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Abstract
The Reformulation Linearization Technique (RLT) of Sherali and Adams (Manag Sci
32(10):1274–1290, 1986; SIAM J Discrete Math 3(3):411–430, 1990), when applied to a
pure 0–1 quadratic optimization problem with linear constraints (P), constructs a hierarchy
of LP (i.e., continuous and linear) models of increasing sizes. These provide monotonically
improving continuous bounds on the optimal value of (P) as the level, i.e., the stage in the
process, increases. When the level reaches the dimension of the original solution space, the
last model provides an LP bound equal to the IP optimum. In practice, unfortunately, the
problem size increases so rapidly that for large instances, even computing bounds for RLT
models of level k (called RLTk) for small k may be challenging. Their size and their com-
plexity increase drastically with k. To our knowledge, only results for bounds of levels 1, 2,
and 3 have been reported in the literature. We are proposing, for certain quadratic problem
types, a way of producing stronger bounds than continuous RLT1 bounds in a fraction of the
time it would take to compute continuous RLT2 bounds. The approach consists in applying
a specific decomposable Lagrangean relaxation to a specially constructed RLT1-type linear
0–1 model. If the overall Lagrangean problem does not have the integrality property, and
if it can be solved as a 0–1 rather than a continuous problem, one may be able to obtain
0–1 RLT1 bounds of roughly the same quality as standard continuous RLT2 bounds, but in a
fraction of the time and with much smaller storage requirements. If one actually decomposes
the Lagrangean relaxation model, this two-step procedure, reformulation plus decomposed
Lagrangean relaxation, will produce linear 0–1 Lagrangean subproblems with a dimension
no larger than that of the original model. We first present numerical results for the Cross-
dock Door Assignment Problem, a special case of the Generalized Quadratic Assignment
Problem. These show that just solving one Lagrangean relaxation problem in 0–1 variables
produces a bound close to or better than the standard continuous RLT2 bound (when avail-
able) but much faster, especially for larger instances, even if one does not actually decompose
the Lagrangean problem. We then present numerical results for the 0–1 quadratic knapsack
problem, for which no RLT2 bounds are available to our knowledge, but we show that solv-
ing an initial Lagrangean relaxation of a specific 0–1 RLT1 decomposable model drastically
improves the quality of the bounds. In both cases, solving the fully decomposed rather than
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the decomposable Lagrangean problem to optimality will make it feasible to compute such
bounds for instances much too large for computing the standard continuous RLT2 bounds.

Keywords Generalized Quadratic Assignment Problem · Crossdock Door Assignment
Problem · Quadratic knapsack problem · RLT bounds · Lagrangean relaxation · Integer
Linearization Property

1 Notation

For an optimization problem (P), v(P) will denote the optimal value if it exists, and, by abuse
of language, +/− ∞ if problem (P) is infeasible or unbounded (depending on whether it is a
minimization or a maximization problem).

Names in capital lettersmay refer to amethodor a property, for instanceLR forLagrangean
Relaxation, LP for Linear Programming, LD for Lagrangean decomposition, IP for Integer
Programming, RLT forReformulationLinearizationTechnique, BB for Branch-and-Bound.
They may also refer to a specific problem type.

Names used in the text are: LP (linear programming problem), IP (Integer Programming
Problem), AP (Assignment Problem), QAP (Quadratic Assignment Problem), GAP (Gener-
alized Assignment Problem). GQAP (Generalized Quadratic Assignment Problem), CDAP
(Crossdock Door Assignment Problem), KP (0–1 Knapsack Problem), QKP (Quadratic 0–1
Knapsack Problem).

2 Introduction

This paper presents an approach for computing, more efficiently and more accurately than
has been done so far, improved bounds on the optimal value of some pure 0–1 quadratic
optimization problems with linear constraints. Such problems are often not convex, which
makes them evenmore difficult to solve in integers. Theymay becomemore tractable, though,
after being linearized (and thus convexified) into equivalent 0–1 problems. Linearization can
be achieved in a number ofways,mostly based on similar principles, involving products of the
original constraints by each 0–1 variable or its complement. The two key linearization steps
are then, for each new constraint, (1) to replace the square of a 0–1 variable by the variable
itself, and (2) to replace each product of two distinct 0–1 variables by a new variable. Step
(1) may already strengthen the model by using the fact that the original variables are binary.
Step (2) introduces new variables, and one needs to enter additional (linear) information to
maintain the equivalence with the original quadratic model. Indeed, given two 0–1 variables
x and y, defining a new 0–1 variable v as the product of x by y is a nonlinear equation v �
x.y that cannot be used as such in a linear model. Fortet (1959) and later McCormick (1976)
proposed sets of linear constraints that can be used to force the new binary variable v to be
equal to the product of the two binary variables x and y, i.e., to be 0 unless both x and y are
1. Later approaches iterate on that process. They construct sequences of larger and larger
models, equivalent in 0–1 variables, and producing increasingly tighter LP bounds. One
of these linearization methods is called RLT, for Reformulation Linearization Technique
(Adams and Sherali 1986; Sherali and Adams 1990). They proved that when the level (i.e.,
iteration number) reaches the number of 0–1 variables of the original problem, the optimal
value of the last linear programming problem is equal to the optimal value of the original
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quadratic 0–1 problem. In practice, however, the problem size increases so rapidly that
even for moderate size instances, computing low level continuous bounds can already be
computationally expensive. If the original model has n 0–1 variables xi , i ∈ I, |I| = n, the
RLT11 model, i.e., the RLT model generated at level 1, is an LP with n2 additional variables,
say, vi j , representing the product of xi by x j . Then RLT2 has n3 additional variables wi jk ,
representing the product of vi j by xk , and so on. RLTk produces tighter LP bounds than
RLT(k −1), for all k ≤ n, but at the cost of a large increase in computational and storage cost
created by the addition of nk+1 additional variables. At this point in time, to our knowledge,
only RLT bounds of levels 1, 2 and 3 have been attempted (see for instance Hahn et al. 2012
for RLT3).

The paper is based on two ideas that can be used to simplify the computation and increase
the strength of RLT1 bounds. We often refer to the RLT1 models described in the paper
as RLT1-type models as a reminder that they may not be standard RLT1’s as defined in
Sherali and Adams. Similar ideas have appeared to some extent in the literature, see for
instance Adams and Johnson (1994) for the QAP, and Caprara et al. (1999) for the QKP.
First, using Lagrangean relaxation2 of RLT1 models rather that LP relaxation, treating them
as integer models rather than as LPs, may produce improved bounds similar in quality to
continuous RLT2 bounds. Second, we suggest constructing specific types of RLT1 models
following relatively simple rules. The goal is to create a Lagrangean relaxation that is not
only strong, but also decomposable into small subproblems, using a property called ILP,
for Integer Linearization Property (Geoffrion 1974; Geoffrion and McBride 1978; see also
Guignard 2003). The end result when fully implemented is (a) improved bounds with (b)
a much smaller computational and storage burden. A small computational experiment for
the GQAP, and a more extensive one on the CDAP and the QKP confirm the feasibility and
efficiency of the approach, even without a full implementation of the decomposition or full
optimization of the Lagrangean dual. Clearly, beyond a certain size, decomposition will be
the only way to generate these tighter bounds quickly and with reduced space requirements.

The paper is concentrating on creating RLT1-type models that lend themselves to decom-
position and produce strong bounds by Lagrangean relaxation. It presents computational
evidence of the strength of the bounds and the possibility of obtaining them with much
reduced computational time and storage space for two difficult quadratic 0–1 problem types.
The article is organized as follows. Section 3 describes in general terms the steps followed
and the reasons for the various methodological choices. Section 4 describes in mathematical
terms the ILP and shows how it is used in our general Lagrangean relaxation scheme. Sec-
tion 5 specializes the above discussion to the GQAP, Sect. 6 to the CDAP and Sect. 7 to the
QKP. Section 8 concludes and suggests possible extensions.

3 General methodology

Let us briefly explain the scheme advocated in this paper. Assume, as above, that in the
quadratic model under consideration, the original 0–1 variables are xi , i ∈ I, and that there
are p equality constraints and q inequality constraints, p and q finite nonnegative integers,

1 In the RLT theory, problems RLTk are normally meant to be LP problems. In this paper, however, they may
be either continuous or 0–1 problems and to avoid confusion, we will refer to them as continuous RLTk or
0–1 RLTk. If we talk about just RLTk, we mean 0–1 RLTk, because this is what we are advocating.
2 In the paper, the term “Lagrangean relaxation problem” always means that it is solved as an integer program-
ming problem, not as an LP. If it is not the case, we will explicitly talk of a continuous Lagrangean relaxation,
or a continuous Lagrangean bound.
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not both 0. In this model’s constraints, we assume that all variables are in the left hand side
and constants in the right hand side. At level 1, in the standard RLT scheme, one multiplies,
both on the right and on the left, each of the p equality constraint terms by xi and each of
the q inequality constraint terms by both xi and 1− xi , for every i. One then introduces new
distinct variables vi j and v j i that will replace respectively the left and right products xi x j
and x j xi of x j by xi to obtain linear objective function and constraints. One could replace
vi i by xi , and eliminate obviously redundant constraints, if any. One could also make use of
the fact that xi x j � x j xi (see Padberg and Rijal 1996) to replace v j i by vi j , or vice versa.
The equalities v j i �vi j , for all i < j, to avoid duplicate constraints, are called the symmetry
constraints. But one has to do it selectively, according to a specific goal: one wants to

Produce a relaxation bound stronger than the continuous relaxation bound

The first contribution of the paper is to show that for at least some quadratic 0–1 problem
types, it is possible to create a 0–1 RLT1-like model producing a Lagrangean bound tighter
than the standard continuous RLT1 model. Geoffrion proved that the Lagrangean relaxation
bound is equal to the optimum of the original objective function over the intersection of
the polyhedron of the relaxed constraints and the convex hull of the integer solutions of
the constraints kept in the relaxed model (Geoffrion 1974). If the polyhedron of the kept
constraints (the kept polyhedron, for short) has all corner points integer, one says that the
problem has the Integrality Property, and then the Lagrangean bound is automatically equal
to the LP bound, i.e., there is no bound improvement possible. If the kept polyhedron has at
least some fractional vertices, the Lagrangean bound may be tighter than the LP bound, at
least for some objective functions. Keeping—or adding—more constraints in the LR model
may result in providing tighter bounds. To summarize, in order to obtain a stronger bound
than the LP bound, the following condition is necessary (but not sufficient):

Condition 1: The Lagrangean problem should not have the integrality property

Thiswill depend on the underlying problem structure. For instance, we do not think it possible
to come upwith such a scheme for theQAP problem, given its underlying assignment problem
structure. Adams and Johnson in their paper on the QAP (Adams and Johnson 1994) used
a similar scheme, however due to the nature of the assignment problem, their Lagrangean
problem decomposed into a family of small linear assignment problems with the integrality
property, and their optimal bound was equal to the continuous RLT1 bound. We will present
examples, and some computational results, showing that for some other well-known difficult
quadratic 0–1 problem types, at least one RLT1-like model exists that produces stronger
bounds than the standard continuous RLT1 bound. Notice that condition (1) does not reduce
thememory requirements over the standard RLT1model. The advantage, though, is that there
may be such a substantial improvement over the standard RLT1 bound that it produces RLT2
quality bounds with much smaller storage requirements.

The second objective is to

Reduce the computational and storage burden

We will show that one can also substantially reduce the computational burden if, in addi-
tion, the RLT1 Lagrangean problem is decomposable into smaller, relatively easy to solve
subproblems. We assumed that initially, all variable terms, and only variable terms, are in
the left-hand side of the model constraints, and the constant terms are in the right-hand side.
Before the construction of the RLT1-like model, which involves adding new constraints (we
will refer to these as the “added” constraints), no term is moved to the other side of the equal-
ity or inequality sign. Each added constraint comes from an original constraint in which each
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term is multiplied (on the right or on the left) by one of the original variables, say xi , or its
complement. The “added” constraint obtained this way may therefore contain only variables
xi , vi j and v j i , for a given i and all j (see the beginning of Sect. 1 for the notation). The
right hand side of an “added” constraint is equal to the original right-hand side coefficient,
i.e., a scalar, multiplied by xi or 1− xi . The original constraints form a submodel of the
RLT1-like model. The “added” constraints part is what creates a substantial increase in size
and computational complexity. One possible way to make the solution of the Lagrangean
problem more manageable is to

Create a decomposable model

One possible approach to create a decomposition is to create one submodel for each original
variable xi . This is the approach we are describing below.

Two comments will shed some light on the road leading to a decomposable Lagrangean
relaxation. First, the symmetry constraints, which include both one vi j and its symmetric
v j i , are the first constraints that need to be dualized, as they would link indirectly an xi and
an x j , and this would prevent the complete model from decomposing into one subproblem
per variable x . Notice that the symmetry constraint is not a copy constraint, in the sense of
Lagrangean decomposition (Guignard and Kim 1987). All variables are part of the original
RLT-like model, they are not newly created copies of (some of) the original variables. What
we are proposing is therefore not a Lagrangean decomposition (or variable splitting), but a
standard Lagrangean relaxation.

Secondly, if the model contains inequality constraints, multiplying them by 1− xi will
introduce an additional constant in the right hand side (instead of only an xi term), and the
“1” in 1− xi , when multiplied in the left hand side by a variable x j , for j different from i, will
keep that variable x j in the constraint, in addition to xi . This will prevent the Lagrangean
relaxation of the “added” part of the RLT1-like model from decomposing into a separate
subproblem for each xi variable, since two different x variables would appear in the same
constraint.

The following condition is oneway (but maybe not the only one) that will allow the chosen
RLT1 to yield a Lagrangean relaxation that reduces storage and/or computational burden by
decomposing the added constraints into one subproblem per original variable x .

Condition 2: After dualizing the symmetry constraints, the Lagrangean problem
should decompose into two subproblems, the first subproblem with all the original
constraints, containing only variables xi , and the second subproblem with all added
constraints, each containing only one xi and its associated vi j ’s, for some i. In that
case, the second subproblem itself decomposes into one subproblem for each xi .

In what follows, we assume that the subproblem associated with xi has optimal value 0 if
xi is 0, basically because it forces all associated vi j to be 0, and it will need to be solved to
optimality over the vi j ’s if xi is 1.

If bothCondition 1 andCondition 2 hold, then the IntegerLinearizationProperty holds (see
the explanation in Sect. 4), and one can solve the “added” subproblems separately, or, more
precisely, one can solve n smaller 0–1 subproblems, one for each xi at 1, and optimal value,
say, βi , plus one additional 0–1 linear subproblem over all x’s, consisting of all the original
constraints and an objective function that includes the value βi in the coefficient of xi for all
i (see Sect. 4 for details). If the integrality property does not hold, one may obtain a stronger
bound that the standard continuous RLT1 bound. The savings in computational complexity
(time and storage), if one actually implements the decomposition,may be substantial, because
it is usually much more efficient to solve k optimization problems in m 0–1 variables each,
than one large combinatorial problem in k × m 0–1 variables.
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The numerical experiments presented in Sect. 6 for the CDAP already show that using a
decomposable Lagrangean relaxation, even without actually implementing the decomposi-
tion, and without iterating over the Lagrangean multipliers in the solution of the Lagrangean
relaxation, onemay obtain integerRLT1bounds similar in quality to continuousRLT2bounds
in much less time than by solving RLT2 directly by dual ascent. In other words, even with-
out exploiting the possibility of decomposing the integer subproblems in the vi j variables,
one already obtains a considerable reduction in computing time simply because one solves
(in integers) Lagrangean problems of size n2 to obtain RLT1 bounds of a quality similar to
previously available bounds obtained by solving RLT2 problems of size n3.

We first explain more formally the proposed scheme in Sect. 4. In Sect. 5 and beyond,
we propose to consider difficult quadratic optimization problem types, other than the QAP,
for which one can write some RLT1 model (a) whose Lagrangean relaxation obtained by
dualizing the symmetry constraints does not have the Integrality Property, and (b) which
could be decomposed into a family of small 0–1 problems that could be solved easily in
integers when the size of the problem is such that it becomes difficult to solve them as a
whole.

4 The Integer Linearization Property (ILP) applied to quadratic 0–1
problems

4.1 What is the ILP?

The ILP was presented without a name in (Geoffrion 1974), and used very effectively in
(Geoffrion and McBride 1978). The idea is the following. For an optimization problem with
a single parameter α between 0 and 1 in the right hand side of the constraints, parametric
programming would normally represent the optimal value as a function f (α) of α in the
interval [0, 1]. However, if α can take only value 0 or value 1, and if the optimum is equal
to 0 when α is 0, given that the inside part of the curve, for 0<α <1, is irrelevant, one can
replace it by a straight line joining the origin and the point [1, f (1)] on the curve (Geoffrion
1974; Geoffrion and McBride 1978). In (Guignard 2003), this property was named Integer
Linearization Property (or ILP), since one can linearize the curve of the optimal value between
its end points. More accurately we now call it “the 0–1 ILP,” or “the ILP” for short.

This property is useful for some special forms of the Lagrangean function, as we will
see in the next subsection. It leads to a Lagrangean relaxation problem that decomposes into
smaller subproblems.

4.2 Using the 0–1 ILP in Lagrangean relaxation

Decomposable here will not mean, as is usually the case, that the Lagrangean relaxation
model simply decomposes into, say, p independent but similar subproblems for some integer
p. A standard example of this would be the case of a 0–1 loading problem with weight
and volume constraints (numbered 1 and 2 in the model below), to which one would apply
Lagrangean decomposition (Guignard and Kim 1987). Suppose the original model reads

Max

{∑
i

fi yi s.t.
∑
i

Aki yi ≤ bk, k ∈ {1, 2}, and yi ∈ {0, 1}, all i
}

.
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One possible Lagrangean decomposition would first create a copy of each variable yi ,
call it wi , say, and after replacing yi by wi in the k � 2 constraint, one would dualize the
constraints yi � wi , ∀i, with Lagrangean multipliers λi unrestricted in sign. The resulting
Lagrangean problem would decompose as follows:

Max

⎧⎨
⎩

∑
i

fi yi +
∑
i

λi (yi − wi ) s.t.
∑
i

A1i yi ≤ b1,
∑
i

A2iwi ≤ b2, yi , wi ∈ {0, 1}, all i

⎫⎬
⎭

� Max

⎧⎨
⎩

∑
i

( fi − λi )yi s.t.
∑
i

A1i yi ≤ b1, and yi ∈ {0, 1}, all i

⎫⎬
⎭

+ Max

⎧⎨
⎩

∑
i

λiwi s.t.
∑
i

A2iwi ≤ b2, and wi ∈ {0, 1}, all i

⎫⎬
⎭.

In this case each subproblem is a 0–1 knapsack problem and the two problems are inde-
pendent except for sharing the Lagrangean multipliers λi . One can also write this in a
“variable-splitting” way by simply decomposing the objective function f into the sum of
two objective functions f1 and f2 to obtain the equivalent formulation

Max

{ ∑
i

f1i yi s.t.
∑
i

A1i yi ≤ b1, and yi ∈ {0, 1}, all i

}

+ Max

{∑
i

f2iwi s.t.
∑
i

A2iwi ≤ b2, and wi ∈ {0, 1}, all i

}
.

The two subproblems have a very similar structure. One has really split the original
constraint set into subsets with a similar structure. This is not the type of decomposition
that is meant here. Both types of decomposition may have the same beneficial effect on
the solution time because the subproblem sizes are smaller. Here the decomposition occurs
only if the model has a special structure, and it requires some re-formulation of the original
Lagrangean problem. This is explained in the remainder of this section.

We are assuming now that we have to solve a Lagrangean Relaxation for some special
type of quadratic 0–1 optimization problems. Lagrangean problems of interest typically will
have the form

LR: Max
x,y

∑
i

Li (xi , yi ) subject to xi ∈ Zi ∩ Ai yi , y ∈ P

where the component yi of y is a 0–1 variable for each i ∈ I, I a finite index set of dimension
n, P is the set of 0–1 points in a polyhedron, xi is an ni -dimensional vector, where ni is a
positive integer greater than or equal to 1, Ai is a polyhedral set in Rni , Zi can be either Rni

or a subset of vectors in Rni with some specific components either integer or binary. That
is, depending on Zi , there may be integrality conditions on at least some components of xi
∈ Zi . We assume that the constraints xi ∈ Zi ∩ Ai yi imply that xi �0 for yi �0, and xi
∈ Zi∩Ai for yi �1. Finally, we assume that the Max of Li (xi , yi ) subject to xi ∈ Zi ∩ Ai yi ,
is 0 for yi �0 and Vi for yi �1, i �1,..,ni .

Without the constraint y ∈ P, LR would decompose into one problem for each index i:

Si (yi ) : Max
xi ,yi

Li (xi , yi ) subject to xi ∈ Zi ∩ Ai yi

whose optimal value would be 0 for yi �0 and, say, Vi for yi �1.
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With the constraint y ∈ P, however, the optimum of (LR) can be found by solving the
following problem in y:

V (y) : Max
∑
i

Vi yi subject to y ∈ P,

which depends only on the binary variables yi . Variables xi have disappeared.
This is an important result: for a Lagrangean problem of this special type, after computing

all individual Vi ’s for all i ∈ I, the final Lagrangean problem reduces to a problem over
variables y only, thus its size is much smaller than in its original formulation. This argument
is what Geoffrion and McBride exploited so successfully in their 1978 paper for Capacitated
Facility Location Problems.

4.3 Using the ILP in a Lagrangean relaxation of some 0–1 quadratic IP’s

In the following sections, we will review possible uses of (LR) with the (ILP) for some
(0–1) quadratic optimization problems with linear constraints. Given what has been said in
Sect. 3, in order to be able to use the (ILP) property, it is essential to start from an RLT1-type
model whose structure can produce a Lagrangean relaxation model without the Integrality
Property, and decomposable. More specifically, it is necessary to be able to extract from all
the variables a subset of (0–1) variables, call them yi , such that

(1) the Lagrangean problem decomposes into one subproblem, say, Si (yi ), for each yi ,
(2) the variables of Si (yi ) other than yi , call them xi , scalar or multidimensional, will be 0

for yi � 0, and
(3) problem Si (yi ) will have optimal value 0 for yi �0, and, say, Vi for yi �1.

Then the optimal value of LR can be computed simply by solving the linear problem

V(y) : Max
∑
i

Vi yi subject to y ∈ P

with y∈P representing the original constraints on y alone.
The advantage of being able to produce a Lagrangean relaxation with the ILP is two-fold:

(a) the subproblems Si (yi ) will be simpler to solve than LR, because they are smaller, and
they might just be LP’s.

(b) the final problem V(y) is only over y, so, again, much smaller than LR. If it does not
have the Integrality Property, then its integer optimum can be strictly larger than its LP
relaxation value. This might actually hold even if it has the Integrality Property, and can
be explained by the fact that the integrality of variables yi has already been exploited
in the linearization process, i.e., the fact that yi can only be 0 or 1 and never strictly
between 0 and 1 is used in the decomposition of the Lagrangean problem.

In what follows, we will concentrate on Lagrangean relaxations of RLT1-like models that
do not have the Integrality Property, and use the ILP to decompose them so that the scheme
can be used for large instances. The emphasis of this paper is in carefully constructing an
RLT1-like model, which should yield a strong LR bound and be decomposable, if its size
requires it, using the ILP. One needs to determine which “added” constraints one should
keep in the decomposable Lagrangean problem to make the bound strong, and which need
to be ignored, dualized or rewritten because they would not allow the Lagrangean problem
to decompose. We will refer to the overall process as RLT1+LR+ILP decomposition or
RLT1+LR+ILP for short.
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We will show for two related assignment-type models that it is possible to obtain bounds
strictly better than the optimal continuous RLT1 bounds, often better and always computed
much faster than the best known RLT2 bounds, by selecting one specific Lagrangean multi-
plier, the 0 vector, without even iterating. For these two models, it was nearly impossible to
get any type of subgradient method to converge. A separate paper with Jongwoo Park will
present an adaptation of the surrogate subgradient method (this could be used to generate
even stronger bounds than the initial bounds presented here), together with experiments with
larger instances for which RLT2 bounds could not be computed before. We will also consider
briefly in Sect. 7 a model with a much simpler structure, the quadratic 0–1 knapsack problem.
A similar approach was used in Caprara et al., but they only tested the decomposed version
of RLT1+LR+ILP with continuous variables. We always consider that all variables are 0–1,
and we will show that using a 0 Lagrangeanmultiplier also produces a much improved bound
over the standard RLT1 continuous bound, without dramatically increasing solution time.We
expect that implementing the fully decomposed version of RLT1+LR+ILPwill be both time
saving and bound improving.

In the next section, we will consider a problem related to the QAP, the Generalized
Quadratic Assignment Problem, or GQAP. It is probably as difficult as the QAP, if not more,
but it has the advantage over the QAP of having a linear version that does not have the
integrality property, and thus can produce 0–1 RLT1-like models with Lagrangean bounds
strictly better than continuous RLT1 bounds. We will wait until Sect. 5.3, that is until after
we will have presented a complete analysis of the desired structure of RLT1 models for the
GQAP, to discuss our choice of Lagrangean multiplier values.

5 The Generalized Quadratic Assignment Problem (GQAP)

TheGQAPwas introduced by Lee andMa in (2004) and studied early on, in particular in (Kim
2006), (Zhu 2007) and (Pessoa et al. 2010). It corresponds to the Generalized Assignment
Problem (GAP) in the same way the QAP corresponds to the Assignment Problem (AP): by
having the same constraints but a quadratic rather than a linear objective function. Unlike
the AP which has the integrality property and can at the limit be solved as an LP, the GAP
is NP-hard. One can construct decomposable Lagrangean Relaxations from RLT1 without
the Integrality Property, in other words, the Lagrangean bound can be strictly better than the
continuous RLT1 bound for the original 0–1 quadratic problem. In this section and the next
one, we will study RLT-like models for the GQAP and for a special case of the GQAP, the
CDAP, as well as Lagrangean relaxation schemes capable of yielding strong bounds at low
computational and storage cost.

The original idea of the type of approach presented below was proposed in Guignard
(2006), and later reproducedwith permission byY.-R. Zhu in Sect. 4.7 of her PhD dissertation
(2007). Initial experiments, however, using the subgradient method or column generation
were not successful. In Pessoa et al. (2010), a different Lagrangean relaxation scheme was
implemented for the GQAP, but as shown at the end of this section, produced a weaker bound
than the one proposed here.

The GQAP can be formulated as follows:

GQAP: Minimize
x

Z �
∑
i, j

Bi j · xi j +
∑

i, j,k,n

Ci jkn · xi j · xkn (4-1)
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subject to

M∑
i�1

ai j xi j ≤ S j ( j� 1, 2, . . . , N ), (4-2)

N∑
j�1

xi j � 1 (i � 1, 2, . . . , M). (4-3)

xi j ∈ {0, 1} (i � 1, 2, . . . , M ; j � 1, 2, . . . , N ), (4-4)

where

Bi j is the linear cost of assigning facility i to location j .

Ci jkn is the quadratic cost of assigning facility i to location j

and simultaneously facility k to location n.

A special case is whenCi jkn is of the form fikd jn .

xi j is 1 iff facility i is assigned to location j .

ai j is the space needed if facility i is located at location j .

S j is the space available at location j .

M is the number of facilities.

N is the number of locations.

The original quadratic model GQAP can be transformed through the introduction of new
variables into a linearized model called LIP similar to the model used by Adams and Johnson
(1994) for the QAP. In order to transform GQAP into an equivalent Linearized mixed Integer
Programming Problem (LIP), let us first define:

vi jkn � xi j xkn, ∀(i, j, k, n) (4-5)

Relation (4-5) cannot be included in LIP, since it is nonlinear. Instead, in order to maintain
the equivalence, we must include some constraints that are implied by it. Notice that, with x
binary, if (4-3) holds

N∑
j�1

xi j � 1 ∀(i � 1, 2, . . . , M) (4-3)

it follows that

xi j xin � 0 (4-6)

for all j different from n, and if vi jkn � xi j xkn ∀(i, j, k, n), then vi j in � xi j xin �
0, ∀(i, j, n) with j ��n, while vi j i j � xi j xi j � xi j , ∀(i, j), for x binary. We will keep
this in mind in what follows.
Now, we multiply on the left by xi j , i �� k, both sides of (4-3), written as∑

n

xkn � 1, ∀(k), (4-7)

and obtain: ∑
n

vi jkn � xi j ∀(i, j, k), i �� k (4-8)

123



Annals of Operations Research (2020) 286:173–200 183

One could also multiply both sides of (4-7) on the right by xi j , i �� k, and obtain:∑
n

vkni j � xi j ∀(k, i, j), i �� k (4-9)

In addition to constraints (4-8) and (4-9) in LIP, given that xi j xkn � xknxi j ,∀(i, j, k, n),
as pointed out in Padberg and Rijal (1996) for the QAP, one also has the implied symmetry
constraint

vi jkn � vkni j ∀(i, j, k, n). (4-10)

In fact, one can see that it is sufficient to keep either (4-8) and (4-10) [then (4-9) follows],
or (4-9) and (4-10) [then (4-8) follows] to get a linear model equivalent to GQAP.

We also require that vi jkn be nonnegative:

vi jkn ≥ 0 ∀(i, j, k, n), i �� k. (4-11)

Using implications of (4-4) and (4-5), we can rewrite the objective function (4-1) of GQAP
as ∑

j,n,i ��k

Ci jknvi jkn +
∑
i, j

(Ci ji j + Bi j )xi j . (4-12)

Here we choose to work with the following LIP formulation, consisting of all equations
from (4-2) through (4-12), except for (4-5) and (4-9):

LIP: Minimize :
∑

j,n,i ��k

Ci jknvi jkn +
∑
i, j

(Ci ji j + Bi j )xi j (4-12)

subject to∑
i

ai j xi j ≤ S j ∀( j) (4-2)

∑
j

xi j � 1 ∀(i) (4-3)

xi j ∈ {0, 1} ∀(i, j) (4-4)∑
n

vi jkn � xi j ∀(i, j, k), i �� k (4-8)

vi jkn � vkni j ∀(i, j, k, n), i < k (4-10)

vi jkn ≥ 0 ∀(i, j, k, n), i �� k (4-11)

With the xi j variables binary, one can prove that the linear mixed-integer model LIP is
equivalent toGQAP. It is clear that (4-8) and (4-10) imply (4-9), so (4-9) was ignored.Wewill
refer to that form of the problem as a terse RLT1 model. A full sized RLT model would also
include products of the inequality (4-2) by xi j or its complement. Yet they are not necessary
to prove the equivalence with the original model, as shown below.

The following theorem is adapted from (Zhu 2007, Sect. 4.1). Zhu’s model contains an
additional set of RLT constraints.

Property 4.1 Problems (GQAP) and (LIP) are equivalent in the following sense:

A. Given any feasible solution x of GQAP, there exists a feasible solution (x, v) in (LIP) with
the same objective value.
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B. Conversely, given any feasible solution (x, v) of (LIP), the corresponding solution x is
feasible in (GQAP) with the same objective value.

Proof (A) For a given x , let vi jkn � xi j xkn, it is trivial to show that (x, v) is a feasible
solution of LIP and the objective function values of GQAP and LIP match as long as
(4-2), (4-3) and (4-4) are part of LIP.

(B) Conversely, to show the other direction of the equivalence, given that LIP contains the
constraints of GQAP with variables x , we have to show that a feasible solution (x, v)
of LIP satisfies vi jkn � xi j xkn,∀(i, j, k, n), i < k, which guarantees that the objective
values of LIP and GQAP are equal. In fact, given that the x variables are restricted to be
0 or 1, it suffices to show that if (x, v) is feasible to LIP, vi jkn is 0 unless xi j and xkn are
both equal to 1, in which case it is also 1.

• If xi j � 0 for given i and j, then (4-8) and (4-11) together implyvi jkn � 0,∀n,∀k �� i .

If xkn � 0 for given k and n, then (4-8) rewritten as

∑
j

vkni j � xkn ∀(k, n, i), k �� i

and (4-11) together imply

vkni j � 0, ∀ j,∀k �� i .

By the symmetry constraint (4-10), one can therefore say that for any (i, j, k, n), with i ��
k, vi, j,k,n is 0 whenever either xi j or xkn or both are equal to 0.

• Now, one must show that vi jkn � 1 if xi j � xkn � 1 for given i, j, n, and k �� i .

From (4-3),
∑
j ′
xi j ′� 1∀i , which implies that if xi j � 1 then xi j ′ � 0 ∀ j ′ �� j .

If xi j � 1 then from (4-8), for any k �� i ,
∑
n′

vi j ′kn′ � xi j ′ � 0∀ j ′ �� j , which in turn

implies that for any k �� i , vi j ′kn′ � 0 ∀ j ′ �� j, ∀n′.
Thus, in particular for n′ � n, we obtain that vi j ′kn � 0 ∀ j ′ �� j .
Therefore, by (4-8) and the symmetry constraint (4-10),

xkn �
∑
j ′

vkni j ′ �
∑
j ′

vi j ′kn �
∑
j ′ �� j

vi j ′kn + vi jkn � vi jkn

which implies that if xkn � 1 then vi jkn � 1. This completes the proof. �
Notice that the equivalence holds in spite of the fact that the inequality constraint (4-2) was

not multiplied by an x term. Adding such constraints might tighten the model, but care must
be taken to ensure that the ILP still holds. We will consider possible Lagrangean relaxation
schemes satisfying the ILP in the next subsections.

Notice that a by-product of the proof is that whenever all xi j are binary in LIP, so are all
vi jkn , thus LIP is really a pure integer programming problem. This may have implications
when studying geometric interpretations of Lagrangean relaxations of LIP. After dualizing
some constraints, the Lagrangean problem should not have the integrality property to allow
the LR bound to dominate the LP bound.
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5.1 A Tiny Lagrangean Relaxation of a small RLT formulation for the GQAP

Let us now consider relaxations of problem LIP with the potential of yielding strong bounds
on the optimal value of (GQAP). First of all, obviously, the continuous relaxation LIP of
LIP resulting from replacing the binary conditions on x by nonnegativity conditions [upper
bounds are not necessary given (4-3)], will yield a valid lower bound on the optimum of LIP
and thus on that of GQAP. A priori, stronger bounds for LIPmay be obtained by Lagrangean
relaxation if the Lagrangean subproblems do not have the Integrality Property.

Consider dualizing (4-10), the “symmetry” constraint, which only involves the v variables.
The Lagrangean subproblem for Lagrangean multiplier λi jkn,∀i, j, k, n, i < k, and with
either (4-8) or (4-9), but not both, is, if we choose (4-8):

LRλ : Min
∑

j,n,i,k:i ��k

Ci jknvi jkn +
∑
i, j

(
Ci ji j + Bi j

)
xi j +

∑
j,n,i,k:i<k

λi jkn
(
vkni j − vi jkn

)
(4-13)

subject to∑
i

ai j xi j ≤ S j ∀( j) (4-2)

∑
j

xi j � 1 ∀(i) (4-3)

∑
n

vi jkn � xi j ∀(i, j), ∀k �� i (4-8)

vi jkn ∈ {0, 1} ∀(i, j, k, n), i �� k (4-11)

xi j ∈ {0, 1} ∀(i, j) (4-4)

Instead of (4-8), one could use∑
n

vkni j � xi j ∀(k, j), i �� k (4-9)

but not both, as the families of v variables that depend on a given x variable at 1 should not
overlap, to allow LIP model decomposition with respect to the xi j ’s.

The Lagrangean dual is

LR Max
λ

v(LRλ),

its optimal value is what we call the Lagrangean bound on v(LIP)�v(GQAP). Notice that with
the symmetry constraint (4-10) dualized, (4-8) and (4-9) are not equivalent any more, yet,
with (4-10), one can keep only one of the two constraints, (4-8) or (4-9), without changing
the optimal value. Problem LRλ, essentially because of constraints (4-2), does not have the
Integrality Property (Geoffrion 1974).

We can nowmake use of the ILP to solve LRλ easily, if either (4-8) or (4-9) is not present in
the model. Ignoring temporarily the constraints that are solely over xi j , i.e., (4-2), (4-3) and
(4-4), one can see that the only true constraints remaining are (4-8) or (4-9), and if only one
of them is present in the model, the Lagrangean problem does decompose into one problem
for each (i, j), i.e., in fact, for each xi j , which plays the role of a right-hand-side parameter.
The value of xi j can only be 0 or 1. If it is 0, all associated vi jkn are also zero by (4-8) (resp.
all vkni j by (4-9)). If it is 1, the non-overlapping subproblem constraints are
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∑
n

vi jkn � 1 ∀k �� i if one chooses (4−8)

(
resp.

∑
n

vkni j � 1 ∀k �� i if one chooses (4−9)

)

and for each k, one solves a multiple choice problem, i.e., one simply selects the vi jkn(resp.
the vkni j ) with the smallest objective function coefficient (notice that one must set exactly
one of them equal to 1 for each (i, j, k), given the equality constraint, even if some objective
function coefficients is negative, which can happen given that the multipliers λi jkn may have
any sign). Let βi j be the optimal value of this trivial (i, j)th subproblem, then LRλ is equivalent
to

(GAPλ) Minimize:
∑
i, j

(Ci ji j + Bi j + βi j )xi j

s.t.
∑
i

ai j xi j ≤ S j ∀( j) (4-2)

∑
j

xi j � 1 ∀(i) (4-3)

xi j ∈ {0, 1} ∀(i, j). (4-4)

This is a linear generalized assignment problem (aGAP). Thus the solution of LRλ requires
the solution of exactly one GAP, and the final bound may be tighter than the LP bound v(LIP).
Given the current practical limits on GQAP problem sizes, it seems that current BB solvers
can solve such linear generalized assignment problems to optimality within a few seconds.

5.2 A stronger Lagrangean relaxation of a larger RLT formulation for the GQAP

For linear problems, as mentioned earlier, the strength of a Lagrangean relaxation is a direct
consequence of its geometric interpretation.Wepropose to strengthenmodel LIPby adding the
following constraints that use the fact that for all i and j, vi j i j � xi j and vi j in � 0 for j �� n:∑

k

aknvi jkn ≤ Sn xi j ∀(i, j, n), k �� n (4-14)

and ∑
k ��i

ak jvi jk j ≤
(
S j − ai j

)
xi j ∀(i, j) (4-15)

as proposed in (Billionnet and Calmels 1996), and used by our co-authors and us in (Pes-
soa et al. 2010). Adding these constraints to the “kept” polyhedron tightens the relaxation,
although it does make it more expensive to solve. Indeed instead of doing simple arithmetic
for computing the βi j , we now have to solve one problem in 0–1 variables for each pair (i, j).
The ILP still holds, as the vi jkl variables still decompose into non-overlapping families, one
for each xi j . In the end, one has to solve a 0–1 linear problem for each pair (i,j), and the same
linkingmodelGAPλ, but with stronger βi j values. Each Lagrangean relaxation submodel will
take a little longer to solve than for the “tiny” model. The advantage is strongly improved
bounds.

We are presenting one GQAP instance for which results have already appeared in the lit-
erature, and compare our results with previously published ones. One of the GQAP instances
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proposed by Lee and Ma is of dimension 7 × 16, it has 112 0–1 variables and 23 constraints.
It is mentioned in the literature as Lee&Ma 16 × 7. There is a factor α in the data that can
be used as a multiplier in the objective function, it is usually taken as 5, but was tested for
our approach in Table 1 both with values 1 and 5. OV is the optimal value and Gap (%) is
the relative percentage error between the lower bound LB and OV. The results in the col-
umn RLT1+LR+ILP are taken from (Park 2014) using the subgradient method proposed
by Beltran and Heredia in 2005, and the other results from (Pessoa and al. 2010) using the
volume algorithm. As can be seen, the duality gap for RLT1+LR+ILP is 0, the lower bound
is exact and proves the optimality of the best feasible solution found. By contrast, other
bounds are weaker. The improvement comes from having a tighter set of constraints in the
Lagrangean relaxation, still decomposable via ILP, which allows solving the Lagrangean
dual by solving a set of subproblems of dimension no larger than that of the original model.

5.3 Lagrangean relaxation with 0multiplier and the LIPmodel without (4.10)

The two Lagrangean relaxations discussed above can be applied to the standard GQAPmodel
and to any special case of it, such as the CDAP discussed in Sect. 6. Now that the general
scheme RLT+LR+ILP has been described in detail for the GQAP, it may be important to
bring up two issues that are important in practice.

5.3.1 The use of valid bounds in practice

TheMIP literature is rich in approaches for IP problems. Among them, one finds in particular
papers concerned with finding bounds on integer optima. Some concentrate on finding better,
that is tighter types of bounds than those previously available, if any, see for instanceGuignard
and Kim (1987) for Lagrangean decomposition bounds that could be tighter than Lagrangean
relaxation bounds, or Adams and Johnson (1994) proposing bounds for the QAP obtained
from solving approximately a continuous RLT model. There are other types of papers that
do not necessarily search for the strongest possible bound of a particular type, for instance
an optimal Lagrangean relaxation bound, but use “some” bound to be used in BB methods
for getting proven optimal solutions quickly. See for instance Caprara et al. (1999) for 0–1
quadratic knapsack problems, where the authors compute suboptimal Lagrangeanmultipliers
that they do not update in the BB tree, because the relaxed problems yield already strong
bounds and can be solved very quickly. Finally, there are papers that propose to compute
tight Lagrangean bounds, possibly together with a heuristic approach, aimed at providing
quickly solutions in a environment where speed is critical. This paper is trying to combine
aspects of all three approaches. In the context of crossdock door assignment for example
(see Sect. 6), one must be able to provide gate assignments quicky. It is then important
to be able to come up with a quick solution together with a good bound (see for instance
Guignard et al. 2012). The next subsection presents a justification for our selection of a single
multiplier vector, in this case the 0 vector, in the rest of the paper, within our RLT+LR+ILP
approach.
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5.3.2 The use of 0 multipliers in RLT + LR + ILP3

Let us assume that the problem to be solved admits an RLT-like model whose Lagrangean
relaxation of the symmetry constraint produces a model with the ILP property. Let us take
the example of the GQAP. In the proof of Property 4.1, the symmetry constraint (4.10) plays
a role at two places. Let us ignore the i �� k case, that is specific to this problem type. In part
B, without (4.10), one cannot conclude that if (x, v) is feasible to LIP, vi jkn is 0 unless xi j
and xkn are both equal to 1, in which case it would also be 1. Still, the LRmodels of Sects. 5.1
and 5.2 both contain all the constraints on x , plus some constraints linking x and v. The LR
relaxationswithmultipliers equal to 0 have all original constraints, plus all constraints linking
x and v, but they do not have the symmetry constraints (4.10). In addition, if the symmetry
constraints are close to being satisfied, the Lagrangean objective function value may be close
to the original objective function value. The relaxed RLT model with 0 multipliers may thus
be close to the original model. We will first explore the effect of this multiplier choice on a
special case of the GQAP in the next section.

6 The Crossdock Door Assignment Problem (CDAP)

The CDAP is a special case of the GQAP. It arises in a crossdock, i.e., a building, often
rectangular, that receives loaded incoming trucks on one side, the inbound side, and dispatches
loaded outgoing trucks on the opposite outbound side. The goods from the incoming trucks are
unloaded and sorted according to destinations, carried across the building to the outbound
doors where they are loaded into outgoing trucks that will transport them to their final
destinations. The origins of the goods can be manufacturer sites and destinations can be
distribution centers. The advantage over the “old” system of storing goods in warehouses
until they are needed is consolidation of shipments and just-in-time deliveries. The CDAP
problem consists in assigning incoming trucks to inbound doors and outgoing trucks to
outbound doors so as to minimize the cost of transporting the goods through the crossdock.
This cost may be substantial as carts are often pushed manually trough the crossdock and
transporting goods from a given incoming truck to outbound trucks may require a number of
trips, and this often add a large component to the cost of labor.

This optimization problem can be viewed as aGQAP as follows. Index i (resp. i’) represents
either an incoming (resp. an outgoing) truck that needs to be assigned to exactly one inbound
door j (resp. outbound door j’, see constraint (4-3)). Each inbound door j (resp. outbound
door j’) can only handle a certain volume (or weight, or a function of both) S j (resp. S j ′ )
to be downloaded (inbound case) or uploaded (outbound case) during a shift (see constraint
(4-2)). The goal is to minimize the total cost of transporting the goods from inbound doors to
outbound doors using Manhattan distances. Let Ci ji ′ j ′ be the unit transportation cost, which
may depend, among other things, on the distance between doors j and j’ and the kind of goods
transported. The cost of carrying across the dock the goods from truck i unloaded at door j,
that must be delivered at destination i’ by a truck assigned to door j’ is Ci ji ′ j ′ xi j xi ′ j ′ since it
depends on simultaneously assigning i to j and i′ to j′. This is a static decision problem that
is at the core of a number of dynamic or simulation approaches over time.

The “names” of the instances in the dataset can be a little misleading. The dataset assumes
that the problem is symmetric, i.e., there are as many incoming as outgoing trucks, and there
are as many receiving as departing doors. So for instance a problem named 20x10Sk will

3 We want to thank Jongwoo Park for suggesting this option.
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have a total of 20 × 10, so 200, possible assignments on each side of the crossdock, and
therefore 400 binary assignment variables, since an incoming truck cannot be assigned to an
outbound door, nor an outgoing truck to an inbound door. The k in 20x10Sk refers to different
ways of generating the coefficients of the instance. The smaller k, the more difficult it is to
find feasible 0–1 solutions, which explains some of the variations in runtime for instances of
the same size.

The CDAP problem is somewhat more difficult to solve than the general GQAP. One
approach would consist of treating it just as a GQAP, with every variable xi j or vi jkn created,
giving for instance a very large cost to assigning an incoming (resp. outgoing) truck to an
outbound (resp. inbound) door. Thiswas ourfirst approach, but it created numerical instability.
We used GAMS’ index management facility to restrict the sets of pairs (in the case of xi j )
or 4-tuples (in the case of vi jkn) of indices to those that make physical sense.

We demonstrate the potential bound improvement of using RLT+LR+ILP over the con-
tinuous RLT1 and RLT2 bounds for the CDAP by providing results for instances from a
large dataset called SetA (and SetB for larger instances) that was generated for and used
in (Guignard et al. 2012). Table 2 gives results for a few of the smaller, less interesting,
instances, and for all instances with between 144 and 500 x variables. The table first lists
the standard exact continuous RLT1 bounds computed by LP, in this case by GAMS/gurobi
using the barrier option with no crossover, since we have no use for the optimal basis. We
chose to compute these RLT1 bounds by linear programming for two reasons: (1) for these
relatively small sizes these bounds are easy to compute exactly using LP software, and they
are exact, while bounds from the literature, being computed by dual ascent heuristics, cannot
be guaranteed to be optimal, and (2) we might want to use the optimal dual variables of
the symmetry constraints as initial Lagrangean multipliers in the Lagrangean relaxation. We
know by LR theory that the corresponding LR bound, computed by solving optimally an
integer programming problem, will be at least as strong as the optimal LP relaxation bound.
While most likely not optimal, this “initial” LR value provides a guaranteed lower bound
on the possible increase from the continuous RLT1 bound to the optimal RLT1+LR+ILP
bound. The total running time should then be the sum of the time to solve the continuous
RLT1 to optimality and the time to solve the Lagrangean relaxed problem.We also computed
Lagrangean bounds corresponding to taking λ � 0. All Lagrangean values for λ � 0 were
stronger and took less computing time than using the optimal LP multipliers (see Sect. 5.3
for a discussion on the potential advantages of using 0 multipliers). This being the case, we
are not reporting the values based on the optimal LP multipliers. The bounds given are only
iteration #1 of the optimization of the Lagrangean dual, to be used, if desired, as a starting
point for the optimization of the Lagrangean bound.

We also list the RLT2 bounds and times provided by Peter M. Hahn.4 These RLT2 bounds
are computed by a sophisticated dual ascent method coded in Fortran using the GQ3AP
model (see Zhu 2007, for details), in which bounds were systematically recorded after 20,
then 40 iterations.

As expected, as the instance dimension increases, the ratio of the computation times
needed by the method of this paper over those needed for computing continuous RLT2
bounds becomes increasingly better, and the approach becomes more and more attractive.
As a reminder, if the original instance is of size n, the RLT1 model is of size n2 and the
RLT2 model of size n3, but our problems in RLT1+LR are all of size n2, and if decomposed,
one has many submodels, all only of size n. No guaranteed optimal solution is known for

4 We want to thank Peter M. Hahn for graciously providing us with unpublished continuous RLT2 bounds
and running times for the CDAP when available.
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instances with more than 180 variables xi j , that is, the largest instances solved to optimality
are those called SetA_15x6Sxxx. All computations in Table 2 were performed on the same
Linux department server. The RLT1+LR+ILP runs used GAMS 25.0.2, and Gurobi library
version 7.5.2, using the barrier option with no crossover. The server’s characteristics are as
follows: processors 2x Intel Xeon E5-2623 v3 3.0 GHz, storage 300 GB 15 K and 600 GB
10 K, RAM, OS RHEL 6.7.

As the size of the instance keeps increasing, the difference between the running times of
the non-decomposed Lagrangean model and the decomposed one can be expected to become
larger and larger. We asked Jongwoo Park5 if he could share a few of the results of his
implementation of the full ILP-decomposition of the LR model, also using 0 Lagrangean
multipliers. His experiments used gams 24.9.2 and cplex 12.7.1.0, and in order to compare
comparable results, Table 3 summarises runs all obtained using cplex on that same department
server. It includes a few instances forwhich anRLT2boundwas not available and/or forwhich
cplex could not get an optimal value for the non-decomposedmodel within a reasonable time.
It shows the optimal value and time obtained by Park using the fully ILP-decomposed model.
As expected, for larger instances, the time for solving this decomposed LR model is much
smaller than that required for solving the full size decomposable, yet not fully decomposed,
model. Why not critical for smaller instances, this is the way to go for a really efficient
implementation for large instances. This will be presented in a separate paper with Park
concentrating on the implementation of the full RLT1+LR+ILP decomposition and on the
optimization of the Lagrangean bound by adapting the surrogate subgradient method (Zhao
et al. 1999; Bragin et al. 2015). This method was the only method among many tested that
reliably produced improvement of the LR bound over the initial value.

7 The quadratic 0–1 Knapsack Problem

The Quadratic Knapsack Problem (QKP), see for instance Caprara et al. (1999) and Létocart
et al. (2012) is a 0–1 knapsack problem with a quadratic objective function:

(QKP) Minimize Z �
∑
i

Bi · xi +
∑
i,k

Cik · xi · xk (6-1)

subject to∑
i

ai xi ≤ b, (6-2)

xi ∈ {0, 1} (i � 1, 2, . . . , M).

Let us replace xi xk by vik , and let us write the RLT1 model:

(LIP) : Minimize Z �
∑
i

Bi · xi +
∑
i,k

Cik · vik (6-11)

subject to:
∑
i ��k

aivik ≤ (b − ak)xk,∀k (6-12)

∑
i ��k

aivki ≤ (b − ak)xk,∀k (6-12′)

5 We want to thank Jongwoo Park for making available for this paper a small sample of his computational
experiment on the CDAP using RLT1+LR+ILP. See Park and Guignard (2018).

123



194 Annals of Operations Research (2020) 286:173–200

Ta
bl
e
3
C
om

pa
ri
so
n
of

co
nt
in
uo

us
R
LT

1,
R
LT

2
an
d
R
LT

1
+
L
R
+
IL
P
bo

un
ds

w
ith

ou
ta
nd

w
ith

fu
ll
de
co
m
po

si
tio

n
(C
D
A
P)

In
st
an
ce

#
of

0–
1
va
r.

E
xa
ct
R
LT

1
C
on

ti.
bo

un
d

N
um

be
r
of

va
ri
ab
le
s
of

R
LT

1

T
im

e
in

s
B
es
t

co
nt
in
uo

us
.

R
LT

2
bo

un
d

by
H
ah
n
(4
0

ite
r.)

T
im

e
in

s
In
iti
al

L
ag
ra
ng

ea
n

bo
un

d
us
in
g

0
du
al
va
rs
.

w
/o

IL
P

de
co
m
p.

T
im

e
in

s
In
iti
al

L
ag
ra
ng

ea
n

bo
un

d
us
in
g

0
du
al
va
rs
.

w
ith

IL
P

de
co
m
p.

(P
ar
k
20

18
)

T
im

e
in

s
O
pt
.v
al
ue

15
x6

S5
18

0
13

,0
74

32
,5
80

4.
0

13
,1
02

46
06

13
,1
37

T
im

e
lim

it
13

,1
40

7
13

,9
27

15
x7

S5
21

0
13

,7
73

44
,3
10

9.
8

13
,8
16

39
28

13
,9
31

T
im

e
lim

it
13

,9
47

21
N
A

20
x1

0S
5

40
0

26
,2
93

16
0,
40

0
37

9
26

,1
80

12
8,
91

8
26

,6
72

15
69

26
,6
72

32
N
A

20
x1

0S
10

“
26

,1
61

16
0,
00

0
26

2
N
A

N
A

26
,4
46

39
5

26
,4
46

23
N
A

20
x1

0S
15

“
26

,0
43

“
22

7
N
A

N
A

26
,3
00

33
9

26
,3
00

20
N
A

20
x1

0S
20

“
25

,9
32

“
64

8
N
A

N
A

26
,1
61

21
8

26
,1
61

19
N
A

20
x1

0x
30

“
25

,7
66

“
17

4
N
A

N
A

25
,9
53

29
5

25
,9
53

27
N
A

R
LT

2
bo

un
ds

fr
om

Fo
rt
ra
n
co
de

(H
ah
n)

A
ll
ot
he
r
bo

un
ds

us
in
g
G
A
M
S
24

.9
.2
,C

pl
ex

12
.7
.1
.0

A
ll
ru
ns

on
sa
m
e
de
pa
rt
m
en
ts
er
ve
r

123



Annals of Operations Research (2020) 286:173–200 195

vik � vki∀(i, k), i �� k (6-13)∑
i

ai xi ≤ b (6-14)

vik ∈ {0, 1} ∀(i, k), i �� k (6-16)

xi ∈ {0, 1} ∀(i) (6-17)

Ignoring (6-12) or (6-12′), then dualizing the symmetry constraint (6-13) with Lagrangean
multiplier λ, one obtains a Lagrangean model LR λ. In this paper, we require the Lagrangean
model to be decomposable into a submodel for each xi , and we solve it with 0multipliers, i.e.,
in fact, we ignore the symmetry constraint. Contrary to the approach of Caprara, Pisinger
and Toth, we require that the Lagrangean problem be solved with all variables x and v

constrained to be 0–1. Based on the arguments given in (4-3), we used 0 multipliers and the
values obtained are presented in Table 4.

The bound improvement between the continuous RLT1 and the integer Lagrangean relax-
ation of RLT1 advocated above is substantial, while the increase in computer time is a small
multiple. Using the fully ILP-decomposed model instead would most likely yield a time
reduction comparable to that seen in the CDAP case. This is left for future research.

8 Conclusion and further research

This paper investigates the theoretical and computational aspects of using RLT1+LR+ILP
decomposition for some 0–1 quadratic models with linear constraints. The results reported
in the paper for the CDAP, with bounds comparable to unpublished RLT2 results provided by
Peter M. Hahn for some smaller instances, are very promising. For the smallest instances, the
time to obtain ourRLT1+LR+ILPboundsmay be a little larger than that of theRLT2method,
but as problem dimensions increase, the trend is for the continuous RLT2 code to require a
much larger number of variables and as a consequence a much larger computation time and
space than the RLT1+LR+ILP approach, even without using the full ILP-decomposition.
The point seems to be that the particular type of RLT1model chosen, fully decomposable into
subproblems of the size of the original model, yields strong Lagrangean relaxation bounds.

The results on the quadratic 0–1 knapsack problem show perhaps even more clearly that
spending a little more time than for the continuous RLT bound by solving instead a single
non-decomposed Lagrangean subproblemwith 0multipliers already producesmuch stronger
bounds on the integer optimum. Decomposing the Lagrangean model would obviously pro-
duce the same bound, but would reduce this time even further, and it may be a good choice
for the design of an efficient Branch-and-Bound code.

Another extension of the research will be to construct a Branch-and-Bound code for the
CDAP, similar to that of Hahn that produced optimal solutions for the CDAP instances with
up to 180 0–1 variables, but using bounds from RLT1+LR+ILP in 0–1 variables instead of
from RLT2 models solved as continuous models.

Another attractive possibility is to re-examine the symmetry constraints in the RLT1
model. As mentioned in Sect. 3.3, these symmetry constraints are not copy constraints, in
the sense of Lagrangean decomposition (Guignard and Kim 1987). Indeed the symmetric
variables are variables of the originalmodel, not artificial copies. But it is possible to introduce
copies of the original variables, giving them another name, say,w j i , satisfying the additional
constraint
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vi j � w j i , ∀i, j,
and to copy carefully selected constraints in which one has replaced vi j by w j i . The original
symmetry constraint is erased. Ignoring first the constraints over x alone, one can decompose
the remaining problem into one problem per xi , and remembering that we need only keep
the problems with xi � 1, this problem itself decomposes into a subproblem in variables
vi j and one in variables w j i . Their optimal values are then used in the coefficient of xi
in the overall objective function subject to the constraints over x. If one chooses to split the
constraints, as well as duplicate some, between the vi j and thew j i subproblems, so as to have
two subproblems without the integrality property, one may get bounds strictly better than by
plain Lagrangean relaxation. One will have to find which value to give to the Lagrangean
decomposition multipliers to obtain a strong initial bound. Another computational issue is
that if one wants to get the best possible Lagrangean decomposition bound, it is in general
difficult to get the subgradient algorithm to converge, most likely because the subgradient has
only components +1, 0 and −1. It is possible that the surrogate subgradient method (Zhao
et al. 1999) will be better behaved.

The approach described above for the GQAP, the CDAP and the QKP should be appli-
cable to other quadratic 0–1 problems with linear constraints. It might not always be
possible to find a version of the RLT model with the 0–1 ILP property that is equiv-
alent to the original problem in 0–1 variables. What is essential is that (1) this model
must be tight enough, and (2) it must contain (2a) the original model in terms of
the original variables, and (2b) additional constraints that each have one original 0–1
variable as right hand side, and only associated higher-dimension variables in the left
hand side, with no such variable appearing in more than one of these subsets of con-
straints. The whole Lagrangean problem will then be decomposable into a linear version
of the original 0–1 quadratic problem, and families of simple 0–1 subproblems, one
per original 0–1 variable. This can mean a significant improvement over the standard
continuous RLT1 approach, as one avoids the significant increase in the number of vari-
ables and in the size of the RLT model each time one moves up one level in the RLT
scheme.

An intriguing question is whether it might be possible to construct a similar approach
for RLT2 bounds instead of RLT1 bounds. Can one decompose an RLT2 model into smaller
submodels that would be relatively easy to solve and would yield stronger bounds than the
continuous RLT2 continuous bounds, and maybe as good as RLT3 bounds? A starting point
for this analysis might be Adams et al. (2007).

Future research will also concentrate on identifying other important nonconvex 0–1
quadratic problem types that could benefit from the approach. Computational experiments
using the fully decomposed Lagrangean model should tell us how large the models can
become before the approach becomes too expensive. Already the decomposable, but not
fully decomposed, Lagrangean relaxation models for the RLT1 bound on the CDAP and
the QKP provide a significant computational improvement, in bound quality and, at least
for larger instances, solution time, over the continuous RLT1 model, and at times, when
available, even continuous RLT2 bounds, as shown in the computational results of this
paper.
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