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Abstract

The Unit Commitment problem in energy management aims at finding the optimal production
schedule of a set of generation units, while meeting various system-wide constraints. It has
always been a large-scale, non-convex, difficult problem, especially in view of the fact that,
due to operational requirements, it has to be solved in an unreasonably small time for its size.
Recently, growing renewable energy shares have strongly increased the level of uncertainty
in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and
uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the lit-
erature on methods for the Uncertain Unit Commitment problem, in all its variants. We start
with a review of the main contributions on solution methods for the deterministic versions
of the problem, focussing on those based on mathematical programming techniques that are
more relevant for the uncertain versions of the problem. We then present and categorize the
approaches to the latter, while providing entry points to the relevant literature on optimization
under uncertainty. This is an updated version of the paper “Large-scale Unit Commitment
under uncertainty: a literature survey” that appeared in 4OR 13(2):115-171 (2015); this ver-
sion has over 170 more citations, most of which appeared in the last 3 years, proving how
fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this
subject.
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ED Economic dispatch

EIE Energy intensive enterprise
GENCO GENeration COmpany

TSO Transmission system operator
MP Monopolistic producer

PE Power exchange

PEM PE manager

OTS Optimal transmission switching

Extended author information available on the last page of the article

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-018-3003-z&domain=pdf
http://orcid.org/0000-0002-9943-3572
http://orcid.org/0000-0002-5704-3170

12 Annals of Operations Research (2018) 271:11-85
UCOTS UC with OTS
MSG Minimal stable generation
OPF Optimal power flow
ROR Run-of-river hydro unit
DR Demand response
X Set of technically feasible production schedules
Xo Set of system wide constraints
T Set of time steps
MILP Mixed-integer linear programming
MIQP Mixed-integer quadratic programming
DP Dynamic programming
SDDP Stochastic dual DP
B&B,B&C,B&P  Branch and bound (cut, price respectively)
AL Augmented Lagrangian
LR Lagrangian relaxation
LD Lagrangian dual
CP Cutting plane
SO Stochastic optimization
SD Scenario decomposition
UD Unit decomposition (also called space decomposition or stochastic
decomposition)
RO Robust optimization
Iac Interval unit commitment
CCO Chance-constrained optimization
Icco Chance-constrained optimization with individual probabilistic con-
straints
JCCO Chance-constrained optimization with joint probabilistic constraints
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1 Introduction

In electrical energy production and distribution systems, an important problem deals with
computing the production schedule of the available generating units, accordingly with their
different technologies, in order to meet their technical and operational constraints and to
satisfy several system-wide constraints, e.g., global equilibrium between energy production
and energy demand or voltage profile bounds at each node of the grid. The constraints
of the units are very complex; for instance, some units may require up to 24 h to start.
Therefore, such a schedule must be computed (well) in advance of real time. The resulting
family of mathematical models is usually referred to as the Unit Commitment problem (UC),
and its practical importance is clearly proven by the enormous amount of scientific literature
devoted to its solution in the last four decades and more. Besides the very substantial practical
and economical impact of UC, this proliferation of research is motivated by at least two
independent factors:

1. Onthe one hand, progress in optimization methods, which provides novel methodological
approaches and improves the performances of existing ones, thereby allowing to tackle
previously unsolvable problems;

2. On the other hand, the large variety of different versions of UC corresponding to the
disparate characteristics of electrical systems worldwide (free market vs. centralized,
vast range of production units due to hydro/thermal/nuclear sources,...).

Despite all of this research, UC still cannot be considered a “well-solved” problem. This is
partly due to the need of continuously adapting to the ever-changing demands of practical
operational environments, in turn caused by technological and regulatory changes which
significantly alter the characteristics of the problem to be solved. Furthermore, UC is a
large-scale, non-convex optimization problem that, due to operational requirements, has to
be solved in an “unreasonably” small time. Finally, as methodological and technological
advances make previous versions of UC more accessible, practitioners have a chance to
challenge the (very significant) simplifications that have traditionally been made, for purely
computational reasons, about the actual behaviour of generating units. This leads to the
development of models incorporating considerably more detail than in the past, which can
significantly stretch the capabilities of solution methods.

A particularly relevant trend in current electrical systems is the ever increasing use of
intermittent (renewable) production sources such as wind and solar power. This has signif-
icantly increased the underlying uncertainty in the system, previously almost completely
due to variation of users’ demand (which could however be forecast quite effectively) and
occurrence of faults (which was taken into account by requiring some amount of spinning
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reserve). Ignoring such a substantial increase in uncertainty levels w.r.t. the common existing
models incurs an unacceptable risk that the computed production schedules be significantly
more costly than anticipated, or even infeasible (e.g., Keyhani et al. 2010). However, incor-
porating uncertainty in the models is very challenging, in particular in view of the difficulty
of deterministic versions of UC.

Fortunately, optimization methods capable of dealing with uncertainty have been a very
active area of research in the last decades, and several of these developments can be applied,
and have been applied, to the UC problem. This paper aims at providing a survey of approaches
for the Uncertain UC problem (UUC). The literature is rapidly growing: this is an update of
our earlier survey Tahanan et al. (2015), that has also appeared as van Ackooij et al. (2018),
and counts over 170 more citations, most of them being articles published in the last 3 years.
This expansion of the literature is easily explained, besides by the practical significance of
UUC, by the combination of two factors: on the one hand the diversity of operational envi-
ronments that need to be considered, and on the other hand by the fact that the multitude
of applicable solution techniques already available to the UC (here and in the following
we mean the deterministic version when UUC is not explicitly mentioned) is further com-
pounded by the need of deciding how uncertainty is modeled. Indeed, the literature offers at
least three approaches that have substantially different practical and computational require-
ments: Stochastic Optimization (SO), Robust Optimization (RO), and Chance-Constrained
Optimization (CCO). These choices are not even mutually orthogonal, yielding yet further
modelling options. In any case, the modelling choice has vast implications on the actual form
of UUC, its potential robustness in the face of uncertainty, the (expected) cost of the com-
puted production schedules and the computational cost of determining them. Hence, UUC is
even less “well-solved” than UC, and a thriving area of research. Therefore, a survey about
it is both timely and appropriate.

We start with a review of the main contributions on solution methods for UC that have
an impact on those for the uncertain version. This is necessary, as the last broad UC sur-
vey (Padhy 2004) dates back some 10 years, and is essentially an update of Sheble and
Fahd (1994); neither of these consider UUC in a separate way as we do. The more recent
survey Farhat and El-Hawary (2009) provides some complements to Padhy (2004) but it
does not comprehensively cover methods based on mathematical programming techniques,
besides not considering the uncertain variants. The very recent survey Saravanan et al. (2013)
focusses mainly on nature-inspired or evolutionary computing approaches, most often applied
to simple 10-units systems that can nowadays be solved optimally in split seconds with
general-purpose techniques; furthermore these methods do not provide qualified bounds
(e.g., optimality gap) that are most often required when applying SO, RO or CCO tech-
niques to the solution of UUC. This, together with the significant improvement of solving
capabilities of methods based on mathematical programming techniques (e.g., Lagrangian
or Benders’ decomposition methods, MILP approaches,...), justifies why in the UC-part of
our survey we mostly focus on the latter rather than on heuristic approaches. This version
also significantly updates Tahanan et al. (2015), which appeared roughly simultaneously with
Zheng et al. (2015), upon which we also significantly expand and update. Finally, the recent
survey (Alqurashi et al. 2016) discusses uncertainty in energy problems in general; that is,
besides UC, it also deals with market-clearing and long-term models. However, it does so
by leaving out any methodological discussion of optimization algorithms; furthermore, it is
somewhat light on certain approaches such as CCO ones. In our view, discussing solution
approaches for a model is crucial since it closely ties in with the usefulness of its solutions;
for instance, stochastic optimization models are only useful as long as they can be run with
an appropriate number of scenarios, and the possibility of doing so depends on the employed
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solution methods. We therefore believe that limiting the presentation to the models leaves
out too much important information that is crucial for properly choosing the right form of
uncertainty modelling.

Because the paper surveys such a large variety of material, we provide two different
reading maps:

1. The first is the standard reading order of the paper, synthesized in the Table of Contents
above. In Sect. 2 we describe the varied technical and operational constraints in (U)UC
models which give rise to many different variants of UC problems. In Sect. 3 we provide an
overview of methods that deal with the deterministic UC, focusing in particular on meth-
ods dealing with large-scale systems and/or that can be naturally extended to UUC, at least
as subproblems. In particular, in Sect. 3.1 we discuss Dynamic Programming approaches,
in Sect. 3.2 we discuss Integer and Mixed Integer Linear Programming approaches, while
in Sects. 3.3 and 3.4 we discuss decomposition approaches (Lagrangian, Benders and
Augmented Lagrangian), and finally in Sect. 3.5 we (quickly) discuss (Meta-)Heuristics.
UUC is then the subject of Sect. 4: in particular, Sect. 4.2 presents Stochastic Optimiza-
tion (Scenario-Tree) approaches, Sect. 4.3 presents Robust Optimization approaches, and
Sect. 4.4 presents Chance-Constrained Optimization approaches. We end the paper with
some concluding remarks in Sect. 5, and with a list of the most used acronyms.

2. The second map is centred on the different algorithmic approaches that have been used
to solve (U)UC. The main ones considered in this review are:

— Dynamic programming approaches, that can be found in Sects. 3.1, 3.2.2, 3.3, 3.5.2,

4.1.1.1,4.2.1,4.2.3,4.2.4, and 4 .4,

Mixed-integer programming approaches, that can be found in Sects. 3.2, 3.3,4.1.2.2,

42,42.1,42.3,4.24,4.3, and 4.4;

Lagrangian relaxation (decomposition) approaches, that can be found in Sects. 3.2.2,

33,352,42.1,42.2,42.3,4.2.4, and 4.4;

— Benders’ decomposition approaches, that can be found in Sects. 3.2.2,3.3,4.2,4.2.1,
422,423,424, and 4.3;

— Augmented Lagrangian approaches, that can be found in Sects. 3.3, 3.4, and 4.4;

Other forms of heuristic approaches, that can be found in Sects. 3.1, 3.2.2, 3.3, 3.5,

4.1.2.1,4.2.2,and 4.2.3.

2 Ingredients of the unit commitment problem

We start our presentation with a very short description of the general structure of electrical
systems, presenting the different decision-makers who may find themselves in the need of
solving (U)UC problems and their interactions. This discussion will clarify which of the
several possible views and needs we will cover; the reader with previous experience in this
area can skip to Sect. 2.1 for a more detailed presentation of the various ingredients of the
(U)UC model, or even to Sect. 3 for the start of the discussion about algorithmic approaches.

When the first UC models were formulated, the usual setting was that of a Monopolistic
Producer (MP). The MP was in charge of the electrical production, transmission and distri-
bution in one given area, often corresponding to a national state, comprised the regulation
of exchanges with neighbouring regions. In the liberalized markets that are nowadays preva-
lent, the decision chain is instead decentralized and significantly more complex, as shown
in the (still somewhat simplified) scheme of Fig. 1. In a typical setting, companies owning
generation assets (GENCOs) have to bid their generation capacity over one (or more) Mar-
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Fig.1 Simplified electricity and balancing market structure

ket Operator(s) (MO). Alternatively, or in addition, they can stipulate bilateral contracts (or
contracts for differences, CfD) with final users or with wholesales/traders. Once received
the bids/offers, the MO clears the (hourly) energy market and defines (equilibrium) clearing
prices. A Transmission System Operator (TSO), in possession of the high voltage transmis-
sion infrastructure, then has the duty—acting in concert with the Power Exchange Manager
(PEM)—to ensure safe delivery of the energy, which in turns means different duties such
as real time frequency-power balancing, several types of reserve satisfaction, voltage profile
stability, and enforcing real-time network capacity constraints. The TSO typically operates
in a different way programmable and non programmable units, since for instance only the
former can participate on balancing markets. However, very recently the growth of non pro-
grammable renewable sources required a greater integration also in the real time balancing
market. As a consequence modifications of network codes and new regulation emerged.
This is, e.g., the case of the resolution 300/2017/R/eel of the Italian Regulatory Authority
for Energy, Networks and Environment (ARERA), which establishes the first guidelines for
the active participation of the non programmable renewable sources, of the demand and of
the storage in the balancing market. Notably the storage can be included within traditional
production units giving birth to the concept of Integrated Production Units.

This basic setting, which can be considered sufficient for our discussion, is only a sim-
plification of the actual systems, which also vary depending on their geographical position.
For instance, transmission (and distribution) assets may actually be in possession of different
companies that have to offer them under highly regulated fair and non-discriminative condi-
tions, leaving the TSO only a coordination role. Also, the TSO and the MO may or may not
be the same entity, the balancing market can actually follow a central dispatch paradigm (as
alluded in Fig. 1) or a self dispatch one and so on. We leave aside these other factors, like
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how many and MOs there are and how exactly these are structured; we refer to Conejo and
Prieto (2001), Harris (2011), Oren et al. (1997), Shahidehpour et al. (2002) and Conejo et
al. (2010, Chapter 1) for a more detailed description. Because of this complexity, standard
optimization models may not be entirely appropriate to deal with all the aspects of the prob-
lem, since the behaviour of different/competing decision makers need be taken into account.
This may require the use of other methodologies, such as the computation of equilibria or
agent-based simulation. We will not deal with any of these aspects, the interested reader
being referred to Ventosa et al. (2005), Harris (2011), Oren et al. (1997), Shahidehpour et al.
(2002), Leveque (2002), Gabriel et al. (2013), van Ackooij et al. (2018), van Ackooij and de
Oliveira (2017), Dempe et al. (2015), Outrata (1990), Dempe and Dutta (2012), Adam et al.
(2017) and Surowiec (2010) for further discussion.

2.1 A global view of UC

In broad terms, the (deterministic or uncertain) Unit Commitment problem (both UC in
this section unless explicitly stated) requires to minimize the cost, or maximize the benefit,
obtained by the production schedule for the available generating units over a given time hori-
zon. As such, the fundamental ingredients of UC are its objective function and its constraints.
Of course, another fundamental ingredient is the time horizon itself; UC being a short-term
model this is most often a day or two of operations, and up to a week. In the following we
will denote it by 7', which is typically considered to be a discrete set corresponding to a finite
number of time instants t € T, usually hours or half-hours (down to 15 or 5 min). Thus, the
typical size of 7 varies from 24 to a few hundred.
In mathematical terms, UC has the general structure

min{ f(x) : x € X;NX2}, 6]

where x € R” is the decision making vector. Usually (most) elements of x are indexed
according to both the generating unit i € U and the time instant ¢ € 7 they refer to. Thus,
one often speaks of the subvectors x’ of all decisions pertaining to time ¢ and/or x; of all
decisions pertaining to unit i. Also, entries of x are typically split among:

1. Commitment decision discrete variables that determine if a particular unit is on or off at
any given time (often denoted by u!);

2. Production decision continuous variables that provide the amount of generated active
power by a specific unit at a given time (often denoted by pf ). In this set other variables
can be included, such as reactive power or reserve contribution by a specific unit at a
given time (often denoted by ¢/ and r/ respectively);

3. Network decision such as these representing phase angle or voltage magnitudes at each
node, describing the state of the transmission or distribution network.

A UC problem not having commitment decisions is often called Economic Dispatch (ED)
(e.g. Zhu 2009) or Optimal Power Flow (OPF) when the network is considered, (e.g. Jabr
2008). It could be argued that commitment decisions can be easily derived from production
decisions (each time a non-zero production output is present the unit has to be on), but for
modeling purposes it is useful to deal with the two different concepts separately, cf. Sect. 3.2.
Besides, the point is that in ED or OPF the commitment of units has already been fixed and
cannot be changed. We remark that network decisions may also include binary variables that
provide the open or close state of a particular branch, as entirely closing a branch is one of the
few options that the physic of electrical networks allows for “routing” the electrical current
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(cf. Sect. 2.8). While ED can be expected to be simpler than UC, and in many cases it is a
simple convex program that can nowadays be solved with off-the-shelf techniques, this is
not always the case. ED was not only challenging in the past (e.g., Demartini et al. 1998 and
the references therein), but can still be so today. Indeed, even when commitment decisions
are fixed, the electrical system is highly nonlinear and nonconvex, e.g., due to hydro units
efficiency curves (cf. Sect. 2.4) or the transmission network characteristics (cf. Sect. 2.7), so
that ED can still be a nontrivial problem that may require ad-hoc approaches (e.g. Heredia
and Nabona 1995; Oliveira et al. 2005; Jabr 2006, 2008; Lavaei and Low 2012; Molzahn
et al. 2013).

In Eq. (1), X is the set modeling all technical/operational constraints of the individual
units and X, are the system-wide constraints. The first set is by definition structured as a
Cartesian product of smaller sets, i.e., X1 = [[;,cy Xil, with Xl.1 CR"and ) ;.yni =n.
Moreover, the objective function f typically also allows for a decomposition along the sets
Xl] Je, f(x) =)y fitxi)and x; € Xl] . Each of the sets Xl.1 roughly contains the feasible
production schedules for one unit, that can differ very significantly between different units
due to the specific aspects related to their technological and operational characteristics. In
most models, X is non-convex. However, units sharing the same fundamental operational
principles often share a large part of their constraints as well. Because of this, these constraints
are best described according to the rype of the generating unit, i.e.,

1. Thermal units (cf. Sect. 2.3);
2. Hydro units (cf. Sect. 2.4);
3. Renewable generation units (cf. Sects. 2.3, 2.4, 2.5).

While hydro units are arguably a part of renewable generation, in the context of UC it is
fundamental to distinguish between those units that are programmable and those that are not.
That is, hydroelectric generation systems relying on a flow that can not be programmed are
to be counted among renewable generation ones together with solar and wind-powered ones.
This is unless these so-called run-of-river (ROR) units are part of a hydro valley, preceded
by a programmable hydro one (cf. Sect. 2.4).

The set X, which usually models at least the offer-demand equilibrium constraints, is most
often, but not always, convex and even polyhedral. This set may also incorporate other system-
wide constraints, such as emission constraints, network transmission constraints (cf. Sect. 2.7)
or optimal transmission switching constraints (cf. Sect. 2.8).

Solving (1) is difficult when n is large (which usually means that |U]| is large) or X is
a complex set; the latter occurs e.g. when substantial modelling detail on the operations of
units is integrated in the model. Finally, (1) contains no reference to uncertainty, but several
sources of uncertainty are present in actual operational environments, as summarized in the
following table:

Data Uncertain for Severity
Customer load GENCOs, TSO Low
Reservoirs inflows GENCOs, TSO Medium
Renewable generation GENCOs, TSO High
Prices/quantities GENCOs, traders, loads users) Medium/high
Units/network failure GENCOs, TSO Medium

Various ways to incorporate uncertainty in (1) are discussed in Sect. 4.1. Obviously,
solving (1) becomes more difficult when uncertainty is present, even when »n is small and
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X relatively simple. Thus, properly exploiting the structure of the problem (the function f
and the sets X| and X») is crucial to obtain efficient schemes for UC, and even more so for
UUC. This is why we now provide some detail on different modeling features for each of
these components.

2.2 The objective function

The objective function of UC is one of the main factors reflecting the different types of
decision-makers described in the previous section. In fact, when the demand needs to be
satisfied (as in the case of the MP, or of a TSO in the balancing market) the objective function
fundamentally aims at minimizing energy production costs; this is not necessarily obvious
(cf. the case of hydro units below), but the principle is clear. However, in the free-market
regime the aim of a single GENCO is typically rather to maximize energy production profits.
This again requires estimating the costs, so the same objective as in the MP case largely
carries over, but it also requires estimating the revenues from energy selling, as it is the
difference between the two that has to be maximized. In particular, if the GENCO is a price
maker it may theoretically indulge in strategic bidding (David and Wen 2001), whereby the
GENCO withdraws power from the market (by bidding it at high cost) in order to push up
market prices, resulting in an overall diminished production from its units but higher profit
due to the combined effect of decreased production cost and increased unitary revenue for the
produced energy. Of course, the success of such a strategy depends on the (unknown) behavior
from other participants in the market, which thereby introduces significant uncertainty in
the problem. The electrical market is also highly regulated to rule out such behavior from
market participants; in particular, larger GENCOs, being more easily price makers, are strictly
observed by the regulator and bid all their available capacity on the market. Yet, the solution
of strategic bidding problems is of interest at least to the regulators themselves, who need
to identify the GENCOs who may in principle exercise market power and identify possible
patterns of abuse. Even in the price taker case, i.e., a GENCO with limited assets and little
or no capacity to influence market prices, uncertainty is added by the need of accurately
predicting the selling price of energy for each unit and each r € 7 (Gil et al. 2012). This
uncertainty must then be managed, e.g. with techniques such as those of Robust Optimization
(Baringo and Conejo 2011).

Energy production costs for fuel-burning units are typically modeled (in increasing order
of complexity) as linear, piecewise-linear convex, quadratic convex, or nonconvex functions
separable for each € 7. In fact, while the fuel-consumption-to-generated-power curve can
usually be reasonably well approximated with a piece-wise linear function or a low-order
polynomial one, other technical characteristics of generating systems introduce nonconvex
elements. The simplest form is that of a fixed cost to be paid whenever the unit is producing
at some ¢t € 7, irrespective of the actual amount of generated power. In alternative, or
in addition, start-up costs (and, less frequently, shut-down ones) are incurred when a unit
is brought online after a period of inactivity. In their simplest form start-up costs can be
considered fixed, but most often they significantly depend on the time the unit has been
off before having been restarted, and therefore are not separable for each time instant. The
dependency of the start-up cost on time can be rather complex, as it actually depends on the
choice between the unit being entirely de-powered (cooling) or being kept at an appropriate
temperature, at the cost of burning some amount of fuel during the inactivity period, to make
the start-up cheaper (banking). Technically speaking, in the latter case, one incurs a higher
boiler cost to offset part of the turbine cost. The choice between these two alternatives can
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often be optimally made by simple formulae once the amount of idle time is known, but this
is typically not true beforehand in UC since the schedule of the unit is precisely the output of
the optimization problem. Fortunately, some of the solution methods allow inclusion of the
start-up cost at a relatively minor increase of the computational complexity; this is the case
e.g. of MILP formulations, cf. Sect. 3.2, exploiting the fact that the optimal start-up cost is
nondecreasing as the length of the idle period increases (Nowak and Romisch 2000; Carrién
and Arroyo 2006). In other cases start-up cost have basically no additional computational
cost, such as in DP approaches, cf. Sect. 3.1. Other relevant sources of nonconvexity in the
objective function are valve points (Wood and Wollemberg 1996), corresponding to small
regions of the feasible production levels where the actual working of the unit is unstable
(e.g., due to transitioning between two different configurations in a Combined Cycle Gas
Turbine, CCGT, unit or other technical reasons) and that therefore should be avoided.

Nuclear units are generally considered thermal plants, although they significantly differ
in particular for the objective function. Indeed, fuel cost has a different structure and depends
on many factors, not only technical but also political (e.g., Cour des Comptes 2012). For
convenience, formulae similar to that of conventional thermal plants are often used. However,
these units incur additional significant modulation costs whenever variations of power output
are required; this cost is therefore again not separable per time instant.

Hydro units are generally assumed to have zero energy production cost, although they
may in principle have crew and manning costs. In the self-scheduling case, where profit has
to be maximized, this would lead to units systematically depleting all the available water due
to the fact that a short-term model such as UC has no “visibility” on what happens after the
end of its time horizon 7 (the so-called “border effect”). Because of this, often a value of
water coefficient is added to the objective function to represent the expected value of reserves
left in the reservoirs at the end of 7. These values, as well as the required reservoir levels
(cf. 2.4), are usually computed by means of specific mid-term optimization models. A very
standard approach is to value the differential between the initial and end volume of a reservoir
against a volume-dependent water value; we refer to van Ackooij et al. (2014) and Cerjan
et al. (2011) for details on various other modelling choices. A particular difficulty appears
when we wish to integrate the water head effect on turbining efficiency (e.g., Finardi and
Silva 2006; Ramos et al. 2012), since this is typically a nonlinear and nonconvex relationship.

In general, the case of profit maximization requires knowledge of the selling and buying
price of energy at each r € 7. Because UC is solved ahead of actual operations, possibly
precisely with the aim of computing the bids that will contribute to the setting of these prices
(cf. e.g. Borghetti et al. 2003a; Bompard and Ma 2012; Kwon and Frances 2012; Rocha and
Das 2012), this requires nontrivial forecast models in order to obtain reasonable estimates
of the prices (e.g. Oudjane et al. 2006; Li et al. 2010; Zareipour 2012). Depending on the
time horizon and specific application, different price models can be considered. These can be
obtained from time series modeling (e.g. Diongue 2005; Muiioz et al. 2010; Pedregal et al.
2012), mathematical finance (e.g. Oudjane et al. 2006; Higgs and Worthington 2008; Benth
etal. 2012; Nguyen-Huu 2012; Pepper et al. 2012) or can be based on electricity fundamentals
(e.g. van Ackooij and Wirth 2007; Ea 2012). For the case where the producer is a price taker,
that is, small enough so that its production can be deemed to have little or no effect on the
realized prices, UC can typically be independently solved for each individual unit (thus being
styled as the self-scheduling problem), and it is therefore much easier (Arroyo and Conejo
2000), although uncertainty in prices then becomes a critical factor and need be included in
the models by appropriate techniques (Conejo et al. 2002; Nogales et al. 2002; Baringo and
Conejo 2011; Jabr 2005). Things are significantly different in case the producer can exercise
market power, that is, influence (increase) the prices by changing (withdrawing) the power
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it offers to the market; modeling this effect “ties” all the units back again into an unique
UUC (Borghetti et al. 2003a; Conejo et al. 2002; de la Torre et al. 2002; Pereira et al. 2005).
Uncertainty in this case is also very relevant, with the behavior of competitors being one
obvious primary source (Anderson and Philpott 2002; Wen and David 2001; Vucetic et al.
2001; Pineau and Murto 2003; Wang et al. 2007). The matter is further complicated by the
fact that the structure of the PE is usually complex, with more than one auction solved in
cascade to account for different kinds of generation (energy, reserve, ancillary services, ...)
(Baillo et al. 2004; Triki et al. 2005; Wang et al. 2005) and by the fact that tight transmission
constraints may create zonal or even nodal prices, thereby allowing producers who may not
have market power in the global context to be able to exercise it in a limited region (Li and
Shahidehpour 2005; Peng and Tomsovic 2003; Pereira et al. 2005).

2.3 Thermal units

A thermal power station is a power plant in which the prime mover is steam driven. Techni-
cal/operational constraints can be classified as either static or dynamic: the former hold on
each time step, whereas the latter link different (most often adjacent) time steps. Most typical
static constraints are:

1. Offline when the unit is offline, the power output is less than or equal to zero (negative
power output refers to the power used by auxiliary installations, e.g., for nuclear plants).

2. Online when the unit is online, the power output must be between Minimal Stable Gen-
eration (MSG) and maximal power output.

3. Starting the unit is ramping up to MSG. The ramping profile depends on the number
of hours a unit has been offline (e.g. Le et al. 1990); see also the discussion on starting
curves below in the section on dynamic constraints. A unit in this state can in principle
still be disconnected, but at a cost.

4. Stopping the unit ramps down from MSG to the offline power output. As for starting,
the ramping profile depends on the number of hours a unit has been online; see also the
discussion on stopping curves below in the section on dynamic constraints.

5. Generation capacity the production capacity of each unit. For some units the production
output has to be selected among a discrete set of values.

6. Spinning reserve the extra generating capacity that is available by increasing the power
output of generators that are already connected to the power system. For most gener-
ators, this increase in power output is achieved by increasing the torque applied to the
turbine’s rotor. Spinning reserves can be valued separately from actively generated power
as they represent the main mechanism that electrical systems have to cope with real-time
variations in demand levels.

7. Crew constraint number of operators available to perform the actions in a power plant.

Typical dynamic constraints instead are:

1. Minimum up/down time a unit has to remain online/offline for at least a specific amount
of time.

2. Operating ramp rate (also known as ramp-down and ramp-up rate): the increment and
decrement of the generation of a unit from a time step to another, excluding start-up and
shut-down periods, must be bounded by a constant (possibly different for ramp-up and
ramp-down).

3. Minimum stable state duration a unit that has attained a specific generation level has to
produce at that level for a minimum duration of time.
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4. Maximum numbers of starts the number of starts can be limited over a specific time
horizon (such a constraint is also implicitly imposed by Minimum Up/Down Time ones,
and in fact the two are somehow alternatives).

5. Modulation and stability these constraints are mainly applied to an online nuclear unit. A
unit is in modulation if the output level changes in a time interval, whereas it is stable if
the power level remains identical to that of the previous time step. The constraints ensure
that the unit is “most often stable”, requiring that the number of modulations does not
exceed a predefined limit over a given time span (say, 24 h).

6. Starting (stopping) curve (also referred to in literature as start-up/shut-down ramp rate):
in order to start (stop) a unit and move it from the offline (online) state to the online
(offline) state, the unit has to follow a specific starting (stopping) curve, which links
offline power output (zero, or negative for nuclear plants) to MSG (or vice-versa) over
the course of several time steps. Each starting (stopping) curve implies a specific cost,
and the chosen curve depends on the number of hours the plant has been offline (online).
Starting (stopping) may take anything from several minutes (and therefore be typically
irrelevant) up to 24 h (and therefore be pivotal for the schedule).

7. Feasible state transition for CCGT These thermal units typically have at least two Gas
Turbines and one Steam Turbine and have specific feasible state transition which are non
trivial to formulate, e.g. (Fan et al. 2016).

2.4 Hydro units

Hydro units are in fact entire hydro valleys, i.e., a set of connected reservoirs, turbines and
pumps that influence each other through flow constraints. When the hydro component is
significant UC is often denoted as HUC; this may make the problem significantly more
difficult, as the recent survey (Taktak and d’Ambrosio 2016) highlights. Turbines release
water from uphill reservoirs to downhill ones generating energy, pumps do the opposite.
Note that the power output of ROR units downstream to a reservoir (and up to the following
reservoir, if any) must be counted together with that of the turbines at the same reservoir;
usually it is possible to do this by manipulating the power-to-discharged-water curve of the
unit at the reservoir, and thus ROR units in a hydro valley need not be explicitly modeled. We
remark in passing that whether or not a unit is considered ROR depends on the time horizon
of the problem: units with small reservoirs can be explicitly modeled in HUC because they
do have a degree of modulation over the short term, but they may be considered ROR in
longer-term problems since the modulation is irrelevant over long periods of time.

As for thermal units, we distinguish constraints as being either static or dynamic. The
typical ones of the first kind are:

1. Reservoir level the level of water in each reservoir has to remain between a lower and
upper bound. Frequently these bounds are used to reflect strategic decisions correspond-
ing to optimal long-term use of water (cf. Sect. 2.2), and not necessarily reflect physical
bounds. An alternative is to use a nonlinear cost of water that reflects the higher risk
incurred in substantially depleting the reservoir level, as water in hydro reservoirs rep-
resents basically the only known way of efficiently storing energy on a large scale and
therefore provides a crucial source of flexibility in the system. Yet, bounds on the level
would ultimately be imposed anyway by physical constraints.

2. Bounds turbines and pumps can operate only within certain bounds on the flowing water.
In particular, some turbines might have a minimal production level akin to the MSG of
thermal units.
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The most common dynamic constraints are:

1. Flow equations these equations involve the physical balance of the water level in each
reservoir and connect the various reservoirs together. The reservoir levels get updated
according to natural inflows, what is turbined downhill, what is spilled downhill (i.e., let
go from the reservoir to the next without activating the turbines), and what is pumped
from downhill to uphill. Spilling might not be allowed for all reservoirs, nor all have
pumping equipment.

2. Flow delay the water flowing (uphill or downhill) from each unit to the next reservoir
will reach it after a given delay, that can possibly be of several hours (and occasionally
even more Belloni et al. 2003).

3. Ramp rate adjacent turbining levels have to remain sufficiently close to each other.

4. Smooth turbining over a a given time span (e.g., 1 h), turbining output should not be in
a V-shape, i.e., first increase and immediately afterwards decrease (or vice-versa). This
constraint is typically imposed to avoid excessive strain on the components, similarly
to several constraints on thermal units such as Minimum up/down Time, Maximum
Numbers of Starts, Modulation and Stability.

5. Turbining/pumping incompatibility some turbines are reversible and therefore pumping
and turbining cannot be done simultaneously. Moreover, switching from turbining to
pumping requires a certain delay (e.g., 30 min). Some of these constraints actually only
refer to a single time instant and therefore they can be considered as static.

6. Forbidden zones in complex hydro units, effects like mechanical vibrations and cavitation
strongly discourage using certain intervals of turbined water, as these would result in
low efficiency and/or high output variation (similarly to valve points in thermal units,
cf. Sect. 2.2). Therefore, constraints that impose that the turbined water lies outside of
these forbidden zones might have to be imposed (Finardi and Scuzziato 2013).

2.5 Renewable generation units

Renewable generation in UC mostly refers to wind farms, solar generation, stand alone ROR
hydro units, and geothermal production. The fundamental characteristic of all these sources,
asfaras UC is concerned, is the fact that they cannot be easily modulated: the produced energy,
and even if energy is produced at all (in some wind farms energy is actually consumed to keep
the blades in security when wind blows too strongly), is decided by external factors. Some of
these sources, most notably solar and wind, are also characterized by their intermittency; that
is, it is very difficult to provide accurate forecasts for renewable generation, even for short
time horizons (say, day-ahead forecasts). Furthermore, in several cases renewable generation
operates in a special regulatory regime implying that they cannot even be modulated by
disconnecting them from the grid. This has (not frequently, but increasingly often) led to
paradoxical situations where the spot price of energy is actually zero or, where allowed, even
negative, i.e., one is paid to consume the energy that renewable sources have the right to
produce (and sell at fixed prices) no matter what the demand actually is. All this has lead to
significant changes in the operational landscape of energy production systems, that can be
summarized by the following factors:

1. The total renewable production cannot be predicted accurately in advance;

2. Renewable generation has high variance;

3. The correlation between renewable generation and the load can be negative, which is
particularly troublesome when load is already globally low, since significant strain is
added to conventional generation assets which may have to quickly ramp down production
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levels, only to ramp them up (again rapidly) not much later. This goes squarely against
most of the standard operational constraints in classical UC (cf. Sects. 2.3, 2.4).

In other words, in UC terms, renewable generation significantly complicates the problem:;
not so much because it makes its size or structure more difficult, but because it dramatically
increases the level of uncertainty of net load (the load after the contribution of renewables
is subtracted), forcing existing generation units to serve primarily (or at least much more
often than they were designed to) as backup production in case of fluctuations, rather than
as primary production systems. This increases the need of flexible (hydro-)thermal units
ready to guarantee load satisfaction at a short notice, which however typically have a larger
operational cost. We refer to Bouffard and Galiana (2008), Siahkali and Vakilian (2010),
Moura and Almeida (2010) and Miranda et al. (2011).

2.6 Demand response and energy storage

With increasing awareness of the effect that electrical consumption may have on the “envi-
ronment”, and as a result of economic incentives, users are increasingly willing to take an
active part in altering their consumption pattern to accommodate for system needs. In view
of testing such potential, experiments have carried out on a voluntary basis (e.g., NICE-
grid in France and the pilot projects in Italy after the aforementioned ARERA resolution
300/2017/R/eel). These mechanisms can be seen as a particular type of Demand Response
(DR). The novelty in itself is not so much the fact that some customers may be asked to not
consume, or postpone their consumption, but rather the scale and size of the considered con-
sumptions profiles. Indeed, traditionally only large industrial clients were addressed, but this
has progressively moved to consider larger sets of households. From a modelling perspective,
at least three kinds of phenomena can be looked at:

— A certain amount of load can be shedded, but a limited set of times over a given time
horizon (Magnago et al. 2015).

— A certain amount of load can be shifted from one moment in time to another without
implying any change in consumption (zero sum).

— A certain amount of load can be shifted from a moment in time to another while implying
a global increase in consumption. Such is the case, for instance, of an heating system
where, after some period of not warming a household, more energy is required to recover
a given confort temperature.

In a similar way to Demand Response, energy storage allows to adapt electrical consump-
tion (and generation), catering for flexibility needs. Energy storage gained popularity during
the 1970’s, when power generation