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Abstract
TheUnit Commitment problem in energymanagement aims at finding the optimal production
schedule of a set of generation units, while meeting various system-wide constraints. It has
always been a large-scale, non-convex, difficult problem, especially in view of the fact that,
due to operational requirements, it has to be solved in an unreasonably small time for its size.
Recently, growing renewable energy shares have strongly increased the level of uncertainty
in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and
uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the lit-
erature on methods for the Uncertain Unit Commitment problem, in all its variants. We start
with a review of the main contributions on solution methods for the deterministic versions
of the problem, focussing on those based on mathematical programming techniques that are
more relevant for the uncertain versions of the problem. We then present and categorize the
approaches to the latter, while providing entry points to the relevant literature on optimization
under uncertainty. This is an updated version of the paper “Large-scale Unit Commitment
under uncertainty: a literature survey” that appeared in 4OR 13(2):115–171 (2015); this ver-
sion has over 170 more citations, most of which appeared in the last 3 years, proving how
fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this
subject.
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UCOTS UC with OTS
MSG Minimal stable generation
OPF Optimal power flow
ROR Run-of-river hydro unit
DR Demand response
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SDDP Stochastic dual DP
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CP Cutting plane
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CCO Chance-constrained optimization
ICCO Chance-constrained optimization with individual probabilistic con-
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1 Introduction

In electrical energy production and distribution systems, an important problem deals with
computing the production schedule of the available generating units, accordingly with their
different technologies, in order to meet their technical and operational constraints and to
satisfy several system-wide constraints, e.g., global equilibrium between energy production
and energy demand or voltage profile bounds at each node of the grid. The constraints
of the units are very complex; for instance, some units may require up to 24 h to start.
Therefore, such a schedule must be computed (well) in advance of real time. The resulting
family of mathematical models is usually referred to as the Unit Commitment problem (UC),
and its practical importance is clearly proven by the enormous amount of scientific literature
devoted to its solution in the last four decades andmore. Besides the very substantial practical
and economical impact of UC, this proliferation of research is motivated by at least two
independent factors:

1. On the one hand, progress in optimizationmethods,which provides novelmethodological
approaches and improves the performances of existing ones, thereby allowing to tackle
previously unsolvable problems;

2. On the other hand, the large variety of different versions of UC corresponding to the
disparate characteristics of electrical systems worldwide (free market vs. centralized,
vast range of production units due to hydro/thermal/nuclear sources,…).

Despite all of this research, UC still cannot be considered a “well-solved” problem. This is
partly due to the need of continuously adapting to the ever-changing demands of practical
operational environments, in turn caused by technological and regulatory changes which
significantly alter the characteristics of the problem to be solved. Furthermore, UC is a
large-scale, non-convex optimization problem that, due to operational requirements, has to
be solved in an “unreasonably” small time. Finally, as methodological and technological
advances make previous versions of UC more accessible, practitioners have a chance to
challenge the (very significant) simplifications that have traditionally been made, for purely
computational reasons, about the actual behaviour of generating units. This leads to the
development of models incorporating considerably more detail than in the past, which can
significantly stretch the capabilities of solution methods.

A particularly relevant trend in current electrical systems is the ever increasing use of
intermittent (renewable) production sources such as wind and solar power. This has signif-
icantly increased the underlying uncertainty in the system, previously almost completely
due to variation of users’ demand (which could however be forecast quite effectively) and
occurrence of faults (which was taken into account by requiring some amount of spinning
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reserve). Ignoring such a substantial increase in uncertainty levels w.r.t. the common existing
models incurs an unacceptable risk that the computed production schedules be significantly
more costly than anticipated, or even infeasible (e.g., Keyhani et al. 2010). However, incor-
porating uncertainty in the models is very challenging, in particular in view of the difficulty
of deterministic versions of UC.

Fortunately, optimization methods capable of dealing with uncertainty have been a very
active area of research in the last decades, and several of these developments can be applied,
andhavebeen applied, to theUCproblem.This paper aims at providing a surveyof approaches
for the Uncertain UC problem (UUC). The literature is rapidly growing: this is an update of
our earlier survey Tahanan et al. (2015), that has also appeared as van Ackooij et al. (2018),
and counts over 170 more citations, most of them being articles published in the last 3 years.
This expansion of the literature is easily explained, besides by the practical significance of
UUC, by the combination of two factors: on the one hand the diversity of operational envi-
ronments that need to be considered, and on the other hand by the fact that the multitude
of applicable solution techniques already available to the UC (here and in the following
we mean the deterministic version when UUC is not explicitly mentioned) is further com-
pounded by the need of deciding how uncertainty is modeled. Indeed, the literature offers at
least three approaches that have substantially different practical and computational require-
ments: Stochastic Optimization (SO), Robust Optimization (RO), and Chance-Constrained
Optimization (CCO). These choices are not even mutually orthogonal, yielding yet further
modelling options. In any case, the modelling choice has vast implications on the actual form
of UUC, its potential robustness in the face of uncertainty, the (expected) cost of the com-
puted production schedules and the computational cost of determining them. Hence, UUC is
even less “well-solved” than UC, and a thriving area of research. Therefore, a survey about
it is both timely and appropriate.

We start with a review of the main contributions on solution methods for UC that have
an impact on those for the uncertain version. This is necessary, as the last broad UC sur-
vey (Padhy 2004) dates back some 10 years, and is essentially an update of Sheble and
Fahd (1994); neither of these consider UUC in a separate way as we do. The more recent
survey Farhat and El-Hawary (2009) provides some complements to Padhy (2004) but it
does not comprehensively cover methods based on mathematical programming techniques,
besides not considering the uncertain variants. The very recent survey Saravanan et al. (2013)
focussesmainly on nature-inspired or evolutionary computing approaches,most often applied
to simple 10-units systems that can nowadays be solved optimally in split seconds with
general-purpose techniques; furthermore these methods do not provide qualified bounds
(e.g., optimality gap) that are most often required when applying SO, RO or CCO tech-
niques to the solution of UUC. This, together with the significant improvement of solving
capabilities of methods based on mathematical programming techniques (e.g., Lagrangian
or Benders’ decomposition methods, MILP approaches,…), justifies why in the UC-part of
our survey we mostly focus on the latter rather than on heuristic approaches. This version
also significantly updates Tahanan et al. (2015), which appeared roughly simultaneously with
Zheng et al. (2015), upon which we also significantly expand and update. Finally, the recent
survey (Alqurashi et al. 2016) discusses uncertainty in energy problems in general; that is,
besides UC, it also deals with market-clearing and long-term models. However, it does so
by leaving out any methodological discussion of optimization algorithms; furthermore, it is
somewhat light on certain approaches such as CCO ones. In our view, discussing solution
approaches for a model is crucial since it closely ties in with the usefulness of its solutions;
for instance, stochastic optimization models are only useful as long as they can be run with
an appropriate number of scenarios, and the possibility of doing so depends on the employed
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solution methods. We therefore believe that limiting the presentation to the models leaves
out too much important information that is crucial for properly choosing the right form of
uncertainty modelling.

Because the paper surveys such a large variety of material, we provide two different
reading maps:

1. The first is the standard reading order of the paper, synthesized in the Table of Contents
above. In Sect. 2 we describe the varied technical and operational constraints in (U)UC
modelswhich give rise tomanydifferent variants ofUCproblems. InSect. 3weprovide an
overview of methods that deal with the deterministic UC, focusing in particular on meth-
ods dealingwith large-scale systems and/or that can be naturally extended toUUC, at least
as subproblems. In particular, in Sect. 3.1 we discuss Dynamic Programming approaches,
in Sect. 3.2 we discuss Integer andMixed Integer Linear Programming approaches, while
in Sects. 3.3 and 3.4 we discuss decomposition approaches (Lagrangian, Benders and
Augmented Lagrangian), and finally in Sect. 3.5 we (quickly) discuss (Meta-)Heuristics.
UUC is then the subject of Sect. 4: in particular, Sect. 4.2 presents Stochastic Optimiza-
tion (Scenario-Tree) approaches, Sect. 4.3 presents Robust Optimization approaches, and
Sect. 4.4 presents Chance-Constrained Optimization approaches. We end the paper with
some concluding remarks in Sect. 5, and with a list of the most used acronyms.

2. The second map is centred on the different algorithmic approaches that have been used
to solve (U)UC. The main ones considered in this review are:

– Dynamic programming approaches, that can be found in Sects. 3.1, 3.2.2, 3.3, 3.5.2,
4.1.1.1, 4.2.1, 4.2.3, 4.2.4, and 4.4;

– Mixed-integer programming approaches, that can be found in Sects. 3.2, 3.3, 4.1.2.2,
4.2, 4.2.1, 4.2.3, 4.2.4, 4.3, and 4.4;

– Lagrangian relaxation (decomposition) approaches, that can be found in Sects. 3.2.2,
3.3, 3.5.2, 4.2.1, 4.2.2, 4.2.3, 4.2.4, and 4.4;

– Benders’ decomposition approaches, that can be found in Sects. 3.2.2, 3.3, 4.2, 4.2.1,
4.2.2, 4.2.3, 4.2.4, and 4.3;

– Augmented Lagrangian approaches, that can be found in Sects. 3.3, 3.4, and 4.4;
– Other forms of heuristic approaches, that can be found in Sects. 3.1, 3.2.2, 3.3, 3.5,

4.1.2.1, 4.2.2, and 4.2.3.

2 Ingredients of the unit commitment problem

We start our presentation with a very short description of the general structure of electrical
systems, presenting the different decision-makers who may find themselves in the need of
solving (U)UC problems and their interactions. This discussion will clarify which of the
several possible views and needs we will cover; the reader with previous experience in this
area can skip to Sect. 2.1 for a more detailed presentation of the various ingredients of the
(U)UC model, or even to Sect. 3 for the start of the discussion about algorithmic approaches.

When the first UC models were formulated, the usual setting was that of a Monopolistic
Producer (MP). The MP was in charge of the electrical production, transmission and distri-
bution in one given area, often corresponding to a national state, comprised the regulation
of exchanges with neighbouring regions. In the liberalized markets that are nowadays preva-
lent, the decision chain is instead decentralized and significantly more complex, as shown
in the (still somewhat simplified) scheme of Fig. 1. In a typical setting, companies owning
generation assets (GENCOs) have to bid their generation capacity over one (or more) Mar-
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Fig. 1 Simplified electricity and balancing market structure

ket Operator(s) (MO). Alternatively, or in addition, they can stipulate bilateral contracts (or
contracts for differences, CfD) with final users or with wholesales/traders. Once received
the bids/offers, the MO clears the (hourly) energy market and defines (equilibrium) clearing
prices. A Transmission System Operator (TSO), in possession of the high voltage transmis-
sion infrastructure, then has the duty—acting in concert with the Power Exchange Manager
(PEM)—to ensure safe delivery of the energy, which in turns means different duties such
as real time frequency-power balancing, several types of reserve satisfaction, voltage profile
stability, and enforcing real-time network capacity constraints. The TSO typically operates
in a different way programmable and non programmable units, since for instance only the
former can participate on balancing markets. However, very recently the growth of non pro-
grammable renewable sources required a greater integration also in the real time balancing
market. As a consequence modifications of network codes and new regulation emerged.
This is, e.g., the case of the resolution 300/2017/R/eel of the Italian Regulatory Authority
for Energy, Networks and Environment (ARERA), which establishes the first guidelines for
the active participation of the non programmable renewable sources, of the demand and of
the storage in the balancing market. Notably the storage can be included within traditional
production units giving birth to the concept of Integrated Production Units.

This basic setting, which can be considered sufficient for our discussion, is only a sim-
plification of the actual systems, which also vary depending on their geographical position.
For instance, transmission (and distribution) assets may actually be in possession of different
companies that have to offer them under highly regulated fair and non-discriminative condi-
tions, leaving the TSO only a coordination role. Also, the TSO and the MO may or may not
be the same entity, the balancing market can actually follow a central dispatch paradigm (as
alluded in Fig. 1) or a self dispatch one and so on. We leave aside these other factors, like
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how many and MOs there are and how exactly these are structured; we refer to Conejo and
Prieto (2001), Harris (2011), Oren et al. (1997), Shahidehpour et al. (2002) and Conejo et
al. (2010, Chapter 1) for a more detailed description. Because of this complexity, standard
optimization models may not be entirely appropriate to deal with all the aspects of the prob-
lem, since the behaviour of different/competing decision makers need be taken into account.
This may require the use of other methodologies, such as the computation of equilibria or
agent-based simulation. We will not deal with any of these aspects, the interested reader
being referred to Ventosa et al. (2005), Harris (2011), Oren et al. (1997), Shahidehpour et al.
(2002), Leveque (2002), Gabriel et al. (2013), van Ackooij et al. (2018), van Ackooij and de
Oliveira (2017), Dempe et al. (2015), Outrata (1990), Dempe and Dutta (2012), Adam et al.
(2017) and Surowiec (2010) for further discussion.

2.1 A global view of UC

In broad terms, the (deterministic or uncertain) Unit Commitment problem (both UC in
this section unless explicitly stated) requires to minimize the cost, or maximize the benefit,
obtained by the production schedule for the available generating units over a given time hori-
zon. As such, the fundamental ingredients of UC are its objective function and its constraints.
Of course, another fundamental ingredient is the time horizon itself; UC being a short-term
model this is most often a day or two of operations, and up to a week. In the following we
will denote it by T , which is typically considered to be a discrete set corresponding to a finite
number of time instants t ∈ T , usually hours or half-hours (down to 15 or 5 min). Thus, the
typical size of T varies from 24 to a few hundred.

In mathematical terms, UC has the general structure

min
{

f (x) : x ∈ X1 ∩ X2
}
, (1)

where x ∈ R
n is the decision making vector. Usually (most) elements of x are indexed

according to both the generating unit i ∈ U and the time instant t ∈ T they refer to. Thus,
one often speaks of the subvectors xt of all decisions pertaining to time t and/or xi of all
decisions pertaining to unit i . Also, entries of x are typically split among:

1. Commitment decision discrete variables that determine if a particular unit is on or off at
any given time (often denoted by ut

i );
2. Production decision continuous variables that provide the amount of generated active

power by a specific unit at a given time (often denoted by pt
i ). In this set other variables

can be included, such as reactive power or reserve contribution by a specific unit at a
given time (often denoted by qt

i and r t
i respectively);

3. Network decision such as these representing phase angle or voltage magnitudes at each
node, describing the state of the transmission or distribution network.

A UC problem not having commitment decisions is often called Economic Dispatch (ED)
(e.g. Zhu 2009) or Optimal Power Flow (OPF) when the network is considered, (e.g. Jabr
2008). It could be argued that commitment decisions can be easily derived from production
decisions (each time a non-zero production output is present the unit has to be on), but for
modeling purposes it is useful to deal with the two different concepts separately, cf. Sect. 3.2.
Besides, the point is that in ED or OPF the commitment of units has already been fixed and
cannot be changed. We remark that network decisions may also include binary variables that
provide the open or close state of a particular branch, as entirely closing a branch is one of the
few options that the physic of electrical networks allows for “routing” the electrical current
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(cf. Sect. 2.8). While ED can be expected to be simpler than UC, and in many cases it is a
simple convex program that can nowadays be solved with off-the-shelf techniques, this is
not always the case. ED was not only challenging in the past (e.g., Demartini et al. 1998 and
the references therein), but can still be so today. Indeed, even when commitment decisions
are fixed, the electrical system is highly nonlinear and nonconvex, e.g., due to hydro units
efficiency curves (cf. Sect. 2.4) or the transmission network characteristics (cf. Sect. 2.7), so
that ED can still be a nontrivial problem that may require ad-hoc approaches (e.g. Heredia
and Nabona 1995; Oliveira et al. 2005; Jabr 2006, 2008; Lavaei and Low 2012; Molzahn
et al. 2013).

In Eq. (1), X1 is the set modeling all technical/operational constraints of the individual
units and X2 are the system-wide constraints. The first set is by definition structured as a
Cartesian product of smaller sets, i.e., X1 = ∏

i∈U X1
i , with X1

i ⊆ R
ni and

∑
i∈U ni = n.

Moreover, the objective function f typically also allows for a decomposition along the sets
X1

i , i.e., f (x) = ∑
i∈U fi (xi ) and xi ∈ X1

i . Each of the sets X1
i roughly contains the feasible

production schedules for one unit, that can differ very significantly between different units
due to the specific aspects related to their technological and operational characteristics. In
most models, X1 is non-convex. However, units sharing the same fundamental operational
principles often share a large part of their constraints aswell. Because of this, these constraints
are best described according to the type of the generating unit, i.e.,

1. Thermal units (cf. Sect. 2.3);
2. Hydro units (cf. Sect. 2.4);
3. Renewable generation units (cf. Sects. 2.3, 2.4, 2.5).

While hydro units are arguably a part of renewable generation, in the context of UC it is
fundamental to distinguish between those units that are programmable and those that are not.
That is, hydroelectric generation systems relying on a flow that can not be programmed are
to be counted among renewable generation ones together with solar and wind-powered ones.
This is unless these so-called run-of-river (ROR) units are part of a hydro valley, preceded
by a programmable hydro one (cf. Sect. 2.4).

The set X2,which usuallymodels at least the offer-demand equilibriumconstraints, ismost
often, but not always, convex and even polyhedral. This setmay also incorporate other system-
wide constraints, such as emission constraints, network transmission constraints (cf. Sect. 2.7)
or optimal transmission switching constraints (cf. Sect. 2.8).

Solving (1) is difficult when n is large (which usually means that |U | is large) or X1 is
a complex set; the latter occurs e.g. when substantial modelling detail on the operations of
units is integrated in the model. Finally, (1) contains no reference to uncertainty, but several
sources of uncertainty are present in actual operational environments, as summarized in the
following table:

Data Uncertain for Severity

Customer load GENCOs, TSO Low
Reservoirs inflows GENCOs, TSO Medium
Renewable generation GENCOs, TSO High
Prices/quantities GENCOs, traders, loads users) Medium/high
Units/network failure GENCOs, TSO Medium

Various ways to incorporate uncertainty in (1) are discussed in Sect. 4.1. Obviously,
solving (1) becomes more difficult when uncertainty is present, even when n is small and
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X1 relatively simple. Thus, properly exploiting the structure of the problem (the function f
and the sets X1 and X2) is crucial to obtain efficient schemes for UC, and even more so for
UUC. This is why we now provide some detail on different modeling features for each of
these components.

2.2 The objective function

The objective function of UC is one of the main factors reflecting the different types of
decision-makers described in the previous section. In fact, when the demand needs to be
satisfied (as in the case of theMP, or of a TSO in the balancing market) the objective function
fundamentally aims at minimizing energy production costs; this is not necessarily obvious
(cf. the case of hydro units below), but the principle is clear. However, in the free-market
regime the aim of a single GENCO is typically rather to maximize energy production profits.
This again requires estimating the costs, so the same objective as in the MP case largely
carries over, but it also requires estimating the revenues from energy selling, as it is the
difference between the two that has to be maximized. In particular, if the GENCO is a price
maker it may theoretically indulge in strategic bidding (David and Wen 2001), whereby the
GENCO withdraws power from the market (by bidding it at high cost) in order to push up
market prices, resulting in an overall diminished production from its units but higher profit
due to the combined effect of decreased production cost and increased unitary revenue for the
produced energy.Of course, the success of such a strategy depends on the (unknown) behavior
from other participants in the market, which thereby introduces significant uncertainty in
the problem. The electrical market is also highly regulated to rule out such behavior from
market participants; in particular, largerGENCOs, beingmore easily pricemakers, are strictly
observed by the regulator and bid all their available capacity on the market. Yet, the solution
of strategic bidding problems is of interest at least to the regulators themselves, who need
to identify the GENCOs who may in principle exercise market power and identify possible
patterns of abuse. Even in the price taker case, i.e., a GENCO with limited assets and little
or no capacity to influence market prices, uncertainty is added by the need of accurately
predicting the selling price of energy for each unit and each t ∈ T (Gil et al. 2012). This
uncertainty must then bemanaged, e.g. with techniques such as those of Robust Optimization
(Baringo and Conejo 2011).

Energy production costs for fuel-burning units are typically modeled (in increasing order
of complexity) as linear, piecewise-linear convex, quadratic convex, or nonconvex functions
separable for each t ∈ T . In fact, while the fuel-consumption-to-generated-power curve can
usually be reasonably well approximated with a piece-wise linear function or a low-order
polynomial one, other technical characteristics of generating systems introduce nonconvex
elements. The simplest form is that of a fixed cost to be paid whenever the unit is producing
at some t ∈ T , irrespective of the actual amount of generated power. In alternative, or
in addition, start-up costs (and, less frequently, shut-down ones) are incurred when a unit
is brought online after a period of inactivity. In their simplest form start-up costs can be
considered fixed, but most often they significantly depend on the time the unit has been
off before having been restarted, and therefore are not separable for each time instant. The
dependency of the start-up cost on time can be rather complex, as it actually depends on the
choice between the unit being entirely de-powered (cooling) or being kept at an appropriate
temperature, at the cost of burning some amount of fuel during the inactivity period, to make
the start-up cheaper (banking). Technically speaking, in the latter case, one incurs a higher
boiler cost to offset part of the turbine cost. The choice between these two alternatives can
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often be optimally made by simple formulae once the amount of idle time is known, but this
is typically not true beforehand in UC since the schedule of the unit is precisely the output of
the optimization problem. Fortunately, some of the solution methods allow inclusion of the
start-up cost at a relatively minor increase of the computational complexity; this is the case
e.g. of MILP formulations, cf. Sect. 3.2, exploiting the fact that the optimal start-up cost is
nondecreasing as the length of the idle period increases (Nowak and Römisch 2000; Carrión
and Arroyo 2006). In other cases start-up cost have basically no additional computational
cost, such as in DP approaches, cf. Sect. 3.1. Other relevant sources of nonconvexity in the
objective function are valve points (Wood and Wollemberg 1996), corresponding to small
regions of the feasible production levels where the actual working of the unit is unstable
(e.g., due to transitioning between two different configurations in a Combined Cycle Gas
Turbine, CCGT, unit or other technical reasons) and that therefore should be avoided.

Nuclear units are generally considered thermal plants, although they significantly differ
in particular for the objective function. Indeed, fuel cost has a different structure and depends
on many factors, not only technical but also political (e.g., Cour des Comptes 2012). For
convenience, formulae similar to that of conventional thermal plants are often used. However,
these units incur additional significant modulation costs whenever variations of power output
are required; this cost is therefore again not separable per time instant.

Hydro units are generally assumed to have zero energy production cost, although they
may in principle have crew and manning costs. In the self-scheduling case, where profit has
to be maximized, this would lead to units systematically depleting all the available water due
to the fact that a short-term model such as UC has no “visibility” on what happens after the
end of its time horizon T (the so-called “border effect”). Because of this, often a value of
water coefficient is added to the objective function to represent the expected value of reserves
left in the reservoirs at the end of T . These values, as well as the required reservoir levels
(cf. 2.4), are usually computed by means of specific mid-term optimization models. A very
standard approach is to value the differential between the initial and end volume of a reservoir
against a volume-dependent water value; we refer to van Ackooij et al. (2014) and Cerjan
et al. (2011) for details on various other modelling choices. A particular difficulty appears
when we wish to integrate the water head effect on turbining efficiency (e.g., Finardi and
Silva 2006; Ramos et al. 2012), since this is typically a nonlinear and nonconvex relationship.

In general, the case of profit maximization requires knowledge of the selling and buying
price of energy at each t ∈ T . Because UC is solved ahead of actual operations, possibly
precisely with the aim of computing the bids that will contribute to the setting of these prices
(cf. e.g. Borghetti et al. 2003a; Bompard and Ma 2012; Kwon and Frances 2012; Rocha and
Das 2012), this requires nontrivial forecast models in order to obtain reasonable estimates
of the prices (e.g. Oudjane et al. 2006; Li et al. 2010; Zareipour 2012). Depending on the
time horizon and specific application, different price models can be considered. These can be
obtained from time series modeling (e.g. Diongue 2005; Muñoz et al. 2010; Pedregal et al.
2012), mathematical finance (e.g. Oudjane et al. 2006; Higgs and Worthington 2008; Benth
et al. 2012;Nguyen-Huu 2012; Pepper et al. 2012) or can be based on electricity fundamentals
(e.g. van Ackooij andWirth 2007; Ea 2012). For the case where the producer is a price taker,
that is, small enough so that its production can be deemed to have little or no effect on the
realized prices, UC can typically be independently solved for each individual unit (thus being
styled as the self-scheduling problem), and it is therefore much easier (Arroyo and Conejo
2000), although uncertainty in prices then becomes a critical factor and need be included in
the models by appropriate techniques (Conejo et al. 2002; Nogales et al. 2002; Baringo and
Conejo 2011; Jabr 2005). Things are significantly different in case the producer can exercise
market power, that is, influence (increase) the prices by changing (withdrawing) the power
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it offers to the market; modeling this effect “ties” all the units back again into an unique
UUC (Borghetti et al. 2003a; Conejo et al. 2002; de la Torre et al. 2002; Pereira et al. 2005).
Uncertainty in this case is also very relevant, with the behavior of competitors being one
obvious primary source (Anderson and Philpott 2002; Wen and David 2001; Vucetic et al.
2001; Pineau and Murto 2003; Wang et al. 2007). The matter is further complicated by the
fact that the structure of the PE is usually complex, with more than one auction solved in
cascade to account for different kinds of generation (energy, reserve, ancillary services, …)
(Baillo et al. 2004; Triki et al. 2005; Wang et al. 2005) and by the fact that tight transmission
constraints may create zonal or even nodal prices, thereby allowing producers who may not
have market power in the global context to be able to exercise it in a limited region (Li and
Shahidehpour 2005; Peng and Tomsovic 2003; Pereira et al. 2005).

2.3 Thermal units

A thermal power station is a power plant in which the prime mover is steam driven. Techni-
cal/operational constraints can be classified as either static or dynamic: the former hold on
each time step, whereas the latter link different (most often adjacent) time steps. Most typical
static constraints are:

1. Offline when the unit is offline, the power output is less than or equal to zero (negative
power output refers to the power used by auxiliary installations, e.g., for nuclear plants).

2. Online when the unit is online, the power output must be between Minimal Stable Gen-
eration (MSG) and maximal power output.

3. Starting the unit is ramping up to MSG. The ramping profile depends on the number
of hours a unit has been offline (e.g. Le et al. 1990); see also the discussion on starting
curves below in the section on dynamic constraints. A unit in this state can in principle
still be disconnected, but at a cost.

4. Stopping the unit ramps down from MSG to the offline power output. As for starting,
the ramping profile depends on the number of hours a unit has been online; see also the
discussion on stopping curves below in the section on dynamic constraints.

5. Generation capacity the production capacity of each unit. For some units the production
output has to be selected among a discrete set of values.

6. Spinning reserve the extra generating capacity that is available by increasing the power
output of generators that are already connected to the power system. For most gener-
ators, this increase in power output is achieved by increasing the torque applied to the
turbine’s rotor. Spinning reserves can be valued separately from actively generated power
as they represent the main mechanism that electrical systems have to cope with real-time
variations in demand levels.

7. Crew constraint number of operators available to perform the actions in a power plant.

Typical dynamic constraints instead are:

1. Minimum up/down time a unit has to remain online/offline for at least a specific amount
of time.

2. Operating ramp rate (also known as ramp-down and ramp-up rate): the increment and
decrement of the generation of a unit from a time step to another, excluding start-up and
shut-down periods, must be bounded by a constant (possibly different for ramp-up and
ramp-down).

3. Minimum stable state duration a unit that has attained a specific generation level has to
produce at that level for a minimum duration of time.
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4. Maximum numbers of starts the number of starts can be limited over a specific time
horizon (such a constraint is also implicitly imposed by Minimum Up/Down Time ones,
and in fact the two are somehow alternatives).

5. Modulation and stability these constraints are mainly applied to an online nuclear unit. A
unit is in modulation if the output level changes in a time interval, whereas it is stable if
the power level remains identical to that of the previous time step. The constraints ensure
that the unit is “most often stable”, requiring that the number of modulations does not
exceed a predefined limit over a given time span (say, 24 h).

6. Starting (stopping) curve (also referred to in literature as start-up/shut-down ramp rate):
in order to start (stop) a unit and move it from the offline (online) state to the online
(offline) state, the unit has to follow a specific starting (stopping) curve, which links
offline power output (zero, or negative for nuclear plants) to MSG (or vice-versa) over
the course of several time steps. Each starting (stopping) curve implies a specific cost,
and the chosen curve depends on the number of hours the plant has been offline (online).
Starting (stopping) may take anything from several minutes (and therefore be typically
irrelevant) up to 24 h (and therefore be pivotal for the schedule).

7. Feasible state transition for CCGT These thermal units typically have at least two Gas
Turbines and one Steam Turbine and have specific feasible state transition which are non
trivial to formulate, e.g. (Fan et al. 2016).

2.4 Hydro units

Hydro units are in fact entire hydro valleys, i.e., a set of connected reservoirs, turbines and
pumps that influence each other through flow constraints. When the hydro component is
significant UC is often denoted as HUC; this may make the problem significantly more
difficult, as the recent survey (Taktak and d’Ambrosio 2016) highlights. Turbines release
water from uphill reservoirs to downhill ones generating energy, pumps do the opposite.
Note that the power output of ROR units downstream to a reservoir (and up to the following
reservoir, if any) must be counted together with that of the turbines at the same reservoir;
usually it is possible to do this by manipulating the power-to-discharged-water curve of the
unit at the reservoir, and thus ROR units in a hydro valley need not be explicitly modeled. We
remark in passing that whether or not a unit is considered ROR depends on the time horizon
of the problem: units with small reservoirs can be explicitly modeled in HUC because they
do have a degree of modulation over the short term, but they may be considered ROR in
longer-term problems since the modulation is irrelevant over long periods of time.

As for thermal units, we distinguish constraints as being either static or dynamic. The
typical ones of the first kind are:

1. Reservoir level the level of water in each reservoir has to remain between a lower and
upper bound. Frequently these bounds are used to reflect strategic decisions correspond-
ing to optimal long-term use of water (cf. Sect. 2.2), and not necessarily reflect physical
bounds. An alternative is to use a nonlinear cost of water that reflects the higher risk
incurred in substantially depleting the reservoir level, as water in hydro reservoirs rep-
resents basically the only known way of efficiently storing energy on a large scale and
therefore provides a crucial source of flexibility in the system. Yet, bounds on the level
would ultimately be imposed anyway by physical constraints.

2. Bounds turbines and pumps can operate only within certain bounds on the flowing water.
In particular, some turbines might have a minimal production level akin to the MSG of
thermal units.
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The most common dynamic constraints are:

1. Flow equations these equations involve the physical balance of the water level in each
reservoir and connect the various reservoirs together. The reservoir levels get updated
according to natural inflows, what is turbined downhill, what is spilled downhill (i.e., let
go from the reservoir to the next without activating the turbines), and what is pumped
from downhill to uphill. Spilling might not be allowed for all reservoirs, nor all have
pumping equipment.

2. Flow delay the water flowing (uphill or downhill) from each unit to the next reservoir
will reach it after a given delay, that can possibly be of several hours (and occasionally
even more Belloni et al. 2003).

3. Ramp rate adjacent turbining levels have to remain sufficiently close to each other.
4. Smooth turbining over a a given time span (e.g., 1 h), turbining output should not be in

a V -shape, i.e., first increase and immediately afterwards decrease (or vice-versa). This
constraint is typically imposed to avoid excessive strain on the components, similarly
to several constraints on thermal units such as Minimum up/down Time, Maximum
Numbers of Starts, Modulation and Stability.

5. Turbining/pumping incompatibility some turbines are reversible and therefore pumping
and turbining cannot be done simultaneously. Moreover, switching from turbining to
pumping requires a certain delay (e.g., 30 min). Some of these constraints actually only
refer to a single time instant and therefore they can be considered as static.

6. Forbidden zones in complex hydro units, effects likemechanical vibrations and cavitation
strongly discourage using certain intervals of turbined water, as these would result in
low efficiency and/or high output variation (similarly to valve points in thermal units,
cf. Sect. 2.2). Therefore, constraints that impose that the turbined water lies outside of
these forbidden zones might have to be imposed (Finardi and Scuzziato 2013).

2.5 Renewable generation units

Renewable generation in UC mostly refers to wind farms, solar generation, stand alone ROR
hydro units, and geothermal production. The fundamental characteristic of all these sources,
as far asUC is concerned, is the fact that they cannot be easilymodulated: the produced energy,
and even if energy is produced at all (in somewind farms energy is actually consumed to keep
the blades in security when wind blows too strongly), is decided by external factors. Some of
these sources, most notably solar and wind, are also characterized by their intermittency; that
is, it is very difficult to provide accurate forecasts for renewable generation, even for short
time horizons (say, day-ahead forecasts). Furthermore, in several cases renewable generation
operates in a special regulatory regime implying that they cannot even be modulated by
disconnecting them from the grid. This has (not frequently, but increasingly often) led to
paradoxical situations where the spot price of energy is actually zero or, where allowed, even
negative, i.e., one is paid to consume the energy that renewable sources have the right to
produce (and sell at fixed prices) no matter what the demand actually is. All this has lead to
significant changes in the operational landscape of energy production systems, that can be
summarized by the following factors:

1. The total renewable production cannot be predicted accurately in advance;
2. Renewable generation has high variance;
3. The correlation between renewable generation and the load can be negative, which is

particularly troublesome when load is already globally low, since significant strain is
added to conventional generation assetswhichmayhave to quickly rampdownproduction
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levels, only to ramp them up (again rapidly) not much later. This goes squarely against
most of the standard operational constraints in classical UC (cf. Sects. 2.3, 2.4).

In other words, in UC terms, renewable generation significantly complicates the problem;
not so much because it makes its size or structure more difficult, but because it dramatically
increases the level of uncertainty of net load (the load after the contribution of renewables
is subtracted), forcing existing generation units to serve primarily (or at least much more
often than they were designed to) as backup production in case of fluctuations, rather than
as primary production systems. This increases the need of flexible (hydro-)thermal units
ready to guarantee load satisfaction at a short notice, which however typically have a larger
operational cost. We refer to Bouffard and Galiana (2008), Siahkali and Vakilian (2010),
Moura and Almeida (2010) and Miranda et al. (2011).

2.6 Demand response and energy storage

With increasing awareness of the effect that electrical consumption may have on the “envi-
ronment”, and as a result of economic incentives, users are increasingly willing to take an
active part in altering their consumption pattern to accommodate for system needs. In view
of testing such potential, experiments have carried out on a voluntary basis (e.g., NICE-
grid in France and the pilot projects in Italy after the aforementioned ARERA resolution
300/2017/R/eel). These mechanisms can be seen as a particular type of Demand Response
(DR). The novelty in itself is not so much the fact that some customers may be asked to not
consume, or postpone their consumption, but rather the scale and size of the considered con-
sumptions profiles. Indeed, traditionally only large industrial clients were addressed, but this
has progressively moved to consider larger sets of households. From amodelling perspective,
at least three kinds of phenomena can be looked at:

– A certain amount of load can be shedded, but a limited set of times over a given time
horizon (Magnago et al. 2015).

– A certain amount of load can be shifted from one moment in time to another without
implying any change in consumption (zero sum).

– A certain amount of load can be shifted from amoment in time to another while implying
a global increase in consumption. Such is the case, for instance, of an heating system
where, after some period of not warming a household, more energy is required to recover
a given confort temperature.

In a similar way to Demand Response, energy storage allows to adapt electrical consump-
tion (and generation), catering for flexibility needs. Energy storage gained popularity during
the 1970’s, when power generation saw a significant shift from oil to nuclear power in North
America and in Europe. Pumped hydro storage was used to complement base-load nuclear
and coal plant by absorbing excess energy during periods of low demand and generating to
meet peak consumption periods. In the subsequent decades, as generation portfolios diver-
sified to include more flexible plant such as gas-fired units, and the power generation sector
became deregulated, the economic and operational incentives justifying the installation of
further electrical energy storage disappeared.

Energy storage technologies have regained popularity in recent years due to their capability
to balance and facilitate the integration of wind and solar power. The flexibility inherent to
most energy storage technologies can decrease wind and solar power curtailment and reduce
the cycling burden on conventional generation units. Interest in energy storage is also due
to its system service provision capability, including (primary) frequency control, secondary
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reserve and relieving network congestion. Moreover, synchronous storage technologies can
address the inertia challenges that may arise due to the non-synchronous nature of wind and
solar power, particularly in small or island power systems (Eyer and Corey 2010).

Although, in large part due to advances in the automotive industry, lithium-ion battery
energy storage technologies for grid applications have gained the industry spotlight over the
recent years, there exists a wide variety of energy storage technologies that may be employed
for power system applications. These may be classified within: mechanical storage (i.e.
compressed air energy storage and flywheels), electrochemical storage (including secondary
and flow batteries), chemical storage (hydrogen and synthetic natural gas), electrical storage
(i.e. double-layer capacitors), and thermal storage systems. As a result of the variety of
technologies available, non-hydro energy storage models within UC vary widely depending
on the technology implemented and its intended applications. The basic implementation of
an energy storage unit performing energy arbitrage, which may apply to most storage assets
in their simplest form, will contain the following elements:

– Maximum and minimum charging and discharging power constraints;
– Maximum and minimum state of charge constraints;
– Charge and discharge efficiency.

A generic deterministic and stochastic energy storagemodel is proposed in Pozo et al. (2014).
Some battery UC models may also optimise the lifecycle of the asset by including charge
and discharge penalties. Certain energy storage technologies may require additions to the
basic model, e.g., compressed air energy storage operates in combination with a gas turbine,
therefore, the interactions between both technologiesmust bemodelled (Chen et al. 2016). An
increasing number of publications addresses the issue of how the representation of uncertainty
within UC formulations may impact the operation and the calculated value of energy storage
from both system (Pozo et al. 2014; Suazo-Martinez et al. 2014; Kiran and Kumari 2016)
and private investor perspectives (Muche 2014).

2.7 System-wide constraints

The most common form of system-wide constraints are the load constraints, guaranteeing
that global energy demand is exactly satisfied for each t ∈ T . This kind of constraint is not
present in the self-scheduling version of UC, where each unit reacts independently to price
signals, but global load satisfaction has to be taken into account, sooner or later, even in
liberalized market regimes. For instance, in several countries, after the main energy market
is cleared, GENCOs can swap demand between different units in order to better adjust
the production schedules corresponding to the accepted bids to the operational constraints
of their committed units, that are not completely represented in the auctions (Read 2010).
Alternatively, or in addition, an adjustment market is ran where energy can be bought/sold
to attain the same result (Palamarchuk 2012; Sauma et al. 2012) In both these cases the
production schedules of all concerned units need be taken into account, basically leading
back to global demand constraints. Also, in UC-based bidding systems the global impact of
all the generation capacity of a GENCO on the energy prices need to be explicitly modeled,
and this again leads to constraints linking the production levels of all units (at least, these
of the given GENCO) that are very similar to standard demand constraints. Conversely,
even demand constraints do not necessarily require the demand to be fully satisfied; often,
slacks are added so that small amounts of deviation can be tolerated, albeit at a large cost
(e.g., Dubost et al. 2005; Zaourar and Malick 2013).
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Another important issue to be mentioned is that the demand constraints need, in general,
to take into account the shape and characteristics of the transmission network. These are
typically modeled at three different levels of approximation:

– The single bus model basically the network aspects are entirely disregarded and the
demand is considered satisfied as soon as the total production is (approximately) equal
to the total consumption, for each time instant, irrespectively of where these happen on
the network. This corresponds to simple linear constraints and it is the most common
choice in UC formulations.

– The DC model where the network structure is taken into account, including the capacity
of the transmission links, but a simplified version of Kirchhoff laws is used so that the
corresponding constraints are still linear, albeit more complex than in the bus model (Lee
et al. 1994; Jabr 2010; Fonoberova 2010). In Ardakani and Bouffard (2013) the concept
of umbrella constraints is introduced to define a subset of the network DC constraints
that are active in order to significantly reduce the size of these constraints.

– TheAC modelwhere the full version ofKirchhoff laws is used, leading to highly nonlinear
and nonconvex constraints, so that even the correspondingEDbecomes difficult (Murillo-
Sanchez and Thomas 1998; Momoh et al. 1999a, b; Sifuentes and Vargas 2007a, b). A
recent interesting avenue of research concerns the fact that the non-convex AC con-
straints can be written as quadratic relations (Jabr 2006, 2008; Lavaei and Low 2012),
which paves the way for convex relaxations using semidefinite programming approaches
(Molzahn et al. 2013). In particular, in the recent Hijazi et al. (2013) a quadratic relax-
ation approach is proposed which builds upon the narrow bounds observed on decision
variables (e.g. phase angle differences, voltage magnitudes) involved in power systems
providing a formulation of the AC power flows equations that can be better incorporated
into UC models with discrete variables, notably the ones of cf. Sect. 2.8. A recount of
these recent developments can be found in Bienstock (2013).

Although market-based electrical systems have in some sense made network constraints less
apparent to energy producers, they are nonetheless still very relevant nowadays; not only in the
remaining vertically integrated electrical systems, but also for the TSO that handles network
security and efficiency. This requires taking into account a fully detailed network model,
even considering security issues such as N − 1 fault resilience, together with a reasonably
detailed model of GENCOs’ units (comprising e.g. infra-hour power ramps, start-up costs,
and start-up/shut-down ramp rate), when solving the Market Balancing problem. The latter
is basically a residual demand, bidding-based UC. From a different perspective, network
constraints might also be important for GENCOs that are able to exercise market power in
case zonal or nodal pricing is induced by the network structure (Price 2007).

Finally, both for vertically integrated system and in the TSO perspective, other relevant
system-wide constraints are spinning reserve ones: the committed units must be able to
provide some fraction (at least 3% according to Takriti et al. 1996) of the total load in order
to cope with unexpected surge of demand or failures of generating units and/or transmission
equipment. Other global constraints linking all units, or some subsets of them, exist: for
instance, all (or specific subsets of) fossil-fuel burning units may have a maximum cap on the
generation of pollutants (CO2, SOx , NOx , particles,…) within the time horizon (Hsu et al.
1991; Fu et al. 2005; Gjengedal 1996; Kuloor et al. 1992; Wang et al. 1995). Alternatively,
a cluster of geographically near units (a plant) burning the same fuel (typically gas) may be
served by a unique reservoir, and can therefore share a constraint regarding the maximum
amount of fuel that can be withdrawn from the reservoir within the time horizon (Aoki et al.
1987, 1989; Tong and Shahidehpour 1989; Fu et al. 2005; Cohen and Wan 1987). Finally,
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there may be constraints on the minimum time between two consecutive start-ups in the
same plant (Dubost et al. 2005), e.g., due to crew constraints. If a plant comprises a small
enough number of units it could alternatively be considered as a single “large” unit, so that
these constraints become technical ones of this aggregated generator. The downside is that
the problem corresponding to such a meta-unit then becomes considerably more difficult to
solve.

In systems with higher degrees of penetration of intermittent generation, such as islands,
UC models are sometimes amended with further constraints to help control the frequency in
case of a contingency. This is relevant since, generally, intermittent resources such as wind
do not provide inertia to the system, although they might through power electronics. In order
to evaluate the contribution of installing such additional equipment, the models must become
more accurate. Two different ways have been proposed to account for frequency in UC. The
first is through a set of indirect constraints that are neither a relaxation nor a restriction of the
actually desired ones (e.g., Daly et al. 2015; Ahmadi and Ghasemi 2014; Ela et al. 2014a, b;
Restrepo and Galiana 2005). Obvious downsides of such an approach is that one cannot
ensure satisfaction of the original constraint, nor control sub-optimality. Directly accounting
for frequency related constraints in UCmodels can be done through a very simplified version
of the differential equation system governing the loss of frequency following a contingency
(e.g., Teng et al. 2016); we refer to Arteaga (2016) and Cardozo et al. (2017) for a thorough
account of different approaches and extensive tests. A more precise approach can also be
designed, albeit under some theoretically hard to verify assumptions (Cardozo et al. 2018); the
resulting UC models can be solved by Benders-like scheme (Cardozo et al. 2016) exploiting
the convexifying effect of Lagrangian relaxations (Lemaréchal and Renaud 2001).

2.8 Optimal transmission switching

Traditionally, in UC models the transmission network has been regarded as a “passive” ele-
ment, whose role was just to allow energy to flow from generating units to demand points.
This is also justified by the fact that electrical networks, unlike most other networks (logistic,
telecommunications, gas, water,…) are “not routable”: the current can only be influenced
by changing nodal power injection, which is however partly fixed (at least as demand is
concerned). Indeed, in traditional UC models there were no “network variables”, and the
behavior of the transmission system was only modeled by constraints. However, as the pre-
vious paragraph has recalled, the transmission network is by far not a trivial element in the
system, and separate network variables are required. Recently, the concept has been further
extended to the case where the system behavior can be optimized by dynamically changing
the topology of the network. This is a somewhat counterintuitive consequence of Kirchhoff
laws: opening (interrupting) a line, maybe even a congested one, causes a global re-routing of
electrical energy and may reduce the overall cost, e.g. by allowing to increase the power out-
put of some cheaper (say, renewable) units (Fisher et al. 2008). This effect can be especially
relevant in those parts of the network with a high fraction of renewables whose production
is sometimes cut off because of network constraints.

Thus, a class of problems, calledOptimal Transmission Switching (OTS) or SystemTopol-
ogyOptimization (STO), has been definedwhereby each line of the network has an associated
binary decision (for each t ∈ T ) corresponding to the possibility of opening it. This makes
the problem difficult to solve even with a very simple model of nodal injections and a simple
network model such as the DC one (cf. Sect. 2.7); even more so with the AC model and
a complete description of the generating units. The so-called UCOTS models (Fisher et al.
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2008; Di Lullo 2013; Hedman et al. 2011a, b; Ruiz et al. 2012; Bienstock and Verma 2011;
Villumsen and Philpott 2011; Papavasiliou et al. 2013; O’Neill et al. 2010; Ostrowski et al.
2012; Ostrowski andWang 2012; Liu et al. 2012a, b; Korad and Hedman 2013; Hedman et al.
2009, 2010; Zhang andWang 2014) extend UC: almost everything that can be said about UC
is a fortiori valid for UCOTS, and therefore in the following we will not distinguish between
the two unless strictly necessary.

3 Methods for the deterministic unit commitment

We now proceed with a survey of solution methods for (the deterministic) UC. Our choice
to first focus on the case where the several forms of uncertainty arising in UC (cf. Sect. 2.1)
are neglected is justified by the following facts:

– UC already being a rather difficult problem in practice, most work has been carried out
in the deterministic setting;

– Uncertainty can be taken into account through various “engineering rules”: for instance,
spinning reserves allow to account for uncertainty on load, tweaking reservoir volumes
might allow to account for uncertainty on inflows, and so on;

– Methods for solving the deterministic UC are bound to provide essential knowledgewhen
dealing with UUC.

As discussed in Sect. 2, UC is not one specific problem but rather a large family of problems
exhibiting common features. Since the set of constraints dealt with in the UC literature varies
from one source to another, we define what we will call a basic Unit Commitment problem
(bUC)which roughly covers themost commonproblem type; through the use of tableswewill
then highlight which sources consider additional constraints. A bUC is a model containing
the following constraints:

1. Offer-demand equilibrium;
2. Minimum up or down time;
3. Spinning and non spinning reserve;
4. Generation capacities.

The UC literature review (Sheble and Fahd 1994), of which (Padhy 2004) is essentially an
update adding heuristic approaches, generally classify UC methodology in roughly eight
classes. We will essentially keep this distinction, but regroup all heuristic approaches in
“Meta-Heuristics”, thus leading us to a classification in:

1. Dynamic programming;
2. MILP approaches;
3. Decomposition approaches;
4. (Meta-)Heuristics approaches.

Wewill also add someof the earlyUCapproaches in theHeuristic class such as priority listing.
However, wewill not delvemuch on that class of approaches, since the recent surveys (Farhat
and El-Hawary 2009; Saravanan et al. 2013) mainly focus on these, while providing little (or
no) details on approaches based on mathematical programming techniques, that are instead
crucial for us in view of the extension to the UUC case.
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3.1 Dynamic programming

Dynamic Programming (DP, see e.g. Bellman and Dreyfus 1962; Bertsekas 2005, 2012) is
one of the classical approaches for UC. As discussed below, it is nowadays mostly used for
solving subproblems of UC, often in relation with Lagrangian-based decomposition methods
(cf. Sect. 3.3); however, attempts have beenmade to solve the problem as a whole. There have
been several suggestions to overcome the curse of dimensionality that DP is known to suffer
from; we can name combinations of DP and Priority Listing (DP-PL) (Snyder et al. 1987;
Hobbs et al. 1988), Sequential Combination (DP-SC) (Pang et al. 1981), Truncated Combi-
nation (DP-TC) (Pang and Chen 1976), Sequential/Truncated Combination (DP-STC) (the
integration of the two aforesaid methods) (Pang et al. 1981), variable window truncated DP
(Ouyang and Shahidehpour 1991), approximated DP (de Farias and Van Roy 2003) or even
some heuristics such as the use of neural network (Ouyang and Shahidehpour 1991) or arti-
ficial intelligence techniques (Wang and Shahidehpour 1993). The multi-pass DP approach
(Yang andChen 1989; Erkmen andKaratas 1994) consists of applyingDP iteratively, wherein
in each iteration the discretization of the state space, time space and controls are refined around
the previously obtained coarse solution; usually, this is applied to ED, i.e., once commitment
decisions have been fixed. In Pang et al. (1981) three of the aforesaid methods, DP-PL, DP-
SC, and DP-STC are compared against a priority list method on a system with 96 thermal
units, showing that the DP-related approaches are preferable to the latter in terms of time
and performance. The recent Singhal and Sharma (2011) performs a similar study on a bUC
with 10 thermal units, but only DP approaches are investigated.

Despite its limited success as a technique for solving UC, DP is important because of
its role in dealing with sub-problems in decomposition schemes like Lagrangian relaxation.
These typically relax the constraints linking different units together, so that one is left with
single-Unit Commitment (1UC) problems, i.e., self-scheduling ones where the unit only
reacts to price signals. In the “basic” case of time-independent startup costs 1UC can be
solved in linear time on the size of T . When dealing with time-dependent startup costs
instead, this cost becomes quadratic (Bard 1988; Zhuang and Galiana 1988). However, this
requires that the optimal production decisions pi

t can be independently set for each time
instant if the corresponding commitment decision ui

t is fixed, which is true in bUC but not if
ramp rate constraints are present. It is possible to discretize power variables and keep using
DP (Bechert and Kwatny 1972), but the approach is far less efficient and the determined
solution is not guaranteed to be feasible. An efficient DP approach for the case of ramp rate
constraints and time-dependent startup costs has been developed in Fan et al. (2002) under the
assumption that the power production cost is piecewise linear. This has been later extended
in Frangioni and Gentile (2006b) for general convex cost functions; under mild conditions
(satisfied e.g., in the standard quadratic case), this procedure has cubic cost in the size of T .
DP has also been used to address hydro valley subproblems in Siu et al. (2001) where a three
stage procedure is used: first an expert system is used to select desirable solutions, then a DP
approach is used on a plant by plant basis, and a final network optimization step resolves the
links between the reservoirs. In Salam et al. (1991) expert systems and DP are also coupled
in order to solve UC. We also mention the uses of expert systems in Mokhtari et al. (1988).

Most often DP approaches are applied to bUC, but other constraints have been consid-
ered such as multi-area, fuel constraint, ramp rates, emission constraints, and hydro-thermal
systems. We refer to Table 1 for a complete list.
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3.2 Integer andmixed integer linear programming

3.2.1 Early use: exhaustive enumeration

As its name implies, this approach focusses on a complete enumeration of the solution space
in order to select the solution with the least cost. bUC is addressed in Kerr et al. (1966) and
Hara et al. (1966), while in Hara et al. (1966) the cost function considers penalties for loss
of load and over production. In Kerr et al. (1966) a set of 12 thermal units on a 2 h basis
is scheduled. In Hara et al. (1966) a problem with two groups, each of which has 5 thermal
units is analyzed. This traditional approach obviously lacks scalability to large-scale systems.
However, some enumeration may find its way into hybrid approaches such as decomposition
methods under specific circumstances, like in Finardi and Silva (2006) where enumeration
is used in some of the subproblems in a decomposed hydro valley system.

3.2.2 Modern use of MILP techniques

With the rise of very efficientMILP solvers,MILP formulations ofUChave become common.
In general, their efficiency heavily depends on the amount ofmodelling detail that is integrated
in the problem. Early applications of MILP can be found in Garver (1962), Muckstadt and
Wilson (1968), Cohen and Yoshimura (1983), and in Cohen and Yoshimura (1983) it is
stated that the model could be extended to allow for probabilistic reserve constraints. HUC
is considered in Dillon et al. (1978), Pereira and Pinto (1983) and Shaw et al. (1985), where
constraints regarding hydro units such as flow equations, storage level of reservoirs, pump
storage and min/max outflow of each reservoir are incorporated in the model.

Some specific constraints such as the number of starts in a day or particular cost functions
with integrated banking costs can be found in Turgeon (1978) andLauer et al. (1982). In Lauer
et al. (1982) the authors combine Lagrangian relaxation (e.g., Muckstadt and Koenig 1977)
with a B&B procedure in order to derive valid bounds to improve the branching procedure.
The upper bound is derived by setting up a dynamic priority list in order to derive feasible
solutions of the UC and hence provide upper bounds. It is reported that a 250 unit UC was
solved up to 1% of optimality in less than half an hour, a significant feat for the time. A similar
approach is investigated in Parrilla and García-González (2006), where a heuristic approach
using, among things, temporal aggregation is used to produce a good quality integer feasible
solution to warm-start a B&B procedure.

While MILP is a powerful modelling tool, its main drawback is that it may scale poorly
when the number of units increases or when additional modelling detail is integrated. To
overcome this problem it has been combined with methods such as DP (Bond and Fox 1986),
logic programming (Huang et al. 1998) and Quadratic Programming (QP) (Shafie-Khah and
Parsa 2011). In Shafie-Khah and Parsa (2011) a HUC with various constraints is solved;
a customized B&B procedure is developed wherein binary variables are branched upon
according to their difference from bounds. The approach does not require any decomposition
method, and it is reported to reduce solution time significantly in comparison to othermethods.
The paper builds upon (Fu and Shahidehpour 2007), where a six-step solution is proposed to
solve large-scale UC; the algorithm is reported to be capable of solving security-constrained
problems with 169, 676 and 2709 thermal units in 27 s, 82 s and 8 min, respectively. This
so-called Fast-Security Constraint Unit Commitment problem (F-SCUC) method is based
on an ad-hoc way of fixing binary variables and gradually unlock them if needed, using
Benders-type cuts to this effect. However, in Frangioni et al. (2008) it is reported that MILP
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models, where the objective function is piecewise-linearly approximated, are much more
effective than the direct use of MIQP models, at least for one specific choice and version of
the general-purpose MIQP solver. In Frangioni et al. (2011) MILP and Lagrangian methods
are combined, solving problems with up to 200 thermal units and 100 hydro units in a few
minutes if the desired accuracy is set appropriately. In Sahraoui et al. (2017) the authors
consider specific issues related to numerical errors in MILP in a HUC context and suggest
some methods to deal with these errors.

Systems with a significant fraction of hydro generation require a specific mention due to
a notable characteristic: the relationship between the power that can be generated and the
level of the downstream reservoir (head-to-generated-power function), that can be highly
nonlinear (Catalão et al. 2006), and, in particular, nonconvex. This can be tackled by either
trying to find convex formulations for significant special cases (Yu et al. 2000), developing
ad-hoc approximations that make the problem easier to solve (Catalão et al. 2010), or using
the modelling power of MILP to represent this (and other nonconvex) feature(s) of the
generating units (Piekutowki et al. 1994; Chang et al. 2001; Dal’Santo and Costa 2016; Chen
et al. 2017). However, developing a good approximation of the true behaviour of the function
is rather complex because it depends on both the head value of the reservoir and the water
flow. MILP models for accurately representing this dependency have been presented in Jia
and Guan (2011), and more advanced ones in Borghetti et al. (2008) and Alvarez et al. (2018)
using ideas from (d’Ambrosio et al. 2010); while they are shown to significantly improve the
quality of the generated schedules, this feature makes HUCmarkedly more complex to solve.
Several solution approaches (MILP,MINLP and LR based decomposition) to represent hydro
power generation are compared in Finardi et al. (2016). Through a 3-phase MILP strategy,
accurate solutions are found for large-scale HUC instances in Marchand et al. (2018).

3.2.3 Recent trends in MILP techniques

Recently, MIP (and in particular MILP) models have attracted a renewed attention due to a
number of factors. Perhaps the most relevant is the fact that MILP solvers have significantly
increased their performance, so that more and more UC formulations can be solved byMILP
models with reasonable accuracy in running times compatible with actual operational use
(Carrión and Arroyo 2006). Furthermore, selected nonlinear features—in particular convex
quadratic objective functions and their generalization, i.e., Second-Order ConeConstraints—
are nowadays efficiently integrated in many solvers, allowing to better represent some of
the features of the physical system. This is especially interesting because MIP models are
much easier to modify than custom-made solution algorithms, which—in principle—allow
to quickly adapt the model to the changing needs of the decision-makers. However, it has to
be remarked that each modification to the model incurs a serious risk of making the problems
much more difficult to solve. Two somewhat opposite trends have recently shown up. On
one side, tighter formulations are developed that allow to more efficiently solve a given
UC problem because the continuous relaxation of the model provides better lower bounds.
On the other hand, more accurate models are developed which better reflect the real-world
behavior of the generating units and all the operational flexibility they possess (cf. e.g. Hobbs
et al. 2001; Lu and Shahidehpour 2005; Makkonen and Lahdelma 2006), thereby helping to
produce better operational decisions in practice.

On thefirst stream, the research has focussed onfindingbetter representations of significant
fragments ofUC formulations. StandardUC formulations either use three binary variables (3-
bin: on/off, startup and shutdown) (Garver 1962) or one single binary variable (1-bin) (Carrión
and Arroyo 2006). In recent years, development has gone into improving the tightness in
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particular of the 3-bin formulation. For instance, (Ostrowski et al. 2012;Morales-España et al.
2013a) develop better representations of the polyhedra describing minimum up- and down-
time constraints and ramping constraints. A similar study is carried out in Morales-España
et al. (2015), where specific investigations are made to account for generation while starting
and stopping a unit (startup/shutdown curves). In a similar vein, Bendotti et al. (2018) provide
an extension tomany units of the analysis initiated in Rajan and Takriti (2005) asmin-up/min-
down constraints are concerned; in particular, a set of new valid inequalities is introduced.
By extension, the computational complexity is looked at in Bendotti et al. (2017a); not
surprisingly, UC is found to beNP-Hard even in simple situations. Further such investigations
are related specifically to the consideration of start-up costs as in Brandenberg et al. (2017).
In Yang et al. (2017) an alternative two binary variable (2-bin) formulation is proposed and
widely tested, proving that it can be competitive with 1-bin and 3-bin ones. A different
approach is proposed in Fattahi et al. (2017a), where a conic strengthened semidefinite
program (SDP) is constructed for the convex relaxation of a classic UC formulation. The valid
inequalities are based on the Reformulation-Linearization-Technique (RLT) (Sherali and
Adams 1998) and the so-called triangle inequalities; incorporating them in the UC problem,
several test cases—including the large-scale IEEE 300 bus one—can be solved to global
optimality using the commercial-grade SDP solver Mosek. Recently, new formulations have
been developed inspired byDP approaches (cf. Sect. 3.1), i.e., using state transition variables:
these can be shown to represent the convex hull of integer solutions for the case of one
single unit (Frangioni and Gentile 2015), even in presence of quadratic costs if perspective
reformulation techniques are also employed (Frangioni and Gentile 2006a), and to improve
performances in practice (Atakan et al. 2018). Conic programming techniques are also used
in Frangioni et al. (2009), Wu (2011) and Jabr (2012), which focus on better piecewise-
linear reformulations of the nonlinear (quadratic) power cost function of thermal units. Both
approaches, that can be easily combined, have been shown to attain impressive speed-ups in
cpu time for a fixed level ofmodelling detail, thus emphasizing (oncemore) the importance of
carefully investigating the mathematical properties of the underlying optimization problem
and its ingredients.

The second stream rather aims at improving the accuracy of the models in representing
the real-world operating constraints of units, that are often rather crudely approximated
in standard UC formulations. For hydro units this for instance concerns technical con-
straints (Chang et al. 2001) and the already discussed water-to-produced-energy function,
with its dependency from the water head of the downstream reservoir (Piekutowki et al.
1994; Finardi and Silva 2006; Borghetti et al. 2008). For thermal units, improvements com-
prise the correct evaluation of the power contribution of the start-up and shut-down power
trajectories (when a unit is producing but no modulation is possible) (Arroyo and Conejo
2004), which may make the model significantly more difficult unless appropriate tech-
niques are used (Morales-España et al. 2013b), or a clearer distinction between the produced
energy and the power trajectory of the units (García-González et al. 2007; Morales-España
et al. 2014). Further, recent investigations involve the use of storage devices (Steber et al.
2018).

In the OTS context (cf. Sect. 2.8), special care must be given whenmodeling the Kirchhoff
laws, as this leads to logic constraints that, in MILP models, are typically transformed into
“big-M” (hence, weak) linear constraints.Moreover, severe symmetry issues (Ostrowski et al.
2010)must be faced (Di Lullo 2013; Ostrowski et al. 2012), as these can significantly degrade
the performances of the B&B approach. Recent symmetry breaking techniques, known as
orbital branching (a terminology pinned down in Ostrowski et al. (2011)) or orbitopal fixing
(e.g., Kaibel et al. 2011) are applied to UC in Ostrowski et al. (2015) and Bendotti et al.
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(2017b). All these difficulties, not shared by UC with DC or AC network constraints, require
a nontrivial extension of the “classic” MILP UC models. Many approaches use off-the-shelf
B&B solvers, while possibly reducing the search space of the OTS binary variables (Ruiz
et al. 2012; Ostrowski and Wang 2012; Liu et al. 2012b) and using tight formulations for
the thermal units constraints. All these references use classic quadratic cost functions; one
exception is (Di Lullo 2013), where a direct MILP approach is combined with a perspective
cuts approximation (Frangioni et al. 2009) and a special perturbation of the cost function that
successfully breaks (part of the) symmetries. Together with heuristic branching priorities that
give precedence to the thermal UC status variables, this is shown to be much better than using
a classic quadratic function, with or without perturbations, for solving the IEEE 118 test case.
In Kocuk et al. (2016) cycle inequalities are proposed inspired by Kirchoff’s Voltage Law
that are used to strengthen the MILP OTS formulation. Several types of valid inequalities
are proposed in Kocuk et al. (2017) to strengthen a MISOCP formulation including a full
AC model for the transmission constraints. In the very recent Fattahi et al. (2017b) it is
proven that finding the “best” M for the disjunctive big-M constraints in the OTS problem is
NP-hard in general, and this beyond the fact that problem itself is NP-hard. Yet, a procedure
based on Dijkstra’s algorithm is proposed for OTS with a fixed connected spanning subgraph
that finds non trivial upper bounds on the M constants, which significantly reduces the
computational time in several test systems including the real Polish network. In Shi and
Oren (2018) a UCOTS model for systems with high renewable production is shown to be
capable of reducing total cost via transmission switching even in the absence of congestion;
the proposed approach first decomposes the system into zones, and then solves the problem
for each zone in parallel (Table 2).

3.3 Lagrangian and Benders decomposition

UC possesses several forms of structure that can be algorithmically exploited; the most
obvious one is that (complex) units are usually coupled through demand and reserve require-
ments (the set X2 in (1)). Since these constraints are usually in limited number and “simple”,
Lagrangian Decomposition (or Relaxation, LR) (Lemaréchal 2001; Guignard 2003; Fran-
gioni 2005) is an attractive approach and has been widely used. It is based on relaxing
these coupling constraints by moving them in the objective function, weighted by appro-
priate Lagrangian multipliers, so that the relaxed problem then naturally decomposes into
independent subproblems for each individual unit (1UC); for an arbitrary set of Lagrangian
multipliers, the solution of all the 1UCs provides a lower bound on the optimal value of
(1). Moreover the mapping (called the dual function, or Lagrangian function) assigning this
optimal value to a given set of Lagrangian multipliers is concave; maximizing it, i.e., finding
the best possible lower bound, is therefore a convex optimization problem for which efficient
algorithms exists.

Two technical points are crucial when developing a LR approach:

– How the maximization of the Lagrangian function, i.e., the solution of the Lagrangian
Dual (LD), is performed;

– Since (1) is in general nonconvex the approach cannot be expected to provide an optimal
(or even feasible) solution, so methods to recover one have to be developed.

Regarding the first point, one can rely on the available well-developed theory concerning
minimization of convex nondifferentiable functions. Standard approaches of this kind are
subgradient methods (Polyak 1977; Nesterov 2009; d’Antonio and Frangioni 2009) and the
cutting plane method (CP) (Kelley 1960), also known as the Dantzig–Wolfe decomposition
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method (Dantzig and Wolfe 1960). Early examples of the use of subgradient methods in UC
are (Fisher 1973; Muckstadt and Koenig 1977; Bertsekas et al. 1983; Merlin and Sandrin
1983; Bard 1988; Zhuang and Galiana 1988), possibly with modifications such as succes-
sive approximation techniques (Cohen and Wan 1987) or variable metric approaches (Aoki
et al. 1987). An early example of the use of CP is Aganagic and Mokhtari (1997). The two
approaches are rather different: subgradient methods use very simple rules to compute the
next dual iterate, whereas CP uses (possibly costly) Linear Programming (LP) problems for
the same task, although hybrid versions have been devised (Tong and Shahidehpour 1989).
This is necessary in practice because both approaches have convergence issues, for different
reasons: subgradient methods lack an effective stopping criterion, whereas CP tends to be
unstable and converge slowly. This is why variants of CP have been devised, e.g., using Inte-
rior Point ideas to provide some stabilizing effect (Merle et al. 1998); for an application to
UC see Madrigal and Quintana (2000). In Ruzic and Rajakovic (1998) the KKT conditions
of the Lagrange function are used in order to update the Lagrange multipliers and improve
on subgradient approaches. In Redondo and Conejo (1999) CP is stabilized by a trust region.
The latter turns out to be a special case of the most effective family of approaches capable
of dealing with this kind of problems, that is, (generalized Frangioni 2002) Bundle methods
(Lemaréchal 1975; Wolfe 1975). These can be seen as a hybrid between subgradient and
CP (Bahiense et al. 2002) which inherits the best properties of both (Briant et al. 2008).
Several variants of Bundle approaches exist, see e.g. (Lemaréchal and Sagastizábal 1994;
Lemaréchal et al. 1995; Astorino et al. 2011). A recent development that is useful for UC is
that of methods that allow the inexact solution of the Lagrangian relaxation (Kiwiel 2012;
de Oliveira and Sagastizábal 2014; Oliveira et al. 2014; van Ackooij and Frangioni 2018);
this feature is of particular interest if operational considerations impose strong restrictions
on the solution times for the subproblems. For early application of Bundle methods to UC
see e.g., (Lemaréchal and Sagastizábal 1995; Luh et al. 1998; Zhang et al. 1999; Gollmer
et al. 1999; Feltenmark and Kiwiel 2000; Borghetti et al. 2001, 2003a).

Regarding the second point, one important property of LDs of non-convex programs is
that, while they cannot be guaranteed to solve the original problem, they indeed solve a
“convexified version” of it (Lemaréchal 2001; Frangioni 2005). In practice, this typically
provides solution x̃ = ( p̃, ũ) to (1) that is feasible for all constraints except the integrality
ones. That is, rather than feasible commitment decisions ui

t ∈ {0, 1} one obtains pseudo-
schedules ũi

t ∈ [0, 1] that satisfy the constraints with the production decisions p̃. Such
a solution can be obtained basically for free by (appropriately instrumented versions of)
subgradient methods (Barahona and Anbil 2000; Anstreicher andWolsey 2009) and all other
algorithms, most notably Bundle ones (Feltenmark andKiwiel 2000). The pseudo-schedule x̃
can for instance be heuristically interpreted as the probability that unit i be on at instant t , and
then be used in this guise to devise primal recovery approaches to attain feasible solutions of
(1), either by appropriately modifying the objective function (Dubost et al. 2005; Daniildis
and Lemaréchal 2005) or by a heuristic search phase that exploits both x̃ and the integer
solutions produced by the LR (Batut and Renaud 1992; Frangioni et al. 2008; Sagastizábal
2012).

Along with early papers which address the bUC (Muckstadt and Koenig 1977; Merlin and
Sandrin 1983; Fisher 1973; Bertsekas et al. 1983), we mention papers which address large-
scaleUC (Merlin and Sandrin 1983; Bertsekas et al. 1983). The authors ofMerlin and Sandrin
(1983) are among the first who tried to use LR to obtain a solution, and not just to obtain
lower bounds for B&B procedures, solving a problem of 172 units. In Lauer et al. (1982) the
duality gap problem is tackled by approximating the dual problemwith a twice-differentiable
mapping which is then maximized by using a constrained Newton’s method, after which a
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heuristic is used to recover a nearly optimal primal solution; a 200 units UC is solved in about
10–12 min. In a subsequent work (Shaw et al. 1985), a three-stage approach is proposed to
deal with a—for the time—large-scale hydro-thermal system (100 thermal units and 6 hydro
ones). The first stage is based on LR, with the thermal 1UCs solved using DP, while the hydro
subproblems are solved by using a penalty multipliers method (Kort and Bertsekas 1972) and
a specially tailoredNewton’smethod. A “unit decommitment”method is suggested in Li et al.
(1997) and Tseng et al. (2000) where all units are considered online over all T and then, using
the results of the LR, units are decommitted one at a time. This method aims at providing
feasible primal solutions first, whereas most LR approaches would aim at optimality first.
Further references using LR are Ferreira (1994), Guan et al. (1994) and Salam et al. (1997,
1998), which consider specific dedicated approaches in order to tackle the subproblems,
elementary ways of updating the dual and heuristics to recover a primal feasible solution. A
particular interesting feature of LR (when compared to monolithic solution based methods
such asMILP) is the possibility to solve the sub-problems in a parallel computing architecture.
This potential is investigated and explored in Sher and Banerjee (2014), where the trade-off
between the number of sub-problems and processors is examined. In Guan et al. (1995) the
units cost functions are modified in order to reduce the oscillating behavior of subgradient
approaches. In Gollmer et al. (1999) the authors compare a primal MIP based approach with
a LR-based approach: Bundle methods are used in order to solve the LD and two Lagrangian
heuristics are investigated for primal recovery. The first one searches for time steps where
demand constraints aremost violated and employs a strategy proposed in Zhuang andGaliana
(1988) for changing the commitment variables, while the second one exploits nearly optimal
Lagrange multipliers for fixing commitment decisions. In order to recover primal feasibility,
both heuristics are followed by solving an ED, wherein the commitment variables are fixed;
this LR-based method is shown to be capable of handling larger and more complex instances.
In Takriti and Birge (2000) the Lagrangian heuristic consists of formulating aMIP that mixes
solutions provided by the dual iterations, selecting the production schedule of a specific unit
among the primal solutions generated by the LD phase in such a way as to minimize overall
cost and satisfy (the dualized) demand constraints. The resulting MIP is then reformulated
in order to allow for an efficient solution. A similar idea is exploited in Lucas and Triboulet
(2012), where the MIP is solved by using Genetic Algorithms. In Feltenmark and Kiwiel
(2000) the dual multipliers defining the pseudo-schedule are interpreted as probabilities
for randomly selecting commitment decisions after a LD phase; four derived Lagrangian
heuristics are investigated. InBelloni et al. (2003) a two step procedure is proposed, consisting
of a LD phase followed by an Augmented Lagrangian (AL) phase for primal recovery. The
AL term is linearized in an ad-hocway and its penalty slowly sent to infinity. Bundlemethods,
CP and sub-gradient methods are compared for solving the LD phase; it is shown that bundle
methods outperform alternative approaches. Finally, in Borghetti et al. (2001) Lagrangian
approaches are compared with Tabu Search heuristics, and an improved primal phase is
proposed in Borghetti et al. (2003a). The approach is later extended to the free-market regime
(Borghetti et al. 2003b) and to the handling of ramping constraints (Frangioni et al. 2008)
via the use of the specialized DP procedure of Frangioni and Gentile (2006b). An hybrid
version also using MILP techniques is presented in Frangioni et al. (2011). A state-based
formulation akin to that leading to the DP is proposed in Tumuluru et al. (2014), where all
the (up to 212) feasible sub-paths corresponding to half of the day are enumerated; the LD
of the formulation is then solved by a subgradient algorithm and specific primal recovery
techniques exploiting the generated sub-paths.

LR can be used to deal with ramp rate constraints, fuel related constraints and emission
constraints (Cohen andWan 1987; Aoki et al. 1987; Yan et al. 1993; Tong and Shahidehpour

123



Annals of Operations Research (2018) 271:11–85 39

1989; Zhuang and Galiana 1988) by simply relaxing them (in Lagrangian fashion). Similarly,
LR can be employed to further decompose subproblems, in particular hydro ones; these ideas
are explored in Guan et al. (1997), Ni et al. (1999), Finardi and Silva (2006), Takigawa et al.
(2012, 2013) and Finardi and Scuzziato (2014). More specifically, the authors of Guan
et al. (1997) consider the LD related to the bounds on the reservoir levels in the hydro
subproblem, which effectively decomposes the problem in smaller MILPs that can then be
readily dealt with, through the use of DP in this specific case. The LD is optimized using a
subgradient approach, and heuristics are used to recover a primal feasible solution. A similar
approach is used in Ni et al. (1999), where hydro units have discrete commitment decisions
much like thermal ones. These constraints are then relaxed in a Lagrangian way, resulting in
continuous networkflowsubproblems and a pure integer problem. InFinardi andSilva (2006),
Lagrangian decomposition (Guignard and Kim 1987) is used to deal with forbidden zones in
complex hydro units. The idea is to use LR to decompose hydro valley subproblems further
into two parts: the first part deals with the flow constraints and basically leads to a simple LP,
while the second part deals with thewater-head effect and other combinatorial constraints and
requires a specificNLP approach (an SQP-basedmethod and partial exhaustive enumeration).
Two dual formulations are considered which differ from each other in that in the second
one the NLP problem is further decomposed through the use of auxiliary variables. The
model is extended to consider network constraints in Takigawa et al. (2012), and different
relaxation schemes are explored inTakigawa et al. (2013) andFinardi andScuzziato (2014); in
particular, the latter compares Lagrangian relaxation and Lagrangian decomposition. In Yan
et al. (1993) a system with 70 thermal and 7 hydro units is addressed. Ramp rate constraints
are also dualized, and the DP approach of Guan et al. (1991) is used to optimize the thermal
units, while a merit order allocation is employed for the hydro subproblem. In Zhuang
and Galiana (1988) a three stage approach is proposed based on first solving the LR, then
finding a feasible solution for reserve requirements and finally solving an ED. In Nilsson
and Sjelvgren (1996) a HUC with a fairly realistic model for hydro generation is considered
that comprises forbidden zones (cf. Sect. 2.4) and the water head effect. The offer-demand
equilibriumconstraints and reservoir balance equations are dualized, and theLD ismaximized
with a subgradient approach, with a heuristic step fixing the discrete hydro variables to
recover a primal feasible hydro solution. InAganagic andMokhtari (1997) some transmission
constraints are considered. In Li and Shahidehpour (2003) an alternative to ramping rate
constraints in themodel for thermal units, a so-called stress effect, is proposed.Couplingoffer-
demand equilibrium and reserve requirement constraints are dualized; the corresponding LD
is maximized using a subgradient approach, where the thermal subproblems are solved using
SimulatedAnnealing techniques. In Fu et al. (2005) a ramp rate, fuel and emission constrained
UC is solved (Table 3).

A different decomposition approach is the classic one due to Benders (Benders 1962; Bon-
nans et al. 2006, Chapter 11.1), which rather focuses on complicating variables that, once
fixed, allow to separate the problem into independent (and, hopefully, easy) ones. Application
of Benders’ decomposition to UC is fairly recent; in particular, it has been used for Transmis-
sion constraints, which decompose by hour once commitment and energy decisions are taken.
In Wu and Shahidehpour (2010), Liu et al. (2010) and Wu (2013) techniques for improving
the generated Benders’ cuts are described. In Fu et al. (2013) a conceptual and numerical
comparison is made, in the context of the security constrained UC, between LR and MILP
approaches (cf. Sect. 3.2) for the solution of master problem of Benders’ decomposition;
for the subproblems, involving the network constraints, Benders’ cuts and linear sensitivity
factor (LSF) approaches are compared. In Taverna (2017) Bender’s decomposition is also

123



40 Annals of Operations Research (2018) 271:11–85

Ta
bl
e
3

So
ur
ce
s
us
in
g
L
ag
ra
ng
ia
n
re
la
xa
tio

n

B
as
ic
U
C

A
dd
iti
on
al
U
C
co
ns
tr
ai
nt
s

M
us
tr
un
/o
ff

Fu
el
co
ns
tr.

R
am

p
ra
te

Su
pp
l.
re
se
rv
e

H
yd
ro
-t
he
rm

al
E
m
is
si
on

T
ra
ns
m
is
si
on

A
ga
na
gi
c
an
d
M
ok
ht
ar
i

(1
99

7)
,M

uc
ks
ta
dt

an
d

K
oe
ni
g
(1
97

7)
,M

er
lin

an
d
Sa
nd

ri
n
(1
98

3)
,

C
oh

en
an
d
W
an

(1
98

7)
,

A
ok
ie
ta
l.
(1
98

7)

Y
an

et
al
.(
19

93
),

Z
hu

an
g
an
d

G
al
ia
na

(1
98

8)

A
ok
ie
ta
l.
(1
98

7)
,

To
ng

an
d

Sh
ah
id
eh
po

ur
(1
98

9)

Fu
et
al
.(
20

05
),

C
oh

en
an
d
W
an

(1
98

7)
,Y

an
et
al
.(
19

93
)

A
ga
na
gi
c
an
d

M
ok

ht
ar
i

(1
99

7)
,C

oh
en

an
d
W
an

(1
98

7)

A
ok
ie
ta
l.
(1
98

7)
,

Y
an

et
al
.

(1
99

3)
,

Ta
ki
ga
w
a
et
al
.

(2
01

3)

Fu
et
al
.(
20

05
),

G
je
ng
ed
al

(1
99

6)
,K

ul
oo

r
et
al
.(
19

92
)

A
ga
na
gi
c
an
d

M
ok

ht
ar
i

(1
99

7)
,

Ta
ki
ga
w
a
et
al
.

(2
01

2)

Y
an

et
al
.(
19

93
),
To

ng
an
d
Sh

ah
id
eh
po

ur
(1
98

9)
,Z

hu
an
g
an
d

G
al
ia
na

(1
98

8)
,F

is
he
r

(1
97

3)
;N

ils
so
n
an
d

Sj
el
vg
re
n
(1
99

6)

Fr
an
gi
on
ie
ta
l.

(2
01

1)
Fu

et
al
.(
20

05
),

C
oh

en
an
d
W
an

(1
98

7)

Fr
an
gi
on
ie
ta
l.

(2
00

8)
,

Fr
an
gi
on
ie
ta
l.

(2
01

1)

B
or
gh
et
ti
et
al
.

(2
00

3b
),

Fr
an
gi
on
ie
ta
l.

(2
00

8)
,

Fr
an
gi
on
ie
ta
l.

(2
01

1)

Fa
n
et
al
.(
20

02
),
Sh

aw
et
al
.(
19

85
),
B
or
gh

et
ti

et
al
.(
20

01
),
M
ad
ri
ga
l

an
d
Q
ui
nt
an
a
(2
00

0)
,

Fe
lte
nm

ar
k
an
d
K
iw
ie
l

(2
00

0)

B
or
gh
et
ti
et
al
.

(2
00

3a
),

B
or
gh
et
ti
et
al
.

(2
00

3b
),

T
um

ul
ur
u
et
al
.

(2
01

4)

B
or
gh
et
ti
et
al
.

(2
00

3a
),
N
ils
so
n

an
d
Sj
el
vg
re
n

(1
99

6)
,S

ha
w

et
al
.(
19

85
)

Fu
et
al
.(
20

05
),
B
er
ts
ek
as

et
al
.(
19

83
),
L
ia
nd

Sh
ah
id
eh
po

ur
(2
00

3)

L
ia
nd

Sh
ah
id
eh
po

ur
(2
00

3)
,A

ok
i

et
al
.(
19

89
)

A
ok
ie
ta
l.
(1
98

9)
,

Fi
na
rd
ia
nd

Sc
uz
zi
at
o

(2
01

4)
,F

in
ar
di

an
d
Si
lv
a
(2
00

6)

123



Annals of Operations Research (2018) 271:11–85 41

employed for a deterministic zonal UC problem and, as is popular in UUC, commitment
variables are seen as complicating variables.

3.4 Augmented Lagrangian relaxation

One major downside of LR approaches is the difficulty in recovering a primal feasible solu-
tion. The use of the Augmented Lagrangian (AL) method, whereby a quadratic penalization
of the relaxed constraints is added to the objective function alongside the linear penalization
typical of standard LR, is known to be a potential solution to this issue. Yet, because (1) is
nonconvex it should be expected that in general the AL approach leads to a local optimizer
(Gill et al. 1982; Luenberger and Ye 2010). Furthermore, the AL relaxation is no longer
separable into an independent subproblem for each unit, and therefore it is significantly more
difficult to solve (in practice, as difficult as UC itself). This calls for some further approach
to simplify the relaxation; in Batut and Renaud (1992) and Yan et al. (1994) the use of the
auxiliary problem principle (Cohen 1980; Cohen and Zhu 1983) is suggested. The classic
theory of the auxiliary problem principe requires restrictive assumptions such as convexity
and regularity, which do not hold in practice; some recent advances have been made in the
non-convex setting (Attouch et al. 2010; Razaviyayn et al. 2012; Tseng 2001). In Beltran
and Heredia (2002) an alternative decomposition scheme based on block coordinate descent
(e.g. Ruszczyński 1995; Bertsekas 1999) is proposed and it is found to be more efficient. The
recent Mezger and Almeida (2007) includes in the UC formulation a DC network model and
bilateral contracts defining the nodal injections. The AL of the coupling constraints is formed
and then linearized in an ad-hoc way, while bundle methods are employed for updating the
dual multipliers. Environmental constraints (Wang et al. 1995) and network transmission
constraints (Beltran and Heredia 2002; Wang et al. 1995) have also been tackled with the AL
approach. A commonway to deal with additional constraints is variable duplication (Georges
1994), which is also used in Feizollahi et al. (2015) in the context of different variants of
the Alternating Direction Method of Multipliers (ADMM), comprising some procedures for
constructing feasible solutions (Table 4).

3.5 (Meta-)Heuristics

3.5.1 Operator rule based: priority listing

This method defines a list of units which should logically be scheduled prior to other units,
with merit order scheduling being a special case. Priority listing was first employed on bUC
in Baldwin et al. (1959), where units are listed according to their performance and the cost
they yield (comprising maintenance costs). Must-on/must-off and crew constraint have been
added in Lee (1988), and a limit on the number of starts is included in Lee (1991) through the
use of a commitment utilization factor, which is claimed to provide a better list. While the
former two papers and Amiri and Khanmohammadi (2013) address bUC, there has been an
endeavour to integrate other factors such as multi-area constraints (Lee and Feng 1992) and
hydro-thermal systems (Johnson et al. 1971) for large-scale UC. In the latter paper a two-
step heuristic procedure is used to solve a UC with 100 units: the first step uses rules from
real-world schedules (possibly enhanced by the use of UC software) to set up a priority list
consisting of feasible production schedules, while the second step optimizes locally around
the current solution. A very similar approach is investigated in Amiri and Khanmohammadi
(2013). InMoradi et al. (2015), amethodology is developed to includeminimumup and down
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times as well as ramping constraints through a non-iterative approach. The methodology is
tested both on 10–100 unit systems (IEEE RTS 24 and 118-bus) and on the Korean power
system (Table 5).

3.5.2 Guided random exploration

Since solving the UC (1) to optimality is quite difficult, many heuristic approaches such
as Taboo search, Simulated Annealing, Augmented Lagrange Hopfield Networks, Nature
Inspired (e.g., particle swarms, frog leaping,…) and Genetic Algorithms have also been
employed. We refer to Farhat and El-Hawary (2009) and Saravanan et al. (2013) for a discus-
sion of those approaches, and in this paper we by no means attempt to give a full overview of
this subfield. This is because heuristic approaches like these are typically difficult to adapt to
the Uncertain UC case, which is the main focus of this survey, unless they are at least partly
based on mathematical programming techniques. We therefore concentrate mostly on hybrid
approaches that use the latter at least to a certain degree. For instance, in Lucas and Triboulet
(2012) genes are feasible schedules produced by a LR-based scheme: the genetic algorithm
then mixes the solutions up to form new feasible schedules in order to hopefully produce a
solution that better meets the demand constraints. In essence this simply means solving the
recombination MIP of Takriti and Birge (2000) highly inaccurately. In Zhuang and Galiana
(1990) a 100 thermal unit system is solved by using Simulated Annealing; this is reported to
outperform a B&B procedure, but fails to outperform a LR approach (although in the later
(Borghetti et al. 2001) Taboo search has been reported to be more competitive with LR).
In Duo et al. (1999) and Juste et al. (1999) Evolutionary Programming is applied to adjust
the solution provided by a LR approach. In Luh et al. (1999) a neural network approach is
coupled to LR in order to optimize a system with up to 60 units: the thermal subproblems
are optimized using a neuron-based DP algorithm.

In general, these approaches are not considered particularly competitive for UC; for
instance, (Takriti et al. 2000) states that Simulated Annealing and Evolutionary Program-
ming attempts have been unsuccessful. Also, usually these approaches deal with bUC, with
only a few sources considering ramp rate, crew, maintenance or multi-area constraints, and
hydro-thermal systems being very rarely dealt with. The likely reason is that purely combi-
natorial heuristics are best apt at problems that exhibit a predominant and relatively “simple”
combinatorial structure towhich the various elements of the heuristic (neighborhood(s) struc-
ture in Simulated Annealing, Taboo list and aspiration criteria in Taboo search, mutation and
crossover operators in genetic algorithms,…) can be specifically tailored. UC is a funda-
mentally mixed combinatorial and continuous program, since both the commitment and the
dispatch have to be provided. Furthermore, UC has several different combinatorial structures,
especially when “complex” constraints have to be dealt with. Therefore, on the outset UC is
best approached with mathematical programming techniques.

Table 6 provides a (very partial) overview of heuristic approaches.

4 Methods for the uncertain unit commitment

The complex nature of UC, due to its numerous technical constraints, forces the schedule to
be determined quite ahead of time and consequently be given to the TSO one day in advance.
This allows for uncertainty to have an important impact on the system. Furthermore, intra-
daily optimization processes and communication between the TSO and the GENCOs allow
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for recourse decisions. Thus, dealing with uncertainty has always been necessary in UC.
We now discuss the approaches that have been proposed (and sometimes compared van
Ackooij 2017) in the literature. To the best of our knowledge, this has never been done before
specifically for the UC. The chapter (Wallace and Fleten 2003) provides a general overview
of the ways in which uncertainty arises in Energy Management, but it is mainly focussed
on mid- and long-term problems, UC being only briefly addressed. Analogously, Conejo
et al. (2010) offers a general survey on uncertainty issues in Energy Optimization, without a
specific focus on UC. The chapter Römisch and Vigerske (2010) offers a general overview of
properties of stochastic optimization problems and briefly provides some links to stochastic
UC problems. The essential references used in these sources will be discussed below.

4.1 Dealing with uncertainty in UC

In most traditional approaches, load uncertainty is dealt with by computing the schedule
corresponding to the worst scenario, i.e., typically that of peak demand in each period. This
choice systematically overestimates demand and incurs the risk that significant ramp-down of
the production is needed when the actual demand proves to be substantially smaller than the
forecasted one, which can cause feasibility issues due to technical constraints like ramp-down
ones (cf. Sect. 2.3). Another common approach has been to use spinning reserve constraints
(cf. Sect. 2.7) (Wu et al. 2007;Anstine et al. 1963;Billinton andKarki 1999; Fotuhi-Firuzabad
and Billinton 2000; Gooi et al. 1999; Morales et al. 2009); the advantage is that this protects
against some degree of uncertainty while keeping the deterministic formulation. In general,
the deterministic constraints can be “tweaked” heuristically in order to deal with uncertainty.
For instance, in order to ensure that the solution can survive a certain degree of variability
in the data we can underestimate the amount of water in a hydro reservoir and/or impose
stricter ramp-rate constraints than justified by technical aspects. Obviously, this may result in
a loss of optimality or control over feasibility. Worse, one may loose control over where the
approximations have beenmade. Further simplificationsmay be related to relaxing integrality
constraints or by considering certain uncertainties to be part of load (e.g., Ruiz et al. 2010)

In order to overcome these weaknesses, methods where uncertainty is directly modeled
have been investigated. These comprise Stochastic Optimization (scenario tree), Robust Opti-
mization, and Chance-Constrained Optimization.

4.1.1 Dealing with uncertainty in the model

4.1.1.1 Stochastic optimization Scenario tree based approaches (from now on denoted as SO,
i.e., StochasticOptimization) have been the subject of intense research in the last two decades;
see e.g. (Prékopa 1995, Chapter 13; Birge and Louveaux 1997; Louveaux and Schultz 2003;
Kall and Mayer 2005; Ruszczyński and Shapiro 2009a, b) among the many other general
references. Their use in the UC context has been considered e.g. in Takriti et al. (1996),
Carpentier et al. (1996), Ozturk et al. (2004), Wu et al. (2007) and Wong and Fuller (2007)
and in HUC in e.g., (Séguin et al. 2017) (and references therein). The key advantage of using
scenario trees is that uncertainty is assumed to be known in each node of the tree. Since
uncertainty is now discretized on the tree, essentially this amounts to solving a deterministic
UC of very large scale. The authors of Tuohy et al. (2009) demonstrate the interest of SO
over deterministic optimization using such a direct reformulation. In Schulze and McKinnon
(2016), two and multi-stage stochastic programming are compared against a deterministic
rolling horizon approach, showing that stochastic models lead to cost savings, but only
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if the scenario tree well represents the underlying uncertainty. In view of this, Morales-
España et al. (2017) considers the impact of uncertainty jointly with other approximations
of reality (such as not considering stopping/starting curves), and proves that each feature
has a non-negligeable effect on the expected costs. According to Bertsimas et al. (2013), SO
methods have two major drawbacks. First, obtaining an accurate probability distribution can
be difficult, i.e., setting up an accurate tree is hard. Indeed, while generating scenarios for
each individual uncertainty factor may be relatively straightforward, combining these to form
a tree structure is not easy. Second, these solutions provide only probabilistic guarantees. The
first difficulty can be partially tackled by the approaches considered inDupačová et al. (2003),
Heitsch andRömisch (2003), Heitsch andRömisch (2009), Eichhorn et al. (2010) andHeitsch
and Römisch (2011), that provide a systematic approach for generating manageable trees.
Classical approaches (e.g. Takriti et al. 1996) to form a tree are those that start out with a set
of scenarios and progressively regroup similar scenarios to form the nodes, in each of which
a representing scenario is selected. The use of physical models for generating uncertainty
(e.g. Constantinescu et al. 2011) could also help improve the realism of the underlying
scenario tree. The recent work Feng and Ryan (2016) builds on classic scenario reduction
(e.g., Heitsch and Römisch 2003) for a 2-stage UUC (with commitment/binary decisions
restricted to the first stage) by regrouping scenarios according to some sensitivity index
meaning to reflect important characteristics of the problem. In this view it is also worthwhile
to mention that such scenario clusters can also be dynamically formed and managed by the
algorithm (Song and Luedtke 2015; van Ackooij et al. 2018) without loosing any guarantee
on the optimality with respect to the originally formulated problem. In Sari and Ryan (2017),
building on and extending (Sari et al. 2016), a further criteria is developed for linking scenarios
and estimating the cost of recourse. The second difficulty can be tackled by using a hybrid
approach that also considers spinning reserve requirements on the scenario tree (Ruiz et al.
2009; Wu et al. 2007), which can be used to account for events not modeled in the tree. We
mention in passing that similar techniques can also be applied to longer-term problems, such
as the management of an hydro reservoirs, that although not strictly pertinent to this paper are
clearly strongly related. For a recent instance, a specialized stochastic dual DP algorithm is
proposed in Guigues (2013). In Dvorkin et al. (2015) there is one of the few attempts to mix
the stochastic approachwith an interval one, that in turn is similar to Robust Optimization, see
also Sect. 4.1.1.2. The goal is to manage the complexity of the stochastic approach applying it
only to the initial operating hours of the optimization horizon. The later hours use the interval
approach (i.e., RO) since the uncertainty in net load is higher in these hours. In Aghaei et al.
(2016) a classic stochastic approach is used for a full AC network constrained UC, while the
solution approach is a Benders’ decomposition with one master and two sub-problems. The
interesting modelling characteristic is the imposed relationship between the level of reserve
and the (estimated) value of lost load (VOLL). In Zhang et al. (2016) a joint day-ahead
scheduling of electric power systems with natural gas transmission constraints is considered
together with a stochastic approach aimed at dealing with the uncertainty of the load and of
random outages.

4.1.1.2 Robust optimization In order to be less demanding on the representation of uncer-
tainty, Robust Optimization (RO) uses the notion of uncertainty set, which basically reunites
the adverse events against which we wish to protect ourselves. For a comprehensive intro-
duction to robust optimization we refer to Ben-Tal et al. (2009) and Bertsimas et al. (2011);
other important references are Ben-Tal and Nemirovski (1998), Ben-Tal and Nemirovski
(1999), Ben-Tal and Nemirovski (2000), Ghaoui and Lebret (2006), EI Ghaoui et al. (1998),
Bertsimas and Sim (2003) and Bertsimas and Sim (2004). RO approaches might lead to a
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substantially higher costs of the proposed solution—a too high “price of robustness” (Bert-
simas and Sim 2004)—w.r.t. SO ones when distributions of the uncertainty are sufficiently
well characterized. This is mainly because RO protects against each event in the specified
uncertainty set regardless of its probability, and therefore may have to account for extremely
unlikely events. Several RO approaches have parameters (e.g., “budget of uncertainty”) that
can be used to adjust the degree of protection offered by the model (Bertsimas and Sim 2003;
Nemirovski and Shapiro 2006a; Chen et al. 2007); yet, in general tuning these parameters
is far from trivial. To reduce the price of robustness associated with classical ellipsoidal and
Γ -robustness uncertainty sets proposed in Ben-Tal and Nemirovski (1998), EI Ghaoui et al.
(1998) and Bertsimas and Sim (2004), subsequent studies have investigated alternative soft
and light robustness models (Ben-Tal et al. 2010; Fischetti and Monaci 2009). Recently,
multiband robustness (Büsing and D’Andreagiovanni 2012, 2013), has been proposed as a
generalization of Γ -robustness that can support an improved and stratified representation of
uncertainty and a reduction in conservatism, while maintaining the computational tractability
and accessibility of Γ -robustness.

4.1.1.3 Chance-constrained optimization Chance-Constrained Optimization provides an
attractive way to select the trade-off between cost and robustness, using a notion—the proba-
bility of the selected solution to be feasible—that is easy for the decision-maker to understand
and manage.We refer to Prékopa (1995), Prékopa (2003), Dentcheva (2009), Henrion (2004)
and Henrion (2010) for a modern introduction to probabilistic programming. In van Ackooij
et al. (2011) the potentials for energy management applications, such as UC, are discussed.
However, a drawback of CCO is that probabilistic constraints can be nonconvex and hard to
evaluate, thus making these approaches potentially computationally demanding.

4.1.1.4 The link between RO and CCO There actually is an important link between RO and
CCO. Indeed, an intuitively appealing idea is to select the uncertainty set in such a way as
to enforce a probabilistic constraint, so that the solutions produced by the RO approach are
comparable with those produced by the CCO one. More generally, one may aim at replacing
the probabilistic constraint with a convex, albeit possibly more restrictive, constraint. There
are various ways of doing this (e.g. Nemirovski and Shapiro 2006a; Ben-Tal and Nemirovski
2009), often referred to as “safe-tractable approximation approaches” (a somewhat unfortu-
nate terminology implicitly assuming that all CCO problems are intractable, which is not the
case). Frequently, such convex outer approximations of the CCO-feasible set are derived by
using individual probabilistic constraints, i.e., constraints that require that each individual
inequality in the constraints system holds with high enough probability (e.g. Chen et al.
2007). Besides using a (not necessarily very tight) approximation, this approach gives lit-
tle control over the joint violation of the constraints, although it does have the advantage
that convexity makes the corresponding problems easier to solve. We refer to van Ackooij
et al. (2010, 2014) for examples showing that individual probabilistic constraints may lead
to an arbitrary number of violated constraints. We also refer to Bandi and Bertsimas (2012)
and Guan and Wang (2014) for various other alternatives of building uncertainty sets. The
scenario approximation approach (e.g. Calafiore and Campi 2005; Nemirovski and Shapiro
2004, 2006b) can be seen as a special case of RO with a discrete uncertainty set that arose
by drawing random samples from the underlying distribution. For instance, a two stage UC
model is proposed in Kalantari and Galiana (2015) wherein feasibility for the second stage
offer-load balance is requested to hold for all scenarios belonging to a finite uncertainty set
constructed by identifying specific extremal points of an ellipsoidal load set.
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The link between CCO and RO can be concretely used. In Upahyay et al. (2016) a CCO
problem is defined to compute the effective range of wind power output, that is then used in
a RO UUC; a specific structure of the problem (discrete uncertainty) allows to formulate an
equivalent MILP solvable with standard commercial solvers. A similar approach is used in
Hreinsson et al. (2015), where a polyhedral uncertainty set is constructed by sampling the
uncertain wind production in a large enough number of points as to have some guarantee on
the probability of the events left out, and then standard RO techniques are used to formulate
the UUC as a MILP. However, one can go further in combining CCO and RO. Indeed, in
some applications not all sources of uncertainty are known equally well. Then, in order
to best exploit available information on, say, the distribution of some components, while
considering uncertainty on others in a broader sense, it is possible to consider a so-called
“hybrid robust/chance constraint” (e.g., vanAckooij et al. 2016), or “probust” constraint (e.g.,
Gradón et al. 2017;Adelhütte et al. 2018). Both constraints capture the fact that the probability
has to be taken over a system involving a worst-case situation over some uncertainty set,
while also accounting for regular probabilistic information over other components. The other
situation (easier since implied by the former, see, e.g., van Ackooij et al. 2016), which we
could conveniently call “robility”, considers a parametric worst-case version of a standard
probability constraint. This can be seen, at least at a high level, as analogous to distributionally
robust chance constraints, wherein a worst case situation over an appropriate family of
probability measures is taken (e.g., Calafiore and Ghaoui 2006; Hanasusanto et al. 2015;
Zymler et al. 2013). Distributionally robust CCO is put into work in the two-stage stochastic
UCmodelwithfirst-stage integer variables ofXiong et al. (2017),where the expected recourse
cost function is replaced by a worst-case expected cost over a specifically chosen ambiguity
set. The latter set is special in so much that it allows for a specific reformulation of the full
recourse cost function, when also exploiting linear decision rules. In Zhao and Guan (2016)
the formulated two-stage UC accounts for ambiguity on the probabilities of the given set
of scenarios, which are assumed to belong to either an L1 or L∞ space thus allowing for a
convenient reformulation of the second stage problem; a Benders decomposition algorithm
is employed to solve the resulting problem.

4.1.2 Modelling and solution choices

4.1.2.1 The choice of recourse decisions A crucial decision in all two-stage (or multi-stage)
models, be they SO, RO or CCO, is which variables represent “here and now decisions”
(first stage), to be taken before the uncertainty is revealed, and which represent “recourse
actions” (second or later stages) that can change when the uncertain parameters are revealed.
In multi-stage models a whole chain of decisions and observation of uncertainty needs to be
worked out properly, which ends with the observation of a last random realization offering
no recourse actions (e.g., van Ackooij and Oudjane 2015). This could give rise to the need
to consider multi-stage RO (CCO) approaches. When recourse is incomplete (i.e., can not
guarantee feasibility of later stages regardless of the random realizations) such a need may
also arise.

In general, recourse formulations aim at minimizing the total cost of the here and now
decisions and the expected cost (or sometimes other utility functions Vieira et al. 2016) of the
possible recourse actions. These problems are typically very challenging from both the com-
putational and theoretical point of view, especially if recourse actions are integer-valued, or
anyway belong to a non-convex set. In the integer setting, a general approach to deal with this
formulation was introduced by Laporte and Louveaux (1993). In Løkketangen andWoodruff
(1996) a progressive hedging algorithm and Taboo search are used to address multi-stage
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problems with mixed 0–1 variables. The approaches can become somewhat computation-
ally less demanding if recourse variables are instead continuous, which is often the case in
UC. In fact, here commitment variable are typically first-stage decisions, to be taken well in
advance, while the actual energy production (usually continuous) is indeed managed in real
time when the uncertain data (load, prices,…) is revealed. Such a choice is made in Bertsimas
et al. (2013) where RO is applied to UC with a 2 stage approach. Restricting commitment
choices to a first stage is a convenient simplification but it does not fully represent reality,
where (a few) changes to the commitment of units are in general possible. The same 2 stage
RO approach is considered in Lee et al. (2014) where a model with full transmission line
constraints is proposed together with novel acceleration techniques comprising cutting plane
for the master and column-generation methods for the sub-problems.

Accounting for recourse decisions, however, significantly increases the complexity of
the problem, which justifies why restricting integer decisions to the first stage is the most
common approach. The primal-dual approach explored in van Ackooij and Malick (2016)
highlights how, by exploiting the LD in the second stage, an automatic convexifying effect
is generated. The solved UC problem then actually “sees the recourse cost function through
a convexified looking glass”, but the cost function does not necessarily coincide with the
convex hull of the recourse cost function. Still, thanks to such an approach a highly efficient
decomposition scheme can be designed.

A further choice, once say a 2-stage framework has been adopted, is that of the second
stage criterium to optimize, e.g., expected costs, worst-case costs or some risk measure of the
recourse costs. We refer to van Ackooij (2017) for a general comparison of some methods
accounting for recourse decisions and other that do not, while also considering partially
the choice of the criteria (expectation vs. worst case). The work Kazemzadeh et al. (2017)
carefully compares optimization based onworst-case criteria versus risk (here CVaR) criteria.
The authors conclude that even when low-tail probabilities are picked, the latter approach is
quite less conservative.

4.1.2.2 Direct approaches versus decomposition Regardless of the simplifying assumptions
on UUC, the resulting mathematical program is frequently a very-large-scale one, which
means that decomposition approaches are especially attractive. In some special situations,
direct use of MI(N)LP solvers remains possible. This is, for instance, the case of the self-
scheduling of a single unit subject to uncertain prices, forwhich the deterministic problem has
a low number of variables. Another example is the market based model of Laia et al. (2014),
wherein all generators (including commitment decisions) can be adapted in a second decision
stage. Often, however, the deterministic equivalent (if any) of the uncertain problem is usually
so large that it cannot be directly solved by use of MILP solvers, and decomposition is
required. This canbe achievedbyvariable duplication, relaxingnon-anticipativity constraints,
systemwide constraints or by using Benders’ decomposition. The resulting sub-problems are
then CCO (e.g. van Ackooij 2014), RO, deterministic (e.g. Takriti et al. 1996) or stochastic
programs (e.g. Carpentier et al. 1996).

Some authors develop ad-hoc “decomposition like” schemes such as in Lyon et al. (2016),
where a 2-stage stochastic UC is considered, but with a Benders-like ad-hoc procedure to
re-enforce constraints in the master problem dealing with the optimal commitment decisions.
In particular, the effect of scenarios are approximated by means of capacity constraints on
“slow” units whose RHS is the amount of power required in that scenario, thereby including
the uncertainty; conversely, “fast” units are allowed to change their commitment when uncer-
tainty is revealed, which implies having integer variables in the scenario subproblems. The
coefficients in these constraints, i.e., the “qualified capacity” of a generator under a scenario,

123



Annals of Operations Research (2018) 271:11–85 51

are ideally initialized as the maximum power of the generator, and then a deterministic UC
is solved. The obtained schedule is evaluated in all scenarios by solving small-scale MILP
akin to the scenario subproblems and evaluating if the cost of the scenario is too large than
what anticipated; in this case the qualified capacities are reduced, and the deterministic UC
is solved again (with a time limit of 4 min). Tests are performed on a modified version of the
IEEE-73 bus test case.

We will now present more details on algorithms for Uncertain UC models using these
three approaches.

4.2 Stochastic optimization (scenario-tree) approaches

In this section we will discuss four common solution approaches for solving scenario-tree
based versions of UC: the direct MILP approach and three decomposition methods.

A SO program with scenario-tree structure can be decomposed in at least two ways.
Perhaps the most natural one is to relax the so-called non-anticipativity constraints and
solve as many deterministic UC problems as there are scenarios. This is called the Scenario
Decomposition approach (Takriti et al. 1996) and includes well-known variants such as
progressive hedging (Rockafellar and Roger 1991). The alternative is to dualize the demand
and supply equilibriumconstraints in eachnode to formaLD(Carpentier et al. 1996) and solve
as many stochastic programming problems as there are units. This can be referred to as Space
Decomposition, Unit Decomposition or Stochastic Decomposition, because one is basically
optimizing a stochastic function,which in this case just happens to have an underlying discrete
distribution. We will use Unit Decomposition, UD, to have a different shorthand from the
Scenario Decomposition, SD. The discretization can be carried out after having formed the
LD in an appropriate Banach space setting (L1-type spaces); see for instance (Nürnberg
and Römisch 2003). We refer to Ruszczyński (2003) for a thorough discussion on various
alternatives. In general, it is hard to state beforehand which among UD and SD will perform
better for a given instance; the recent Scuzziato et al. (2018) compares them using state-of-
the-art Lagrangian techniques (in particular, the use of “easy components” (Frangioni and
Gorgone 2012) is found to be quite significant) and tries to elaborate on some of the main
trade-offs between the two approaches.

A different applicable approach is Benders’ decomposition, cf. Sect. 4.2.4. It exploits
the L-shaped structure of the problem, whereby the second-stage (recourse) variables corre-
sponding to each scenario are unrelated, and therefore the corresponding subproblems can be
solved independently, once the first-stage variables are fixed (van Slyke andWets 1969). This
corresponds to seeing the second (or later) stage(s) as an aggregated expected cost function
depending on first (or earlier) stage variables. Under appropriate hypotheses (e.g., no integer
decisions in later stages) this expected cost function can be shown to be convex, and cutting
planes based approximations can then be used to compute the solution of the master prob-
lem (e.g. de Oliveira et al. 2011). Recent and interesting trends in Bender’s decomposition
are the consideration of inexact cuts and stabilisation techniques. We refer to Rahmaniani
et al. (2017) for a general overview on Bender’s decomposition and to van Ackooij et al.
(2016), Zaourar (2014) and Zaourar andMalick (2014) for more specific references concern-
ing stabilization and energy related applications. Stabilized Bender’s decomposition has, in
particular, been used in UC applications in van Ackooij et al. (2017) where the (simple)
recourse cost function is a worst-case cost function over a very large uncertainty set; the
numerical experiments show that stabilization results in impressive speed ups.
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4.2.1 Mixed integer linear programming

In Valenzuela andMazumdar (2003) the use of UC tools in a deregulatedmarket is discussed.
In particular, under the assumptions that prices are stochastic and there is no market power
or transmission constraints, a GENCO can solve a self-scheduling UC for each of its units
independently, which however, should be a SO model due to uncertainty on prices. A MILP
formulation for (a basic) UC is proposed, along with three DP approaches to solve it. These
approaches are used to produce a cost-based method to generate a distribution of energy
prices, based on the assumption that in a competitive market the price should be equal to the
marginal cost of the most costly committed unit. A different take on the same problem, i.e.,
generating offer curves for an energymarket, is proposed in Li et al. (2007) based on a similar
two-stagemodel wheremarket prices are directly the uncertain quantity; the produced energy
for each price scenario is used as a base to construct piecewise-linear offer curves.

In Philpott and Schultz (2006) a two-stage model is considered where the first stage
decisions consist of commitment decisions and an offer curve, while in the second stage,
the dispatch is computed. Single unit or identical unit systems are considered, although the
model with several units can not cope with minimum up/down times. The focus is essentially
on obtaining the offer-curve. A DP principle is presented, but no numerical experiments are
provided. A very similar model is considered in Triki et al. (2011), wherein commitment
decisions and offer curves are first-stage decisions and dispatch later stage decisions. The
key focus of these papers is on the market mechanisms.

Hydro scheduling is looked at in amarket-based setting in Fleten andKristoffersen (2008).
The problem integrates commitment decisions on the turbined output, which have minimum
release rates. Expected gain fromselling energy on themarket ismaximized,whereas volume-
dependent water values are used in order to represent the cost of water as measured by the
difference between the initial and final volume in the reservoir.

InBeraldi et al. (2008) a two-stage formulation is proposedwherein the first stage variables
consist of bilateral contracts. Once these contracts have been selected, the market price is
observed and a bUC is solved in order to meet the resulting load. The objective function
consists of Markovitz mean-variance model related to expected profits. A specialized B&B
method is used in order to solve the correspondingMILP problem; the numerical experiences
cover a GENCO with 3 thermal units and up to 15 scenarios. A similar model is considered
in Asensio and Contreras (2016) where the used risk measure is a CVaR and the usual linear
reformulation of CVaR (Rockafellar and Uryas’ev 2000, 2002) is used to obtain a MILP
formulation.

In Cerisola et al. (2009) aweeklyUCmodel is studiedwherein profit of aGENCOdepends
on bids made on the market. The GENCO is assumed to have a non-linear non-convex effect
onmarket prices,modeled through the use of piece-wise linear functions and binary variables.
The corresponding model is solved using a MILP solver, Lagrangian decomposition and two
variants of Benders’ decomposition (taken from Cerisola 2004). The computed production
schedule is a first stage decision, whereas all other stages and nodes in the scenario tree refer
to different realizations of market settling. The Benders-based decomposition approaches are
found to be the most interesting, despite the substantial implementation effort.

In Gazafroudi et al. (2017), a strategy to apportion expected reserve provision costs
between the participants of electricity markets (GENCOs, TSOs, wind farm owners and
customers) is employed using a two-stage stochastic program. The strategy is developed
based on the concept that stakeholders should pay for the reserve that they generate the need
for. As such, uncertainty from wind power generation, demand, transmission line outages
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and generator failure are considered in the model. A somewhat related work is that of Wang
and Hobbs (2016), where a two-stage stochastic model is used as a yardstick to evaluate the
impact ofmarket instruments for buying ramp capacity (“flexiramp”). The stochasticmodel is
based on a quite simple bUC on 15-min intervals, restricted to “fast” units, and it is compared
with a deterministic variant with constraints representing the flexiramp instruments.

The 2-stage unit commitment model presented in Geng et al. (2018) adopts the usual
framework of restricting integer variables to the first stage, but considers uncertainty on the
total amount of emission of certain pollutants (since electrical generation is not alone to
generate these pollutants). A 25 unit system is solved while considering 30 scenarios by
using a “monolithic” MILP solver. DR is considered in Sahebi and Hosseini (2014), but only
a 6-bus model is solved. Uncertainty on gas supply and prices and their effect on gas-power
units are considered in a 2 stage stochastic UC framework in Zhao et al. (2017).

In Corchero et al. (2013) a two-stage model is considered where commitment decisions
and bid prices are first-stage decisions, while total generation and energy matched in the
day-ahead market are second-stage decisions (continuous variables). Uncertainty is mainly
relative to the spot price, that enters in the generators objective function. The formulated
MIQP has a quadratic second-stage cost function, which is linearized bymeans of perspective
cuts (Frangioni and Gentile 2006a). The resulting problem with 10 scenarios and 9 thermal
units is solved with a MIQP solver. In this vein we also cite Wang et al. (2008), where the
second stageED, involvingwind generation, is used for adding feasibility cuts to the first stage
master problem. The main focus here is on deriving “robust” commitment decisions. Further
tricks to get complexity down in 2-stage stochastic UC is by playing with the discretization
of time as in Bakirtzis and Biskas (2017); the authors then employ a rolling horizon strategy
to test the 2-stage model against a deterministic model.

A somewhat different model is proposed in Kia et al. (2017). The peculiar aspects are the
presence of Combined Heat and Power (CHP) units, which imply the presence of constraints
about heat generation in addition to electricity generation and of energy storage devices, and
the inclusion in the model of DR aspects, under the form of Load Commitment programs
whereby users can submit hourly offers for decreasing their energy consumption. The consid-
ered number of scenarios is small and the solved instances contain only up a few tens of units,
but N − 1 fault resilience is considered in the second stage; the corresponding monolithic
MILP models are solved quite efficiently with off-the-shelf tools.

Since direct attempts to solvemulti-stage (or even 2-stage) stochasticUCas a “monolithic”
MILP are rare, it is worthwhile to mention (Jiang et al. 2016), where several valid inequalities
are developed to improve the solution capabilities of a direct MILP approach. This allows
to solve a 9-stage UUC on a binary tree and a 7-stage UUC on a ternary tree, each with 30
generators.

4.2.2 Scenario decomposition

In Takriti et al. (1996) progressive hedging is used to solve a large-scale bUCwith 100 thermal
units and 6 hydro ones. Recent dedicated progressive hedging methods are developed in
Cheung et al. (2015). A SD scheme is presented in Carøe et al. (1997) and Carøe and Schultz
(1998) for solving a two-stage bUC problem (with only a few thermal units), wherein integer
variables are restricted to the first stage. The non-anticipativity constraints are dualized by
usingLagrangianmultipliers, and the overall scheme is inserted into aB&Bprocedure in order
to ensure that anoptimal solution is obtained. InPapavasiliou et al. (2011)SD is used, the focus
being on reserve requirements in a system with high wind penetration. In Papavasiliou and
Oren (2012) the uncertain renewable production is coupledwith DR in amarket environment.
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In Papavasiliou et al. (2013) SD is again used to solve a UUCwhere the uncertainty is caused
by wind power generation, taking into account the network constraints. A decomposition
approach mixing scenario and Benders’ decomposition is considered in van Ackooij and
Malick (2016) which heavily relies on classical tools in deterministic UC (LR, Lagrangian-
based primal recovery heuristics and Bundle methods) and needs no specific assumptions
on the set of technically feasible schedules; a real-life problem with 136 thermal units,
22 hydro valleys, 96 times steps and 50 scenarios is solved. Relaxing the non-anticipativity
constraints is also the approachofSchulze et al. (2017) formulti-stageUUC; the schemeuses a
Dantzig–Wolfemaster problemwith (bundle-like/proximal) stabilization and efficient primal
recovery heuristics that allow to obtain very good quality solutions. The non-anticipativity
constraints can also be partially relaxed as suggested in Uçkun et al. (2016), where scenarios
are regrouped into buckets, within which the constraints are enforced, while they are relaxed
across buckets.

Starting from a 2-stage stochastic UC, also accounting for OPF, (Wang and Fu 2016)
use variable duplication, augmented Lagrangians and the auxiliary problem principle to
decompose the original problem into several sub-problems which can then be processed
in parallel; large systems are considered, but with only 20 scenarios. A related approach
is that of Papavasilou et al. (2015), where a two-stage stochastic UC (with OPF) is solved
with high-performance computing employing a parallel LR algorithm. Themodelled region is
comprised of theCalifornia Independent SystemOperator operated system, aswell as its inter-
connection with the Western Electricity Coordinating Council. The use of high-performance
computing for the parallel implementation of the LR is found to reduce computational times
of stochastic models to a level that may become acceptable from an operational perspective.
Moreover, results indicate that reducing the duality gap of the Lagrangian Relaxation renders
similar benefits to increasing the size of the scenario set.

4.2.3 Unit (stochastic) decomposition

The standard UD approach is proposed in Carpentier et al. (1996) for a bUC with 50 thermal
units; the demand constraints are relaxed, resulting in stochastic sub-problems which are
then solved by DP.

InRömisch andSchultz (1996) amulti-stagehydro-thermalUCproblem is consideredwith
random customer load. The load is observed after having chosen the commitment decisions,
but the actual generation levels (including continuous hydro generation) are determined once
that the load is known. The demand constraint is dualized in a general probabilistic space
setting, then the probability measure is discretized; no numerical results are presented.

A multi-stage stochastic programming is proposed in Nowak and Römisch (2000) to
deal with a hydro-thermal UC with 25 thermal units and 7 hydro units. Load uncertainty is
addressed through the use of UD andDP for solving the stochastic sub-problems; Lagrangian
heuristics are then used to recover a primal solution. Similar UD approaches are considered
in Dentcheva and Römisch (1998), Nowak (2000) and Gröwe-Kuska et al. (2002).

In Takriti et al. (2000), three uncertainty factors are integrated in the UC problem: load,
fuel and electricity prices. The fuel requirement problem basically becomes the second stage
of the problem, the first one being a bUC formulation. A Benders’ decomposition approach is
used to plug the second-stage cost function into the first stage, and a LR approach is used for
the first stage. This method is tested on a UUC with 33 thermal units and about 729 demand
scenarios.

In Bacaud et al. (2001) a weekly (10 days up to a month) stochastic UC problem is
considered. A UD approach is employed, where the LD is solved by a disaggregate Bundle
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method. The approach associates a set of weights with each node that effectively precondition
the LD; this preconditioning is reported to be crucial for performances. Problems having up
to 2000 nodes are solved with the generating units of EDF.

A weekly two-stage UUC is also addressed in Schultz et al. (2003). Both stages have all
time steps, and each is a bUC problem; load, price and cost uncertainty are revealed between
the two. The problem is decomposed using a LR-based approach that yields a stochastic
programming problem for each unit. Lagrangian heuristics based on Zhuang and Galiana
(1988) andGollmer et al. (1999) are employed to recover a primal feasible solution. A similar
methodology is considered in Nowak et al. (2005), where a MILP for market price settling
and bidding in a competitive environment is also presented: to incorporate both features into
a single model, bid/offer decisions and first day commitment decisions are in a first stage,
while all other variables are second-stage ones. Also Ni et al. (2004) has a focus on market
mechanisms, wherein commitment decisions and offer curves are first-stage decisions and
dispatch are later stage ones; the problem is solved by applying a global LR-based UD.

In Nürnberg and Römisch (2003) stochastic Lagrange multipliers are used in order to
decompose uncertain demand constraints that have to hold almost surely. The resulting dual
function is the expectationof this stochasticLagrange function.Uncertainty is thendiscretized
into a finite set of random drawings in order to approximate the expectation, and Bundle
approaches are used to solve the dual. In this two-stage procedure, integer variables remain
present in the second stage.

In Shiina and Birge (2004) the UD approach to the stochastic bUCwith uncertain demand
is revisited in terms of Dantzig–Wolfe decomposition (the equivalence between this and a
LR approach solved by CP being well-known). This results in a column generation approach
where the Lagrangian subproblem, solved by DP on the scenario tree, generates sched-
ules for each unit that are added to the restricted master problem. The recent Shiina et al.
(2016) considers a deterministic version of this problem solved through aDantzig–Wolfe-like
decomposition scheme; a 10 unit system and up to 72 time instants are considered.

4.2.4 Benders(-like) decomposition

The L-shaped method can be used to decompose UC problems with several stages. In its
basic version a single cut is added to the first stage problem, whereas in advanced versions
multiple cuts (e.g., one for each subproblem) can be added. This may increase convergence
speed at an increased master problem cost; we refer to the discussion in Birge and Louveaux
(1988) and Birge and Louveaux (1997) on this topic. The recent on-demand accuracy bundle
methods (deOliveira and Sagastizábal 2014; vanAckooij and Frangioni 2018) can be thought
to provide a tradeoff between the multi-cut and mono-cut versions (Fábián 2013).

In Xiong and Jirutitijaroen (2011) another approach is proposed for finding such a trade-
off. In this method, which is applied to a stochastic UC with load and generation uncertainty,
scenarios are divided into (homogeneous) groups and cuts are derived for each group, as
proposed in Trukhanova et al. (2010). Consequently, the dimension of the master problem is
smaller in comparison with the classical multi-cut algorithm, while less information is lost
compared to the single cut version. The authors also claim that heterogeneously grouping the
scenarios may result in even better CPU time. Results are presented for a large-scale thermal
UC with ramp rates and spinning reserves.

In Archibald et al. (1999) short-term cascaded reservoir management—as opposed to
the more traditional approach where reservoir management is considered to be a mid-term
problem—is considered wherein the gain function is explicitly given and depends on the
water level and turbined quantity. Uncertainty is modeled as a Markov chain having 6 states
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per time step, which is expanded onto a scenario tree in order to allow for an LP formulation
of the problem. This approach is compared with DP, nested Benders’ decomposition (closely
related to SDDP) and a decomposed DP approach, which essentially efficiently samples the
state space. Nested Benders’ decomposition is found to be computationally the most efficient
approach.

Benders’ decomposition is compared with MILP approaches in Cerisola et al. (2009)
(cf. Sect. 4.2.1) and proves to be in general preferable. In Wang et al. (2013), Benders’
decomposition is used to address UC problems under wind uncertainty. The authors use sub-
hourly time steps (10, 15 or 30 min) to account for rapid variations in renewable generation.
They alsomodify the standard approach by adding some of the second stage constraints to the
master problem. A similar use of Bender’s decomposition for a 2-stage stochastic problem
where wind uncertainty is revealed in the second stage can be found in Nasrolahpour and
Ghasemi (2015).

In Zheng et al. (2013) a two-stage UC formulation is considered. Similarly to most
approaches, load is revealed in between the first and second stage and power output is deter-
mined in the second stage, but the latter also contains integer commitment decisions related
to quick-start units. The quadratic costs functions are linearized to obtain a MILP formu-
lation. Then, because the second stage contains integer variables, the approach of Sherali
and Fraticelli (2002)—essentially a RLT with Lift-and-Project cuts (Balas et al. 1993)—is
employed to construct an approximation of the convex hull of the second-stage problem, so
that a multi-cut Benders approach can be used to approximate the second stage recourse cost
function. A problem with 5 units, up to 2000 scenarios and 16 time steps is solved.

In Papavasiliou andOren (2013) bothLRandBenders’ decomposition are used in a parallel
high performance computing environment for solving a network constrained stochastic UC
where uncertainty comes from different sources.

Bender’s like decomposition is used inHuang et al. (2014) for a 2-stagemodel, comprising
storage devices and DR, wherein the second stage cost function is seen through a CVaR.

4.3 Robust optimization approaches

An early work using RO techniques is Sarić and Stankovic (2007), where a market clearing
problem is considered under some UC-like constraints. The main idea is to use an adaptive
RO approach which partitions the uncertainty set and allows decisions to be specific to each
subset. The constraints are then weighed in the master problem. The results are compared
with traditional RO and a worst-case fully anticipative approach.

InWang et al. (2011), a RO approach is considered where the uncertainty set on the load is
a simple interval, so that methods from interval LP (e.g., Chinneck and Ramadan 2000) can
employed together with Benders’ decomposition to solve the model. The main focus of the
work is on network security. In Wu et al. (2012), a similar interval uncertainty approach is
compared with a scenario-based approach. The results show that the former is very sensitive
to the choice of the interval but is quickly solved, whereas the latter yields more accurate
solutions but it is more costly to solve. A two-stage model is formulated in Zhou et al. (2014),
wherein the second stage is simplified by the use of an interval accounting for the uncertain
generation of wind. Another interval-based model focussing on wind uncertainty is proposed
in Soroudi et al. (2017), adding DR elements.

In Zhao and Zeng (2012), a 36 unit bUC with ramp rate constraints is considered, which
includes wind energy supply and demand behaviour of the customers based on electricity
prices. In this two-stage model, wind power enters under the guise of an uncertain budget
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constraint and the first stage is a day-ahead UC problem, while the second stage is performed
once the wind supply is known. The problem is solved by applying Benders’ decomposing to
the linearized problem along with a CP algorithm. It is claimed that this model significantly
reduces the total cost and can fully exploit the available supply of wind energy. The same
approach is employed in Jiang et al. (2014) to solve a 30 unit UC with ramp rates and
transmission constraints where demand and supply are considered to be uncertain, and in
Jiang et al. (2013) where the objective is to minimize the regret w.r.t. the best possible value
obtained in each scenario, as opposed to just the cost of the scenario. In Li et al. (2015),
the robust optimization concept of Bertsimas and Sim (2004) is employed in order to value
carbon capture technology in the presence of uncertainty on wind generation. A direct MILP
approach is used to solve a 2-stage robust model wherein the second stage is dedicated to
capturing DR in Liu and Tomsovic (2015).

A two-stage robust aggregate model is proposed in Jin et al. (2017), modelling Energy
Intensive Enterprises (EIE) as a generator unit, such that they may be included into unit
commitmentwith little addedmodelling complexity andwithout violating EIE privacy issues.
EIEs can provide valuable contributions to system operation by adjusting their load and,
when on-site generation is available, their generation. The robust aggregatemodel of the EIEs
ensures that any (uncertain) dispatch signal received from the system operator is feasible. The
authors employ a column-and-constraint generation scheme, modified to fit the specificities
of the robust aggregate model, to solve the problem.

In Bertsimas et al. (2013), the model proposed in Zhao and Zeng (2012) and Jiang et al.
(2014) is extended to incorporate spinning reserve constraints, transmission limits and ramp-
ing constraints. The focus is on gauging the impact of robustness of the solutions on the
efficiency and operational stability of the system. A two-stage adaptive RO model is used
where the uncertainty set concerns the nodal net injection at each time period. In the first
stage an optimal commitment decision is reached by using Benders’ decomposition algo-
rithm, while in the second stage the associated worst case dispatch cost is calculated. Results
from empirical studies with 312 generators have been compared to those of deterministic
models with reserve adjustments under three aspects: the average dispatch and total cost,
the cost volatility, and the sensitivity of the costs to different probability distributions. The
sensitivity of the results to changes in the uncertainty set is not investigated. A very simplified
two-stage RO model is investigated in Ben-Salem (2011), where sensitivity to the choice of
the uncertainty set is instead explicitly addressed. The recourse cost function is the worst
case cost over a specific uncertainty set involving uncertainty on load; a simple recourse
assumption makes the second stage trivial. In Minoux (2009) and Minoux (2014) the model
of Ben-Salem (2011) is expanded to take into account a huge uncertainty set which admits
a representation as a Markov chain. A budget of uncertainty constraint restricts paths to be
“not too extreme”; a comparison is made against stochastic programming approaches.

In Street et al. (2011), RO is used for uncertainty on contingency constraints; the result-
ing optimization problem is reformulated as an equivalent MILP and solved with standard
solvers. This work is extended in Wang et al. (2013) by including transmission capacity
constraints and by considering a two-stage RO setting. Commitment (and integer) variables
are restricted to the first stage so that the second stage becomes a continuous optimization
problem, further reduced to an LP by linearization techniques; Bender’s decomposition is
used for solving the model. In Jiang et al. (2012) a similar model and solution approach can
be found, integrating (interval) uncertainty on wind generation, with a budget of uncertainty
limiting conservativeness of the model. Yet another model focussed on wind uncertainty is
that of Yu et al. (2015); there, the interval uncertainty is combined with a Markov model for
local winds, and the model is solved by a integrating Lagrangian techniques with a B&C.
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DR uncertainty is added in Zhao et al. (2013); commitment decisions are restricted to the
first stage, the three stages of the model are brought down to two by a reformulation, and
Bender’s decomposition is again used for solving the problem. By considering a two-stage
RO with a specific uncertainty set (box or budget constrained), the authors of Zhai et al.
(2017) manage to set up specific scenario reduction methods (envelope scenarios) without
losing the guarantee that the solution remains feasible for the original unreduced problem.
The main building stone is that each scenario is essentially a convex combination of a set
of “extreme” scenario and the recourse problem is convex, thus conveying an appropriate
structure. In Zhao and Guan (2013), a convex combination of expected second stage cost and
worst-case robust cost is added to the objective function; uncertainty is restricted to load,
and Bender’s decomposition is employed for solving the model. The latter model is further
investigated in Morales-España et al. (2018), where an efficient reformulation is provided
for when the uncertainty set is of box (or budget) type. The main innovation lies in identi-
fying explicitly the worst case elements in the uncertainty set. A two-stage model wherein
the objective function consists of a worst-case recourse cost and an expected value is also
considered in Blanco and Morales (2017), where ad-hoc scenario reduction schemes and a
column-and-constraint generation scheme are developed to solve the formulated problem.
By considering a weighted sum of several worst case objective functions over different uncer-
tainty sets, or by including specific targets for such worst case costs, the authors of An and
Zeng (2015) provide further variants of two-stage robust optimization. Differently frommost
two-stage approaches, in Ye and Li (2016) dispatch decisions are first-stage ones, with the
second stage variables then interpreted as variations w.r.t. the original dispatch decisions (this
was already proposed in van Ackooij and Malick 2016); column-and-constraint generation
is used to solve the resulting problem.

In Aïd et al. (2006), a RO approach to the management of electricity power generation
is presented using concepts borrowed from classic risk management, i.e., Value-At-Risk. In
Guigues (2009) a RO with the Affinely Adjustable Robust Counterpart (AARC) approach
(Ben-Tal et al. 2003) is proposed to the longer term electricity production management.
AARC is a restricted andmore tractable version of theAdjustable Robust Counterpart (ARC),
where recourse variables are allowed to depend on the values of uncertain parameters, but only
in an affineway; the hypotheses are set up in such away that the resulting problem has aMILP
deterministic equivalent,which is then solved by aMILP solver. The samemethods are looked
at inWarrington et al. (2013) to define affine reserve policies which establish in advance how
the power has to vary as a (simple, affine) function of the prediction error (typically due
to uncertain renewable generation) w.r.t. the baseline scenario. Although not strictly a UC
problem, we mention that AARC has been used for weekly hydro reservoir management
under uncertainty on inflows in Apparigliato (2008) and Babonneau et al. (2010), where
comparisons with sliding deterministic approaches are presented. Finally, in Jabr (2013) an
adjustable robust OPF is suggested.

Interval Unit Commitment (IUC), a research branch highly related to RO, schedules units
such that the cost of serving the most probable load is minimised, while guaranteeing that
commitment schedules are robust to load realisations within an range of the central fore-
cast. The work proposed in Pandžić et al. (2016) aims to limit the conservativeness of IUC
schedules, given that they must be able to meet ramping requirements (of very low proba-
bility) arising from the transitions from the lower bound to the upper bound scenarios, and
vice-versa. As such, the authors propose a new UC formulation by which maximum ramp
trajectories from stochastically-generated scenarios are imposed as ramping limits within
the IUC model. Tests conducted on the IEEE RTS-96 system (Reliability Test System Task
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Force 1999) indicate that the proposed methodology leads to more cost effective and less
conservative schedules than in standard RO and IUC formulations.

4.4 Chance-constrained optimization approaches

In many optimization problems involving a final observation of uncertainty for which no
recourse actions exist, feasibility for all constraints cannot be guaranteed. Rather, one has to
provide solutions which are “reasonably feasible” under all except the most unlikely random
outcomes. This is also the case in UC, where, for instance, one cannot actually guarantee
that the demand constraints will never be violated. This is therefore an ideal setting for CCO,
where the desired safety level can be specified under the formof a probability. Two approaches
are possible: either the safety level is set for each constraint (e.g., time step) individually,
giving an Individual CCO program, or for the system as a whole, resulting in a Joint CCO
program. While the ICCO is obviously less robust than the JCCO (see the discussion in
van Ackooij et al. 2014, 2018 in the context of UUC), the latter is in general significantly
more difficult to solve, especially if one wishes to do this exactly (i.e., without artificially
discretizing the underlying random vectors or approximating the probabilistic constraint).
This explains why CCO (either Individual or Joint) models are the least employed in the
literature on UC. However, it should be noted that these approaches have indeed been used
in related problems such as power expansion and transmission ones (Sharaf and Berg 1982;
Shiina 1999; Anders 1981), which need be formulated on a much longer time horizon than
commonly considered in UC, and therefore crucially require taking uncertainty into account
(Shiina 1999).

Individual CCO was applied for the first time in Ozturk et al. (2004) to solve a 100-units
bUC where the uncertainty of load has to be met with a high probability. The problem is
then decomposed by using LR, and the subproblems are solved by DP. The results show
that solving the CCO UC produces better (less costly) solutions than a deterministic UC
with spinning reserves requirements. Computing and scheduling reserve requirements is the
topic of Ortega-Vazquez and Kirschen (2009) and Ahmadi-Khatir et al. (2013). In Pozo
and Contreras (2013) a probability constraint is used for this purpose; the resulting model
is solved by employing a sample-based approximation. A similar solution methodology is
employed in Saravanan et al. (2014), where the authors consider an inner approximation
(thus potentially very conservative) of a joint probability constraint by a set of individual
probability constraint. They thus neglect in the process any temporal correlations in the load;
furthermore, since uncertainty is assumed Gaussian, they fail to exploit the fact that the set
defined by the joint probability constraint is actually convex. A similar methodology, based
on ICCO to compute accurate endogenous reserve levels is used in Lujano-Rojas et al. (2016)
and Bruninx and Delarue (2017).

In Ding et al. (2010), a ICCOUCmodel is formulated where different sources of random-
ness are considered: demand fluctuation, thermal units outage, uncertainty ofwind generation
and the schedule of flexible generating units. The authors claim that the proposedmodel could
be extended to basically any stochastic factor. The individual chance constraints are converted
into a deterministic model using the central limit theorem to recover a Gaussian model of
uncertainty for outages; a standard MILP approach is then used to solve the problem. Again,
the results are compared with those of a deterministic UC formulation. Uncertainty in wind
generation is the main factor accounted for in Restrepo and Galiana (2011). The resulting
ICCO model is reformulated linearly by assuming random wind generation to result from
a discrete distribution (we also refer to Billinton et al. 2009 for more on modelling wind
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uncertainty in itself). In Wu et al. (2014) an ICCO UC model is also considered, but violated
network constraints are added through the use of a separation oracle.

A stylized HUC model under joint probabilistic constraints has been considered first in
Zorgati and van Ackooij (2011). The main focus there lies on dealing simultaneously with
probabilistic constraints and binary variables. The suggested approach relies on the fact that
some inequalities in the random system are more likely to be binding than others, which pro-
vides an ad-hoc way of reducing the difficulty for the JCCO (the experiments of van Ackooij
et al. 2014 provide a rationale behind this approach). The reduced joint probabilistic con-
straint is then outer approximated by individual probabilistic constraints selecting appropriate
weights. Finally, by using Hoeffding’s inequality outer and inner approximations of these
individual probabilistic constraints can be obtained; the resulting binary conic programming
problem can be solved with a standard solver.

Joint probabilistic constraints inHUCare dealtwith exactly for the first time in vanAckooij
(2014). Two sources of uncertainty are considered: randomness on load and on inflows for
hydro reservoirs. In order to solve the JCCOUC problem, various decomposition approaches
are investigated, among which LR and various forms of AL approaches.

In Bienstock et al. (2014) a DC OPF using an individual CCO approach is proposed
considering the uncertainty of renewable generation. Under appropriate assumptions on the
underlying uncertainty distribution, and by reformulating the bilateral individual probabilistic
constraints as two unilateral ones, the resulting problem can be shown to be equivalent to a
second order cone problem; the conic constraints are then linearized by using a cutting planes
approach. A real life instance over the 2746 bus Polish network is solved. It is interesting
to note that such a network application with joint probabilistic constraints would give rise
to differentiability issues, essential for the application of first-order methods; we refer to
Henrion and Möller (2012) for a thorough discussion of differentiability and an application
to a stylized network problem.

In the recent van Ackooij et al. (2018), classic methods are developed and adapted from
CCO to handle integer variables for a UC problem under uncertainty on wind generation,
while accounting for a DC network. The method differs from the one considered in Arnold
et al. (2014), where a cutting-plane based methodology (for the convex continuous part) is
inserted in a Branch & Bound solver directly, i.e., in each node of the B&B tree a convex
optimization problem has to be solved. In contrast, in van Ackooij et al. (2018) the approach
is inverted: in each iteration of a cutting-plane-like method, two MILPs are solved, one of
which defines the next iterate and a lower bound, while the other provides a feasible solution
and thus an upper-bound. The methodology is shown to scale up to a 46-bus system in a HUC
problem.

Recent investigations involving probability constraints focus in the combination of this
concept and that of recourse. The more involved situation is the one wherein second stage
information is handled through a probability constraint, for instance when second stage fea-
sibility is only requested with a certain probability. These ideas date back at least to Prékopa
(2003, Sect. 4), but have received a recent boost through advances in integer programming,
e.g., (Liu et al. 2016). The “gained tractability” mostly stems from the discrete character of
the underlying random vector. In the continuous case, the analytical properties of so-called
dynamic chance constraints are not sufficiently clear yet and algorithms, to the best of our
knowledge, are in their infancy. Far simpler combinations of chance constraints and recourse
are problemswherein only first stage variables are further constrained in probability. Already,
inWang et al. (2012) a two-stage JCCOUC is considered with a joint probabilistic constraint
for the use of wind power. The probabilistic constraint is not dealt with directly, but is dis-
cretized using a sample average approximation approach (e.g., Luedtke and Ahmed 2008;
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Luedtke 2014). A further example is given in Wu et al. (2016), where the authors consider a
series of “individual” chance constraints with right-hand side uncertainty. The random data
is assumed to follow a truncated Gaussian distribution (see also Diniz and Henrion 2017 for
a deeper study of truncation on classic convexity and differentiability results). Through usual
reformulations the probability constraints are recast into a deterministic equivalent. In Zhang
et al. (2017), the authors instead consider the former concept of asking feasibility in the second
stage offer-demand balance with a given probability. Rather than using a big-M formulation,
the inequalities are multiplied with the associated binary variable; all resulting bilinear terms
are linearized through the usualMcCormick linearization techniques. ABender’s like decom-
position scheme is also proposed wherein violated inequalities are added progressively. In
view of the above, we refer to Adam and Branda (2016) that carefully investigates the prop-
erties of the problem resulting when multiplying inequalities with binary variables rather
than using usual big-M formulations to handle sample based chance constraints. A dedicated
Benders’ like algorithm is even suggested in Adam et al. (2018). The work Zhao et al. (2014)
considers using a chance constraint involving second stage variables, but also a constraint in
expectation. By considering a finite set of scenarios, the former is handled through a big-M
reformulation and the second is immediately reformulated. The authors consider a scheme
of generating new scenarios to update the original set progressively.

Finally, it is worthwhile to note that stability theory for CCO is developed in Römisch
and Schultz (1991); stability results provide an answer to the important question of how
model results (cost or even solution sets) vary with respect to changes in the underlying
distribution of the random vector. An application of stability results in the context of a simple
recourse model is given as early as Römisch and Schultz (1993) and Gröwe et al. (1995);
for more recent research we refer to Römisch (2003), Henrion and Römisch (1999), Henrion
and Römisch (2004), Henrion et al. (2008, 2009) and references therein. In particular, the
authors explicitly consider stability results for probabilistically constrained power dispatch
models, showing that the models are stable for several underlying distributions of the load,
such as discrete or multi-variate Gaussian. However, no computational results are presented.

We finish by pointing out two recent streams of theoretical investigations involving proba-
bility constraints that may in the future significantly extend the scope of its applicability in the
exact form (that is, without approximations). These involve recent insights into differentia-
bility, providing efficiently implementable formulae for gradients (van Ackooij and Henrion
2014, 2017; van Ackooij et al. 2017; Hantoute et al. 2018), and recent insights in convexity
(Henrion andStrugarek 2008, 2011; vanAckooij 2015; vanAckooij and deOliveira 2016; van
Ackooij and Malick 2017; van Ackooij et al. 2018; Farshbaf-Shaker et al. 2017). The use of
these methods has already proven succesful in the study of gas networks (Gotzes et al. 2016).

5 Concluding remarks

The Unit Commitment problem could be considered an archetypal example of what makes
optimization techniques both relevant and challenging.

UC regards the optimal use of a highly valuable resource, energy, whose importance has
possibly never been more strongly felt than in the present times. On the one hand, energy
is a primary driver of, and a necessary requirement for, economic growth and improvement
of peoples’ living conditions. On the other hand, fair and sustainable energy production and
distribution raises enormous technical, economical, organizational, and even moral chal-
lenges. While optimization techniques (and in particular their strict subset regarding the UC
problem) alone cannot clearly solve all these issues, they can indeed give a significant contri-
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bution to the improvement of the efficiency of the energy system, with a substantial positive
economical and environmental impact.

From a technical perspective, UC arguably exhibits almost all possible characteristics
that make an optimization problem extremely challenging. For a start it is not even a well-
defined problem, but rather a large family of related problems that are as varied as the
electrical systems worldwide. In almost all cases the problem is large- to very-large-scale,
nonlinear, nonconvex and combinatorial. Thus, researchers continuously struggle between
two contrasting needs: on the one hand providing more and more accurate models of the
highly complex electrical systems, in order to allow better practical decisions, and on the
other hand providing answers in the “unreasonably short” timeframe required by the actual
operating environment. Furthermore, and perhaps more importantly for the present work, the
operation of the electrical system requires a very articulate decision chain that spans from
the decades (strategic decisions about the investments in new generation and transmission
equipment, and even about funding of research capable of producing better ones) to the split-
second range for on-line tracking of actual demand. This in turn means that uncertainty on
the actual future status of the electrical system, and therefore on the consequences of the
decisions that have to be taken here and now, is inherently present at all levels of the decision
chain. This justifies the interest for techniques capable of dealing with uncertainty in energy
optimization problems, and in particular in UC; hence the significance of this survey.

While UC cannot be presently considered a well-solved problem, and much less so UUC
(which has arguably been tackled only relatively recently), research on such an extremely
challenging problem will likely have positive side-effects. Indeed, the tools and techniques
that will be developed will almost surely find applications in many different fields, other than
the optimalmanagement of the energy system.This has already happened for themethodolog-
ical and algorithmic developments of Prékopa et al. (1978), Feltenmark and Kiwiel (2000),
Daniildis and Lemaréchal (2005) and Frangioni and Gentile (2006a), that were motivated
by the study of UC, but have since been applied to a much broader set of problems. We
are confident that the study of UUC will lead, together with practical improvements on the
efficiency and safety of electrical systems, to an analogous development of new ideas and
techniques that will be beneficial for many other fields. Therefore, as a small stepping stone
for researchers interested in broadening their knowledge in UUC, we hope that this survey
may prove useful.
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Pandžić, H., Dvorkin, Y., Qiu, T., Wang, Y., & Kirschen, D. S. (2016). Towards cost-efficient and reliable unit
commitment under uncertainty. IEEE Transactions on Power Systems, 31(2), 970–982.

Pang, C. K., &Chen, H. C. (1976). Optimal short-term thermal unit commitment. IEEE Transactions on Power
Apparatus and Systems, 95(4), 1336–1346.

Pang, C. K., Sheble, G. B., & Albuyeh, F. (1981). Evaluation of dynamic programming based methods and
multiple area representation for thermal unit commitments. IEEE Transactions on Power Apparatus and
Systems, PAS–100(3), 1212–1218.

Papavasiliou, A., & Oren, S. S. (2012). A stochastic unit commitment model for integrating renewable supply
and demand response. In Invited panel paper, Proceeding of the IEEE PES GM, San Diego, CA, July
24–28, 2012.

Papavasiliou, A., & Oren, S. S. (2013). A comparative study of stochastic unit commitment and security-
constrained unit commitment using high performance computing. In Proceeding of the European control
conference ECC 2013.

Papavasiliou, A., Oren, S. S., & O’Neill, R. (2011). Reserve requirements for wind power integration: A
scenario-based stochastic programming framework. IEEE Transactions on Power Systems, 26(4), 2197–
2206.

Papavasiliou, A., Oren, S. S., & O’Neill, R. (2013). Multi-area stochastic unit commitment for high wind
penetration in a transmission constrained network. Operations Research, 61(3), 578–592.

Papavasiliou, A., Oren, S. S., Yang, Z., Balasubramanian, P., & Hedman, K. W. (2013). An application of high
performance computing to transmission switching. In IREP bulk power system dynamics and control
symposium, Rethymnon, Greece.

Papavasilou, A., Oren, S. S., & Rountree, B. (2015). Applying high performance computing to transmission-
constrained stochastic unit commitment for renewable energy integration. IEEE Transactions on Power
Systems, 30(3), 1109–1120.

Parrilla, E., & García-González, J. (2006). Improving the B&B search for large-scale hydrothermal weekly
scheduling problems. Electrical Power and Energy Systems, 28, 339–348.

Pedregal, D. J., Contreras, J., & Sanchez de la Nieta, A. A. (2012). Ecotool: A general matlab forecasting
toolbox with applications to electricity markets. In A. Sorokin, S. Rebennack, P. M. Pardalos, N. A.
Iliadis, & M. V. F. Pereira (Eds.), Handbook of networks in power systems I (pp. 151–171). Heidelberg:
Springer.

Peng, T., & Tomsovic, K. (2003). Congestion influence on bidding strategies in an electricity market. IEEE
Transactions on Power Systems, 18(3), 1054–1061.

Pepper, W., Ring, B. J., Read, E. G., & Starkey, S. R. (2012). Short-term electricity market prices: A review
of characteristics and forecasting methods. In A. Sorokin, S. Rebennack, P. M. Pardalos, N. A. Iliadis,
& M. V. F. Pereira (Eds.), Handbook of networks in power systems II (pp. 3–36). Heidelberg: Springer.

Pereira, M. V., Granville, S., Fampa, M. H. C., Dix, R., & Barroso, L. A. (2005). Strategic bidding under
uncertainty: A binary expansion approach. IEEE Transactions on Power Systems, 11(1), 180–188.

Pereira, M. V. F., & Pinto, L. M. V. G. (1983). Application of decomposition techniques to the mid- and
short-term scheduling of hydrothermal systems. IEEE Transactions on Power Apparatus and Systems,
PAS–102(11), 3611–3618.

Philpott, A., & Schultz, R. (2006). Unit commitment in electricity pool markets. Mathematical Programming:
Series B, 108, 313–337.

Piekutowki,M., Litwinowcz, T., & Frowd, R. (1994). Optimal short-term scheduling for a large-scale cascaded
hydro system. IEEE Transactions on Power Systems, 9(2), 805–811.

Pineau, P. O., & Murto, P. (2003). An oligopolistic investment model of the finnish electricity market. Annals
of Operations Research, 121(1–4), 123–148.

123



78 Annals of Operations Research (2018) 271:11–85

Polyak, B. T. (1977). Subgradient methods: A survey of soviet research. In C. Lemaréchal & R. Mifflin (Eds.),
Nonsmooth optimization. IIASA proceedings series. Oxford: Pergamon Press.

Pozo, D., & Contreras, J. (2013). A chance-constrained unit commitment with an n − k security criterion and
significant wind generation. IEEE Transactions on Power Systems, 28(3), 2842–2851.

Pozo, D., Contreras, J., & Sauma, E. E. (2014). Unit commitment with ideal and generic energy storage units.
IEEE Transactions on Power Systems, 29(6), 2974–2984.

Prékopa, A. (1995). Stochastic Programming. Dordrecht: Kluwer.
Prékopa, A. (2003). Probabilistic programming. In A. Ruszczyński & A. Shapiro (Eds.), Stochastic pro-
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