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Abstract
Transportation habits have been significantly modified in the past decade by the introduction
of shared mobility systems. These have emerged as a partial response to the need of resorting
to green means of transportation and to the desire of being more flexible in the choice of
trips, both from a spatial and a temporal point of view. On the one hand, shared mobility
systems have taken advantage of the interest of riders for shared experiences. On the other
hand, their success has been possible as a result of the recent advances in information and
communications technology. The operational research community is already very active in
this emerging field, which provides a very rich source of new and interesting challenges,
covering several planning levels, from strategic to operational ones, such as station location,
station sizing, rebalancing routes. A fascinating feature of this field is the variety of the
methods used to deal with these questions. Our purpose is to survey the main problems and
methods arising in this field.

Keywords Bicycle and car sharing · Fleet dimensioning · Inventory rebalancing · Shared
mobility systems · Survey · Vehicle repositioning

1 Introduction

The world of transportation has witnessed a mini-revolution in June 2007 with the launching
of the Vélib’ bicycle sharing system in Paris. Initially 20,000 bicycles were deployed over
1200 free-access stations. In the first year 200,000 users registered and 26 million bicycles
were rented. Since then, the phenomenon has known a considerable growth. While Vélib’

This is an updated version of the paper that appeared in 4OR, 13(4), 341–360 (2015).

B Roberto Wolfler Calvo
wolfler@lipn.fr

Gilbert Laporte
gilbert.laporte@cirrelt.ca

Frédéric Meunier
frederic.meunier@enpc.fr

1 HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montreal H3T 2A7, Canada

2 Université Paris Est, CERMICS (ENPC), Marne-la-Vallée, France

3 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS UMR 7030, F-93430 Villetaneuse, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-018-3076-8&domain=pdf
http://orcid.org/0000-0002-5459-5797


106 Annals of Operations Research (2018) 271:105–126

was not the first bicycle sharing system, it was the first one of any major significance. The
Vélov’ system in place in Lyon, which dates from 2005, is believed to be the oldest one still in
existence. However, such systems have been tested in Europe since the 1960s. Public bicycles
were first introduced in Amsterdam in 1965, within the so-called white bicycle plan, but most
of these earlier systems ended up in failure because of theft and vandalism. Bicycle sharing
really took off with the advent of communication and information technologies which allow
for automatic billing and monitoring. In June 2014, there were over 712 bicycle sharing
systems in the world, involving over 800,000 bicycles (Wikipedia 2018a). For interesting
historical accounts, see DeMaio (2009), Shaheen and Cohen (2007) and Kumar et al. (2013).

In parallel, a number of car sharing systems have also been put in place. Again, the first one
(Autolib’) was set up in Paris in 2007. Currently (July 2017), the world’s largest car sharing
networks are Zipcar with over 767,000 members and 11,000 vehicles in several countries
such as Austria, Canada, France, Spain, the United Kingdom, the United States and Turkey,
and Car2Go with 2,500,000 members and 14,000 cars in several countries such as Austria,
Canada, China, Denmark, Germany, Italy, the Netherlands and the United States (Wikipedia
2018b). Navigant Consulting (see Berman et al. 2013) predicts that the number of car sharing
members will grow over 12 million worldwide by 2020 and will generate in excess of US$ 6
billion in revenue. According to Shaheen and Cohen (2007) the growth and expansion of car
sharing systemswill be fuelled by high energy costs, limited and expensive parking, improved
technologies and increased demand for personal vehicle access in developing countries.

Car and bicycle sharing systems have given rise to a fast growing industry operating
according to new specific business models, which people are just now beginning to under-
stand. The reader is referred to Perboli et al. (2017) for a methodology developed to compare
business models of car sharing companies, where the features taken into account are cus-
tomer segments, products and services offered, communication channels with the customers,
customer relationships, operating assets, revenue streams, key activities, partnerships, and
cost structure. The central operational problem faced by shared mobility systems operators
is to maintain an adequate number of vehicles in every station. Indeed, too many vehicles
can impede their return, whereas too few may translate into lost demand. However, as noted
by Médard de Chardon et al. (2016), there is a lack of clear goals in some systems, such
as profit optimization or service level considerations, and a lack of fit between rebalancing
policies and the stated or perceived goals.

Locating stations, choosing the number of vehicles per station, moving vehicles between
stations, inciting users to change their destination, are all managing decisions guided by the
need to provide a good quality of service, at both end-stations. Providing effective tools to
support these decisions constitutes an important motivation for researchers in this new field,
especially for operational researchers. However, shared mobility systems have also attracted
the attention of researchers in other areas, such as transport economics, urban planning,
sociology, and data mining, see for instance Vogel et al. (2011), Midgley (2011), Efthymiou
et al. (2013) and Cômes and Oukhellou (2014), and also the already mentioned paper by
Médard de Chardon et al. (2016), where the authors have analyzed data patterns associated
with the stations of nine bicycle sharing systems and developed a number of managerial
insights that can be useful for the design of such systems. Data mining actually plays an
important role in determining the values of the parameters in most of the operational research
models.

Our purpose is to survey the main operational research issues arising in shared mobility
systems as well as the methods that have been proposed to address them. This topic has
already been reviewed by Laporte et al. (2015). However, it is still very active and several
interesting publications have appeared since that date. Here we incorporate the most recent
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developments. We will restrict our survey to systems made up of stations where users can
take or return a vehicle. Note, however, that some car sharing systems (for example Car2Go)
do not operate with stations. The shared vehicles can be bicycles or cars. To our knowledge,
no other type of vehicle sharing exists.

We will successively examine station location, fleet dimensioning, station sizing, rebal-
ancing incentives, and vehicle repositioning. For each of these topics, we provide an overview
on the literature and describe one or more solution approaches that seemed important to us.
This work is partially based on a preliminary survey by Meunier (2014).

2 Station location

As noted in the introduction, bicycle availability is a key factor of success of a bicycle shared
system.But it is also crucial that users should be able find stationswithin a convenientwalking
distance from their origin and their destination. Budget and space availability constrain the
number of stations and their locations and challenge the design of a system having a good
performance. Several works have been devoted to this topic. In this section, we present a
series of papers in which the location issue has been explicitly taken into account.

Lin and Yang (2011) proposed the first operational research study of the station location
problem for a bicycle sharing problem. They have modeled the problem as a non-linear
integer program which simultaneously considers the location of stations and user flows, as
well as the location of bicycle lanes, with an objective function combining the operators’ and
users’ criteria. Their model was solved by LINGO on a small example. Lin et al. (2013) have
formulated the problem as a joint hub location and inventory model and have expressed it as
an integer non-linear program. The model was solved by CPLEX on instances containing up
to 30 origins, 30 destinations and 80 candidate bicycle stations.

Several researchers have worked on real-life problems and data. Martinez et al. (2012)
have presented amodel to simultaneously optimize the location of shared bicycle stations, the
fleet dimension, and the relocation of bicycles throughout the day. Their model was solved
through a simple relocation heuristic and was applied to data from the city of Lisbon. Kumar
and Bierlaire (2012) developed a mathematical model to locate electric car sharing stations
in and around the city of Nice. The model takes into account the attractiveness of the stations
to the users located in their vicinity, as well as the distance between users and facilities. The
results of the model were used to make recommendations to Auto Bleue which manages the
car sharing service in Nice. In particular the authors recommended caution before adding
new stations in order to minimize the impact of cannibalization. Correia and Antunes (2012)
have developed threemixed integer linear programmingmodels aimed at determining the best
number, location, and size for the depots of a one-way car sharing system, each corresponding
to a trip selection scheme. Their models were tested on data from the city of Lisbon. The
authors showed that 75 depots needed to be located to fully satisfy the demand.

Martens (2007) studied a number of policies initiatives to promote the use of bicycle
sharing systems in the Netherlands. She emphasizes the importance of locating parking
spacing close to railway stations, as well as security issues. Nair and Miller-Hooks (2014)
have modeled the operator’s revenue maximization problem as a bilevel program. More
details are given below. Another station location problem with a game-theoretic approach
was formulated by Chow and Sayarshad (2014) in a more general framework aimed at
evaluating the impact of designing a transportation network when there already exists a
network. The authors have applied their model to the bicycle-sharing system of Toronto
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(Bike Share Toronto—formerly BIXI Toronto) and were able to make concrete subsidy
recommendations.

Li et al. (2016a) have used a continuous approximation model (see, e.g., Franceschetti
et al. 2017) to determine the location and size of facilities in an electric vehicle sharing
system. This approach partitions the plane into hexagonal cells, each of which containing a
single station. It is assumed that each user can access a station within a set time limit (on foot,
for example). Given a cell and a station located in its center, one can compute the total access
cost over a time period assuming stochastic travel demands with Poisson distributions having
a relatively highmean. Probability computations can be used to determine the size of a station
in order to achieve a certain service reliability. The partition is obtained through a constructive
procedure that first meshes the plane into basic units which are then agglomerated to form
cells of feasible sizes by sweeping the plane only once. Computational results are presented
on the transportation network of Sioux-Falls City in North Dakota.

To our knowledge, the Nair and Miller-Hooks (2014) approach is the only one based on
bilevel programming. The problem under study consists of determining the best locations
for the stations, as well as their capacities and their initial vehicle inventories, subject to a
budget constraint. The quality of a solution is given by the expected revenue, seen as a linear
function of user flows. The operator can relocate vehicles.

This leads naturally to a bilevel program. A mathematical program is a bilevel program
when the values of some variables are optimal solutions of another optimization problem,
called the lower-level problem, solved by one or several different decision makers. The main
objective function together with the other constraints is the upper-level problem. Here, the
lower-level problem allows computing the value of the user flows for a given choice of the
decision variables (locations and capacities of the stations, initial inventories). The user flows
have an impact on the durations of the possible trips. Each user selects a trip of minimum
duration, while this duration depends on the trips selected by the other users. If the users act
in a non-cooperative way, which is the case in the model considered here, the user flows yield
a Nash equilibrium: each user chooses a best response to the choices of the other users. The
Nash equilibrium here is actually called aWardrop equilibrium because there is a continuum
of users. It turns out that this equilibrium can be computed via a minimization problem, see
Spiess and Florian (1989).

The constraints of the upper-level problem are the logical constraints linking the decision
variables and the budget constraint. The set of possible locations for the stations, supposed
to be finite, is denoted by P . In a compact way, the bilevel program they deal with is of the
form

maximize F(v)

subject to G(x, y, z) ≤ 0

min f (v,w)

s.t. g(x, y, z, v,w) ≤ 0

x ∈ {0, 1}P , y, z ∈ Z
P+

v ∈ R
P×P×K+ , w ∈ R

P×K+ .
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Variables x, y, and z are the upper-level variables of the model. The variable xi is a binary
variable equal to one if and only if a station is opened at i . The variable yi is the number of
parking slots opened at the station located at i , and the variable zi is the number of vehicles
initially parked at the station located at i , if there is such a station. The variables v and w are
the lower-level variables of the model. The variable vi jk is the user flow from location i to
location j relative to the origin-destination (OD) pair k. The variable wik is the waiting time
at location i of the network relative to the OD pair k.

The operator wants to maximize his revenue, modeled has a function F(v) of the flows.
He can set the variables x, y, and z, while satisfying constraints modeled as G(x, y, z) ≤ 0.
These constraints are the logical constraints between x, y, and z, and the budget constraint.
For a choice of these variables, the users make a decision that minimizes their travel time,
leading to certain values for the variables v and w. The functions f and g are respectively
the objective function and the constraints of the minimization problem modeling the Nash-
Wardop equilibrium.

Bilevel programs are generally hard to solve, see Colson et al. (2007) for a survey. Nair
andMiller-Hooks (2014) assume that all functions involved are linear in every variable. Even
in this case, the problem is hard, but a standard technique, applied by the authors, consists of
replacing the lower-level program by the Karush–Kuhn–Tucker conditions characterizing the
optimal solution. Using additional binary variables, the resulting complementary constraints
can then be replaced by linear constraints. The bilevel model is thus reformulated as an
integer linear program which they solve by CPLEX. This method seems to be suitable for
networks with no more than 40 vertices. The experiments also show that the optimal design
is potentially inefficient for users and that subsidies to operators are probably required to
incite them to design a user-efficient system.

3 Fleet dimensioning

The first paper to consider the fleet dimensioning problem in a shared mobility system is
probably that of George and Xia (2011). Their approach is based on tools from queueing
theory. Fricker and Gast (2016) also used a queueing approach to analyze the effect of bicycle
station capacity on system performance. These two approaches are detailed below.

Before presenting the George-Xia and Fricker-Gast approaches, we mention the work by
Shu et al. (2013) who addressed the following questions related to the management of a
bicycle sharing network. Given stations locations, how many bicycles should be deployed in
order to capture demand and thus ensure the system’s viability? Given travel patterns, how
should the bicycles be distributed? What should be the size of the stations? The authors have
developed a stochastic network flow model and, by making a number of hypotheses, they
were able to cast their problem as a linear program. They conducted a numerical analysis
using transit data from Singapore. The authors stressed the importance of deploying the right
number of bicycles at the right locations because this affects their utilization rate and the way
in which these circulate within the system. Note that the paper by Nair and Miller-Hooks
(2014), discussed in Sect. 2 about the station location issue, also addressed the problem of
setting the initial inventory of bicycles in each station.

In the system considered by George and Xia (2011), users arrive at a station i according
to a Poisson process of rate λi and choose a destination station j with probability pi j . The
duration of a trip between two stations i and j follows a general distribution with a finite
mean. This distribution is assumed to be the same for all users but depends on i and j . The
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model assumes that the vehicles are exclusively relocated by the users and that each station
has an infinity capacity. They are interested in the availability as a measure of quality of
service, defined as the percentage of users able to find a vehicle available at the steady state.

These authors model their system as a closed queueing network consisting of nodes of
two types, “single-server” and “infinite-server”, and in which the customers in the queueing
terminology are the vehicles. The single-server node set N is used to model the stations and
the infinite-server node set T is used to model the trips between the stations. There exists an
arc from each station i ∈ N to each possible trip t ∈ T starting at i , and an arc from each trip
t to the station i at which it ends. A vehicle at station i is waiting to be served by a user with
an exponential service rate λi . When it is served, it arrives at an infinite-server node with
a service time distributed according to the trip duration distribution. The system is closed
because the vehicles are not allowed to leave it. Using general results for closed queueing
networks, they derive a closed-form formula for the steady-state probability.

The computation of this formula is unfortunately very expensive, except for the case of
a small number of stations and vehicles. The authors are, however, able to derive from their
results general principles for designing a vehicle shared system with improved availability.
They are moreover interested in determining the right number of vehicles to put in the system
in order to maximize the operator’s profit. They use the following variables to model their
optimization problem, defined at steady-state, when the number of vehicles is m. Denote by
Ai (m) the probability of finding a vehicle for a user arriving at station i (i.e. its availability).
Also denote by Lt (m) the expected number of vehicles at node t , i.e. currently making trip
t . George and Xia formulate the problem as

max
m∈Z+

∑

t∈T
rt Lt (m) −

∑

i∈N
piλi (1 − Ai (m)) − cm,

where rt is the per-unit time income obtained from a vehicle doing trip t and pi is the penalty
incurred when a user does not find a vehicle at station i . The quantity c is a per-unit time
maintenance cost for each vehicle. George and Xia prove that the function to maximize is
concave in m and propose several methods to approximately solve the problem. Here the
difficulty lies in the computation of Ai (m) and Lt (m) for any given m. They validate their
formula and the approximation methods through experiments and simulations run on a toy
model.

Fricker and Gast (2016) considered a model with the following features. The users arrive
at each station according to a Poisson process at the same rate λ. The trip durations are
all exponentially distributed with the same average value 1/μ. The destination station is
chosen uniformly at random among the stations, which are assumed to have finite capacity
C (contrasting with the George-Xia infinite capacity assumption). If a user does not find an
available vehicle to start a trip, he leaves the system. If he does not find an available slot
where to leave his vehicle after a trip, he starts a new trip. As in the George and Xia (2011)
model, the vehicles are exclusively relocated by the users. Fricker and Gast focus on the
number of problematic stations at the steady-state, i.e. stations having no vehicles or no free
slots. They study the system when the number n of stations goes to infinity, via mean-field
limit techniques. They prove that the number of problematic stations is minimized when the
average number of vehicles per station (total number of vehicles divided by the number n
of stations) is C/2 + λ/μ. The optimum is then about n/(C + 1). They also make a non-
intuitive observation: the behaviour of the system worsens if the users only arrive at stations
containing vehicles, and finish their trips at stations with available slots.

123



Annals of Operations Research (2018) 271:105–126 111

4 Station inventory

Station inventory refers to determining the ideal number of vehicles to locate at each station.
We present four papers on that topic. Interestingly, each of them formalizes the problem in a
distinctive way and proposes an approach relying on a different technique from optimization.

In Nair and Miller-Hooks (2011) the goal is to relocate the vehicles at a minimum cost,
while satisfying at best the demand. An interesting feature of this approach is that the sat-
isfaction of the demand is modeled via probabilistic constraints. The relocation process is
taken into account in a rough way, and is supposed to take place before the system opens.

More formally, each station i has a capacity Ci and an initial number of vehicles at station
i is denoted Vi . The demand in vehicles at station i is denoted ζ v

i and the demand in available
slots, that is the number of vehicles that will be returned at i , is ζ s

i . Both are random variables
of known distributions. The demand must be satisfied with a probability at least p. The cost
of relocating vehicles from station i to station j is denoted by ai j and there is an additional
penalty δ for each moved vehicle. The mathematical program to be solved is thus

minimize
∑

i, j∈N
(ai j xi j + δyi j ) (4.1)

subject to

Pr

⎛

⎜⎜⎜⎜⎝

Vi +
n∑

j=1

(y ji − yi j ) + ζ s
i ≥ ζ v

i , i ∈ N

Ci − Vi +
n∑

j=1

(yi j − y ji ) + ζ v
i ≥ ζ s

i , i ∈ N

⎞

⎟⎟⎟⎟⎠
≥ p (4.2)

∑

j∈N
yi j ≤ Vi i ∈ N (4.3)

∑

j∈N
y ji ≤ Ci − Vi i ∈ N (4.4)

yi j ≤ Mxi j i, j ∈ N (4.5)

yi j ≥ 0 and integer, xi j ∈ {0, 1} i, j ∈ N . (4.6)

The variable xi j is a binary variable indicating whether vehicles are moved from i to j .
The integer variable yi j is the number of vehicles moved from i to j . Constraint (4.2) states
that the whole demand must be completely satisfied with a probability at least equal to p.
Constraints (4.3) state that the number of vehicles moved from a station i cannot exceed
the initial inventory Vi and constraints (4.4) state that the vehicles moved to a station i
cannot exceed the station capacity Ci . Constraints (4.5) form the logical constraints linking
x and y.

The authors addressed this stochastic program through two different algorithms, both
relying on the notion of p-efficient points introduced by Prékopa (1990) for solving efficiently
stochastic programs whose randomness appears only in the right-hand side of the constraints.
In the first algorithm the non-convex probability constraints are transformed into a disjonction
of mixed integer linear programs. It is an exact algorithm, which is very time-consuming. The
second algorithm exploits a limited assumption on the independence of the random variables
to adapt an approach byDentcheva et al. (2002). This leads to an algorithmwhich is similar to
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columngenerationwhere only columns that improve the objective function are generated. The
master problem is a convexified linear relaxation of the original problem, which makes this
second algorithm only an approximation algorithm. Extensive computational experiments
were carried out on real data from the Singapore car sharing system with 14 stations, a total
capacity of 202 spaces, and 94 vehicles. Simulation studies were conducted and the proposed
solutions strategies where found to be robust. In addition, trade-offs between redistribution
costs and level of service were investigated.

Raviv andKolka (2013) focused on a single stationwithC slots. Let Dk be the kth demand
occurring at the station, which can be a demand for a vehicle or a demand for a slot. It is a
randomvariable taking the value− 1 if it is a demand for a slot, and the value 1 if it is a demand
for a vehicle. The demand Dk is assumed to follow a non-homogeneous Poisson process,
with distinct parameters for the slot demand and the bicycle demand. Non-homogeneous
means that these parameters evolve over time.

The authors introduce an inventory variable Ik equal to the number of vehicles at the
station right after the kth demand has occurred. This yields the following dynamic system:

Ik =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Ik−1 − Dk−1 < 0

C if Ik−1 − Dk−1 > C

Ik−1 − Dk−1 otherwise.

In order to measure the performance of a station, the authors model the total user dissat-
isfaction over time as follows:

m∑

k=1

(pmax{0,−Ik−1 + Dk−1} + hmax{0, Ik−1 − Dk−1 − C}) ,

where m is the total number of events considered, and p and h are two positive real numbers
representing the cost of not satisfying a user demand, respectively for a vehicle and a slot.
The quantity max{0,−Ik−1 + Dk−1} is 1 if a user does not find a bicycle at step k, and
max{0, Ik−1 − Dk−1 − C} is 1 if a user does not find a slot at step k. This dissatisfaction
measure is thus the total number of users not finding a bicycle, plus the total number of users
not finding a slot, weighted differently.

The purpose is to compute the value of I0 minimizing the total user dissatisfaction. Raviv
and Kolka (2013) proved the convexity of this dissatisfaction seen as a function of I0, and
devised an approximation method to estimate it. An interesting feature of this model is that it
neglects the interactions between stations, thus reducing the problem to the case of a single
station. The authors assume that the system will evolve in an optimal way, for example, by
minimizing the number of users who cannot find a bicycle. They conducted a study based
on the Tel-O-Fun bicycle sharing system of Tel Aviv which consists of 129 stations, 2542
parking slots, and about 1000 bicycles. They carried out extensive tests which confirmed that
the proposed method can feasibly be applied.

Vogel et al. (2014) tackled the imbalance problem bymeans of an allocation and relocation
model. They used a mathematical integer programming formulation in order to determine
optimal fill levels at the stations while minimizing the expected bicycle relocation cost for a
typical demand. The model was solved through a matheuristic combining large neighbour-
hood search with an exact integer linear programming solver. Results were presented on data
from the Citybike Wien system.

In the system considered by Datner et al. (to appear), users may not find a bicycle at
their desired starting station, and they may not find an available rack at their destination, in
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which case they will have to roam to a nearby station that has spare capacity. Both situations
generate a level of dissatisfaction that can be minimized by setting adequate inventory levels
at each station at all time. In theirmathematicalmodel, the authors discretize time into epochs.
The model is solved heuristically by searching for initial inventory levels that minimize the
expected dissatisfaction level over the planning horizon. The search is performed iteratively
starting from an initial inventory level at each station and estimating at each iteration the
expected total dissatisfaction level. This is achieved by simulating the system by means of a
user behaviour model. The heuristic was tested on real bicycle sharing systems of different
sizes: Hubway in Boston, Capital Bikeshare in Washington D. C., and Divvy in Chicago.
The results were found to be superior to those yielded by two alternative heuristics: “Half”,
in which each station is initially half filled, and “R&K”, which follows the method of Raviv
and Kolka (2013) described above. It was also shown that the performance of the algorithm
is not highly sensitive to the starting solution.

5 Rebalancing incentives

As noted in the introduction, the need to rebalance stations by redistributing vehicles among
them over time is central to the success of a shared mobility system. Incentives can be used
to encourage users to pick up vehicles at stations having a large supply and to return them
to low-inventory stations. The Paris Vélib’ system provides financial incentives to users who
return their bicycle to given stations. Such incentives are called static because they apply at
all time. One could conceivably envisage the use of dynamic incentives which could vary
throughout the day, but we are not aware of any of such system in practice.

Chemla et al. (2013a) and Pfrommer et al. (2014) have both studied a dynamic pricing
system. They assume that the price paid by users depends on the current state of the system
and on the station at which the bicycle is returned, independently of its origin. Chemla et al.
focus on the reduction of saturated stations and compute the optimal price by using the dual
solution of a Monge-Kantorovitch problem. Pfrommer et al. formulate the pricing problem
by means of optimal control theory. Singla et al. (2015) incorporated in this model a learning
mechanism to shape the user utility function, and enriched it by taking into account a budget
constraint for the operator. They were able to test their methodology on historical data.
Another work with a dynamic pricing aspect is due to Waserhole (2013) andWaserhole et al.
(2013a, b). They considered a system inwhich users reveal their itinerary and are immediately
informed of the price they must pay. The underlying objective is the maximal system usage in
terms of number of trips or total utilization time. These researchers have developed a number
of complexity results and some approximation algorithms related to this problem, and have
proposed a number of interesting open problems.

Three papers propose dynamic incentives that are not directly related to the price.
Di Febbraro et al. (2012) have investigated dynamic relocation problems arising in a one-

way car sharing system. They assumed that the users will sometimes be requested to relocate
their car at the end of their trip to a nearby station having a shortage of cars. Their aim is to
minimize the rejection ratio of reservations in any period of the day. The authors modeled the
system as a discrete event system, coupled with a relocation process based on the solution
of an integer linear program. Using data from the city of Turin, they showed that the number
of rejected reservations could be reduced significantly when car relocations were performed
exclusively by users. As a result they stressed the importance of offering adequate discounts
to users in order to incite them to relocate their car.
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Kaspi et al. (2014) studied system regulation through parking reservation policies. In
particular they investigated a policy in which users must state their destination at the time of
booking and the system reserves a parking space until they arrive at their destination. The
performance of the system was measured in terms of excess time, defined as the difference
between the actual journey time and the shortest possible time between the desired origin
and destination. Using a Markovian model the authors showed that under realistic demand
rates this policy improves the performance of the system. They performed a simulation study
on the Tel-O-Fun bicycle sharing system of Tel Aviv and showed that the excess time could
be reduced by between 14 and 34%. In a related paper Kaspi et al. (2016) have compared
several parking reservation policies and have studied their worst-case performance bounds.
Using data from the Capital Bikeshare system of Washington (232 stations) and the Tel Aviv
(130 stations) Tel-O-Fun systems they confirmed that the parking policy considered by Kaspi
et al. (2014) is the best.

In the paper already presented in Sect. 3, Fricker and Gast (2016) also study the impact of
the following modification in the way the users choose their destination. Instead of choosing
a unique destination at random (one-choice model), the users choose two stations at random,
and then go to the least loaded (two-choice model). In this case, the number of problematic
stations is about 4n

√
C2−C/2, for a whole range of possible values for the average number

of vehicles per station. This simple change, which can be interpreted as a kind of incentive,
has thus a dramatic impact on the performance of the system. Moreover, the improvement
remains about the same, even if only a small proportion of the users follow this policy, since
the decrease in the number of problematic stations is approximately exponential in the number
of users following it. This work may suggest some ways of improving the management of
such a system. However, some results are heavily dependent on the choice made in the
modeling. For instance, the authors show through simulations that the two-choice model can
even increase the number of problematic stations, for instance when the trip durations are
deterministic and long with respect to 1/λ.

6 Vehicle repositioning

Vehicle repositioning can either be static or dynamic. In the first case it typically takes place
during the night while in the second case it occurs throughout the day. Most of the research
on vehicle repositioning concerns the static case, partly because it is easier to model and also
because the impact of repositioning is more important during the night.

6.1 Static case

Raviv et al. (2013) were probably the first to study the static case. These authors present two
models: one based on an arc index which forbids each truck to visit several times a same
station, and a second one based on a time index which is much more flexible. In both cases,
the objective function—to be minimized—is the weighted sum of user dissatisfaction and
total travel time. The user dissatisfaction is modeled as a convex piecewise linear function
depending on the number of bicycles in each station. We describe the time index model now
a bit more thoroughly.

The set of stations without the depot is indicated with N and with N0 otherwise. There is
a fleet of trucks, denoted by V , used for repositioning bicycles. The time is discretized and a
truck passes through a node at instant t which is defined by taking into account the travel time
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t ′ between two consecutive nodes. They assume that user dissatisfaction can be represented
as the sum of piecewise linear functions, one for each station i . They linearize these functions
in a standard way, by adding a family of constraints characterized by parameters aiu and biu .
The decision variables are the following:

xi j tv binary variables indicating if a truck v starts traveling from station i to station j at
time t ;
yLitv number of bicycles loaded at time t ;
yUitv number of bicycles unloaded at time t ;
yi j tv number of bicycles carried by truck v at time t ;
sit bicycle inventory level on station i at time t ;
gi user dissatisfaction incurred at station i .

The model is the following:

minimize
∑

i∈N
gi + α

∑

i, j∈N0

T ′∑

t=1

∑

v∈V
t ′i j xi j tv (6.1)

subject to

gi ≥ aiu + biusiT ′ i ∈ N , u = 0, . . . , ci − 1 (6.2)

si0 = s0i i ∈ N0 (6.3)

sit = sit−1 +
∑

v∈V
(yUitv − yLitv) i ∈ N0, t = 1, . . . , T ′ (6.4)

sit ≤ ci i ∈ N0, t = 1, . . . , T ′ (6.5)
∑

j∈N0

x0 j0v = 1 v ∈ V (6.6)

∑

j∈N0

x j0,t−t ′j0,v = 1 v ∈ V (6.7)

∑

j∈N0

x ji,t−t ′j i ,v =
∑

k∈N0

xiktv i ∈ N0, t = 1, . . . , T ′, v ∈ V

(6.8)
∑

j∈N0

y ji,t−t ′i j ,v =
∑

k∈N0

yiktv + (yUitv − yLitv) i ∈ N0, t = 1, . . . , T ′, v ∈ V

(6.9)

yLitv ≤ min{ci , kv}
∑

j∈N0

xi j tv i ∈ N0, t = 1, . . . , T ′, v ∈ V

(6.10)

yUitv ≤ min{ci , kv}
∑

j∈N0

xi j tv i ∈ N0, t = 1, . . . , T ′, v ∈ V

(6.11)

yi j tv ≤ kvxi j tv i ∈ N0, t = 1, . . . , T ′, v ∈ V
(6.12)

xi j tv ∈ {0, 1}, yi j tv sit , gi ≥ 0 i, j ∈ N0, t = 1, . . . , T ′, v ∈ V ,

(6.13)

where t ′i j is the travel time between nodes i and j , and T ′ is the length of time horizon.
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The objective function (6.1) is the weighted sum of two terms: user dissatisfaction and
travel time. Constraints (6.3)–(6.5) represent the bicycle inventory at each station for each
time period. Constraints (6.6)–(6.8) are the classical flow conservation constraints which
state that a truck entering a node must exit it. Constraints (6.9)–(6.11) define the loading and
unloading values. Constraints (6.12) link the use of an arc with the maximum load on the
truck traversing that arc

The limit of the model is the discretization of the time. The authors extended the formu-
lation by adding some constraints which combine the continuous and discrete representation
of time. The authors make systematic use of integer linear programs which are solved by
CPLEX. This approach is computationally expensive and considerably restricts the size of
the instances that can be solved within reasonable time. The authors therefore propose a
two-phase heuristic. They first solve the routing part by removing the integrality constraints
on time and they then solve the loading and unloading subproblem.

Forma et al. (2015) later presented a three-step matheuristic for the same problem. In
the first step, the stations are clustered on the basis of geographical and bicycle inventory
criteria. In the second step a truck is assigned to each cluster. The truck routeswithin the cluster
while tentative inventory decisions are made for each station. In the third step the original
repositioning problem is solved assuming that the stations of the same cluster are visited
consecutively. The last two steps are formulated as mixed integer linear programs which are
solved by CPLEX. This heuristic was tested on instances involving up to 200 stations and
three trucks. It was shown to outperform previous algorithms for the same problem.

Schuijbroek et al. (2017) worked on a simplified version of the time indexed model of
Raviv et al. (2013) introduced above: mainly for tractability reasons, inventory levels of the
stations are not tracked anymore along the repositioning process. Their model is also different
in the way user dissatisfaction is computed. For a pick-up station i the authors state that the
ratio between the expected satisfied pick-up demand over the expected total pick-up demand
should be at least equal to a predefined value β−

i which is the desired level of service for
station i . In a similar way for a delivery station i , they state that the ratio between the expected
satisfied rack demand over the expected total rack demand and this ratio should be at least
equal to a predefined value β+

i . Knowing these parameters β−
i and β+

i , they compute the
minimal and maximal levels of inventory that should be present at a station by modeling it
as single server queueing system (as done for instance by George and Xia (2011) cited in
Sect. 3). With respect to the time index model by Raviv et al. (2013), the objective function
contains only the cost calculated as the sum of the travel times, while for the level of service
the following two constraints are imposed:

s0i +
∑

t∈T

∑

v∈V
(y+

i tv − y−
i tv) ≥ smin

i (6.14)

s0i +
∑

t∈T

∑

v∈V
(y+

i tv − y−
i tv) ≤ smax

i , (6.15)

where y+
i tv and y

−
i tv are the variables indicating the quantity of bicycles picked-up or delivered

in a node i by truck v at the instant t . This model is solved through a cluster-first, route-second
heuristic which yields high quality solutions on real instances.

Benchimol et al. (2011) proposed a simple model whose merit is mostly academic. They
consider a single truck that repositions bicycles in order to bring the inventory of each station
to a predetermined value. Their objective is to minimize the routing cost. The authors have
studied the complexity of the problem. They also developed approximation algorithms and
proved that the problem is polynomially solvable when the graph is a tree. They left the
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complexity status of the case when the graph is a cycle as an open question. Krumke et al.
(2013) developed an approximation algorithm for a similar case but using several trucks
instead of only one.

Chemla et al. (2013b) revisited the Benchimol et al. model and proposed a relaxation of
the problem yielding lower bounds. The main difference between the Chemla et al. (2013b)
model and those already presented above is that it deals with a single truck problem, as
opposed to a multi-truck problem. The authors propose a model based on the maximum
number of times a single truck can pass through a node, which can be computed a priori.
The idea of counting the number of times a truck passes through a node means that one can
disregard the passage time at a node.

Since the model seems to be still intractable, they introduce two relaxations based on the
idea of collapsing the graph. The only condition required by the remaining constraints and
variables is that the solution must form a Eulerian subgraph. The first relaxation uses two
sets of variables: the z variables indicating which arcs are used and the y variables being
the number of bicycles moved on each arc. The second relaxation is based only on the z
variables:

minimize
∑

(i, j)∈A

ci j zi j (6.16)

subject to
∑

j∈N
zi j =

∑

j∈N
z ji i ∈ N (6.17)

∑

i∈N\{0}
z0i = 1 (6.18)

∑

(i, j)∈δ+(S)

zi j ≥ μ(S), S ⊆ N \ {0} (6.19)

∑

(i, j)∈δ+(S)\δ(0)
zi j ≥

⌈
d(S)

Q

⌉
S ⊆ N (6.20)

zi j ≥ 0 and integer (i, j) ∈ A. (6.21)

The set δ+(S) is defined by {(i, j) ∈ A : i ∈ S; j ∈ S̄}. The parameter Q is the capacity of
the truck. The quantity d(S) is defined as

∑
i∈S di , where di is the number of bicycles to be

added to station i when it is positive, and the number of bicycles to be removed from i when
it is negative. The quantity μ(S) is equal to 1 if there is at least one station i in S with di �= 0,
and 0 otherwise. Constraints (6.17) are the flow conservation constraints. Constraints (6.18)
state that only one truck is used. Constraints (6.19) impose connectivity. Constraints (6.20)
ensure that the total inventory of any subset S of stations is brought to its target value, while
respecting the capacity of the truck.

An interesting feature of the Chemla et al. (2013b) paper is the proof that given a routing
solution, it is possible to checkwhether it is feasible in terms of the number of bicycles loaded
and unloaded by solving a maximum flow problem. The latter property was embedded within
a tabu search framework capable of computing high quality solutionswithin reasonable times.

This approach was improved in the work by Erdoğan et al. (2015). The improvement
consists of using a logarithmic exact encoding of the integer variables modeling the multiple
visits, which was an issue of the previous approach. Rainer-Harbach et al. (2015) proposed an
efficient local search algorithm and some variations of it for a generalization of this problem,
considering the case of multiple trucks and with a target inventory value that is not a hard
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constraint, but imposed as a penalty in the objective function. Di Gaspero et al. (2013a, b)
applied constraint programming to the same problem. The difficulty of the static repositioning
problem with a fleet of trucks relies on the fact that multiple visits to stations are allowed. It
seems that there is yet no efficient exact method for solving this variant.

Erdoğan et al. (2014) proposed the first exact algorithm for this problem in the context
were the inventory of each station must lie within a predetermined interval. They developed
and implemented a Benders decomposition scheme and a branch-and-cut algorithm for this
problem. Instances involving up to 50 stations were solved to optimality. The problem con-
sidered by Erdoğan et al. assumes that the truck visits each station at most once, whereas
Chemla et al. allow multiple visits to a same station.

Dell’Amico et al. (2014) studied the static repositioning problem for the case where
each station has a specific positive or a negative demand. The authors considered a fleet of
capacitated trucks used to redistribute the bicycles throughout the network. Their objective
function is to minimize the total routing cost. They view the problem as a one-commodity
pickup-and-delivery capacitated truck routing problem. The authors propose four mixed
integer linear programming formulations for the problem, which they solve by branch-and-
cut. In order to assess the quality of their algorithms the authors introduce 60 benchmark
instances derived from 22 real bicycle sharing systems of diverse sizes. The sizes of the
instances vary from 13 to 116 stations. The authors were able to optimally solve all instances
involving 50 stations and obtained relatively low optimality gaps in most of the remaining
cases.

Bruglieri et al. (2014) addressed the repositioning problem for a car-sharing system with
electric vehicles. They model the problem via an integer linear program for which two
different solving techniques are proposed: one based on CPLEX, and another on a simple
effective heuristic. They apply these methods on the instances derived from the Milan road
network.

Szeto et al. (2016) considered a single-truck static repositioning problem in which the
objective is a weighted sum of penalties for unmet customer demand and routing costs. The
problem was solved by means of an enhanced version of a local search metaheuristic called
chemical reaction optimization (CRO), which performed better than a truncated version of
CPLEX and than the original CRO version.

Kloimüllner and Raidl (2017) observed than in large bicycle sharing systems, bicycles are
typically picked up in full trucks loads as opposed to partial loads. Making this restriction
considerably simplifies themodeling of the problemand has only amarginal effect on solution
quality, namely on the case of Citybike Wien. The authors modeled the bicycle repositioning
problemas a selective unit-capacity pickup anddeliveryproblemwith timebudgets and solved
it by applying a logic-based Benders decomposition technique combined with a branch-and-
check procedure. They optimally solved instances with up to 120 stations for the single-truck
case and up to 70 stations for the general case.

Ho and Szeto (2017) considered a single truck variant of the arc indexed model of Raviv
et al. (2013), and with only the user dissatisfaction term in the objective function. They
developed a hybrid large neighbourhood search metaheuristic to solve it, with an application
of tabu search to the most promising solution. This algorithm was able to solve instances
involving up to 518 stations andfive trucks. It outperformed a truncated application ofCPLEX
and the previous matheuristic of Forma et al. (2015).

Finally, Bulhões et al. (2018) considered the problem of bicycle repositioning with a
bound on the number of times each truck can visit a station—for tractability purpose—and
where the cost function has a term for the time spent in the loading and unloading process.
The authors presented an integer linear programming formulation for the problem, which
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they solved by branch-and-cut. They also developed an iterated local search metaheuris-
tics employing efficient move evaluation procedures. Experiments conducted on 1,325 new
benchmark instances ranging from 10 to 200 vertices showed that multiple visits are only
useful for stations whose capacity does not exceed 20. The average gap between the heuristic
solution value and the lower bound provided by the branch-and-cut procedure increases with
the number of trucks. It was also shown that the number of multiple visits tends to decrease
when more trucks are used.

We end this subsection with two repositioning problems occurring in bicycle sharing
systems a bit different from most of those studied in this survey. The first one involves
bicycles of different types, while the second one works with bicycles that can be left in
stations, as usual, but also almost anywhere.

Li et al. (2016b) investigated a static bicycle repositioning problem with multiple bicycle
types (for example, one-seat and two-seat bicycles), where bicycles that are in short supply
at some stations can be substituted by other bicycle types. This leads to two strategies called
substitution and occupancy. The authors formulated the problem as a mixed integer linear
program inwhich the objective function to beminimized consists of the routing cost, penalties
for unmet demand, and penalties associated with the substitution and occupancy strategies.
Under the substitution strategy, bicycles of a given type that are in short supply at a station
can be substituted by bicycles of a different type. Under the occupancy strategy, bicycles
of a given type can be placed in a truck compartment dedicated to bicycles of a different
type. The problem was modeled as a mixed integer linear program and solved by means of
a hybrid genetic metaheuristic with adaptive diversity control for the routing aspect, and a
greedy heuristic to determine the loading and unloading decisions at the stations, as well
as the substitution and occupancy strategies. Tests showed that the proposed algorithm can
yield high-quality solutions within short computing times.

In free-floating bicycle sharing (FFBS) bicycle users can station and lock their bicycle
on a standard rack, on any solid frame such as a fence or a lamp-post, or in a standalone
mode. Pal and Zhang (2017) modeled and solved a bicycle repositioning problem in this
context. The model can accommodate FFBS as well as conventional bicycle stations, as
well as one or several repositioning trucks. It was solved by means of a hybrid nested large
neighbourhood searchmetaheuristic with variable neighbourhood descent. Tests were carried
out for the single-truck case on benchmark instances as well as on three new set of instances:
two related to the Share-A-Bull Bikes program at the Tampa campus of the University of
Florida, and one based on the Divvy system in Chicago. Computational results indicate that
the algorithm can handle instances of realistic sizes within reasonable computing times. They
also confirm that it can deal with the increase in instance size due to the introduction of the
FFBS mode within a classical station-based system.

6.2 Dynamic case

There exist some interesting papers on the dynamic case. In contrast to the static case, the
users alsomove the vehicles. The decisionmaker has to take this feature into account when he
decides to perform repositioning. Lu (2013) and Sayarshad et al. (2012) have demonstrated
the potential impact of good repositioning policies during the day. These authors do not
model in detail the truck routes used for the repositioning, but consider a cost function that
aggregates the unsatisfied demand and the estimated repositioning cost. Other authors such
as Caggiani and Ottomanelli (2013), Chemla et al. (2013a), and Pfrommer et al. (2014)
consider the routes of the relocations performed by the trucks more finely, and consider the
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case when the trucks have to react in an on-line manner to the current state of the system. This
line of research has not yet been fully explored partly because of the modeling difficulties it
involves. Note, however, that Krumke et al. (2013) have studied a theoretical version of this
problem. These authors obtained a competitive algorithm yielding a bounded deviation with
respect to the optimum. All other papers presented in this section deal with the case when the
time-dependent demand is known in advance and the truck operations are planned off-line.

Angeloudis et al. (2014) considered the so-called strategic repositioning problem in the
context of bicycle sharing. They assume that the stations will be visited on a regular basis
throughout the day by a fleet of trucks based at various depots. These trucks should reposition
bicycles so as to bring the inventory level of each station close to a target level. The routes
are such that any station may be visited by more than one truck. The duration of the truck
routes must lie within some intervals which would allow the same truck to perform several
tours during the same day. The authors solve the problem in two steps. They first design the
truck routes by solving a multi-truck routing problem. They then solve a flow assignment
problem to determine the number of bicycles of each arc of each route in order to respect the
truck capacity and to bring the inventory level of the station close to its target. The solution
methodology was tested on a sample of 30 stations in central London.

Kek et al. (2009) considered a dynamic car relocation problem in which cars must be
relocated throughout the day by employees working on different shifts. They formulated the
problem as a mixed integer linear programwhose objective minimizes a generalized cost that
includes relocation cost, staff cost, and penalty costs for rejected demands or rejected truck
returns to specific stations. The authors developed a simulator to generate instances based
on data collected from the intelligent community truck system (ICVS) which they solved by
CPLEX. Using data from a car sharing company in Singapore they showed that their system
can reduce staff cost by 50% and car relocations by around 40%.

Contardo et al. (2012) modeled and solved the dynamic case as follows. The time is
discretized into T periods. The dynamic aspect of the problem is taken into account by
associating a demand f (i, t) for empty racks or bicycles at each station i and each period t .
The authors consider a fleet of trucks available for repositioning. They work on a space-time
graph whose vertices are the pairs (i, t), for each station i and each time period t (to which
vertices for the initial positions of the trucks and a “final state” vertex are added). There are
four families of variables: the variables y(i,t) representing shortage and excess of bicycles
at station i for the period t ; the variables z(i,t) representing the number of bicycles left at
station i for the period t ; the variables wa,k being binary variable indicating whether truck k
traverses arc a in its route; the variables xa,k being the number of bicycles carried by truck
k along arc a. Apart from the w variables, all other variables are continuous. The objective
function minimizes the unmet demand. The constraints of the model are the following:

(1) flow conservation constraints at each station for each time period;
(2) constraints stating that each arc is used at most once;
(3) constraints that link the use of an arc with the maximum load of the truck traversing it;
(4) flow conservation constraints;
(5) non-negativity constraints on variables x , y, and z.

The model is solved by Dantzig–Wolfe decomposition and Benders decomposition.
Kloimüllner et al. (2014) adapted the methods proposed in Rainer-Harbach et al. (2015)

to cope with the dynamic case. Interesting features of their approach are a strongly multiob-
jective function and the fact that they avoid time discretization of the demand function.

Ghosh et al. (2017) developed a large-scale dynamic repositioning and routing model that
jointly considers routing costs and future expected demands. They developed two solution
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methodologies, one based on a natural decomposability of the model into bicycle reposi-
tioning and truck routing, the other based on the aggregation of stations. They tested their
algorithms by performing simulations on instances containing user movements generated
from two real data sets. These tests confirmed that the proposed approach can reduce lost
demand and also increase the profit of the bicycle sharing system.

The paper by Zhang et al. (2017) considers a dynamic bicycle repositioning system in
which repositioning operations can take place during busy periods as opposed to only dur-
ing the night when no new user arrivals are expected. The proposed methodology globally
considers inventory level forecasts, user arrival forecasts, bicycle repositioning and truck
routing. The authors model the problem in a multi-commodity time-space network, which
results in a non-linear problem. The model is linearized and solved heuristically in a rolling-
horizon mode. The first stage solves the linear relaxation of the model, while the second
stage solves a set covering model to assign routes to the repositioning trucks. The authors
have conducted extensive simulation experiments on benchmark test-beds to validate and
assess their methodology. They concluded that it yields high-quality solutions very effi-
ciently. They also compared their results to those obtained under a night-only repositioning
policy to demonstrate the relative superiority of their approach.

Finally, Chiariotti et al. (2018) use a discretization of time and historical data to compute
an approximation of the “survival time” of each station in the network. They then compute
the cost of replenishing a station and a reward derived from it. This enables them to determine
the set of nodes to include in the next replenishment tour. The authors assume that each such
tour is executed by means of a single uncapacitated truck. The resulting Traveling Salesman
Problem is then solved by means of a nearest-neighbour heuristic. The method was tested
on the New York City’s CitiBike network using a full year of data. The proposed approach
was compared against two alternative policies: one in which no repositioning takes place,
and one in which repositioning takes place twice a day, at 3h00 and at 15h00. They showed
the superiority of their dynamic replenishment system over these two policies.

We end this subsection by mentioning a system that mixes rebalancing inventives and
dynamic repositioning features. Ghosh and Varakantham (2017) suggested the use of bicycle
trailers for the repositioningoperations.Abicycle trailer is an add-on to a bicycle that can carry
from three to five bicycles at the same time. The idea is that the bicycles can be repositioned
by the users themselves using this technology. In a sense this way of operating is akin to
crowdsourcing witnessed in parcel delivery. The authors have developed a model that assigns
crowdsourcing tasks to potential users under a budget constraint. Tests conducted on several
demand scenarios derived from the Boston Hubway bicycle sharing system data showed that
the proposed approach is competitive with conventional truck-based repositioning systems.

7 Conclusion

Table 1 summarizes the content of our survey. It provides for each problem the related
references with respect to the decision level. For this table, we gathered the problems of fleet
dimensioning and station inventory under a same header called “sizing”.

To conclude, we propose a number of research questions that arose while writing this
survey.Our overall impression is that there already exists awide range ofmethodological tools
to solve most planning problems raised by shared mobility systems. However, open research
questions remain. In particular,we sense that some interesting combinatorial questions remain
to be investigated. For example, determining the optimal inventory level at each station is
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Table 1 Summary of the reviewed papers

Strategic Tactical Operational

Location

Correia and Antunes (2012)

Kumar and Bierlaire (2012)

Li et al. (2016a)

Lin and Yang (2011)

Lin et al. (2013)

Martinez et al. (2012)

Martens (2007)

Nair and Miller-Hooks (2014)

Sizing

Fricker and Gast (2016) George and Xia (2011) Datner et al. (to appear)

Shu et al. (2013) Nair and Miller-Hooks (2011)

Nair and Miller-Hooks (2014) Raviv and Kolka (2013)

Vogel et al. (2014)

Incentives

Kaspi et al. (2016) Chemla et al. (2013a)

Di Febbraro et al. (2012)

Fricker and Gast (2016)

Kaspi et al. (2014)

Pfrommer et al. (2014)

Singla et al. (2015)

Waserhole et al. (2013a)

Waserhole et al. (2013b)

Routing

Benchimol et al. (2011) Angeloudis et al. (2014)

Bruglieri et al. (2014) Caggiani and Ottomanelli (2013)

Bulhões et al. (2018) Chemla et al. (2013a)

Chemla et al. (2013b) Chiariotti et al. (2018)

Dell’Amico et al. (2014) Contardo et al. (2012)

Di Gaspero et al. (2013a) Ghosh et al. (2017)

Di Gaspero et al. (2013b) Ghosh and Varakantham (2017)

Erdoğan et al. (2014) Kek et al. (2009)

Forma et al. (2015) Kloimüllner et al. (2014)

Ho and Szeto (2017) Krumke et al. (2013)

Kloimüllner and Raidl (2017) Lu (2013)

Li et al. (2016b) Pfrommer et al. (2014)

Pal and Zhang (2017) Sayarshad et al. (2012)

Rainer-Harbach et al. (2015) Zhang et al. (2017)

Raviv et al. (2013)

Schuijbroek et al. (2017)

Szeto et al. (2016)
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an important aspect of the rebalancing problem that has not yet received much attention
and should ideally be studied within a theoretical framework. On the methodological side,
the design of exact algorithms for the multi-truck repositioning problem has not yet been
investigated and seems rather difficult for instances of reasonable sizes. The deterministic
case is the most obvious, but this problem cast within a stochastic context is also meaningful.
Finally, the study of several repositioning problems in an on-line environment is at the same
time relevant and challenging.
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Bulhões, T., Subramanian, A., Erdoğan, G., & Laporte, G. (2018). The static bike relocation problem with
multiple vehicles and visits. European Journal of Operational Research, 264, 508–523.

Caggiani, L., & Ottomanelli, M. (2013). A dynamic simulation based model for optimal fleet repositioning in
bike-sharing systems. Procedia-Social and Behavioral Sciences, 87, 203–210.

Chemla, D., Meunier, F., Pradeau, T., Wolfler Calvo, R., & Yahiaoui, H. (2013a). Self-service bike sharing
systems: Simulation, repositioning, pricing. Technical report, <hal-00824078>. https://hal.archives-
ouvertes.fr/hal-00824078/document.

Chemla, D., Meunier, F., & Wolfler Calvo, R. (2013b). Bike-sharing systems: Solving the static rebalancing
problem. Discrete Optimization, 10, 120–146.

Chiariotti, F., Pielli, C., Zanella, A., & Zorzi, M. (2018). A dynamic approach to rebalancing bike-sharing
systems. Sensors, 18, 512.

Chow, J. Y. J., & Sayarshad, H. R. (2014). Symbiotic network design strategies in the presence of coexisting
transportation networks. Transportation Research Part B: Methodological, 62, 13–34.

Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations
Research, 153, 235–256.

Cômes, E., &Oukhellou, L. (2014).Model-based count series clustering for bike sharing system usagemining,
a case study with the Vélib’ system of Paris. ACM Transactions on Intelligent Systems and Technology,
5, 39:1–39:21.

Contardo, C., Morency, C., & Rousseau, L.-M. (2012). Balancing a dynamic public bike-sharing system.
Technical report, CIRRELT-2012-09. https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2012-09.pdf

Correia, G. H. de A., & Antunes, A. P. (2012). Optimization approach to depot location and trip selection in
one-way car sharing systems. Transportation Research Part E: Logistics and Transportation Review, 48,
233–247.

Datner, S., Raviv, T., Tzur, M., & Chemla, D. (to appear). Setting inventory levels in a bike sharing network.
Transportation Science. https://doi.org/10.1287/trsc.2017.0790.

Dell’Amico,M., Hadjicostantinou, E., Iori, M., &Novellani, S. (2014). The bike sharing rebalancing problem:
Mathemmatical formulations and benchmark instances. Omega, 45, 7–19.

DeMaio, P. (2009). Bike-sharing: History, impacts, models of prevision, and future. Journal of Public Trans-
portation, 12, 41–56.
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