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Abstract

Clustering validity indices are the main tools for evaluating the quality of formed clusters and
determining the correct number of clusters. They can be applied on the results of clustering
algorithms to validate the performance of those algorithms. In this paper, two clustering
validity indices named uncertain Silhouette and Order Statistic, are developed for uncertain
data. To the best of our knowledge, there is not any clustering validity index in the literature
that is designed for uncertain objects and can be used for validating the performance of
uncertain clustering algorithms. Our proposed validity indices use probabilistic distance
measures to capture the distance between uncertain objects. They outperform existing validity
indices for certain data in validating clusters of uncertain data objects and are robust to outliers.
The Order Statistic index in particular, a general form of uncertain Dunn validity index (also
developed here), is well capable of handling instances where there is a single cluster that is
relatively scattered (not compact) compared to other clusters, or there are two clusters that
are close (not well-separated) compared to other clusters. The aforementioned instances can
potentially result in the failure of existing clustering validity indices in detecting the correct
number of clusters.

Keywords Clustering validity index - Uncertain data - Probabilistic distance measures -
Data mining

1 Introduction

In traditional data mining problems, each data object is associated with only a single point
value. This means that no uncertainty is assumed for each data object. This type of data
mining problem is referred to as certain data mining. There is another type of data mining
problem that is called uncertain data mining. In uncertain data mining problems, each data
object is not a single point value anymore and a level of uncertainty is assumed for each data
object.

Uncertain data objects come in two possible forms: (1) multiple points for each object,
and (2) a probability density function (pdf) for each object, either given or obtained by fitting
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to the multiple points (Tavakkol et al. 2017). The most general application of uncertain
data is where at each setting there are multiple repeated measurements instead of a single
measurement. Other applications of uncertain data mining are found in sensor networks,
moving object databases, and medical and biological databases (Qin et al. 2009). Images are
also the type of objects that can be considered as uncertain data objects. Given an image with
at least one object, each image object can be converted to a group of two-dimensional points.
Then the whole image can be modeled with all the points from all the objects in the image,
or with the probability density function that can be fitted to all the points.

Uncertain data objects can be reduced to certain data objects if only a representative
statistic such as the mean of each object is considered (Tavakkol et al. 2017). However,
uncertain data objects naturally carry extra information compared to certain data objects that
would be discarded if they are converted to certain data objects. This shows the importance
of designing data mining techniques that can handle uncertain data objects and capture their
extra information.

Developing uncertain data mining techniques has been the topic of many researches. In
Aggarwal and Philip (2009), a comprehensive review of the literature in four categories of
uncertain data mining problems i.e. classification, clustering, outlier detection and frequent
pattern mining, is provided.

Clustering, one of the main techniques in data mining, falls under the category of unsuper-
vised techniques. Unsupervised techniques work with no class label information provided.
Clustering is about organizing the objects in a data set into coherent and contrasted groups
or as we call them clusters (Pakhira et al. 2004). The objective is to form clusters so that the
objects in the same cluster are close to each other but are far from the objects in other clusters.
In other words, the objective of clustering is to form clusters so that they are compact and
also well-separated from each other. For more information about clustering algorithms, see
Qin et al. (2017), Marinakis et al. (2011) and Duan et al. (2009).

For certain data, many popular clustering algorithms exist in the literature. One of the most
well-known is K-means (Chiang et al. 2011; Hartigan and Wong 1979). With the number of
clusters known a priori, the K-means algorithm optimizes either by minimizing the within-
cluster spread (forming compact clusters), or by maximizing the between-cluster spread
(forming separated clusters).

Uncertain data clustering algorithms have been the topic of a few research studies that
appear in Aggarwal and Philip (2009), Chau et al. (2006), Lee et al. (2007), Gullo et al. (2008a,
b, 2010, 2013, 2017), Kao et al. (2010), Yang and Zhang (2010) and Kriegel and Pfeifle
(2005). A comprehensive survey of uncertain data algorithms which includes clustering
algorithms as well is provided in Aggarwal and Philip (2009). In Chau et al. (2006), a K-
means clustering algorithm for uncertain data objects is developed which uses the expected
distance to capture the dissimilarity between two uncertain objects. It is shown in Lee et al.
(2007) that the uncertain K-means algorithm of Chau et al. (2006) can be reduced to certain
K-means algorithm. A hierarchical clustering algorithm for uncertain data is proposed in
Gullo et al. (2008b, 2017). Clustering uncertain data using Voronoi diagrams and r-tree
index is developed in Kao et al. (2010). Mixture model clustering of uncertain data objects is
investigated in Gullo et al. (2010, 2013). In Gullo et al. (2008a) and Yang and Zhang (2010),
K-medoids clustering algorithms for uncertain data objects using the expected distance as
the distance between the two objects are proposed. In Jiang et al. (2013) and Kriegel and

Pfeifle (2005), density-based clustering algorithms F DBSCAN and uncertain DBSCAN with
probabilistic distance measures are developed. A K-medoids clustering algorithm that uses
probabilistic distance measures for capturing the distance between uncertain objects is also
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developed in Jiang et al. (2013). In this paper, we use the uncertain K-medoids clustering
algorithm with probabilistic distance measures to evaluate the performance of our proposed
clustering validity indices.

There are two important questions that need to be addressed in any clustering problem
(Fraley and Raftery 1998; Halkidi et al. 2001). One is about the actual number of clusters
that are present in the data set. And another question is about the validity and goodness of
the formed clusters. The answers to these two questions can be obtained by using cluster-
ing validity indices. Clustering validity indices are single numerical values that are obtained
by incorporating both the compactness and separation of clusters (Pal and Biswas 1997).
When the question is to find the best number of clusters, first, a clustering algorithm such
as K-means should be used. The desirable number of generated clusters k, k=1,...,n can be
set as an input for the clustering algorithm. After the clusters are formed, clustering valid-
ity indices use the formed clusters i.e. the output of the clustering algorithm and provide a
value for each k, k=1,...,n. Depending on the clustering validity index, the best number of
clusters is detected as the one that produces the largest or smallest value of the index. Sim-
ilar to the procedure used to find the correct number of clusters, clustering validity indices
can be used to evaluate the goodness of clusters. For any fixed number of clusters, dif-
ferent clustering algorithms might produce different clusters. In these cases, also the best
formed clusters can be detected as the ones that produce the largest or smallest index val-
ues.

There are many clustering validity indices for certain data objects such as Dunn (Dunn
1973), Davies—Bouldin (Davies and Bouldin 1979), Xie—Beni (Xie and Beni 1991), Silhouette
(Rousseeuw 1987), Caliriski—Harabasz (Caliniski and Harabasz 1974), and Pakhira—Bandy-
opadhyay—Maulik (Pakhira et al. 2005). The first four indices, i.e. Dunn, Davies—Bouldin,
Xie—Beni, and Silhouette, are of the most well-known and widely used ones in the literature,
and therefore are used for evaluation purposes in this paper. To the best of our knowledge,
there is not any clustering validity index in the literature that is designed for uncertain objects
modeled with pdf or multiple points and can be used for validating the performance of
uncertain clustering algorithms.

In this paper, we propose two uncertain clustering validity indices for uncertain data
objects: uncertain Silhouette and Order Statistic (OS) index. The proposed indices are both
superior to existing certain clustering validity indices for validating clusters of uncertain data
objects.

Our proposed clustering validity indices are designed to detect the best setting as the
one where the formed clusters are as compact and separated as possible. The uncertain
Silhouette index considers the exclusive contribution of every single object to compactness
and separation of clusters in the data set. The index also uses scaled values (between — 1
and 1) for every object’s contribution, and hence is very robust to outliers. In this index,
to capture the distance between uncertain data objects probabilistic distance measures are
used.

The OS index considers the average of r smallest inter-cluster distances for separation,
and the average of r largest intra-cluster distances for compactness, instead of using the
exclusive contribution of every object. This can be potentially useful for cases where the
key characteristics of clusters are determined by only a few objects and considering other
unimportant objects might fade away the contribution of the key objects and weaken the
performance of the index. The OS index is also the general case of the uncertain Dunn
index which is developed in this paper as well. The advantage of the OS index over the
uncertain Dunn is to detect the correct number of clusters in cases where there is either a
very large dominant compactness value (a very spread cluster), or there is a small dominant

@ Springer



324 Annals of Operations Research (2021) 303:321-357

separation value (two very close clusters). Those are the two types of problems for which
uncertain Dunn index does not perform well. Like uncertain Silhouette, the OS index uses
probabilistic distance measures to capture the distance between uncertain data objects and is
robust to existence of outliers too.

Through several experiments, we evaluate the performance of our proposed clustering
validity indices over the certain clustering validity indices. The experiments include synthetic
data sets with different sizes and dimensions, a real weather data set, and two image data
sets. We also show the ability of handling outliers with experiments with synthetic data
sets.

The remaining sections of this paper are as follow. In Sect. 2, four of the most widely
used clustering validity indices for certain data objects are explained in detail: Dunn;
Davies—Bouldin; Silhouette; and Xie—Beni. In Sect. 3, probabilistic distance measures that are
used for capturing the distance between two uncertain objects are introduced. The utilized
uncertain K-medoids algorithm is also explained in this section. Our proposed uncertain
clustering validity indices are explained in Sect. 4. In Sect. 5, experiments for evaluating
the performance of the developed clustering validity indices on synthetic and real data are
presented. Finally, the paper is concluded in Sect. 6.

2 Clustering validity indices for certain data objects

In this paper we only consider crisp clusters, i.e. clusters in which objects only belong to
one cluster. For this reason, four clustering validity indices that are widely used for crisp
certain data are explained in this section. These indices are used for benchmarking. The four
indices are Dunn (Dunn 1973), Davies—Bouldin (Davies and Bouldin 1979), Xie—Beni (Xie
and Beni 1991), and Silhouette (Rousseeuw 1987). Dunn, Davies—Bouldin, and Silhouette
are indices that are derived based on crisp clusters. Xie—Beni though, is originally derived for
fuzzy clusters, i.e. clusters in which objects can belong to more than one cluster. However,
its reduced form can be used for crisp clusters. For further discussion on validity indices for
crisp and fuzzy clusters, see Halkidi et al. (2001).

2.1 Dunn index

Dunn index is a clustering validity index for clusters of certain data objects. It considers the
distance between the two least separated clusters as the separation of the K clusters. It also
considers the compactness of the least compact cluster as the compactness of the K clusters.
The index is defined in Eq. (1) for K clusters:
min (dist(C,-,Cj))
1<i,j<K
J#Fi
DUk = , . ()]
max {diam(Cy)}

1<m<K

where dist(Ci, C j) denotes the distance between two clusters C; and C; and is defined
as the distance between the two closest objects of the two clusters and diam(C,,) denotes
the diameter of cluster C,, which is used for capturing the compactness of the cluster. The
diameter of a cluster is defined as the distance between the two farthest objects in the cluster.
Large values of the Dunn index indicate existence of compact and well-separated clusters.
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2.2 Davies-Bouldin

Davies and Bouldin (1979) propose incorporating separation and compactness of all pairs of
certain data clusters C; and Cj, with R;;,i, j =1,..., K, i # j, where

(S,'+Sj)

R,'j = a4
1

; (@)
and captures both the separation and compactness for the pair of clusters C; and C;. S; and S
are the components that capture the compactness of certain data clusters C; and C;, and d;;
captures the distance between the two clusters. The compactness of cluster C; can be defined
as the average Euclidean distance of objects in cluster C; to the centroid of the cluster. The
distance between clusters C; and C; is used to capture the separation of the two clusters. It
can be defined as the distance between the centroids of clusters C; and C;: Davies—Bouldin
uses maxj—i,... x,ix; Rij todefine R; for cluster C; and eventually returns the index value as
DBk = % Z;K: 1 Ri. Small values of the Davies—Bouldin index may indicate more compact
and well-separated clusters.

2.3 Silhouette

The Silhouette index captures separation and compactness for every single certain object.
For K clusters the index is defined in Eq. (3) as follows:

L~ (i —ap)
STk = n ; max(a;, b;) )

In this index, separation and compactness are captured through two components. Com-
pactness for object x; is captured by component a; that is defined as the average pairwise
distance between object x; and all objects in the same cluster as object x;.

Separation for object x; is captured by component b; that is considered as the separation
between object x; and the closest cluster to it. The separation between object x; and cluster
C; is defined as the average pairwise distance between object x; and all objects in cluster
C;.

Silhouette, for each object, computes a scaled value of the difference between separation
and compactness and eventually, returns the average of the scaled differences over all objects.
Higher values of the index imply large separation and also more compactness which are the
desirable characteristics of clusters.

2.4 Xie-Beni

Xie—Beni index for crisp certain data is defined in Eq. (4). The index captures compactness
by obtaining the mean of squared distances between data objects and their cluster centroids.
Separation is captured with the minimum squared distance between cluster centroids.

ZiKzl erCll. d(x, zi)z

. 2
n- min Kd(zi,zj)

i,j=1,..,

i#]j

XBg =

“
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Here z; is the centroid of cluster C; and Cj; indicates the cluster that object x; has been
assigned to. For Xie-Beni, smaller values of the index indicate large separation and more
compactness.

3 Probabilistic distance measures and an uncertain K-medoids
clustering algorithm

3.1 Measuring the distance between two uncertain objects

In this paper, we utilize probabilistic distance measures (pdm) to capture the distance between
two uncertain objects. There are numerous applications for pdms in many areas such as pat-
tern recognition, communication theory, and statistics (Cover and Thomas 2012; Csiszar and
Korner 2011; Zhou and Chellappa 2004). They are also used for estimating the bound on
Bayes classification error, signal selection, and asymptotic analysis (Basseville 1989; Cher-
noff 1952; Devijver and Kittler 1982). Some of the most well-known probabilistic distance
measures are: Variational, Chernoff, Generalized Matusita, Kullback-Leibler, Hellinger, and
Bhattacharyya (Basseville 1989). Hellinger and Bhattacharyya are special cases of Gener-
alized Matusita and Chernoff respectively. Any of these pdms can be used to capture the
distance between two uncertain objects but in this paper, we use Bhattacharyya pdm (Bhat-
tacharyya 1946), one of the most well-known measures. The definition of Bhattacharyya
distance is shown in Eq. (5):

pds(X.¥) = —In f Jrx®Opyr @t . )
t

where px (t) and py (¢) denote the pdfs of uncertain objects X and Y and ¢ € R?.If uncertain
objects are given in form of multiple points, instead of pdfs, histograms can be built for each
object. Equation (6) shows the definition of Bhattacharyya pdm when objects are given in
form of multiple points (Cha 2007).

b
pdp(X.Y)=—In (Z V pﬁ)p$)>, 6)
i=1

where pgé) and pg) denote the frequency of points in the i-th bin for uncertain objects X and
Y respectively. In the equation, b denotes the number of bins.

One of the main advantages of using Bhattacharyya pdm is when uncertain objects follow
multivariate normal distributions, Bhattacharyya yields an analytical solution for the pdm
between the two objects as shown in Eq. (7):

1 ’ 1 1 |2x+2y|
pdp(X, Y) = Z2(px — py) (Zx + Xy) (px — py) + S| ————+ |, ()
2(1Xx11ZyD2

where X ~ MVN(ux, Xx) andY ~ MV N(uy, Xy). Here, ux and py are means, and
XY'x and X'y are covariance matrices.
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3.2 Uncertain K-medoids clustering algorithm

Different uncertain K-medoids clustering algorithms have been proposed in the literature.
Uncertain K-medoids algorithms that use the expected distance to capture the dissimilarity
between two uncertain objects are developed in Gullo et al. (2008a) and Yang and Zhang
(2010). In Jiang et al. (2013), an uncertain K-medoids algorithm that uses pdms to capture
the distance between uncertain objects, is proposed. In this paper, we use the latter algorithm
and use Bhattacharyya as the pdm. The steps of the uncertain K-medoids algorithm are as
follow:

Step 1 Pick K initial uncertain objects (medoids) randomly. Form clusters by assigning each
object to the cluster for which the probabilistic distance between the object and the cluster
medoid is smallest.

Step 2 Obtain the new medoids, my, k=1, ..., K, as follow:
= i dg(Xi, X ; 8
my = arg min > pdp(Xi. Xj) (8)
X;jeCi\{X;}

where pdp (X i X j) denotes the Bhattacharyya probabilistic distance between X; and X ;.

Step 3 Using the new medoids, re-assign each object to the cluster of its nearest medoid.
Repeat Step 2 and Step 3 until there is no change in the clusters.

4 The proposed uncertain clustering validity indices

In this section we explain the reason uncertain data objects require their own clustering
validity indices through an example. Figure 1a shows a two-dimensional example where there
are two clusters of uncertain data objects. Objects in both clusters are in form of bivariate
normal pdfs and are represented by ellipses. Each ellipse basically represents a contour of a
bivariate normal pdf of an object. In Tavakkol (2018), the correlation for uncertain objects
is defined as the correlation among the dimensions considering the object mean points only,
plus the average object-correlation, where object-correlation is defined as the correlation
among the dimensions within object. Based on that definition, in Fig. 1a, objects in one
cluster (shown in red) have positive correlation among their two dimensions, while objects in
the other cluster (shown in blue) have negative correlation. Applying uncertain K-medoids
clustering algorithm with K=2 on the objects, the two clusters are detectable.

In order to find the correct number of clusters of this example (i.e. two), a clustering
validity index is needed. If the clustering validity indices for certain data objects that only
use the object means, are used, the results would not be desirable and one cluster would be
preferred to two clusters. The reason can be seen in Fig. 1b, where only the object means
are shown and it is impossible to distinguish between the red and blue clusters. Clustering
validity indices designed for uncertain data objects should prefer two clusters over a single
cluster in this example. We show in the experiments section that our developed uncertain
clustering validity indices are well capable of capturing the structures of uncertain objects
and distinguishing overlapping clusters such as the ones in Fig. 1.
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Fig. 1 Two clusters of uncertain data a each uncertain object shown with its whole pdf. b Each uncertain object
from (a) shown with its mean only

4.1 Uncertain Silhouette

Our first proposed cluster validity index for uncertain data objects is called uncertain Silhou-
ette index. The definition of the uncertain Silhouette is shown in Eq. (9).

1 < (ub; — ua;)
USIg = -y —————| 9
K= le max(ua;, ub;) ©

where ua; denotes the compactness and ub; denotes the separation for uncertain object X;.
The definitions of ua; and ub; are shown in Egs. (10) and (11) respectively. As it can be seen
from Eq. (10), similar to the case for certain data, compactness of an object X; is defined as
the average pairwise distance between the object X; and all objects in the same cluster as
object X;. The main difference between ua; and a; (compactness component of Silhouette
index for certain data objects) is that in ua; pdms are used to better capture the distance
between uncertain objects, while in g; distance measures for certain data objects such as
Euclidean are used.

Y pdXa Y (10)

ua; =
| 1i| YeC),

As it can be seen from Eq. (11), similar to the case for the original Silhouette index, ub;
is considered as the separation between object X; and the closest cluster to it C;, C; # Cj,.
The separation between object X; and cluster C; is defined as the average pairwise distance
between object X; and all objects in cluster C;. Again, the main difference between ub; and
b; is that in ub; pdms are used to capture the distance between objects, while in b; distance
measures for certain data objects are used.

1
ub; = min & > pd(Xi.Y) a1
/ YeC;
Cj # Gy
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In this, we use Bhattacharyya as the pdm for computing the uncertain Silhouette index.
Same as the original Silhouette, the optimal setting is the one that produces the largest index
value and possibly the one that has the most compact and well-separated clusters.

4.2 0S index

In this section we propose a new clustering validity index for uncertain data objects, named
Order Statistic (OS). The OS index can be considered as a general form of uncertain Dunn
index, which is also developed in this paper. The OS index is composed of two components for
capturing separation and compactness of clusters. It considers the average of r (r > 1) smallest
inter-cluster distances for separation, and also the average of r (r >1) largest intra-cluster
distances for compactness. This enables the index to correctly detect the correct number of
clusters in cases where there is either a very scattered cluster, or two very close clusters.
These cases are the ones for which uncertain Dunn index (r = 1) fails in detecting the correct
clusters. In a data set with K formed clusters, the maximum possible number of intra-cluster
distances is K. In such a cluster, the maximum possible number of inter-cluster distances is
w. Since in the proposed validity index, r is used as both the number of considered
inter-cluster and intra-cluster distances, it should be smaller than or equal to both K and

w. As in clustering we consider cases with at least two clusters, the choice of r should
work for K > 2. All these can be written as:
. K(K-1)
r < min K,? , for K > 2. (12)

Since we would like to consider the most complete information by taking into account
the highest possible number of inter-cluster and intra-cluster distances for each K, r=K — 1

would be the best choice. This can be written as: K — 1 = max [r < min(K, L’;_]))].
r
The OS index is shown in Eq. (13).

2=t 5PW,

OSkx = (13)
K
Xjmk-rn PG/,
where spgy,i = 1,...,%_1) is the i-th smallest order statistic of inter-

cluster distances. The first order statistic of inter-cluster distances is sp()y =

rnin1 <Ci.Cj <K [dist(Ci, Cj)]. Here, for dist(Ci, Cj), which denotes the distance
Ci #C;

between clusters C; and C;, we propose the average of s smallest pairwise probabilistic

distances between objects in cluster C; and objects in cluster C;:

ZS k=1 {pd(k)(X’ Y)}

. Xe(C,Ye(;
dist(C;, Cj) = : , (14)
N

where s < |C; |.|C b ’ Capturing the distance between two clusters in this fashion has the
advantage of being more robust to the existence of outlier values.

¢p(j),»J = 1,...K, is the j-th smallest order statistic of intra-cluster distances. The
K-th order statistic of intra-cluster distances is cp(xy = maxi<c, <k [diam(C,,)]. Here,
diam(C,,) denotes the diameter of cluster C,, and basically captures the compactness of the
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cluster. For diam(C,,), we propose the average of ¢ largest pairwise probabilistic distances
between objects in cluster C,,:

Zt f—1 {pd(lcm‘z_k_'_l)(x, Y)}

) X,YeCy
diam(Cy,) = ; s (15)

where t < |C,,|. Capturing the diameters of clusters in this fashion has the advantage of
being more robust to the existence of outlier values as well.

In the experiment section, we try different settings for the parameters s and ¢ of the OS
index. Generally, if the objects in the cluster are more uniformly scattered, smaller values of
s and ¢ are recommended. If the clusters are less uniformly scattered, higher values of s and ¢
are suggested. If we choose r = s =t =1, the OS index will reduce to an index that we call
uncertain Dunn. Uncertain Dunn index is defined in Eq. (16).

min (dist(Ci, Cj))

1<ij<kK
JF#EI
UDUg = PO _ : (16)
cp(1y maxi<m<k{diam(Cy,)}

In this index, dist(C,-, Cj) and diam(Cy,) are defined based on Eq. (17) and Eq. (18).
dist(C;, Cj) = pd1(X.Y) = Xegll;lecj{pd(X, Y)} )

i

diam(Cy,) = pd(‘cmlz)(X, Y)= X%}a;)ém{pd(X, Y)} (18)

Large values of the index indicate existence of compact and well-separated clusters.

One of the drawbacks of this uncertain Dunn index is its sensitivity to outlier values.
Existence of outliers can highly affect Egs. (17) and (18), and therefore the whole index.
Another drawback of the uncertain Dunn index is its poor performance in the presence of
either dominant small separation or large compactness values.

In the experiments section we show the capability of the OS and Silhouette indices over
uncertain Dunn in overcoming these drawbacks through several experiments.

5 Experiments

The effectiveness of our proposed uncertain clustering validity indices is demonstrated
through experiments on data sets with different sizes and dimensions. We conducted exper-
iments on three two-dimensional synthetic data sets named SD1, SD2, and SD3 which had
three, five, and three clusters respectively. The generated number of objects for each cluster
of each data set was 50 but we also considered cases where 100, 200, and 500 objects where
generated for each cluster. We also conducted experiments on higher dimensions of each data
set including cases with two, three, five, and ten dimensions.

In addition, three two-dimensional data sets with major outliers were included in the
experiments to show the robustness of our proposed validity indices in detecting the correct
number of clusters of uncertain data objects.

The experiments include real-world data as well. A weather data set including the daily
weather information of 1522 weather stations around the world for the year 2011, was consid-
ered. We also conducted experiments on two sets of images that were considered as uncertain
objects.
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Fig. 2 Three two-dimensional synthetic data sets of uncertain data objects, a SD1, b SD2, and ¢ SD3. The
correct number of clusters for (a) to (¢) are respectively 3, 5, and 3

Uncertain objects in each synthetic data set are modeled with multivariate normal dis-
tribution. To generate each uncertain object, first the mean point was generated based on a
multivariate normal distribution and then the covariance matrix was generated based on an
inverse Wishart distribution (Nydick 2012).

In this section, the performance of Dunn, Davies—Bouldin, Xie—Beni, Silhouette, uncertain
Dunn, uncertain Silhouette, and the OS index with different parameters are compared.

5.1 Experiments with synthetic data sets

In this section we provide the experiments on the synthetic data sets. We considered three
main two-dimensional data sets named SD1, SD2, and SD3. For each data set, different
number of clusters was generated and each cluster contained 50 uncertain objects. Figure 2
shows the generated clusters of objects for each data set. Each ellipse in the figure represents
an uncertain object modeled with a bivariate normal pdf. Different colors in the figure indicate
different clusters. For SD1 and SD3, three, and for SD2, five clusters were generated. For
SD1, the objects in all three clusters have overlapping mean points but they have different
sizes of covariances. There are two sets of clusters with overlapping mean points in SD2 as
well: one cluster shown in blue has smaller covariance than another one shown in green, and
there are two clusters shown in red and cyan that are similar to the clusters shown in Fig. 1.
For SD3, there are two overlapping clusters and a farther cluster.
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Fig. 3 The optimal formed clusters for k, k=2, 3,..., 8, after applying the uncertain K-medoids algorithm on
the two-dimensional data set SD1
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Fig. 4 The optimal formed clusters for k, k=2, 3,..., 8, after applying the uncertain K-medoids algorithm on
the two-dimensional data set SD2

Figures 3, 4 and 5 show the optimal formed clusters for each k, k=2,3,...,8, after applying
the uncertain K-medoids algorithm on SD1-SD3 respectively. Different colors in the figure
indicate different clusters of objects again. As it can be also verified from the figures, the
optimal number of clusters should be respectively 3, 5, 3 for SD1-SD3.

Tables 1, 2 and 3, contain the values of eight different indices: Dunn, Davies—Bouldin,
Xie—Beni, Silhouette, uncertain Dunn (OS with r=1, s=¢=1), uncertain Silhouette, OS with
s=t=3, and OS with s=¢=5 for SD1-SD3.

As it can be seen from Table 1, Dunn, Davies—Bouldin, Xie—Beni, and Silhouette, the four
clustering validity indices for certain data objects that only use the mean of each object, fail in
detecting the correct number of clusters for SD1, which is 3. However, it can be seen from the
table that the developed clustering validity indices for uncertain data objects: uncertain Dunn,
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Fig. 5 The optimal formed clusters for k, k=2, 3,..., 8, after applying the uncertain K-medoids algorithm on
the two-dimensional data set SD3

uncertain Silhouette, OS with, s=¢=3, and OS with s=¢=35 are all successful in detecting the
correct number of clusters.

From Table 2, it can be seen that in addition to Dunn, Davies—Bouldin, Xie—Beni, and
Silhouette, uncertain Dunn also fails in detecting the correct number of clusters for SD2,
which is 5. The reason for that is large dominant compactness and small dominant separation
values. Again, it can be seen from the table that uncertain Silhouette, OS with s=7=3, and
OS with s=¢=35 are all successful in detecting the correct number of clusters.

Same conclusions are valid for the results of Table 3. Again, Dunn, Davies—Bouldin,
Xie—Beni, and Silhouette fail because of disability to capture the uncertain nature of the data
objects, and uncertain Dunn also fails because of large dominant compactness and small
dominant separation values. Uncertain Silhouette, OS with s=r=3, and OS with s=¢=35,
again successfully detect the correct number of clusters for SD3 which is 3.

As we mentioned earlier, for each data set: SD1, SD2, and SD3, we considered cases with
higher number of objects and higher dimensions as well. Those include cases where 100,
200, and 500 were generated for each cluster in the data sets and cases where 3, 5, and 10
dimensions were considered.

Figure 6 shows the results of applying the different clustering validity indices on the SD1
data set with different number of objects. As it can be seen from the figure, although the
existing clustering validity indices for certain data do not perform well in detecting three as
the correct number of clusters, all the proposed clustering validity indices including uncertain
Dunn show consistent behavior and successfully detect three clusters as the correct one for
the SD1 data set with different number of objects. Figure 7 shows the results of applying the
different clustering validity indices on the SD1 data set with different dimensions. Again,
all the proposed validity indices perform well in detecting three as the correct number of
clusters for the data sets with different dimensions while the existing validity indices show
inconsistent behavior for different dimensions and mostly fail.

Figure 8 shows the results of applying the different clustering validity indices on the
SD2 data set with different number of objects. As it can be seen from the figure, the existing
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Fig. 6 Values of the studied indices with respect to k, k=2, 3,..., 8, for the SD1 data set with different number
of objects
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Fig. 7 Values of the studied indices with respectto k, k=2, 3,..., 8, for the SD1 data set with different dimensions

clustering validity indices for certain data along with the uncertain Dunn index do not perform
well in detecting five as the correct number of cluster. Some of those indices wrongfully detect
three as the correct number of clusters. However, all the proposed clustering validity indices
show consistent behavior in detecting five as the correct number of clusters for the SD2 data
set with different number of objects. Figure 9 shows the results of applying the different
clustering validity indices on the SD2 data set with different dimensions. Again, all the
proposed validity indices perform well in detecting five as the correct number of clusters
for the SD2 data set with different dimensions while the existing validity indices and the
uncertain Dunn index show inconsistent behavior and fail.
Figure 10 shows the results of applying the different clustering validity indices on the
SD3 data set with different number of objects. As it can be seen from the figure, the existing
clustering validity indices for certain data and the uncertain Dunn index do not detect three
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Fig. 8 Values of the studied indices with respect to k, k=2, 3,..., 8, for the SD2 data set with different number
of objects
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Fig. 9 Values of the studied indices with respectto k, k=2, 3,..., 8, for the SD2 data set with different dimensions

as the correct number of clusters but the proposed clustering validity indices show consistent
behavior and successfully detect three clusters as the correct one for the SD3 data set with
different number of objects. Figure 11 shows the results of applying the different clustering
validity indices on the SD3 data set with different dimensions. Again, all the proposed validity
indices correctly detect three as the correct number of clusters for the data sets with different
dimensions while the existing validity indices and the uncertain Dunn index show inconsistent
behavior for different dimensions and mostly fail.

In addition to the three studied data sets, we conducted experiments on three more two-
dimensional synthetic data sets named SD4, SD5, and SD6. These data sets can be seen in
Fig. 12. As it can be seen from the figures, each data set contains a major outlier. The outliers
of SD4 and SD5 are dashed green ellipses and the one for SD6 is a dashed blue ellipse.

Figures 13, 14 and 15 show the optimal formed clusters for each k, k=2, 3,...,8, after
applying the uncertain K-medoids algorithm on SD4-SD6 respectively. Again different colors
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Fig. 10 Values of the studied indices with respect to k, k=2, 3,..., 8, for the SD3 data set with different number
of objects
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Fig. 11 Values of the studied indices with respect to k, k=2, 3,..., 8, for the SD3 data set with different
dimensions

indicate different clusters of objects. As it can be also verified from the figures, the optimal
number of clusters should be respectively 3, 2, 3 for SD4-SD6.

Table 4 contains the results for SD4 and has one more index compared to Tables 1, 2 and
3. That index is OS with s=¢=¢=1. The results demonstrate that uncertain Silhouette and
OS with s=t=5 work well in the case of existing a major outlier. As it can be seen from
the table, in addition to the validity indices for certain data objects and uncertain Dunn that
fail in detecting the correct number of clusters, if OS with s=r=1 or s=¢=3 are used, the
correct number of clusters which is 3, is not detected and 2 clusters are detected as the correct
number of clusters instead.

Table 5 results for SD5 also demonstrate that uncertain Silhouette and OS with s=7=5
work well in the case of existing a major outlier again. As it can be seen from the table, in
addition to the validity indices for certain data objects in detecting the correct number of
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Fig. 12 three two-dimensional synthetic data sets of uncertain data objects with major outliers, a SD4, b SDS5,

and ¢ SD6. The correct number of clusters for (a) to (¢) are respectively 3, 2, and 3
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Fig. 13 The optimal formed clusters for k, k=2, 3,..., 8, after applying the uncertain K-medoids algorithm on

the two-dimensional data set SD4
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Fig. 14 The optimal formed clusters for k, k=2, 3,..., 8, after applying the uncertain K-medoids algorithm on
the two-dimensional data set SD5
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Fig. 15 The optimal formed clusters for k, k=2, 3,..., 8, after applying the uncertain K-medoids algorithm on
the two-dimensional data set SD4

clusters, if OS with s=¢=1 or s=¢=3 are used, the correct number of clusters which is 2 is
not detected.

Finally, Table 6 results for SD6 demonstrate that uncertain Silhouette, OS with s=7=3,
and OS with s=¢=5 all work well in the case of an existing outlier. As it can be seen from
the table, in addition to the validity indices for certain data objects and uncertain Dunn that
fail in detecting the correct number of clusters, if OS with s=¢=1 is used, the correct number

of clusters which is 3, is also not detected and 2 clusters are detected as the correct number
of clusters instead.
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In conclusion, the results of the experiments on SD4, SDS5, and SD6 show that uncertain
Silhouette and the OS index with larger values of s and ¢ can be more reasonable for dealing
with outliers.

5.2 Experiments with real data sets

In this section, we provide experiments on two sets of real data. The first set of experiments
are on a weather data set and the second set is on two sets of images.

5.2.1 The weather data set

The weather data set in this paper is a data set that was collected from the National Center for
Atmospheric Research data archive (https://rda.ucar.edu/datasets/ds512.0/). The collected
data set contains the daily weather information (average temperature and precipitation level)
of 1522 weather stations around the world for the year 2011. Each station in this data set, can be
considered as an uncertain object with 365 two-dimensional points. Based on Koppen—Geiger
climate classification (Peel et al. 2007), these stations are of five climate types: polar, cold,
temperate, tropical, and dry. Figure 16 demonstrates examples of stations from the five climate
types.

We performed the uncertain K-medoids algorithm with Bhattacharyya pdm on the weather
data set with k=2, 3,...,8. For each k, we ran the algorithm 10 times and compared the
performance of nine indices: Dunn, Davies—Bouldin, Xie-Beni, Silhouette, Uncertain Dunn,
Uncertain Silhouette, OS with s=r=3, OS with s=¢t=5, and OS with s=¢=10. The numbers
for each particular k in Table 7, demonstrate the best results out of the 10 runs for each
index.

As it can be seen from the table, our developed uncertain clustering validity indices, uncer-
tain Silhouette and OS perform very well in detecting the correct number of clusters (five).
The four clustering validity indices for certain data, i.e. Dunn, Davies—Bouldin, Xie-Benie,
and Silhouette fail in detecting the correct number of clusters. Also, we can see that Uncertain
Dunn, which is a simple case of the OS algorithm, fails, possibly because of its sensitivity
to outlier values or either dominant separation values, or compactness values. The values of
the nine indices with respect to the number of clusters k, k=2, 3,...,8, are plotted in Fig. 17a.
From the figure, it can be seen that only the developed clustering validity indices for uncertain
data uncertain Silhouette, OS with s=¢=3, OS with s=¢=5, and OS with s=r=10 produce
sharp peaks for the correct number of clusters which is five.

For the weather data set, we also considered modeling uncertain objects with bivariate
normal pdfs. For each weather station we fitted a bivariate normal pdf to the 365 two-
dimensional points. Figure 18 demonstrates examples of stations from the five climate types,
modeled with pdfs. Similar to the experiment on the weather data set considered with points,
we performed the uncertain K-medoids algorithm with Bhattacharyya pdm with k=2, 3,...,8.
For each k, we ran the algorithm 10 times and compared the performance of the nine indices.
Again, the numbers for each particular k in Table 8, demonstrate the best results out of the
10 runs for each index.

As it can be seen from the table, again the developed uncertain clustering validity indices
perform very well in detecting the correct number of clusters. The four clustering validity
indices for certain data fail in detecting the correct number of clusters. The values of the
nine indices with respect to the number of clusters &, k=2, 3,...,8, are plotted in Fig. 17b.
Again, from the figure, it can be seen that only the developed clustering validity indices for
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Fig. 16 Examples of stations from the five climate types: polar, cold, temperate, tropical, dry, a plotted sepa-
rately, b plotted together

uncertain data uncertain Silhouette, OS with s=¢=3, OS with s=¢=5, and OS with s=r=10
produce sharp peaks for the correct number of clusters which is five.

Comparing the results of the two cases of modeling the weather data set with points and
pdfs shows that the performance of the indices does not change substantially. The certain
validity indices perform almost the same as they only use the same single statistic i.e. the
mean point of each object. The developed validity indices for uncertain objects are more
different in the two cases.

For the case with data considered with points, the magnitude of the peaks for indices
values are larger compared to the magnitude of the peaks in the data set modeled with pdfs.
Also, for the case modeled with points, the peaks are sharper which is more desirable. These
can be seen from Fig. 19.
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Fig. 17 Values of the studied indices with respect to k, k=2, 3,..., 8, for the weather data set a considered with
points, b modeled with pdfs. The developed clustering validity indices for uncertain data uncertain Silhouette,
OS with s=r=3, OS with s=¢=5, and OS with s=7= 10 produce sharp peaks for the correct number of clusters

It is also notable from Tables 6 and 7 that in both cases, for the OS index, as the values of s
and ¢ increase, the magnitude of the values along with the sharpness of the peaks increase and
the correct number of clusters can be detected more precisely. Overall, on this data set, con-
sidering the data with points is more accurate than modeling them with bivariate normal pdfs.

5.2.2 The image data sets

Images are the type of objects that can be considered as uncertain data objects as well. Given
an image with at least one object, each image object can be converted to a group of two-
dimensional points. Then the whole image can be considered as the combination of all the
points from all the objects in the image.
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Fig. 18 Examples of stations modeled with pdf from the five climate types: polar, cold, temperate, tropical,
dry, a plotted separately, b plotted together

We conducted experiments by considering two sets of images. The first set named Cross-
words includes three images. The second set named Cards includes four images. Figures 20
and 21 show the images in the first and second sets respectively. In our experiments, first we
scaled the resolution of all the images to 100 * 100 pixels. Then we considered each image as
an uncertain object by converting it to a sample of 100 two-dimensional points normalized
to be between 0 and 1. Fifty replicates of each image (or uncertain object) were created by
adding random numbers in [— 0.05, 0.05] to each dimension of the original images. Essen-
tially, 150 image replicates or uncertain objects were created for the Crosswords set and 200
were created for the Cards set. Next, we performed clustering with different values of %,
k=2, 3,...,8 by using the uncertain K-medoids algorithm. As it can be noted, three should
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Fig. 19 Values of the proposed indices with respect to k, k=2, 3,..., 8, for the weather data set a considered
with points b with pdfs
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Fig. 20 The three crossword images

*H0V ¢

(@) (b)

Fig. 21 The three card images

be identified as the correct number of clusters for the Crosswords set and four should be
identified as the correct number of clusters for the Cards set. The results of applying the
validity indices are reported in Tables 9 and 10. As it can be seen once again, for both the
Crosswords and Cards sets, the existing clustering validity indices for certain data and the
uncertain Dunn index fail in detecting the correct numbers of clusters which are three and
four respectively. However, as it can be seen, all the proposed indices successfully detect the
correct number of clusters in both cases.
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Table 11 shows a summary of the performance of the studied clustering validity indices
on all the data sets. As it can be seen from the table, our proposed clustering validity indices
for uncertain data objects, i.e. uncertain Silhouette and OS are both successful in detecting
the correct number of clusters for all the data sets. Uncertain Dunn which is a reduced and
simplified form of the OS is only successful for one data set (SD1), while all the clustering
validity indices for certain data objects, i.e. Dunn, Davies—Bouldin, Xie—Beni, and Silhouette,
fail to detect the correct number of clusters for all data sets.

6 Conclusion

In this paper, we proposed two clustering validity indices, named uncertain Silhouette and
Order Statistics index (OS), for validation of clusters of uncertain data objects. To our best
knowledge, prior to this work, there was not any clustering validity indices in the literature,
designed to handle uncertain objects given in forms of multiple points or probability density
functions. Both proposed indices outperform existing certain clustering validity indices in
validating clusters of uncertain data objects.

The advantage of the uncertain Silhouette index over the OS index is that it does not depend
on any parameters such as ¢ and s that the OS index uses. Also, the uncertain Silhouette index
considers the contribution of every single object to compactness and separation of clusters
and since it uses scaled values for every object’s contribution (a value between — 1 and 1), it
is very robust to outliers.

The advantage of the OS index over the uncertain Silhouette index is that for the inter-
cluster and intra-cluster distances it only uses the averages of the s smallest and ¢ largest
distances respectively rather than using all the objects. Sometimes, the key characteristics
of clusters are determined by only a few objects and considering other unimportant objects
might fade away the contribution of the key objects and weaken the performance of the index.

The advantage of the OS index over uncertain Dunn is that it is the general case of uncertain
Dunn and is capable of correctly detecting the correct number of clusters in cases where there
is either a very large dominant compactness value (a very spread cluster), or there is a small
dominant separation value (two very close clusters).

The effectiveness of our developed indices was evaluated through several experiments on
synthetic and real data sets.

Besides the two developed clustering validity indices in this paper, more indices for uncer-
tain data objects can be significant in conducting a comprehensive validation of clusters of
uncertain data objects. In the future, we will work on developing more uncertain data clus-
tering validity indices.
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