is a sign vector (each component is either +1 or −1, and 1 ≤ l1 <

· · · < lk ≤ n.
The estimator can then be calculated jointly for the set of 2k

(n
k

)
directions resulting in

faster calculation and further variance reduction. The parameter k can in principle be chosen
arbitrarily from the set {1, 2, . . . , n}, but the computational complexity increases very fast.
Best results are obtained for k = 2 or k = 3.

It is easy to see that the variance of even the simplest Deák estimator is less than the
variance of the crude Monte Carlo method, for a given sample size N .

We remark here that the recent paper Teng et al. (2015) on spherical Monte Carlo simu-
lations for multivariate normal probabilities provides various related simulation schemes.

6.3 Szántai’s method

The procedure was first published in Hungarian, see Szántai (1976) and Szántai (1985). In
English it was first published in Szántai (1988) and it is quoted in Sects. 6.5 and 6.6 of the
book Prékopa (1995).

This procedure can be applied to any multivariate probability distribution function. The
only condition is that we have to be able to calculate the one- and the two-dimensional
marginal probability distribution function values.Accuracy can easily be controlled by chang-
ing the sample size. This way we can construct gradient estimates satisfying Assumption 3.
As we have

F(z1, . . . , zn) = P (ξ1 < z1, . . . , ξn < zn) = 1 − P(A1 ∪ · · · ∪ An),

where

Ai = {ξi ≥ zi } (i = 1, . . . , n),

we can apply bounding and simulation results for the probability of union of events.
If μ denotes the number of those events which occur out of the events A1, A2, . . . , An ,

then the random variable

ν0 =
{
0, if μ = 0
1, if μ ≥ 1

obviously has expected value P = P(A1 ∪ A2 ∪ · · · ∪ An).
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Further two random variables having expected value P can be defined by taking the
differences between the true probability value and its second order lower and upper Boole–
Bonferroni bounds. The definitions of these bounds can be found in the book Prékopa (1995).

We can estimate the expected value of these three random variables in the same Monte
Carlo simulation procedure and so we get three different estimates for the probability value
P . If we estimate the pairwise covariances of these estimates it will be easy to get a final,
minimal variance estimate, too. This technique is well known as regression in the simulation
literature.

Gassmann (1988) combined Szántai’s general algorithm and Deák’s algorithm into a
hybrid algorithm. The efficiency of this algorithm was explored in Deák et al. (2002).

One can use higher than second order Boole–Bonferroni bounds, too. It will further reduce
the variance of the final estimation. However, the necessary CPU time increases, which may
reduce the overall efficiency of the resulting estimation.Many new bounds for the probability
of the union of events have been developed in the last two decades. These bounds use not only
the aggregated information of the first few binomial moments but they also use the individual
product event probabilities which sum up the binomial moments. The most important results
of this type can be found in the papers by Hunter (1976), Worsley (1982), Tomescu (1986),
Prékopa et al. (1995), Bukszár and Prékopa (2000), Bukszár and Szántai (1999), Boros and
Veneziani (2002) and Mádi-Nagy and Prékopa (2004). Szántai showed in his paper Szántai
(2000), that the efficiency of his variance reduction technique can be improved significantly
if one uses some of the above listed bounds.

6.4 Themethod of Ambartzumian, Der Kiureghian, Ohanian and Sukiasian

Ambartzumian et al. (1998) proposed to use the Sequential Conditioned Importance Sam-
pling (SCIS) algorithm for the estimation of the cumulative distribution function values of a
multivariate normal distribution. This is a variance reduction algorithm which is especially
effective in the case of estimating extremely small probability values. This algorithm is based
on the Sequential Conditioned Sampling (SCS) technique which is the following.

If the random vector ξ = (ξ1, . . . , ξn)
T is normally distributed with mean vector μ =

(μ1, . . . , μn)
T and positive definite covariance matrix C with elements ci j , i, j = 1, . . . , n,

then its probability density function is given by

f (x1, . . . , xn) = 1

(2 π)
n
2 | C | 12

exp

[
−1

2
(x − μ)T C−1 (x − μ)

]

= 1

(2 π)
n
2 | D |− 1

2

exp

⎡
⎣−1

2

n∑
i=1

n∑
j=1

di j (xi − μi )
(
x j − μ j

)
⎤
⎦ ,

where di j are the elements of the inverse matrix D = C−1. The SCS technique consists
of generating first a random number according to the one dimensional marginal probability
distribution of the random variable ξ1 and then sequentially generating of random num-
bers according to the one dimensional probability density functions ϕk (xk | x1, . . . , xk−1)

which are the one dimensional conditional probability density functions of ξk for given
ξ1 = x1, . . . , ξk−1 = xk−1. It is known that these are one dimensional normal distributions
with mean

μk(x1, . . . , xk−1) = μk −
k−1∑
i=1

dki
xi − μi

dkk
,
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and variance

vk = 1

dkk
,

for k = 2, . . . , n.
It is known that the crude Monte Carlo method for estimating very small multivariate

normal probability distribution function values is less effective. However, Ambartzumian
et al. (1998) proved that in such cases the SCS technique can be easily extended into SCIS
by using an importance sampling density function (practically a truncated univariate normal
density function) at each step.

6.5 Application of the numerical integration and the variance reductionMonte
Carlo simulation algorithms in our procedures for probability maximization

In the course of the procedures proposed in this paper, we many times need to obtain a fixed
size confidence interval for our probability distribution function value estimations. This is
pronounced in Assumption 3; we need this for determining gradient estimates fulfilling the
inequality given in (20) and we do this when constructing the fixed size multidimensional
confidence interval described in (61). All this can be done by applying the results of Stein
(1945). This is a two-stage sampling procedure. In the first stage we take a sample of size n1
where n1 is a positive integer not smaller than 2, otherwise it is arbitrary. Then in a second
stage we take a sample of n2 elements where n2 is computed on the basis of the result of the
first stage sampling. This way the total sample of size n1+n2 results in a fixed size interval of
the required confidence level. For a summary, see Section 7.10 of the book Prékopa (1995).

We believe that the above described two stage sampling technique can be realized on
the variance reduction Monte Carlo simulation algorithms of Sects. 6.2, 6.3 and 6.4 more
easily than on the numerical integration algorithm of Sect. 6.1. Careful numerical testing is
necessary to choose the most appropriate procedure which may be different in the different
phases of our optimization procedure.

7 A computational experiment

The aim of this experiment is to demonstrate the workability of the randomized column
generation scheme of Sect. 3, in case of probabilistic problems. Namely, we have φ(z) =
− log F(z) with a nondegenerate n-dimensional standard normal distribution function F(z).

7.1 Cashmatching problem

Like in the previous paper (Fábián et al. 2018), we tested our implementation on a cash
matching problem, with a fifteen dimensional normal distribution. In this problem we are
interested in investing a certain amount of cash on behalf of a pension fund that needs to
make certain payments over the coming 15 years of time. This problem originates from
Dentcheva et al. (2004) and Henrion (2004). The cash matching test problem had originally
been formulated as cost minimization under a probabilistic constraint. We transformed the
problem to probability maximization under a cost constraint.
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Fig. 2 Probability levels obtained, as a function of iteration counts. Different runs are represented by different
threads

7.2 Implementation

We used MATLAB with the IBM ILOG CPLEX (Version 12.6.3) optimization toolbox and
the numerical computation of multivariate normal distribution values was performed with
the QSIMVNV Matlab function implemented by Genz (1992).

Our solver is based on the implementation used in our former paper Fábián et al. (2018).
In the present version we used the randomized procedure of Sect. 3. We implemented the
bounding method of Sect. 5, with the hybrid form of Sect. 5.2.

The initial solution was set by the procedure described in Fábián et al. (2018). The time
needed for setting the initial solution was negligible as compared to the time needed for a
single iteration with the column generation scheme.

In the course of the randomized column generation scheme, we perform just a single line
search in each columngeneration subproblem.This line search starts from the current z vector.
Gradients of the form ∇φ(z) − u need to be estimated, as mentioned in Remark 12. This
goes back to the estimation of the gradient ∇F(z) of the distribution function. A component
of ∇F(z) is, in turn, obtained according to (69).

Accuracy in Genz’s subroutine is controlled by setting the sample size. In the present
simple implementation of the iterative scheme, we control accuracy in such a way that the
norm of the error of the current gradient ∇φ(z) − u be less than one tenth of the norm of the
previous gradient ‖∇φ(z−) − u−‖.

7.3 Results and observations

Weperformed 10 runs of the randomized procedure, eachwith 50 iterations. The sequences of
the probability levels obtained, i.e., of the values F(z), are shown in Fig. 2. At each iteration,
the gradient ∇φ(z) − u is estimated by G − u. The norm of this estimate decreases as the
procedure progresses. For a single typical run, this decrease is shown in Fig. 3.

We applied no stopping condition besides iteration count. After 50 iterations, optimal
probability levels obtained in the different runs were already very near to each other (the
difference between highest and lowest being less than 0.0003.) On the other hand, the value
of the bound B of (66) was between 0.025 and 0.03 at the end of our runs. We conclude that,
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Fig. 3 Decrease of the gradient norm as a function of iteration counts, in a single run

though the bounding procedure is workable, it needs further technical improvements to keep
pace with the stochastic approximation scheme.

In accordance with the hybrid bounding form of Sect. 5.2, we did not restrict new columns
zi to the boxZ. Still, the probability levelwas high in all iterates, F(zi ) ≥ 0.9holdingwith the
columns added in the course of the column generation process. This allowed high-accuracy
computation of all probabilistic function values. As mentioned in Sect. 5.2, the restriction
z′ ∈ Z of (59) was never active in any optimal solution z′ = z of the master problem.

Density function values occurring in the computation of partial derivatives (69) have
always been significant. From the 15 density function values occurring in a single gradient
computation, two were always around the magnitude of 10−2, another one around 5 ∗ 10−3,
and the rest around 10−3. In other problems, near-zero density function values may occur
in (69) for many partial derivatives. For such components, the corresponding conditional
distribution function need not be computed.

Our present, very simple implementation took about 2 min to perform 50 iterations on the
cash-matching problem. Though it may seem long, we expect that technical improvements
will substantially shorten solution times. (According to our experience, technical improve-
ments may result in a speedup of one or two magnitudes.)

8 Conclusion and discussion

In this paper,weproposed a stochastic approximation procedure tominimize a functionwhose
gradient estimation is taxing. In course of the process, we build an inner approximatingmodel
of the objective function. To handle a difficult constraint function, we proposed aNewton-like
scheme, employing a parametric form of the stochastic minimization procedure. The scheme
enables the regulation of accuracy and reliability in a coordinated manner.

We adapted this approach to probabilistic problems. In comparison with the outer approx-
imation approach widely used in probabilistic programming, we mention that the latter
is difficult to implement due to noise in gradient computation. The outer approximation
approach applies a direct cutting-plane method. Even a fairly accurate gradient may result in
a cut cutting into the epigraph (especially in regions farther away from the current iterate).
One either needs sophisticated tolerance handling to avoid cutting into the epigraph—see,
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e.g., Szántai (1988), Mayer (1998), Arnold et al. (2014),—or else one needs a sophisti-
cated convex optimization method that can handle cuts cutting into the epigraph—see, e.g.,
de Oliveira et al. (2011), van Ackooij and Sagastizábal (2014). Yet another alternative is
perpetual adjustment of existing cuts to information revealed in the course of the process;
see Higle and Sen (1996).

Inner approximation of the level set L(F, p) = { z | F(z) ≥ p }, an approach initiated
by Prékopa (1990), results in a model that is easy to validate. The level set is approximated
by means of p-efficient points. In the cone generation approach initiated by Dentcheva et al.
(2000), new approximation points are found by minimization over L(F, p). As this entails
a substantial computational effort, the master part of the decomposition framework should
succeed with as few p-efficient points as possible. This calls for specialized solution methods
like those of Dentcheva et al. (2004), Dentcheva and Martinez (2013), van Ackooij et al.
(2017). An increasing level of complexity is noticeable.

In this paper we apply inner approximation of the epigraph of the probabilistic function
φ(z) = − log F(z). This approach endures noise in gradient computationwithout any special
effort. Noisy gradient estimates may yield iterates that do not improve much on our current
model. But we retain a true inner approximation of the function, provided function values
are evaluated with appropriate accuracy. This inherent stability of the model enables the
application of randomized methods of simple structure.

For probability maximization, we propose a stochastic approximation procedure with
relatively easy generation of new test points. A probabilistic constraint function is handled in
a Newton-like scheme, approximately solving a short sequence of probability maximization
problems, with increasing accuracy. As this scheme is built from randomized components,
we provide a statistical analysis of its validity.

The proposed stochastic approximation procedure can be implemented using standard
components. The master problem is conveniently solved by an off-the-shelf solver. New
approximation points are found through simple line searchwhose direction can be determined
by standard implementations of classicMonte Carlo simulation procedures. TheNewton-like
scheme can be implemented through minor variations on a standard Newton method.

In case of a probabilistic function derived from amultivariate standard normal distribution,
computing a single non-zero component of a gradient vectorwill involve an effort comparable
to that of computing a function value. The variance reduction Monte Carlo simulation pro-
cedures described in Sect. 6 were successfully applied in outer approximation approaches
to the solution of jointly probabilistic constrained stochastic programming problems, see
Szántai (1988). We trust that they will perform as well in the inner approximation approach
discussed in the present paper. An elaborate implementation and a systematic computational
study will be needed to verify this. We mention that a means of alleviating the difficulty of
gradient computation in case of multivariate normal distribution has recently been proposed
by Hantoute et al. (2018).

Emerging applications of probabilistic programming afford room for different solution
approaches; e.g., new models of electricity markets or traffic control, brought about by novel
infocommunication technologies.
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Dentcheva, D., Lai, B., & Ruszczyński, A. (2004). Dual methods for probabilistic optimization problems.

Mathematical Methods of Operations Research, 60, 331–346.
Dentcheva, D., & Martinez, G. (2013). Regularization methods for optimization problems with probabilistic

constraints. Mathematical Programming, 138, 223–251.
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and Economics, Műegyetem rakpart 3-9, Budapest 1111, Hungary

123

http://orcid.org/0000-0002-9446-1566

	A randomized method for handling a difficult function in a convex optimization problem, motivated by probabilistic programming
	Abstract
	1 Introduction
	2 Column generation in an idealized setting
	2.1 Polyhedral models
	2.2 Linear programming formulations
	2.3 A column generation procedure

	3 Working with gradient estimates
	3.1 Bounding the optimality gap and reliability considerations for the randomized column generation scheme
	3.2 On stochastic gradient methods

	4 Handling a difficult constraint
	4.1 A deterministic approximation scheme
	4.1.1 Near-optimality condition for the constrained problem
	4.1.2 Stopping condition for the unconstrained subproblem
	4.1.3 Finding successive iterates
	4.1.4 Convergence

	4.2 A randomized version of the approximation scheme
	4.2.1 Stopping condition for the unconstrained subproblem
	4.2.2 Convergence and reliability


	5 Adapting the approach to probabilistic problems
	5.1 A bounded formulation
	5.2 A hybrid form of the column generation scheme
	5.3 Regulating accuracy and reliability when solving an unconstrained probabilistic problem

	6 Estimation of the multivariate normal probability distribution function values and gradients
	6.1 Genz's method
	6.2 Deák's method
	6.3 Szántai's method
	6.4 The method of Ambartzumian, Der Kiureghian, Ohanian and Sukiasian
	6.5 Application of the numerical integration and the variance reduction Monte Carlo simulation algorithms in our procedures for probability maximization

	7 A computational experiment
	7.1 Cash matching problem
	7.2 Implementation
	7.3 Results and observations

	8 Conclusion and discussion
	Acknowledgements
	References




