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Abstract
Traditionally, long-term investment planning models have been the apparent tool to analyse
future developments in the energy sector.With the increasing penetration of renewable energy
sources, however, themodelling of short-termoperational issues becomes increasingly impor-
tant in two respects: first, in relation to variability and second, with respect to uncertainty. A
model that includes both may easily become intractable, while the negligence of variability
and uncertainty may result in sub-optimal and/or unrealistic decision-making. This paper
investigates methods for aggregating data and reducing model size to obtain tractable yet
close-to-optimal investment planning decisions. The aim is to investigate whether short-term
variability or uncertainty is more important and under which circumstances. In particular, we
consider a generation expansion problem and compare various representations of short-term
variability and uncertainty of demand and renewable supply. The main results are derived
from a case study on the Danish power system. Our analysis shows that the inclusion of
representative days is crucial for the feasibility and quality of long-term power planning
decisions. In fact, we observe that short-term uncertainty can be ignored if a sufficient num-
ber of representative days is included.

Keywords Power planning problems · Investment · Variability · Uncertainty · Generation
expansion
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Gw Set of wind production units
T Set of time periods
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S Set of scenarios for short-term uncertainty
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Parameters
cIg Linear investment cost of unit g (e/MW)
cg Linear production cost of unit g (e/MWh)
c+
g Additional cost of upward balancing of unit g (e/MWh)
c−
g Opportunity cost of downward balancing of unit g (e/MWh)

r Dg Ramp down rate of unit g (p.u.)

rUg Ramp up rate of unit g (p.u.)
ρgt Predicted production factor of unit g at time t (p.u.)
ρ̃gts Realised production factor of unit g ∈ Gw at time t in scenario s (p.u.)
κ Minimum wind penetration (%)
vL Cost of load shedding (e/MWh)
vS Cost of wind curtailment (e/MWh)
νt Load factor at time t (p.u.)
d̄ Maximum load (MWh)
τt Duration of time period t
πs Probability of short-term scenario s

Variables
p̄g Investment capacity of unit g
pgt Scheduled production of unit g at time t
kt Scheduled load shedding at time t
lt Scheduled wind curtailment at time t
p+
gts Real-time upward balancing of unit g ∈ G\Gw at time t in scenario s

p−
gts Real-time downward balancing of unit g ∈ G\Gw at time t in scenario s

p̃gts Real-time production of unit g ∈ G\Gw at time t in scenario s
Δkts Real-time load shedding at time t in scenario s
Δlts Real-time regulating wind curtailment at time t in scenario s

1 Introduction

Long-term planning problems related to the electricity market, system and/or network arise
in multiple contexts: generation expansion (Baringo and Conejo 2012; Jin et al. 2011; Pineda
and Morales 2016), transmission expansion (Orfanos et al. 2013; Hemmati et al. 2014; Pozo
et al. 2013), storage investment (Babrowski et al. 2015; Jabr et al. 2015; Ghofrani et al. 2013)
etc. Fundamental to all of these problems is the modelling of short-term system operation,
ideally accounting for both dynamics and uncertainty. With the penetration of renewable
energy sources in many power systems, not only demand but also part of supply vary over
time and stochastically. For instance, wind and solar power production is driven by weather
conditions and thereby varies from hour to hour and from day to day and is difficult to
accurately predict. To maintain the balance between demand and supply at all times, the
system should be sufficiently flexible. The increasing penetration of renewables implies a
greater need for flexibility in conventional generation and accentuates the effects of inter-
temporal constraints and balancing costs (Poncelet et al. 2016). In particular, if demand is
higher or lower than renewable production, conventional generation sources must be able
to increase or decrease production accordingly. To handle variations over time, production
must be able to adjust from one hour to the next. This type of flexibility is restricted by
the technical specifications of the operating units, usually modelled by so-called ramping
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constraints. Stochasticity is often handled through the division of the market into a day-ahead
market for commitment of predicted demand and supply and a real-time balancingmarket that
allows for adjustments at additional costs. In theory, these short-term characteristics could be
explicitly modelled in the long-term planning. In practise, however, the computational effort
to solve the planning problem becomes excessive (Poncelet et al. 2016). In fact, a complete
representation of ramping abilities requires an hourly discretisation of a multi-decade time
horizon, whereas the modelling of balancing decisions involves discretising the continuous
distribution of demand and renewable supply. As a result, the model size increases with the
number of time periods and the number of scenarios describing uncertainty.

The negligence of variability and uncertainty may result in sub-optimal and/or unrealistic
decision-making. Indeed, failure to account for ramping restrictions and balancing costs may
significantly overestimate flexibility and suggest investments in renewable energy sources
beyond what is the physically and/or economically feasible. A compromise between compu-
tational effort and accuracy of the model results is provided by aggregated representations of
time and uncertainty. The present paper investigates and compares methods for aggregating
data to obtain tractable yet close-to-optimal investment planning decisions. We consider the
following types of data aggregation:

– Representative hours: Hours are divided into a number of groups, each representing a
given number of hours. The division is based on clustering of data and carried out for
each hour independently.

– Representative days: Days are divided into a number of groups, each representing a given
number of days. The division is likewise based on clustering of data but carried out for
a day at the time, respecting the chronology of the hours.

– With short-term uncertainty: The distributions of unknown parameters are discretised,
using a limited number of scenarios.

– Without short-term uncertainty: The distributions of unknown parameters are replaced
by their expected values.

By disentangling short-term variability and uncertainty, we investigate which is more impor-
tant, underwhich circumstances and how to obtain suitable data representations. To the best of
our knowledge and as evidenced by the following review, the comparison of such modelling
aspects cannot be found in the existing literature.

In evaluating the impact of short-term dynamics and uncertainty, we use a family of
generation expansionmodels.Allmodels take the perspective of a central planner,minimising
total costs of meeting demand and aminimum requirement for renewable supply by investing
and operating accordingly. We consider a planning horizon of a single year and with an
hourly discretisation. Investments are one-time installations, whereas production decisions
are made for every time period. Operation is subject to a number of technical constraints,
including ramping restrictions, and the structure of the market, including a day-ahead market
for commitment of predicted demand and supply and a real-time balancing market. We
consider energy-only markets and the implications of short-term uncertainty and dynamics
in these. Other related markets, e.g. capacity markets, are not considered.

The performance of these models is compared with respect to both the quality of the
expansion plan and the computation time. The model results are illustrated for a case study
on the Danish power system.
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2 Literature review

Various methods have been suggested to discretise the time horizon of long-term planning
problems in a way that enables computational tractability (Haydt et al. 2011). Most of these
aim at aggregating hours, days and years to achieve an acceptable model size.

With an hourly representation (often referred to as ’time slices’), time periods are rep-
resented by the values of their state variables (demand, wind power production, etc.) and
grouped according to these. A traditional example is the load duration curve for which time
periods are sorted with respect to demand level and grouped into blocks of a given dura-
tion (Stoft 2002). This approach is used in the generation expansion planning of Pineda et al.
(2014), Chaton and Doucet (2003) and Jin et al. (2011). Bertsch and Fichtner (2015) likewise
use the PERSEUS-NET model with a load duration curve in multi-criteria analysis of power
generation and transmission planning. As an alternative to sorting the hours throughout the
year, demand can be clustered according to additional information such as seasonal variation
(Pozo et al. 2013). Baringo and Conejo (2013) include both wind production and demand
profiles in the clustering, and the correlation between the two variables is taken into account.
With the same purpose, Wogrin et al. (2014) introduce another method based on a duration
curve and chronological transitions between states. Themethod estimates transitions fromone
state to another and incorporates inter-connecting constraints on the significant transitions.

Representative days consists of choosing a number of days, or connected time periods
in general, to represent the planning horizon. In this way, inter-temporal dynamics can be
preserved within the time periods. An example is given by Babrowski et al. (2015) who inves-
tigate long-term storage planning.Another example is byGhofrani et al. (2013)who use a rep-
resentative scheduling period of 24 h to optimize storage placement. A fully dynamic model
including all hours of the entire planning horizon have been proposed by Jabr et al. (2015). The
model relates to storage investment and relies on robust optimisation. As the fully dynamic
setupmay verywell be intractable for larger problems, Pina et al. (2013) use 12 representative
days, 3 of each season in a year, for generation expansion in electricity systemswith high pen-
etrations of renewable energy. In a similar fashion,Ma et al. (2013) select five whole weeks to
represent demand variations throughout the year in a unit construction and commitment prob-
lem and use this to analyse power system flexibility. Representative weeks are also used by
Sisternes andWebster (2013) to approximate the net load in a generation expansion problem.
The paper demonstrates how the quality of investments depends on the choice of representa-
tiveweeks. In contrast, however, Nahmmacher et al. (2016) present a clustering technique that
determines the representative days and show that using representative weeks instead of days
increases the required number of hours to obtain a sufficiently good representation of the data.

The main difference between hourly and daily aggregation is the ability to include short-
term operational flexibility. A daily representation may account for short-term flexibility by
including inter-temporal constraints. Such constraints cannot be incorporated with an hourly
representation.With an increasing penetration of non-dispatchable renewable energy sources,
however, the representation of short-term dynamics in long-term models becomes increas-
ingly important (Pfenninger et al. 2014). This is supported by Poncelet et al. (2016)who study
and compare the effect of using the hourly and daily representations. More specifically, the
results confirm that the need for inter-temporal techno-economic constraints increases with
the penetration of renewable energy. Slednev et al. (2017) consider a combination of rep-
resentative days and hours. These are determined in a k-means clustering method, using an
error measure that measures grid-impact. The time resolution for both the hourly and the
daily aggregation is usually hours. An example of a finer time resolution (such as 15 or
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30 minutes) is provided by Schwarz et al. (2018) who analyse residential heat storage with
photo-voltaic power generation.

In addition to variability over time, long-term planning naturally involves uncertainty of
key parameters. Long-term uncertainty relates to the future development of demand and
costs parameters. Nevertheless, uncertainty also arises in the short-term. Traditionally, the
main concern has been the stochastic variability of demand. At present, however, demand
can be rather accurately predicted 24 h in advance (Aneiros et al. 2016). On the other hand,
a high penetration of renewable electricity sources in modern power systems introduces a
significant source of short-term uncertainty. Some authors ignore this short-term uncertainty
by assuming perfect information of future power production and model system operation as
deterministic. This approach can be found in the generation expansion problem of Jin et al.
(2011), who assume long-term demand and price levels to be uncertain but solve the short-
term scheduling problemwith perfect information. The same approach is taken by Pozo et al.
(2013) and Ludig et al. (2011).

In contrast, Baringo and Conejo (2013, 2011) and Ma et al. (2013) model the system
operation problem as a two-stage stochastic programwith a day-aheadmarket as the first stage
and a balancing market as the second stage. In the day-ahead market, production decisions
are made according to expected demand and wind production. Uncertainty in the real-time
balancing market is modelled by scenarios for wind production. In each scenario, day-ahead
commitments can be adjusted to realised production by making balancing decisions (with
potentially additional costs). Further details are provided by Pineda and Morales (2016).

The remainder of this paper is organised in the following way. The generation expansion
problem is presented in Sect. 3.1 and the different approaches to including short-term char-
acteristics are discussed in Sect. 3.2. Section 4 provides a small example which serves as a
basis for analysing the effects of short-term variability and uncertainty on the solutions to
the generation expansion problem. A larger case study further elaborates on this in Sect. 5.
Section 6 concludes the paper.

3 Investment optimisation and aggregation of data

The purpose of this paper is to compare different approaches to represent short-term dynam-
ics and uncertainty in long-term planning problems. In particular, we consider four different
approaches for aggregation of data in a generation expansion problem. All aggregation
approaches are used in combination with the same optimisation model. The model is pre-
sented in Sect. 3.1 whereas the data aggregation approaches are defined in Sect. 3.2.

3.1 Model

The model takes the perspective of a central planner, with the objective of minimising
total costs of meeting a fixed demand by investing and operating accordingly. The deci-
sions obtained by this model coincide with those of a generation expansion equilibrium
with perfectly competitive and risk-neutral power producers (Ehrenmann and Smeers 2011).
Furthermore, since demand is assumed to be inelastic, minimising costs is equivalent to
maximising social welfare (Gabriel et al. 2010). The model includes a minimum wind pen-
etration constraint that represents a political target for the penetration of renewables, like
those imposed as part of the political agenda in the European Union (European Commision
2014). Note that the minimumwind penetration is given as an exogenous parameter, whereas
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the decision to invest in wind capacity is endogenous to the model. For simplicity, we focus
on short-term uncertainty of wind power production, although the model could easily be
extended to include demand uncertainty, stochastic capacity availability etc.

The modelling of generation expansion is divided into two: investment and market clear-
ing.

3.1.1 Investment

Generally, generation expansionmodels are classified as either static (single-year) or dynamic
(multiple-year) models (Akbari et al. 2012). For simplicity and as is common practice in the
literature (Baringo andConejo 2012;Wang et al. 2009;Murphy and Smeers 2005), our invest-
ment model is static with a single-year planning horizon. Thus, investment variables relate
to a one-time installation of generation capacity while system operation involves production
decisions for every time period (e.g. hour) throughout the year (in the following referred to as
the target year). We assume that at the beginning of the year, there is no existing capacity in
the market, i.e. we take a greenfield approach. We also assume that new generation capacity
is available once installed, meaning that construction time is zero.

3.1.2 Market clearing

Our market model consists of a day-ahead market and a real-time balancing market (Pineda
et al. 2016). For each time period, the day-ahead market is modelled as an economic dispatch
problem in which the generating units are dispatched to meet demand at minimal costs
given the forecasted wind power production. In the balancing market, stochastic wind power
production is realised, and the demandmust bemet given this realisedwind power production.
Thismay require re-dispatch of power generation and incurs an additional (positive) balancing
cost. Such costs may be justified by increased stress on the generation units. Balancing costs
are further discussed in Sect. 5.1.

Our techno-economical constraints include ramping constraints of the generation units,
but for simplicity, we do not consider a unit commitment problem (Poncelet et al. 2016).
This simplification is likewise discussed in Sect. 3.2.4.

To ensure that the expansion problem is feasible irrespective of the investment plan, we
include the possibility of load shedding and wind curtailment during economic dispatch.
If installed capacity is insufficient to meet demand, load shedding occurs. Likewise, if the
realised wind power production exceeds demand, wind curtailment occurs. Load shedding
andwind curtailment are present in both the day-ahead and the balancingmarket. The realised
load shedding or wind curtailment is given as the sum of the scheduled load shedding or wind
curtailment and the adjustments to these. Only the realised load shedding or wind curtailment
is penalised in the objective function. As an estimate for load shedding and wind curtailment
costs, we use the maximum and minimum price caps for the market in question (Stoft 2002).
These costs serve as compensation to the consumer and thewindpower producer, respectively,
should load shedding or wind curtailment occur.

The static generation expansion problem is formulated as follows:

min
∑

g∈G
cIg p̄g +

∑

t∈T
τt

⎛

⎝
∑

g∈G
cg pgt +

∑

g∈G\Gw

∑

s∈S
πs

(
(cg + c+

g )p+
gts − (cg − c−

g )p−
gts

)
⎞

⎠

+
∑

t∈T
τt

∑

s∈S
πs

(
vL(kt + Δkts) + vS(lt + Δlts)

)
(1a)
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s.t.
∑

g∈G\Gw

pgt + kt − lt = νt d̄ −
∑

g∈Gw

ρgt p̄g, ∀t ∈ T (1b)

0 ≤ pgt ≤ p̄g, ∀g ∈ G\Gw,∀t ∈ T (1c)

− r Dg p̄g ≤ pgt − pg(t−1) ≤ rUg p̄g, ∀g ∈ G\Gw, t ∈ Td (1d)

0 ≤ kt ≤ vt d̄, ∀t ∈ T (1e)

0 ≤ lt ≤
∑

g∈Gw

ρgt p̄g, ∀t ∈ T (1f)

∑

g∈G\Gw

p̃gts + Δkts − Δlts = νt d̄ −
∑

g∈Gw

ρ̃gts p̄g, ∀t ∈ T , s ∈ S (1g)

0 ≤ p̃gts ≤ p̄g, ∀g ∈ G\Gw, t ∈ T , s ∈ S (1h)

− r Dg p̄g ≤ p̃gts − p̃g(t−1)s ≤ rUg p̄g, ∀g ∈ G\Gw, s ∈ S, t ∈ Td (1i)

0 ≤ kt + Δkts ≤ vt d̄, ∀t ∈ T , s ∈ S (1j)

0 ≤ lt + Δlts ≤
∑

g∈Gw

ρ̃gts p̄g, ∀t ∈ T , s ∈ S (1k)

p̃gts = pgt + p+
gts − p−

gts, ∀g ∈ G\Gw, t ∈ T , s ∈ S (1l)
∑

t∈T
τt

∑

s∈S
πs(

∑

g∈Gw

ρ̃gts p̄g − (lt + Δlts)) ≥ κ
∑

t∈T

∑

s∈S
πsτt (νt d̄ − (kts + Δkts)) (1m)

p+
gts, p

−
gts ≥ 0, ∀g ∈ G\Gw, t ∈ T , s ∈ S (1n)

p̄g ≥ 0, ∀g ∈ G (1o)

The objective function in (1a) accumulates investment costs, day-ahead planning costs
and expected real-time balancing costs, including load shedding and wind curtailment costs.
Day-ahead planning costs of time period t are weighted by the parameter τt due to the
aggregation of data (see Sect. 3.2.1) and balancing costs of scenario s are weighted by the
probability πs . The day-ahead operational constraints (1b), (1c), (1d), (1e) and (1f) cover
demand satisfaction, capacity limits, ramp rate restrictions and bounds on load shedding and
wind curtailment, respectively. Note that there are no ramping constraints between aggre-
gation periods (e.g. days), as indicated by the set Td , see also Sect. 3.2.2. Similar operating
constraints apply to the balancing market in (1g), (1h), (1i), (1k) and (1j). Moreover, the
realised dispatch of generation is defined in (1l). Finally, (1m) requires a percentage of κ

of the annual demand to be covered by wind power production, while (1n), (1o) ensure
non-negativity of the relevant variables.

3.2 Variability and uncertainty

We consider different representations of data with respect to two major short-term aspects:
the aggregation over time and the representation of uncertainty.

3.2.1 Aggregation over time

We consider two approaches to aggregation of data over time: Representative hours and
representative days.

123



206 Annals of Operations Research (2020) 284:199–223

– Representative hours Aggregation by hours means that hours are evaluated separately
with respect to their state values, e.g. demand and wind production. Hours are clustered
into a number of groups, each representing a number of ”similar” hours in a year. The
index of a time period t therefore refers to a group. The duration of a group is given by
τt , indicating the number of hours represented. Due to the loss of chronology, ramping
constraints cannot be considered, and hence, the constraints (1d) and (1i) are omitted
from the model.

– Representative daysAggregation by daysmeans that hours are evaluatedwhile respecting
the order of their state values throughout a day. Days are likewise clustered into a given
number of groups, each representing a number of ”similar” days in a year.A representative
day has an associated weight, referring to the number of days represented by the group
and given by τt . This weight applies to time periods and is the same for all time periods
t of the same representative day. The index of the hourly time periods t runs from 1 to
24 ∗ N , where N is the number of representative days. Moreover, the set Td contains
all hours except the last of each day, i.e. Td includes indices that are not multiples of
24. With preservation of chronology within a day, ramping constraints (1d) and (1i) are
included in the model, although not between days.

Alternative choices of aggregation over time, such as a combination of representative hours
and representative days or time periods of more or less than an hour, could be considered,
see for example Slednev et al. (2017). We briefly discuss the combination of representative
hours and representative days in Sect. 3.2.4.

3.2.2 Representation of uncertainty

To evaluate the importance of including short-term uncertainty, two different approaches are
considered: one with short-term uncertainty and another without short-term uncertainty.

– With short-term uncertainty Section 3.1 describes the two-stage day-ahead and balancing
market clearing in the presence of short-term uncertainty. In the following, we refer to
the model with stochastic market clearing. The distribution of the state values, e.g. wind
power production, is discretised, using a limited number of scenarios (|S| > 1) with
corresponding probabilities. Depending on the representation of data over time, scenarios
either consist of hourly values of production or of daily production schedules.

– Without short-term uncertainty In the absence of short-term uncertainty, the balancing
market serves no purpose and the day-ahead market clearing is sufficient. We refer to
this as conventional market clearing. The distribution is replaced by the expected hourly
wind power production (|S| = 1).

3.2.3 Overview

We consider four combinations of data aggregation over time and representation of
uncertainty and the resulting four models for the generation expansion problem: daily repre-
sentation and conventional market clearing (DC), daily representation and stochastic market
clearing (DS), hourly representation and conventional market clearing (HC), and hourly rep-
resentation and stochastic market clearing (HS). These four models are found in Table 1,
where an acronym indicates the model and the number of days or hours included.
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Table 1 Overview of models for generation expansion planning, categorised by data aggregation over time
and representation of uncertainty

S–T uncert. Data agg. Acronym Optimisation problem

Without Rep. days DC-(# of days) min (1a) |S| = 1

s.t. (1b)–(1o)

With Rep. days DS-(# of days) min (1a) |S| > 1

s.t. (1b)–(1o)

Without Rep. hours HC-(# of hours) min (1a) |S| = 1

s.t. (1b), (1c), (1g)–(1h), (1j)–(1o)

With Rep. hours HS-(# of hours) min (1a) |S| > 1

s.t. (1b), (1c), (1g)–(1h), (1j)–(1o)

3.2.4 Limitations of the methodology

In our analysis, we use the most simple model that includes both short-term variability and
uncertainty. Focus is on whether variability or uncertainty is more important and in which
situations. Our simplifications, however, do introduce limitations to the scope of the paper.

A main simplification is to represent flexibility using ramp rates only and not include
the typical features of a unit commitment problem such as start-up costs, minimum up- and
down-time constraints etc. However, we expect that the effects of short-term variability and
uncertainty will be more pronounced with less flexibility in the power system, and thus, in
the presence of unit commitment constraints.

Furthermore, we confine ourselves to the temporal dimension and do not consider the
spacial dimension of a power network. The representation of the network could provide both
flexibility and restrictions to the optimisation model, and thus, both reduce and amplify the
effects of variability and uncertainty. When clustering days or hours, for example, the effect
of the peak flow on the network should ideally be considered (Schwarz et al. 2018).

For simplicity, we use either representative days or representative hours and not a combi-
nation of days and hours. A hybrid approach is proposed by Slednev et al. (2017) who report
promising computational results. The number and selection of representative days and hours,
however, are critical to the performance.

Finally, we consider a greenfield system to highlight the differences in the expansion
plans resulting from the four models of variability and uncertainty. Such differences would
be diluted if existing capacities were considered. In other words, if considering a brownfield
system, the differences between the four models would be much less.

4 Illustrative example

We start by illustrating the effects of short-term uncertainty and variability on a stylised
example.

Demand and wind power data is from the pricing zone DK1 (Nordpool 2017). We assume
deterministic demand, using a single representative day, and stochastic wind production,
characterised by two scenarios with the same probability. These two scenarios correspond to
the wind capacity factor in DK1 for two representative days of 2017 and were determined
by scenario reduction techniques, see Sect. 5.1.1. Demand and wind production profiles are
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Fig. 1 Demand andwindproduction profiles of a representative day and twowindpower scenarios, respectively

Table 2 Generation unit data for
an illustrative example . Source:
Ea Energianalyse (2014) and
Schröder et al. (2013)

g Wind Coal GasDA GasBal Nuclear

cIg (Te/MW) 124 106 51 51 150

cg (e/MWh) 0 31.4 63.1 63.1 15.4

c+g , c−g (e/MWh) 0 5.23 500 4.51 500

r Dg , rUg (p.u.) 1 0.3 0.7 0 0

shown in Fig. 1. We consider the models DS-1, including ramping and stochastic market
clearing, DC-1 with ramping only, HS-24 with stochastic market clearing only, and HC-24
excluding both ramping and stochastic market clearing. For the notation, see Table 1.

We consider the following generation units named according to the technology with most
similar characteristics: wind turbines, nuclear, gas and coal. To illustrate the differences
resulting from choice of modelling, we divide the flexible gas units into two different types:
a gas unit that is flexible in the day-ahead market (with ramping ability, but high balancing
costs) and a gas unit that is flexible in the balancing market (with low balancing costs, but
no ramping ability). In reality, as in the case study of Sect. 5, however, most gas units are
flexible in both markets. The nuclear unit is assumed inflexible in both the day-ahead and
in the balancing market. The data for these units is shown in Table 2. Furthermore, load
shedding and wind curtailment costs are set to vL = vS = 500 e/MWh.

To evaluate and compare investment decisions across the four models, the following
procedure is used:

1. Solve each of the problems DC-1, DS-1, HC-24 and HS-24, see Table 1. for their defini-
tion.

2. For each of the optimal solutions to DC-1, HC-24 and HS-24, fix the investment decision
and solve the generation expansion problem DS-1 [without minimum wind penetration
constraints (1m)]. Record the objective function value.

Since the DS-1 model includes both short-term variability and uncertainty, we use this as the
baseline for evaluation and comparison. Thus, by definition this model provides the optimal
investment decisions and theminimal costs.We evaluate the objective function value of using
the (feasible, but not necessarily optimal) investment capacities from DC-1, HC-24 and HS-
24, which are at least as high as those of DS-1. The difference in objective function values can
be interpreted as the costs of disregarding variability and/or uncertainty in the optimisation.
Figure 2 show the objective function values of the DS-1 model plotted as functions of the
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Fig. 2 Total costs from fixing the optimal investment capacities from the problems DC-1, DS-1, HC-24 and
HS-24 in DS-1. As functions of the measured wind penetration

Table 3 Investment decisions in MW for κ = 0.2 and κ = 0.6

Model κ Wind Nuclear GasDA GasBal Coal LS WC

DC-1 0.2 352 355 288 0 0 0.08 0.05

DS-1 0.2 352 300 279 103 24 0 0

HC-24 0.2 352 577 66 0 0 0.07 0.24

HS-24 0.2 352 528 0 173 0 0.12 0.24

DC-1 0.6 1060 134 266 0 0 0.2 0.09

DS-1 0.6 1076 0 208 288 86 0 0.02

HC-24 0.6 1056 326 76 0 0 0.19 0.12

HS-24 0.6 1071 162 48 372 0 0.06 0.08

LS is load shedding as a ratio of demand and WC is wind curtailment as a ratio of realised wind production

measured wind penetration. Note that whereas the required wind penetration is exogenous,
the measured wind penetration is a function of capacity, and hence, endogenous. For κ = 0.2
and κ = 0.6, Table 3 shows optimal investment capacities for each of the problems DS-1,
DC-1, HS-24 and HC-24.

The results show that since the HC-24 model disregards both variability and uncertainty,
investments are mainly in the inflexible base nuclear generation, meaning that load shedding
costs are high, cf. Table 3 and Fig. 2. The minor investment in day-ahead flexible gas serves
to cover peak load hours and is almost the same for all wind penetrations. With higher wind
penetration, the major change in investments is substitution of wind for nuclear. Total costs
decrease with wind penetrations up to κ = 0.2 since wind power provides some flexibility
through curtailment. For wind penetrations from κ = 0.2 and up, total costs increase, as the
cost savings of wind power are out-weighted by the costs insufficient balancing capacity and
the resulting load shedding.

As with the HC-24 model, the HS-24 model invests in the nuclear unit to cover base load.
Moreover, when accounting for uncertainty, the model also invests in the gas unit flexible in
the balancing market to provide peak load capacity in some hours. The choice of gas unit,
however, means that the total costs of the HS-24 model are higher than those of the HC-24
model for low wind penetrations. As wind penetration increases, total costs of the HS-24
model first decreases and then stabilises. The reason for decreasing costs is that wind power
provides cost savings through the flexibility to curtail, but also that the installed balancing
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capacity handles the uncertainty with minimal load shedding. As with the HC-24 model,
minor installations in day-ahead flexible gas serve the peak load.

The DC-1 model includes variability and thus invests in day-ahead flexible gas in addition
to nuclear. The deterministic model, however, disregards balancing and therefore investment
capacities neither include the gas units flexible in this market nor coal units. This leads to
expensive wind curtailment and/or load shedding as wind penetration increases, and thus,
increasing total costs.

By definition, the DS-1 model provides the lowest costs for all wind penetration levels. By
accounting for both variability and uncertainty, thismodel avoids significantwind curtailment
and load shedding costs. The higher wind penetrations, the higher the total costs. The reason
is that higher requirements of wind penetration leads to higher investment costs of wind
investments and, for very high wind penetration, wind curtailment costs in some hours and
scenarios. For low penetrations, the DS-1 model produces a combination of all generation
technologies to serve flexibility needs both in terms of ramping and balancing. For wind
penetrations of κ = 0.6 and up, however, nuclear is substituted by the other technologies.

We conclude this example by noting that our model clearly captures the impact of the two
short-term effects: uncertainty and variability. The results in Fig. 2 show that representative
days are very valuable for incorporating the short-term variability, although cost savings are
less for high wind penetration levels. In contrast, for wind penetrations above a certain level,
the inclusion of the stochastic market clearing provides significant cost savings.

5 Case study

We continue by applying the modelling framework introduced in Sect. 3 to data from the
Nordpool bidding region DK1 covering the Western part of Denmark (Nordpool 2017). The
wind penetration target is set to 30%, as is the Danish 2020 renewable energy target (The
Danish Government 2013).

5.1 Data

We use historical market data from 2014. The data includes aggregated demand, wind power
forecasts and realised wind power production for the entire region. The data is available on
an hourly basis and is normalised by total capacity.

With data available for both forecasted and realised wind power production, we model
the hourly forecast error:

ρ̃t = ρt + et , (2)

where ρ̃t is the realised wind production, ρt is the wind production forecast and et is the
forecast error, all given as capacity factors. Recall that only the forecast is known when the
day-ahead market clears, whereas the forecast error is realised at the time of clearing the
balancing market.

For simplicity, we fit the wind forecast errors to an ARMA time series model, assuming
that the process is stationary with decaying autocorrelations. More detailed approaches to
modelling wind forecasting errors are given by Bludszuweit et al. (2008) and Box et al.
(1994). By inspection of the autocorrelation functions, we choose an AR(2) model on the
following form:

et = φ1et−1 + φ2et−2 + εt , εt ∼ N (0, σ 2). (3)
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Fig. 3 Scenarios of wind production (dashed lines) and historical wind production (solid line) for 3 selected
days

Table 4 Generation unit data for
the case study. Source: Ea
Energianalyse (2014) and
Schröder et al. (2013)

g Wind Coal Gas Nuclear

cIg (Te/MW) 124 106 51 150

cg (e/MWh) 0 31.4 63.1 15.4

c+g , c−g (e/MWh) 0 5.23 4.51 25.67

r Dg , rUg (p.u.) 1 0.3 0.7 0.03

here the error terms εt capture variations in the historical data that are not explained by
previous observations, and are assumed independent and identically normally distributed
around zero. Fitting this model to the forecast errors from DK1 in 2014, we obtain the
estimates φ1 = 1.186 and φ2 = −0.294 and the z-test statistics indicate that the coefficients
are statistically significant (Pr(> |z|) < 2.2×10−16 for both coefficients). The assumption of
normally distributed residuals is confirmed to a satisfying extent by histograms and QQplots.

The time series model is used to generate scenarios for realised wind power production
for each day of the target year. The model takes as input the observed forecast errors of
the last 2 h from the previous day. For the following 24 h, we sample the error term and
recursively compute the forecast errors. We generate 1000 scenarios of wind forecast errors
and reduce these to 10 by the scenario reduction technique of Dupačová et al. (2003). The
aim is to accurately represent uncertainty while the model remains computationally tractable
(Morales et al. 2009). Using (2), these scenarios are translated into realised production. The
result is 10 24-dimensional scenario vectors, (ρ̃1s, . . . , ρ̃24s), s = 1, . . . , 10 of realised wind
power production for each of the 365 days of the year. In Fig. 3 we plot the scenarios and the
observed historical wind power production of three selected days.

The data for conventional generation taken from Ea Energianalyse (2014) and Schröder
et al. (2013), and chosen to represent a diverse selection of production units. All costs taken
from Ea Energianalyse (2014) are 2020 predictions and investment costs are annualised with
expected lifetime of the technology and using a discount rate of 4%. The expected lifetime is
defined as theminimum of the technical and the economical lifetime of a unit, where the tech-
nical lifetime is taken from Danish Energy Agency (2012) and the economical lifetime cap-
tures the number of years operation is profitable, taking future discounted fuel andCO2 prices
into account. The four production units are: wind power (wind), coal-fired pulverised fuel
power plant (coal), combined-cycle gas turbine (gas) and nuclear. Table 4 provides the data.

Ramp rates of the gas and coal units are not publicly available. We, therefore, derive the
ramp rates from the aggregated hourly output for each technology, collected from Entsoe
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(2016) and with outliers removed. More specifically, we use the maximum hourly change
in aggregate output to approximate the aggregate ramp rate. The ramp rate is finally nor-
malised by the maximum hourly output. For simplicity and supported by the data, upward
and downward ramp rates are the same.

Balancing costs aremodelled as follows.We assume that the balancing costs are increasing
in production costs and decreasing in ramp rates and consider the following relation for c+

g

and c−
g :

c+
g = M · cg

rug
and c−

g = M · cg
rdg

, (4)

where M is an adjustment factor. This M is estimated from historical balancing prices, cf.
Nordpool (2017). The average balancing price in DK1 for 2014 is 6.30 e/MWh, and thus,
we set M = 0.05 to achieve the balancing costs in Table 4. We further consider the case of
a zero balancing cost for all units and present both cases in the results.

The load shedding costs are estimated by themaximumprice of electricity. FromNordpool
(2017) we note that the maximum price in DK1 is 3000e/MWh, and thus, we set vL = 3000
e/MWh. Similarly, we estimate the wind curtailment costs by the minimum price. The
minimum price of electricity in DK1 is − 500 e/MWh, and the wind curtailment costs are
therefore set to vS = 500 e/MWh.

5.1.1 Data aggregation

The technical literature includes several methods to select representative days or hours. In
Hastie et al. (2009) and ElNozahy et al. (2013), representative days or weeks are chosen using
classical clustering techniques such as K-means or hierarchical clustering. New methods to
select representative days have recently been proposed. For instance, Poncelet et al. (2017)
provide a novel optimisation-based approach to select representative periods. Similarly, Liu
et al. (2017) propose a modified hierarchical clustering procedure to choose a reduced set
of representative days that retains important statistical features of the input data such as
correlation.

Our data aggregation is carried out using the GAMS/SCENRED tool (Römisch 2002).
Although this tool is intended for scenario reduction, the clustering algorithm may likewise
apply for the reduction of hours or days to a smaller subset, with each day or hour of a
year being equally probable. The GAMS/SCENRED tool is an out-of-the-box tool and the
reduction selects a specific hour or day as representative. When clustering by hour, we
consider all 8760 h of historical wind production and demand data and reduce to the required
number of representative hours, as indicated by the suffix of the model name, e.g. HC-24.
When clustering by day, we likewise use all 365 days of historical data and reduce to the
required number of days, likewise revealed by the suffix of the model name, e.g. DC-1.

5.2 Results

We consider the four combinations of data aggregation over time and representation of
uncertainty and the resulting models for the generation expansion problem, cf. Sect. 3.2. The
results are divided into two sections: First, we analyse these models using the full data set
(we refer to the models HC-8760, HS-8760, DC-365 and DS-365 as full models). Secondly,
we include only a subset of the data obtained via aggregation and benchmark against the full
DS-365 model, using the procedure of Sect. 4. The full results are included in Appendix A.
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Table 5 Optimal investment decisions and model runtimes for the different full models

Model Wind Coal Gas Nuclear Runtime (s) TC IC OC LSC WCC

(a) c+g = 0.05
cg
rug

and c−g = 0.05
cg
rdg

.

DS-365 2562 983 796 1354 30,859 990 665 316 3 7

HS-8760 2559 339 939 1841 1829 1020 676 322 4 18

DC-365 2561 935 747 1417 217 990 666 312 4 8

HC-8760 2559 241 902 1929 32 1035 677 326 7 25

(b) c+g = c−g = 0

DS-365 2561 950 777 1406 24,512 981 668 304 3 6

HS-8760 2559 244 937 1937 1162 1019 680 315 3 20

DC-365 2561 935 747 1417 88 981 666 303 4 7

HC-8760 2559 241 902 1929 32 1022 677 316 7 23

TC total costs, IC investment costs, OCoperating costs, LSC load shedding costs, WCC wind curtailment
costs, all in Me, from evaluating the investment decisions in DS-365

5.2.1 Technical details

Our model is implemented using GAMS 24.7.4 and solved using CPLEX 12.6.3.0 on a HP
ProLiant server with 4 AMD 2.50 GHz CPUs, with a total of 64 cores and 256 GB RAM.
The reported runtimes are as measured by GAMS (Rosenthal 2014).

5.2.2 Results from the full models

The optimal investment decisions and resulting costs of the four models are provided in
Table 5 with respectively non-zero and zero balancing costs.

Regarding the investment decisions, we note that all models in Table 5 install approxi-
mately the same wind capacity (around 2560 MW) due to the minimum wind penetration
constraint. The small differences in wind investments is due to load shedding and wind
curtailment.

When comparing representative days and hours in Table 5 themain difference is in nuclear
investment capacities. Representative hours results in approximately 35% larger nuclear
capacities; 1929 MW versus 1417 MW in the deterministic models (HC-8760 and DC-365)
and 1841 MW versus 1354 MW in the stochastic models (HS-8760 and DS-365) including
balancing costs. The reason is that ramping needs are ignored and nuclear is inexpensive
baseload. For representative days accounting for ramping, nuclear is replaced by coal, the
capacity of which is 2–3 times larger than for representative hours. Somewhat surprisingly
gas investment capacity is around 20% less for representative days than for representative
hours; 747 MW versus 902 MW in the deterministic models and 796 versus 939 MW in the
stochastic models. This can be explained by the larger installation of coal that to some extend
covers the need for flexibility.

Note that the optimal investment decisions from the deterministic models are the same
with non-zero or zero balancing costs while they differ for the stochastic models, e.g. coal
investment in HS-8760 is 339 MW with balancing costs and 244 MW without balancing
costs. The reason is that in the deterministic models it is never optimal to use the balancing
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Table 6 The number of variables
and constraints and the runtimes
for the four different models with
non-zero balancing costs

Model # of variables # of constraints Runtime (s)

DS-365 13 × 105 12 × 105 30,859

HS-8760 13 × 105 7 × 105 1829

DC-365 2 × 105 2 × 105 217

HC-8760 2 × 105 1 × 105 32

market. Nevertheless, balancing costs do influence the costs of the investment decisions when
evaluated in the DS-365 model.

The differences between the deterministic and stochastic models are less than 5%, except
when comparing the coal investments for representative hours (HC-8760 and HS-8760) with
non-zero balancing costs. These small differences in the case study are in contrast to the
example in Sect. 4, for which we observed significant differences between the investments
from the stochastic and the deterministic models. Since the example in Sect. 4 is a stylised,
illustrative example, this is not surprising. The units of the example are either flexible with
respect to ramping and balancing, whereas this is rarely the case in reality. In contrast, some
units of the case study such as coal and gas are flexible with respect to both ramping and
balancing, with relatively high ramp rates and low balancing costs. Thus, the flexibility needs
in a stochastic market clearing are already partly covered by the flexible units installed to
cope with variability of demand and wind power production. In fact, the only significant
difference between the deterministic and stochastic models is for the representative hours in
Table 5a. Here, the HS-8760model results in 40% higher investment capacities in the flexible
coal than the HC-8760 model, that is, 339 MW versus 241 MW. The same does not apply
for the results in Table 5b since the assumption of zero balancing costs produces the less
realistic conclusion that nuclear is the best option for balancing. To summarise, the inclusion
of stochastic market clearing improves the results for representative hours when balancing
costs are non-zero but not much for representative days.

The same tendency is observed for the costs, for which the main differences are between
representative days and representative hours and not between the deterministic and stochastic
models. The higher nuclear capacities lead to higher investment costs for representative hours
than representative days. The higher nuclear capacities, however, also generate higher realised
operating costs as gas satisfy the flexibility needs for representative hours whereas coal serves
this purpose for representative days. Moreover, wind curtailment costs are very different for
representative days and hours because the large inflexible nuclear capacities act as baseload
and peaks in wind production must be curtailed. Finally, since the objective functions are
based on expected costs, security of supply is only accounted for through expected load
shedding penalties. Lower penalties reveal that the stochastic models have slightly higher
reliability rates.

The number of variables and constraints in the different models is specified in Table 6.
When comparing the deterministic models to the stochastic models with 10 scenarios, we
observe that the runtimes increase with a factor between 60 and 200. The number of variables
and constraints increase with a factor slightly less than 10, indicating that the computational
burden increases more than linearly in the number of variables and constraints. When com-
paring the representative days and hours, the increase in runtimes is with a factor between 3
and 11 and is due to the additional constraints for representative days.

We conclude this section by comparing the optimal investment decisions, the total costs
and the model runtimes of the four full models. The trade-off between runtime and total costs
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(a) (b)

Fig. 4 Total costs differences between the models with aggregated data and the full model. The x-axis refers
to the number of representative days and hours. a c+g = 0.05

cg
rug

and c−g = 0.05
cg
rdg

, b c+g = c−g = 0

clearly points at DC-365 as the preferred model. Representative hours do not perform as well
as representative days and DS-365 does not perform significantly better than DC-365, even
with a runtime significantly larger. Hence, when faced with the choice between modelling
variability or uncertainty, the inclusion of dynamics is preferable.

5.2.3 Results from the models with aggregated data

We evaluate the performance of the different models for an increasing number of days and
hours. For example, we solve each of the problems DC-10, DS-10, HC-240 and HS-240.
For each of the optimal solutions to DC-10, DS-10, HC-240 and HS-240, we fix the invest-
ment decision and solve the full DS-365. We do the same for higher numbers of days and
hours. Figure 4 shows the differences between the resulting objective function values and the
minimal costs of DS-365 in percentage.

In both Fig. 4a, b, we observe that with representative days the cost differences approach
zero when the number of days increases. As expected, the inclusion of more days results
in investment decisions closer to those of the full model. The same is not observed with
representative hours. The cost differences do not improve for an increasing number of hours,
and thus, even for the highest number of hours included, 2400, the level of detail in represen-
tative hours is insufficient. When comparing the representative days and hours, the former
outperform the latter when including 30 days or more. In fact, we confirm that the effect of
taking short-term variability into account is crucial, even for a limited number of days.

When comparing the deterministic and stochastic models, we note that for 30 days or
more, the models produce very similar cost differences from the full model. When includ-
ing 30 representative days, the costs difference is already less than 2%, indicating that 30
representative days offset the effects of uncertainty in this specific case study. We, therefore,
stipulate that you can ignore uncertainty by adding a sufficient number of representative days,
which is computationally much less expensive than doing stochastic optimisation.

Analysing the differences between Fig. 4a, b, the main difference is that the stochastic
model with representative hours performs better in Fig. 4a than in Fig. 4b. This is because the
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(a) (b)

Fig. 5 Runtimes as a function of number of days/hours for all models. Note the y-axis is logarithmic and that
runtimes have a lower bound of 1 second. a c+g = 0.05

cg
rug

and c−g = 0.05
cg
rdg

, b c+g = c−g = 0

Fig. 6 Runtime versus total costs for all models (except DS-365)

non-zero balancing costs in Fig. 4a incentivise investment in more flexible units which in turn
then reduce the difference in costs from the full model. Observe also that the the stochastic
model with representative hours performs slightly worse than the deterministic counterpart
in Fig. 4b which seems counter-intuitive. In the stochastic model with zero balancing costs,
the inflexible nuclear unit can be used as a balancing unit at zero costs because there are no
ramping constraints. Thus, the stochasticmodel investsmore in nuclear than the deterministic,
which is more costly when evaluated in the full model.

Figure 5 shows the runtimes of each model plotted against the number of hours or days.
Note that the y-axis is logarithmic. The results are very similar with zero and non-zero
balancing cost. In both cases, the stochastic models are by far the most computationally
heavy. The reason is that the stochastic models are larger by an order of magnitude of 50-150
with representative days and 25–50 with representative hours.

To illustrate the trade-off between the quality of the investment decisions and the computa-
tional effort, Fig. 6 plots the runtimes against the total costs for all models and all days/hours.
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With hourly representation, the points are all close, with small relative differences in both
runtime and total costs. The stochastic models, however, always have lower total costs and
higher runtime than the deterministic. With daily representation, all models have relative
low runtime, whereas the best deterministic models also have relatively low total costs. The
stochastic models have the lowest total costs but only for models with a very high runtime.

To summarise the findings of the case study, the DC-30 model yields investment decisions
with less than a 2% difference in total costs to the full DS-365 model. Furthermore, the
computational burden of the DC-30 model is far less than DS-365, with runtimes under 1
second for the DC-30 model and over 30,000 s for the DS-365 model when considering
non-zero balancing costs.

6 Conclusion

With higher shares of renewable energy sources in many power systems, it is increasingly
important to account for short-term variability and uncertainty in long-term power planning.
Nevertheless, this often requires a level of techno-economical detail in modelling that signif-
icantly affects computational tractability. In this paper, we compare different approaches to
represent variability and uncertainty in a model, while reducing runtime. We use an example
to illustrate the effects of variability and uncertainty, whereas a Danish case study provides
more realistic results.

Our example shows that accounting for short-term variability through ramping constraints
and/or uncertainty via balancing costs has significant impact on the quality of investment
decisions. In our more realistic case study, however, the inclusion of representative days and
ramping constraints has the most significant effect, both regarding the quality of the solution
and the computational burden of solving the model. In particular, we observe that the impact
of short-term uncertainty is less important as the number of representative days increase.

Our model can be extended in various directions. For computational reasons, we cap-
ture inter-temporal restrictions through ramping constraints only. Our results may therefore
underestimate the importance of including short-term techno-economical details in a long-
term power planning problem. At the expense of longer runtimes, however, the model can
be extended to account for unit commitment. Our model can likewise be extended to include
network and transmission expansion. Network expansion may provide further system flexi-
bility, whereas transmission constraints may impose restrictions on flexibility in generation.
This trade-off may be subject of future research. Moreover, the market structure with perfect
competition could be further investigated, from the perspective of both investors and policy
makers. Allowing for market power, the model may become a mathematical programming
problem with equilibrium constraints, for which computational tractability is of an even
higher concern.

Acknowledgements T. K. Boomsma gratefully acknowledges support from the project Analyses of Hourly
Electricity Demand (AHEAD) funded by ForskEl 2017.

A: Results tables

All results listed in two Tables: one for non-zero balancing costs and one for balancing costs
equal to zero.

See Tables 7 and 8.
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