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Abstract
Dynamic portfolio optimization has a vast literature exploring different simplifications by
virtue of computational tractability of the problem. Previous works provide solution methods
considering unrealistic assumptions, such as no transactional costs, small number of assets,
specific choices of utility functions and oversimplified price dynamics. Other more realistic
strategies use heuristic solution approaches to obtain suitable investment policies. In this
work, we propose a time-consistent risk-constrained dynamic portfolio optimization model
with transactional costs and Markovian time-dependence. The proposed model is efficiently
solved using aMarkov chained stochastic dual dynamic programming algorithm.We impose
one-period conditional value-at-risk constraints, arguing that it is reasonable to assume that
an investor knows how much he is willing to lose in a given period. In contrast to dynamic
risk measures as the objective function, our time-consistent model has relatively complete
recourse and a straightforward lower bound, considering a maximization problem. We use
the proposed model for approximately solving: (i) an illustrative problem with 3 assets and 1
factor with an autoregressive dynamic; (ii) a high-dimensional problemwith 100 assets and 5
factors following a discreteMarkov chain. In both cases,we empirically show that our approx-
imate solution is near-optimal for the original problem and significantly outperforms selected
(heuristic) benchmarks. To the best of our knowledge, this is the first systematic approach
for solving realistic time-consistent risk-constrained dynamic asset allocation problems.
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1 Introduction

Portfolio selection is a complex dynamic decision process under uncertainty thatmust account
for risk aversion, price dynamics, transaction costs and allocation constraints.Mathematically
represented as a stochastic dynamic programming problem, asset allocation suffers from the
curse of dimensionality, particularly when transaction costs are not negligible. Although
the simplifying assumptions of previous works make dynamic asset allocation models more
intuitive and computationally tractable, they are unreliable policies in practice.

The dynamic portfolio optimization literature begins with Mossin (1968), Samuelson
(1969), and Merton (1969, 1971), where they show that a no transaction cost problem
is tractable and efficiently solvable. In a discrete-time framework, Constantinides (1979)
address a dynamic portfolio selection with proportional transaction costs, but only for a
two-asset problem. Davis and Norman (1990) and Shreve and Soner (1994) can be consid-
ered continuous-time extensions of the work of Constantinides (1979), whereasMuthuraman
(2007) numerically solved a one-asset problem with proportional transaction costs.

In the literature ofMultistage Stochastic Programming (MSP) for Asset-Liability (Ziemba
et al. 1998; Kouwenberg 2001; Valladão et al. 2014) and Portfolio management (Bradley and
Crane 1972; Gülpınar et al. 2004; Topaloglou et al. 2008) realistic assumptions, such as
transactional costs, have been considered due to the flexibility given by scenario-tree based
models. However, only a limited number of decision stages ensure computational tractability
(Shapiro and Nemirovski 2005; Shapiro 2006).

To circumvent the computational burden, Brown and Smith (2011) used dual bounds
proposed by Brown et al. (2010) to assess the solution quality of proposed heuristic (non-
optimal) allocation strategies for a multi-asset (up to ten assets) model with transaction costs.
Bick et al. (2013) proposed a numerical procedure to obtain heuristic allocation strategies
as modifications of the closed-form solution of an idealized problem, and a performance
bound to measure its quality. Jin and Zhang (2013) considers a jump-diffusion model with
investment constraints by embedding the constrained problem in the appropriate family of
unconstrained ones. The works of Brown and Smith (2011), Bick et al. (2013) and Jin
and Zhang (2013) reiterates the high computational burden of obtaining the actual optimal
allocation strategy and the importance of developing an efficient solution algorithm for this
problem. More recently, Mei et al. (2016) uses the specific structure of a multiperiod mean-
variance to obtain a tractable solution for amulti-asset problem. To the best of our knowledge,
no previous works provides an efficient methodology for a dynamic portfolio optimization
with transactional costs and time-dependence returns with a large number of decision stages.

The stochastic dynamic programming literature, on the other hand, deals with consid-
erably more complex and large-scale problems in a discrete-time setting. Decomposition
methods with a full tree representation, such as progressive hedging, see Rockafellar and
Wets (1991), and L-shaped, see Birge and Louveaux (2011), solve medium-sized problems.
Additionally, sampling-based decomposition methods, such as stochastic dynamic dual pro-
gramming (SDDP) by Pereira and Pinto (1991), abridged nested decomposition (AND) by
Donohue and Birge (2006) and convergent cutting-plane and partial-sampling algorithm
(CUPPS) by Chen and Powell (1999), successfully solve large-scale problems.

Particularly important to our work, the SDDP algorithm can efficiently solve a large-
scale stochastic dynamic problem in the context of the operation planning of hydrothermal
power systems (Soares et al. 2017; Brigatto et al. 2017; Street et al. 2017). The SDDP
overcomes the curse of dimensionality assuming temporal (stage-wise) independence of
the stochastic process. For a maximization problem, stage-wise independence guarantees
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a unique concave value function for each time stage regardless of the stochastic process
realization. Augmenting the state-space with a past realization of the stochastic process, the
SDDP framework also accommodates a linear temporal dependence in the right-hand side
of a linear constraint (Shapiro et al. 2013). It is important to note that any time dependence
(even a linear one) embedded on the left-hand side of a linear constraint (which is exactly the
case for a portfolio problem) would not be tractable due to a non-convex augmented value
function. Furthermore, the SDDP framework is also suitable for a discrete-state Markov-
dependent stochastic process, as in Mo et al. (2001), Philpott and deMatos (2012) and Bruno
et al. (2016), which is particularly helpful when solving a stochastic dynamic asset allocation
problem.

Finally, risk aversion is an important issue in a dynamic stochastic portfolio optimiza-
tion. In the portfolio literature, most works maximize the expectation of some parametric
concave utility representing the investor’s attitude toward risk. The importance of the utility
theory notwithstanding, it is not intuitive to determine a risk-averse parameter or even which
utility function that suitably represents the investor’s risk aversion. The latest approaches in
the stochastic dynamic programming literature introduce risk aversion via time-consistent
dynamic risk measures. The objective function is a recursive formulation of a one-period
coherent risk measure (Shapiro et al. 2013; Philpott and de Matos 2012), generally the
convex combination of expectation and conditional value-at-risk (CV@R) (Rockafellar and
Uryasev 2000, 2002). The recursive model ensures time-consistent policies (Shapiro 2009)
and has a suitable economic interpretation of a certainty equivalent (Rudloff et al. 2014). In
practical applications, however, a decision maker must define the relative weights between
expectation and CV@R (Rockafellar and Uryasev 2000, 2002) to represent his risk aversion,
which is a non-intuitive user-defined risk-aversion parameter.

In this work, we develop and efficiently solve a time-consistent multi-asset stochastic
dynamic asset allocation model motivated by the actual decision process in the financial
market. Hedge funds hire managers to propose trading strategies that maximize expected
returns, while risk departments impose constraints to strategies with a high level of risk.
We focus our developments on risk-constrained models (Fernandes et al. 2016; Valladão
et al. 2018), arguing that it is reasonable to assume that an investor knows how much he is
willing to lose in a given period. We argue that determining a loss tolerance is much more
intuitive than other risk aversion parameterizations in a dynamic setting. Ourmodel assumes a
discrete-stateMarkov process to capture the dynamics of common factors of asset returns and
imposes one-period conditional CV@R constraints, ensuring a relatively complete recourse
and computationally tractable time-consistent risk-averse model.

Our main contribution is to develop and solve a dynamic stochastic asset allocation model
in a discrete-time finite horizon that has the following characteristics:

– Realism: multiple assets (high-dimensional space), transactional costs and time-
dependent asset returns;

– Time consistency: expected return maximization with one-period CV@R constraints
guarantees that planned decisions are actually going to be implemented in the future;

– Intuitive risk aversion parameterization: a user-defined CV@R limit, intuitively inter-
preted as the maximum percentage loss allowed in one period;

– Flexibility: straight-forward extensions to incorporate operational restrictions such as
holdings and turnover constraints;

– Approximation framework for more complex price dynamics: the approximate solution
obtained with aMarkov chain surrogate is near-optimal and outperforms selected heuris-
tic benchmarks.
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– Computational tractability and solution quality: the solution of the SAAproblemobtained
via MSDDP is computationally tractable and near-optimal for the original (continuously
distributed) problem even considering a high-dimensional state-space.

2 Theoretical background

Let us assume a filtered probability space (Ω,F,P), where F = FT and F0 ⊆ . . . ⊆ FT ,
and a generic definition of a time-consistent dynamic stochastic programming model for
asset allocation. At a given time (stage) t , an investor wishes to construct a portfolio ut =
(u0t , . . . , uNt )

� determining allocation on a risk-free asset1 u0,t and on risky ones ui,t for
i ∈ A = {1, . . . , N }, each of which has an uncertain return ri,t , with a vector notation
rt = (r0t , . . . , rNt )

�. At a given time t , we define the feasible set of the asset allocations
Ut (ut−1) as a function of the previous allocation ut−1. We also define the terminal wealth
WT (uT−1) as a function of the last allocation and, for every t = 1, . . . , T − 1, a one-period
preference functional ψt : L∞(Ft+1) → L∞(Ft ). Following Rudloff et al. (2014) and
Shapiro (2009), we ensure time-consistent policies by defining the recursive setting

max
u1∈U1

ψ1

[
max

u2∈U2(u1)
ψ2

[
· · · max

uT−1∈UT −1(uT−2)
ψT −1

[
WT (uT−1)

]]]
(1)

where ut and rt are Ft–measurable.
This generic formulation accounts for different types of models, including maximization

of expected utility, minimization of a time-consistent dynamic riskmeasure and a risk-neutral
objective functionwith one-period risk constraints. Previousworks show twomodeling issues
that pose a significant trade-off between realism and computational tractability: transaction
costs and time dependence of asset returns. For the purpose of gaining intuition and keeping
the paper self-contained, we review previous results for simplified models: Sect. 2.1 depicts a
myopic portfoliomodelwith no transaction costs, while Sect. 2.2 shows that SDDP efficiently
solves a stage-wise independentmodel with transaction costs. Finally, in Sect. 2.3, we discuss
available alternatives to accommodates temporal dependence on the SDDP framework.

2.1 No transaction cost model

Let us define the current wealth Wt = (1 + rt)�ut−1 as the accrued value of previous
allocation2 and use it to reallocate the new portfolio, 1�ut = Wt . Hence, in (1), the feasible

set would be Ut (ut−1) =
{
ut ∈ R

N+1+ | 1�ut = (1 + rt)�ut−1

}
and the terminal wealth

WT (uT−1) = (1 + rT)�uT−1. Now, assuming that short selling is not allowed, let us define
the model with the dynamic programming equations for t = T , . . . , 0

Qt (Wt ) = max
ut≥0

{
ψt

[
Qt+1

(
(1 + rt+1)

�ut
)]

| 1�ut = Wt

}
(2)

where QT (WT ) = WT . Traditional dynamic programming techniques efficiently solve no
transaction cost portfolio problemswhen asset returns followa low-dimensional factormodel.
For instance, (2) is computationally tractable if asset returns follow a one-factor model

1 The risk-free asset is indexed by i = 0, and it has null returns for all t = 2, . . . , T , i.e., r0,t (ω) = 0, ∀ω ∈ Ω .
2 Where 1 is a column vector of ones with appropriate dimension.

123



Annals of Operations Research (2019) 282:379–405 383

log(1 + rt+1) = ar + br ft + εt+1, where the scalar factor follows a simple autoregressive
process ft+1 = a f + b f ft + ηt+1, Brown and Smith (2011).

Following Blomvall and Shapiro (2006), if we consider a log-utility u(w) = log(w) and
define ψT −1[W ] = E[u(W )|FT −1] and ψt [W ] = E[W |Ft ],∀1 ≤ t ≤ T − 2, we obtain a
myopic problem whose current decision ut can be obtained as the solution of

max
ut≥0

{
ψt

[
(1 + rt+1)

�ut
]

| 1�ut = Wt

}
(3)

a tractable two-stage problem only concerning financial gains of the following period t + 1.
The additional assumption of stage-wise independent returns also leads to a myopic problem
if one chooses a power utility u(w) = wη/η with η ≤ 1 and for an alternative objective
function based on a time-consistent dynamic risk measure, i.e., defining ψt [W ] = −ρt [W ],
where ρt is a conditional coherent risk measure; see Cheridito et al. (2006).

2.2 Transaction costs and stage-wise independent model

Under transaction costs, dynamic asset allocation is no longer myopic but still computation-
ally tractable for stage-wise independence of asset returns. Although unreliable as an actual
trading strategy, one can solve the stage-wise independent model using the stochastic dual
dynamic programming (SDDP) algorithm (Kozmík and Morton 2015).

Let us assume stage-wise independence and reformulate the problem with an augmented
state space for the value function Qt (xt), where xt is a vector that represents the amount of
money in each asset right before buying and selling decisions at time t .

Note that we could extend our framework for any convex transactional cost function
f (xt,ut) as in Brown and Smith (2011). For that purpose, we include an additional constraint
to obtain the epigraph formulation

Qt (xt) = max
ut,bt,dt

ψt
[
Qt+1

(
Rt+1 · ut

)]
(4)

s.t. u0,t + κ = x0,t (5)

f (xt,ut) ≤ κ (6)

ut ≥ 0, (7)

which is, by definition, a convex problem. For computational efficiency, one can approximate
a convex cost by a piecewise linear function to remain on a linear programming framework
(Valladão et al. 2018).

For simplicity, we assume proportional costs. We respectively denote buying and selling
(dropping) decision variables by bi,t , di,t ,∀i ∈ A, t ∈ {1, . . . , T − 1}, with the vector

notation bt = (
b1,t , . . . , bN ,t

)� and dt = (
d1,t , . . . , dN ,t

)�
. Then, we define the dynamic

equations

Qt (xt) = max
ut,bt,dt

ψt
[
Qt+1

(
Rt+1 · ut

)]
(8)

s.t. u0,t + (1 + c)�bt − (1 − c)�dt = x0,t (9)

ui,t − bi,t + di,t = xi,t , ∀i ∈ A (10)

ut,bt,dt ≥ 0, (11)

where QT (xT) = 1�xT, Rt = diag(1 + rt+1), c = c · 1, and c is the transaction cost
proportion.
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Fig. 1 V@Rα[W ] and CV@Rα[W ] of an uncertain wealth (W )

As before, the objective function (8) is a risk-adjusted terminal wealth. Constraint (9)
ensures that the allocation in the risk-free asset (cash) before (x0,t ) and after (u0,t ) buying
and selling decisions correctly accounts for the cash balance and transaction costs. Constraint
(10) accounts for the reallocation of each risky asset, and (11) are non-negativity of buying
and selling decisions making short selling and borrowing prohibition.

Considering stage-wise independence, the model (8–11) is efficiently solved by the stan-
dard SDDP algorithm, which iteratively constructs a piecewise linear outer approximation
by sampling trial points of xt and determining first order approximations, i.e., cutting planes.
Given that the function Qt (xt) is concave, the piecewise linear outer approximation provides
an upper bound to the original problem. In particular, Philpott and de Matos (2012) and
Shapiro (2011) propose the time-consistent risk-averse objective

ψt [Qt+1] = (1 − λ) · E[Qt+1|Ft ] − λ · CV@Rα[Qt+1|Ft ],

where, Qt+1 = Qt+1
(
Rt+1 · ut

)
and the conditional value-at-risk (CV@R) is defined as

CV@Rα[Qt+1 | Ft ] = inf
z∈R

⎧⎨
⎩z +

E

[(
(−Qt+1) − z

)+∣∣∣Ft

]
1 − α

⎫⎬
⎭,

with confidence level α ∈ (0, 1) and x+ = max(x, 0). The CV@R concept is illustrated in
Fig. 1.

For a risk-neutral formulation, i.e., λ = 0, a lower bound estimator can be obtained by
simulating independent paths of portfolio returns (Shapiro 2011). The recursive risk-averse
formulation, i.e., λ > 0, does not allow for a straightforward lower bound computation,
considering a maximization problem. Although Kozmík and Morton (2015) propose a lower
bound computation methodology based on importance sampling, most works use ad-hoc
stopping criteria for solving such problems.

Notwithstanding Rudloff et al. (2014) intuitive certainty-equivalent interpretation of this
recursive objective function, it is not clear how to determine λ to represent the preferences
of an investor. Hence, this is a major obstacle for practical implementation.
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Fig. 2 Illustrative SDDP value function considering stage-wise independence

2.3 Stochastic dual dynamic programming and temporal dependence

The SDDP and other sampling-basedmethods assume stage-wise independence to avoid hav-
ing multiple value functions per stage. Considering stage-wise independence, SDDP allows
for cut sharing and consequently approximates only one value function at each time stage.
For a generic time dependence, a decomposition algorithm, such as the L-shaped method,
requires a differing value function for each realization of the stochastic process, which sig-
nificantly increases the computational burden. Figure 2 illustrates an SDDP value function
that considers stage-wise independence, while Fig. 3 illustrates differing value functions
considering a generic time dependence. For the latter, one would need the full representation
of the tree to use Benders-based decomposition algorithms, such as L-shaped, to solve a
medium-sized problems. SDDP handles large-scale problems, while other methods based on
the full representation of the tree become computationally intractable.

The SDDP framework accommodates some specific types of time dependence, such as a
linear autoregressive process embedded in the right-hand-side of linear constraint,3 and,more
generally, for a discrete-state Markov process. For instance, in the hydrothermal model, the
state-space includes past rivers’ inflows changing the right-hand side accordingly to model
a linear time-dependence as in (Infanger and Morton 1996; Pereira and Pinto 1985). For a
more generic class of problems, Mo et al. (2001) and Philpott and de Matos (2012) modify
the model using the Markov chains preserving convexity, consequently ensuring optimality
and computational tractability.

In the dynamic asset allocation problem, the stochastic returns are not right-hand-side
coefficients and have a nonlinear dependence (Cont 2001; Morettin and Toloi 2006). For
a generic time dependence, full tree representation multistage models as in Valladão et al.
(2014) may solve a medium-size dynamic portfolio optimization, but it is not computation-
ally tractable for a large-scale problem including transaction costs, several time stages and
multiple assets. In our work, we assume a discrete-state Markov process, where given a state,

3 Note that any time dependent return influences the left-hand side of a balance constraint inducing a non-
convex, therefore intractable, augmented value function.
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Fig. 3 Illustrative value functions
considering generic time
dependence

the probability distribution does not depend on past asset returns. In this case, we have a
different value function for each time stage and for each Markov state of the system. In
the following section, we propose a sequence of risk-constrained models building up com-
plexity and realism with the following assumptions: (i) no transaction costs and stage-wise
independence; (ii) transaction costs and stage-wise independence; and (iii) transaction costs
and Markov time-dependent asset returns. For the latter, we adapt SDDP based on Mo et al.
(2001), Philpott and de Matos (2012) to account for a discrete-state Markov model and solve
a realistic dynamic asset allocation problem within reasonable computation time. To the best
of our knowledge, no work in the literature has addressed a time-consistent risk-constrained
dynamic portfolio optimization with transactional costs and time-dependent returns.

3 Risk-constrained stochastic dynamic asset allocationmodels

In this section, we propose a class of asset allocation models motivated by the actual decision
process in financial markets. Hedge funds hire managers to propose trading strategies that
maximize expected returns, while risk departments impose constraints to strategies with a
high level of risk. We focus our developments on risk-constrained models, arguing that it is
reasonable to assume that an investor knows howmuch he is willing to lose in a given period.

Let us start by assuming time (stage-wise) independence and consequently obtaining
E[W |Ft ] = E[W ] and ρ[W |Ft ] = ρ[W ], for a random gain W . Considering no transaction
costs, we define the dynamic programming equations for t = 0, . . . , T − 1

Qt (Wt ) = max
ut

E

[
Qt+1

(
(1 + rt+1)

�ut
)]

(12)

s.t. ρ
[
r�
t+1ut

]
≤ γ Wt (13)

1�ut = Wt (14)

ut ≥ 0, (15)
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where QT (WT ) = WT . The risk constraint (13) limits percentage portfolio loss by γ , a loss-
tolerance determined by the investor. In other words, the risk constraint (13) is equivalent
to

ρ
[
Wt+1 − Wt

] ≤ γ Wt ,

where the future wealth is defined as Wt+1 = (1 + rt+1)
�ut and the current wealth as

Wt = 1�ut.
We assume a coherent risk measure ρ : L∞(F) → R with the following properties

(Artzner et al. 1999):

– Monotonicity: ρ(X) ≤ ρ(Y ), for all X , Y ∈ L∞(F), such that X ≥ Y ;
– Translation invariance: ρ(X + m) = ρ(X) − m, for all X ∈ L∞(F) and m ∈ R;
– Positive homogeneity: ρ(λ X) = λ ρ(X), for all X ∈ L∞(F), λ ≥ 0;
– Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ), for all X , Y ∈ L∞(F).

It is important to note that, in general, feasibility is not guaranteed for risk-constrained
models. In particular for the SDDP framework, feasibility cuts generate numerical instabil-
ity and Lagrangean relaxations depend heavily on appropriate choice of multipliers. For a
straightforward application of the standard SDDP, risk-constrainedmodelsmust have relative
complete recourse, i.e., there must exist a feasible solution for any possible attainable states
of the system.

Given some mild assumptions, the proposed risk-constrained model without transaction
costs (12–15) has relatively complete recourse , i.e., we ensure feasibility for any attainable
(non-negative) current wealth Wt . Assuming P(rt < −1) = 0, a feasible policy ensures
Wt ≥ 0, since we include short selling and borrowing prohibition. Indeed, a full allocation
in the risk-free asset ensures feasibility regarding the risk constraint for a non-negative γ .

Proposition 1 If P({ω ∈ Ω | rt+1(ω) < −1}) = 0 and P({ω ∈ Ω | r0,t+1(ω) = 0}) =
1,∀t ∈ {0, . . . , T − 1}, then (12–15) has relatively complete recourse for γ ≥ 0.

Proof of Proposition 1 Assuming P({ω ∈ Ω | rt+1(ω) < −1}) = 0 and the short selling
and borrowing prohibition ut ≥ 0, then P({ω ∈ Ω | Wt+1(ω) ≥ 0}) = P

({ω ∈ Ω |
(1 + rt+1(ω))�ut ≥ 0

}
) = 1. Given a feasible (non-negative) current wealth, Wt ≥ 0,

this model has relatively complete recourse for any γ ≥ 0 since a risk-free allocation,
urft = (Wt , 0, . . . , 0)�, is always feasible. Indeed, for γ ≥ 0, ρt

[
r�
t+1u

rf
t

] = 0 ≤ γ Wt given
that P({ω ∈ Ω | r0,t (ω) = 0}) = 1. 
�

Additionally, (12–15) has a myopic solution because the first-stage decision also solves
its one-period counterpart problem.

Proposition 2 The problem (12–15) is myopic, i.e., it has the same solution of

Qt (Wt ) = max
ut

E

[
(1 + rt+1)

�ut
]

s.t. ρ
[
r�
t+1ut

]
≤ γ Wt

1�ut = Wt

ut ≥ 0, (16)

Proof Proof of Proposition 2. By definition, QT (WT ) = QT (WT ) = WT , and conse-
quently, QT (WT ) = WT · QT (1). Employing the inductive hypothesis Qt+1(Wt+1) =
Wt+1

∏T
τ=t+1 Qτ (1) in (12–15), we would have
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Qt (Wt ) =
(

T∏
τ=t+1

Qτ (1)

)
· max

ut
E

[(
(1 + rt+1)

�ut
)]

s.t. ρ
[
r�
t+1ut

]
≤ γ Wt

1�ut = Wt

ut ≥ 0.

Note that if the inductive hypothesis is true, the solution of the 2-stage problem (16) is also
the solution of the original problem (12–15).

It is straightforward that inductive hypothesis holds for Wt = 0, since Qt (0) = 0 ×∏T
τ=t Qτ (1) = 0. To prove that the inductive hypothesis holds for Wt > 0, we divide

all constraints by the positive constant Wt and redefine decision variables as percentage
allocation ũt = ut/Wt to obtain the equivalent problem

Qt (Wt ) = Wt

(
T∏

τ=t+1

Qτ (1)

)
· max

ũt
E

[
(1 + rt+1)

�ũt
]

s.t. ρ
[
r�
t+1ũt

]
≤ γ

1�ũt = 1

ũt ≥ 0.

Then, we have that Qt (Wt ) = Wt
∏T

τ=t Qτ (1). 
�

Now, let us take one step toward a less unrealistic asset allocation model. For simplicity,
we assume proportional transaction costs, even though we could consider a more general
convex transaction cost function. As in Sect. 2.2, we define the state space as a vector with
the amount ofmoney allocated in each asset right before buying and selling decisions at time t .
We redefine the risk-constrained problem with transaction costs and stage-wise independent
returns for t = 0, . . . , T − 1,

Qt (xt) = max
ut,bt,dt

E
[
Qt+1

(
Rt+1 · ut

)]
(17)

s.t. ρ
[
r�
t+1ut

]+ c�(bt + dt) ≤ γ
(
1�xt

)
(18)

u0,t + (1 + c)�bt − (1 − c)�dt = x0,t (19)

ui,t − bi,t + di,t = xi,t , ∀i ∈ A (20)

ut,bt,dt ≥ 0, (21)

where QT (xT) = 1�xT, Rt = diag(1 + rt+1) and c = c · 1.
To economically motivate risk constraint (18), we start with the same interpretation used

in the no-transaction cost model, i.e., the portfolio percentage loss is limited as by γ ,

ρ
[
Wt+1 − Wt

] ≤ γ Wt .

Defining the current wealth as Wt = 1�xt and the future wealth as Wt+1 = (1 + rt+1)
�ut,

the risk constraint is equivalent to

ρ
[
r�
t+1ut − (1�xt − 1�ut)

] ≤ γ
(
1�xt

)
.
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By summing up constraints (19) and (20), we obtain 1�xt − 1�ut = c�(bt + dt) and,
consequently,

ρ
[
r�
t+1ut − c�(bt + dt)

] ≤ γ
(
1�xt

)
.

Finally, we use the translation invariance property to obtain the final expression as in (18).
As in the previous subsection, feasibility is an important issue for an efficient SDDP imple-

mentation. That said, (17–21) has relative complete recourse when the maximum percentage
loss is at least the transaction cost rate.

Proposition 3 If P({ω ∈ Ω | rt+1(ω) < −1}) = 0 and P({ω ∈ Ω | r0,t+1(ω) = 0}) =
1,∀t ∈ {0, . . . , T − 1}, problem (17–21) has relatively complete recourse for γ ≥ c.

Proof Proposition 3 Assuming P({ω ∈ Ω | rt+1(ω) < −1}) = 0 and the short selling and
borrowing prohibition ut ≥ 0, then P({ω ∈ Ω | Rt+1(ω) · ut ≥ 0}) = 1, given that
Rt = diag(1 + rt+1). First, we show that there exists bt,dt such that 1�(bt + dt) ≤ 1�xt
and consequently c�(bt + dt) ≤ c�xt. If all risky assets are sold, i.e., bt = 0 and di,t =
xi,t ,∀i ∈ A. Then,

1�(bt + dt) =
∑
i∈A

xi,t ≤
∑

i∈A∪{0}
xi,t = 1�xt

Given that we sell all risky assets, ρ
[
r�
t+1ut

] = 0. Then, if γ ≥ c,

ρ
[
r�
t+1ut

]+ c�(bt + dt) = c�(bt + dt) ≤ c
(
1�xt

) ≤ γ
(
1�xt

)
. 
�

Finally, our last step toward a realistic model incorporates price dynamics by assuming
that asset returns follow a discrete-state Markov model. Let us assume a Markov asset return
with discrete state space K, where the multivariate probability distribution of rt given the
Markov state Kt at time t does not depend on past returns, i.e., rt−1, . . . , r1. TheMarkov state
Kt could be interpreted as the financial market situation. For instance, in Fig. 4, we have three
Markov states (bull, neutral or bear market) with three differing probability distributions of
asset returns.

For notation simplicity, we denote the state transition probability as

Pk| j = P ({ω ∈ Ω|Kt (ω) = j, Kt+1(ω) = k})
P({ω ∈ Ω|Kt (ω) = j}) ,

and, for a given time t = 0, . . . , T − 1 and j ∈ K, we define a different value function for a
given state Kt = j via dynamic programming equations

Q j
t (xt) = max

ut,bt,dt

∑
k∈K

E

[
Qk

t+1

(
Rt+1 · ut

) | Kt+1 = k
]

Pk| j

s.t. ρ
[
r�
t+1ut | Kt = j

]
+ c�(bt + dt) ≤ γ

(
1�xt

)
u0,t + (1 + c)�bt − (1 − c)�dt = x0,t

ui,t − bi,t + di,t = xi,t , ∀i ∈ A
ut,bt,dt ≥ 0, (22)

where Qk
T (xT) = 1�xT, Rt = diag(1 + rt+1), and c = c · 1.

The objective function is a weighted average of t +1 value functions, as illustrated in Fig.
5. As a compromise between stage-wise independence, illustrated in Fig. 2, and a generic
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Fig. 4 Illustrative Markov asset return model

Fig. 5 Illustrative weighted average of value functions for Markovian asset return model

time-dependent model, illustrated in Fig. 3, the Markov model remains computationally
tractable for a reasonably small number of Markov states and introduces the effect of price
dynamics in the optimal asset allocation policy.

For a practical and efficient implementation of the SDDP solution algorithm, let us develop
a problem equivalent to (22) that explicitly considers intermediate earnings in the objective
function. This modeling choice mitigates the effects of a poor approximation of the future
value function in early iterations of the SDDP solution algorithm. Given a sequence of
decisions, we recursively represent the terminal wealth WT = 1�xT at time t = 0 as
1�xT = 1�x0 +∑T −1

τ=t

(−c�(bτ + dτ ) + r�
τ+1uτ

)
. Considering intermediate earnings, we

define the value function
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V j
t (xt) = max

ut,bt,dt
− c�(bt + dt) +

∑
k∈K

E

[
r�
t+1ut + V k

t+1

(
Rt+1 · ut

) | Kt+1 = k
]

Pk| j

s.t. ρ
[
r�
t+1ut | Kt = j

]
+ c�(bt + dt) ≤ γ

(
1�xt

)
u0,t + (1 + c)�bt − (1 − c)�dt = x0,t

ui,t − bi,t + di,t = xi,t , ∀i ∈ A
ut,bt,dt ≥ 0. (23)

Note that we neglect 1�x0 in the objective function since it is a constant at time t = 0.
Additionally, we assume ρ to be the CV@R with confidence level α conditioned to the
current Markov state Kt = j ,

ρ [W | Kt = j] = inf
z∈R

⎧⎨
⎩z +

E

[(
(−W ) − z

)+ | Kt = j
]

1 − α

⎫⎬
⎭,

which is a coherent risk measure with a suitable economic interpretation easily represented
in a linear stochastic programming problem.

For computational tractability, let us assume a discrete number of asset return scenarios
and associate probabilities for each given Markov state. Given Kt+1 = k, we denote for
each scenario s ∈ Sk , the asset return vector rt+1(s) = (r0,t+1(s), . . . , rN ,t+1(s)

)� and the
matrix Rt+1(s) = diag

(
1 + rt+1(s)

)
. Moreover, we denote

ps|k = P ({ω ∈ Ω|rt+1(ω) = rt+1(s), Kt+1(ω) = k})
P ({ω ∈ Ω|Kt+1(ω) = k})

as the conditional return probability and define for all s ∈ Sk auxiliary decision variables ys

to represent CV@R in the deterministic equivalent linear dynamic stochastic programming
problem

V j
t (xt) = max

z,y,ut,bt,dt
− c�(bt + dt) +

∑
k∈K

∑
s∈Sk

(
rt+1(s)

�ut + V k
t+1 (Rt+1(s) · ut)

)
Pk| j ps|k

s.t. z + (1 − α)−1
∑
k∈K

∑
s∈Sk

ys Pk| j ps|k + c�(bt + dt) ≤ γ (1�xt)

u0,t + (1 + c)�bt − (1 − c)�dt = x0,t

ui,t − bi,t + di,t = xi,t ∀i ∈ A
rt+1(s)

�ut + z + ys ≥ 0, ∀k ∈ K, s ∈ Sk

ys ≥ 0, ∀k ∈ K, s ∈ Sk

ut,bt,dt ≥ 0 (24)

We argue that the dynamic asset allocation model (24) is: (i) realistic since it considers
multiple assets, transactional costs and Markov-dependent asset returns; (ii) time consistent
since all planned decisions are actually going to be implemented in the future; (iii) intuitive
since its risk averse parameter can be interpreted as the maximum percentage loss allowed in
one period; (iv) flexible since additional constraints such as holdings and turnover restrictions
can be incorporated by a set of linear inequalities; (v) computationally tractable since it can
be efficiently solved by the MSDDP algorithm.
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4 AdaptingMSDDP for the risk constrainedmodel

Most works in the SDDP literature assume a hazard-decision information structure where
decisions are made under perfect information for the current period but under uncertainty
for subsequent time stages. For instance, the hydrothermal operation planning problem,
first presented by Pereira and Pinto (1985), previous works assume that current opera-
tion considers known river inflows for the first month but unknown inflows for subsequent
ones. This structure allows for SDDP subproblems to be solved separately for each con-
sidered scenario. For our proposed risk-constrained portfolio model however, we no longer
can explore the hazard-decision information structure since the conditional (one-period)
risk constraint couples all scenarios into a unique sub-problem. For this reason, we adapt
the MSDDP proposed by Mo et al. (2001); Philpott and de Matos (2012) to a decision-
hazard structure where each SDDP subproblem is a single two-stage stochastic programming
model.

Let us denoteV j
t (·) as the current approximation of the value function V j

t (·). The approx-
imate function V

j
t (·) is defined as the minimum of a set of cuttings planes. For a given

t ∈ {T − 1, . . . , 1} in the backward step of SDDP algorithm, see Pereira and Pinto (1985),
Shapiro (2011) for details, we solve the approximate SAA problem

V
j
t (xt) = max

z,y,ut ,bt ,dt
− c�(bt + dt) +

∑
k∈K

∑
s∈Sk

(
rt+1(s)

�ut + Vk
t+1(Rt+1(s) · ut)

)
Pk| j ps|k

s.t. z + (1 − α)−1
∑
k∈K

∑
s∈Sk

ys Pk| j ps|k + c�(bt + dt) ≤ γ (1�xt) : η
j
t

u0,t + (1 + c)�bt − (1 − c)�dt = x0,t : π
j
0,t

ui,t − bi,t + di,t = xi,t ∀i ∈ A : π
j

i,t

rt+1(s)
�ut + z + ys ≥ 0, ∀k ∈ K, s ∈ Sk

ys ≥ 0, ∀k ∈ K, s ∈ Sk

ut,bt,dt ≥ 0

to obtain: the dual vector π
j

t = {π j
0,t , . . . , π

j
N ,t } comprised of optimal Lagrange multipliers

for each asset balance constraint; the dual variable η
j
t for the risk constraint and the objective

valueV j
t (xt). Then, we define the linear approximation of the future value function V j

t (xt)
as

l j
t (xt) := V

j
t (x̂t) + (π

j
t + 1γ η

j
t )�(xt − x̂t)

and update the current approximation of the value function, i.e.,

V
j
t (·) ← min

(
V

j
t (·), l j

t (·)
)

.

We propose the following algorithm of the adapted MSDDP:
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Algorithm 1 Adapted MSDDP for decision hazard information structure

Require: K0, x0 and {Vk
t }T −1,K

t=1,k=1(Init. future value function)

Initialize: U B ← V
K0
0 , L B ← 0, G AP = U B−L B

U B
while G AP > ε do

Generate a sample path: {rt , Kt }T
t=1

{x̂t }T
t=1 ← Forward Step

{V j
t }T ,K

t=1, j=1 ← Backward Step

U B ← V
K0
0 + 1�x0

L B ← Lower Bound
end while

The Forward and Backward Steps are depicted as follows:

Algorithm 2 Forward Step

Require: K0, x0, a sample path {rt , Kt }T
t=1 and {Vk

t }T −1,K
t=1,k=1

for t ∈ {0, . . . , T − 1} do
u∗

t ← solution of VKt
t

Rt+1 ← diag(rt+1)
x̂t+1 ← Rt+1 · u∗

t
end for
Return {x̂t }T

t=1

Algorithm 3 Backward Step

Require: {x̂t }T
t=1 and {Vk

t }T −1,K
t=1,k=1

for t ∈ {T − 1, . . . , 1} do
for j ∈ {1, . . . , K } do

l j
t (xt) := V

j
t (x̂t) + (π

j
t + 1γ η

j
t )�(xt − x̂t)

V
j
t (·) ← min

(
V

j
t (·), l j

t (·)
)

end for
end for
Return {Vk

t }T −1,K
t=1,k=1

The direct approach to compute a statistical lower bound is to simulate the optimal policy
to obtain different realizations of the terminal wealth. To reduce variability however, we
propose an alternative method for lower bound computation. Essentially we simulate the
optimal policy and accumulate the current (one-period) expected return conditioned to the
state of the system, see details in Algorithm 4.
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Algorithm 4 Lower Bound evaluation

Require: x0 and {Vk
t }T −1,K

t=1,k=1
for s ∈ {1, . . . , SL B } do

W (s) ← 1�x0
Generate a sample path: {rt , Kt }T

t=1
for t ∈ {0, . . . , T − 1} do

u∗
t ← solution of the problem V

Kt
t (xt)

Rt+1 ← diag(rt+1)
xt+1 ← Rt+1 · u∗

t

W (s) ← W (s) − c�(bt + dt) + ∑
k∈K

∑
sb∈Sk

(
rt+1(sb)�u∗

t

)
Pk| j=Kt psb |k

end for
end for
W = 1

SL B

∑SL B
s=1 W (s)

σ 2
W = 1

SL B−1
∑SL B

s=1
(
W (s) − W

)2
L B = W − Z90% · (σW /

√
SL B )

Given that Z90% denotes the 90% quantile of a standard Normal distribution, gap is
constructed using the lower limit of the lower bound. This imposes a probabilistic guarantee
of 90% that the gap of the SAA problem is smaller than or equal to 1%.

5 Empirical analysis

In this section, our objective is to compare the performance of the proposed risk-constrained
time-consistent dynamic asset allocation model against selected benchmark strategies con-
sidering: (i) an illustrative problemwith 3 assets and 1 factor with an autoregressive dynamic;
(ii) a high-dimensional problem with 100 assets and 5 factors following a discrete Markov
chain.We use a discrete stateMarkov stochastic dual dynamic programming (MSDDP) algo-
rithm to solve problems considering transactional costs and time dependence. We assume
factormodels for asset returns and argue that our framework is fairly general evenwhen factor
dynamics are not theoretically defined by a discreteMarkov chain. For low-dimensional time-
dependent factors, we can estimate a Markov chain that represents either a given stochastic
process or historical data.

For all case studies, we estimate using simulations or historical data a factor model for
asset returns while representing factor dynamics by a Gaussian mixture in the hiddenMarkov
model (HMM) scheme.4 Rydén et al. (1998) show that modeling the financial time series as
a Gaussian mixture, as illustrated in Fig. 6, according to the states of an unobserved Markov
chain reproduces most of the stylized facts for daily return series demonstrated by Granger
and Ding (1994). Thus, HMM is a natural and fairly general methodology for modeling
financial time series (Hassan and Nath 2005; Elliott and Siu 2014; Elliott and Van der Hoek
1997; Mamon and Elliott 2007, 2014).

We divide our experiments into two case studies: in the first case study, we approximate a
known one-factor dynamic by a Markov chain, solve a 3-asset problem and empirically test
its in-sample performance. In the second case study, we consider a unknown 5-factor model
(Fama and French 2015, 2016) whose time dependence is extracted from historical data to

4 To fit HMM in the MSDDP framework, we assume, as an approximation, that the most probable Markov
state is actually observable.
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Fig. 6 An illustrative example of a Gaussian mixture model

solve a 100-asset problem ensuring with 90% probability an optimality gap smaller than or
equal to 1%.

5.1 Illustrative 3-asset case study

Following Brown and Smith (2011), we consider a problem with a 12-month horizon (T =
12), three risky assets where uncertain monthly returns follow a factor model with its single
(uncertain) factor f̃t as an autoregressive process. Objectively,

log(1 + rt+1) = ar + br f̃t + εt+1 and f̃t+1 = a f + b f f̃t + ηt+1, (25)

where (εt , ηt ) are independent and identically distributed multivariate normal distribution
with zero mean and covariance matrix Σεη. With no transactional costs, the stochastic
dynamic program

Qt (Wt , ft ) = max
ut

E

[
Qt+1

(
(1 + rt+1)

�ut, f̃t+1

)∣∣∣ f̃t = ft

]

s.t. ρ
[
rt+1

�ut
∣∣∣ f̃t = ft

]
≤ γ Wt

1�ut = Wt

ut ≥ 0.

can be accurately approximated by its sample average approximation (SAA) counterpart
and efficiently solved using approximate dynamic programming techniques due to a low-
dimensional state space (Powell 2011).We use positive homogeneity, i.e., Qt (Wt , ft ) =
Wt · Qt (1, ft ), simulate S realizations of (εt , ηt ) denoted by (εt (s), ηt (s)),∀s = 1, . . . , S
and consider a CV@R with probability level α to solve the deterministic equivalent SAA
problem

Qt (Wt , ft ) = max
z,,y,ut

S−1
S∑

s=1

((
1 + rt+1(s)

)�ut · Qt+1
(
1, ft+1(s)

))

s.t. z + (S(1 − α)
)−1

S∑
s=1

ys ≤ γ Wt
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rt+1(s)
�ut + z + ys ≥ 0, ∀s = 1, . . . , S

ys ≥ 0, ∀s = 1, . . . , S

1�ut = Wt

ut ≥ 0, (26)

where log(1 + rt+1(s)) = ar + br ft + εt+1(s) and ft+1(s) = a f + b f ft + ηt+1(s).
Note that the value function Qt+1

(
1, ft+1

)
only varies with the factor realization, which is

a scalar random variable. For an efficient approximation we go backward in time evaluating
Qt for many values of ft and we use linear interpolation to approximate Qt for the remaining
values of ft .

To evaluate solution quality of the SAA policy, we compute a probabilistic optimality for
the “true” (continuously distributed) problem as in Kleywegt et al. (2002). For S = 750,
α = 90% and γ ∈ {0.02, 0.05, 0.08, 0.10, 0.20} we obtain a optimality gap smaller than 1%
with a probabilistic guarantee of 90%.

Considering proportional transaction costs, traditional dynamic programming techniques
become computationally intractable due to the high-dimensional state space. To efficiently
solve the problem with MSDDP, we need to approximate factor dynamics by aMarkov chain
and formulate it as in (24). In order to estimate the Markov chain we: (i) construct 1000
scenarios paths with 240 periods using Brown and Smith (2011) stochastic return model;
(ii) use the simulated scenarios as inputs to the Baum–Welch algorithm (Baum et al. 1970)
to construct the Markov Model. For this purpose, we also need to determine the number of
Markov states required for an accurate approximation. For the no-transactional-cost case,
we know the optimal policy obtained by (26), and we use its optimal expected return as a
benchmark to compare with MSDDP policies with an increasing number of Markov states
and different values of γ .

The objective function of (26) represents the expected terminal wealth, which is defined
as the initial wealth plus the optimal expected return. To assess solution quality, we consider
only the expected return part since the initial wealth is a constant. Said that, we assess the
return difference (optimal policy minus Markov proxy) using 1000 out-of-sample paths to
compute a sample average estimator D and perform a pairwise t-test with the null hypothesis
H0 : D ≥ εγ , where the error tolerance εγ is defined as 2.5% of the optimal expected rate
of return for a given γ . Rejecting the null hypothesis represents a strong evidence that the
optimality gap is smaller than a given tolerance εγ . According to the p values presented in
Table 1, we observe that policies with intermediate values of γ have more complex return
dynamics and, consequently, require a higher number of Markov states to obtain an accurate
approximation. Indeed, extreme values of γ induce single-asset portfolios with much simpler
return dynamics. Since Markov proxy policies with K ≥ 3 rejects the null hypothesis for all
risk limits (γ ), we present further analysis for the policy with K = 3.

For comparisonpurposes,wedevise heuristic investment strategies , using the sameparam-
eters as in Brown and Smith (2011) for the stochastic return model, to compare with the
MSDDP solution; the parameters are specified in the Appendix.

In our case, all benchmark strategies must impose the same risk constraint of the original
model. We devise two benchmark strategies namely, future-blind strategy (FBS) and future-
cost-blind strategy (FCBS). On the one hand, the FBS solves

Ht (xt, ft ) = max
ut,bt,dt

E

[
(1 + rt+1)

�ut
∣∣∣ f̃t = ft

]

s.t. ρ
[
r�
t+1ut

∣∣∣ f̃t = ft

]
+ c�(bt + dt) ≤ γ

(
1�xt

)
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Table 1 p Values for the
difference of expected return
associated with SDP versus
K -state Markov SDDP

γ Markov SDDP policies

K = 1 K = 2 K = 3 K = 4

0.02 0.253 0.554 0.000 0.000

0.05 0.418 0.632 0.000 0.007

0.08 0.454 0.669 0.000 0.013

0.10 0.059 0.057 0.001 0.006

0.20 0.000 0.000 0.000 0.000

u0,t + (1 + c)�bt − (1 − c)�dt = x0,t

ui,t − bi,t + di,t = xi,t , ∀i ∈ A
ut,bt,dt ≥ 0 (27)

optimizing the next period return considering time dependence and transaction costs and
ignoring the future value function. On the other hand, the FCBS solves

Ht (xt, ft ) = max
ut,bt,dt

E

[
(1 + rt+1)

�ut · Qt+1

(
1, f̃t+1

)∣∣∣ f̃t = ft

]

s.t. ρ
[
rt+1

�ut
∣∣∣ f̃t = ft

]
+ c�(bt + dt) ≤ γ

(
1�xt

)
u0,t + (1 + c)�bt − (1 − c)�dt = x0,t

ui,t − bi,t + di,t = xi,t , ∀i ∈ A
ut,bt,dt ≥ 0, (28)

considering a the simplified future value function Qt+1 defined in (26) that disregards future
transaction costs.

To compare the MSDDP solution5 with these alternative heuristic approaches (FBS and
FCBS), we simulate all strategies using 1000 return scenarios generated using (25). We
present the results for γ = {0.05, 0.1, 0.2, 0.3} and transaction cost c = {0.005, 0.013, 0.02}
in Table 2.

Note that for a small transaction cost rate, the expected return is almost the same for
MSDDP and the benchmark strategies. As transactional costs increase, the expected return
significantly outperforms selected benchmarks for all loss-tolerance levels γ . For better
visualization of the results, we plot risk-return curves (γ versus expected return) for all
strategies and differing transactional costs in Fig. 7.

The influence of the transactional costs is explicit in Fig. 7. When it is low, the results are
very similar, but for the highest values, the difference between the approaches significantly
increases. Thus, for c = 0.02, FBS an FCBS allocate everything in the risk-free asset because
of the costs negative effect. Note that the heuristic strategies barely invest in risky assets when
transactional costs are significantly high, while in the MSDDP, we observe only a small shift
in the efficient frontier.

5.2 Realistic 100-asset and 5-factor case study

Now, let us consider a realistic case study with 100 assets with transactional costs and a
factor model for asset returns. We use Kenneth French monthly data for 100 portfolios by

5 Here, we assume K = 3 Markov states and S = 750 for the sample average approximation.
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Table 2 Expected return (in 12
months) for different methods, γ
and transactional costs

Trans. cost γ MSDDP FBS FBCS

0.005 0.05 0.0468 0.0464 0.0464

0.1 0.0970 0.0961 0.0961

0.2 0.1297 0.1297 0.1297

0.3 0.1297 0.1297 0.1297

0.013 0.05 0.0421 0.0155 0.0155

0.1 0.0886 0.0321 0.0324

0.2 0.1207 0.0444 0.0440

0.3 0.1207 0.0441 0.0441

0.02 0.05 0.0377 0.0003 0.0002

0.1 0.0816 0.0006 0.0003

0.2 0.1131 0.0006 0.0007

0.3 0.1131 0.0007 0.0005

γ

0.005
0.013
0.02

Trans. cost
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Fig. 7 Risk return curves for 3-asset and 1-factor case study

book-to-market and operating profitability, which are intersections of 10 portfolios formed
on size (market equity) and 10 portfolios portfolios formed on profitability that include most
of the NYSE, AMEX, and NASDAQ stocks, and 5 factors as in Fama and French (2015,
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Fig. 8 Convergence of the MSDDP for 100-asset

2016). We estimate a Markov chain with 3 discrete state to represent factor dynamics and
assume the estimated stochastic process is the true one; see Appendix for details.We consider
a sample average approximation (SAA) of (23) and solve its discrete representation as in
(24) for T = 12, S = 750, α = 90% and K = 3 with a probabilistic guarantee of 90%
that the optimality gap is smaller than 0.01 of the upper bound. We present the results of a
particular SAA instance for γ = 0.05 and c = 0.01 in Fig. 8 with the upper bound and the
confidence interval of the lower bound (y-axis) evolution over MSDDP iterations (x-axis).
In the last MSDDP iteration, the upper bound for the expected rate of return is 7.8%, and the
difference between the upper bound and lowest value of the lower bound confidence interval
is smaller than 1%.

Moreover, we observe in Fig. 9 how the percentage allocation changes as MSDDP con-
verges. Note that in the first iteration, the value function is not considered in the allocation,
and consequently, it starts with 100% in the risk-free asset, which is the first asset. As the
approximation of the value function improves, the allocation changes, converging to a port-
folio with 12 of the 100 assets.

To assess solution quality of the SAA for the “true” (continuously distributed) problem
we solve 10 randomly generated instances of the SAA problem and compute a probabilistic
optimality gap as in Kleywegt et al. (2002). We solve each instance using a single core of
Intel Xeon E5-2680 2.7 GHzwith 128 GB of memory. The implementation was performed in
Julia (Bezanzon et al. 2012) using JuMP (Lubin and Dunning 2015) and CPLEX(V12.5.1) to
solve linear programming problems. The computational time for solving each SAA instance
is around 5 hours. Considering a probabilistic guarantee of 90% we obtain a gap smaller
than 1.02% relative to expected rate of return. In other Moreover, we perform out-of-sample
simulation and compare with the previously described heuristic strategies based on Brown
and Smith (2011): (i) future-blind strategy (FBS); (ii) future-cost-blind strategy (FCBS). In
Fig. 10, we present the risk-return curves for the MSDDP, FBS and FCBS. The FBS and
FCBS curves are virtually the same while the MSDDP provides significant improvements
over the previously stablished heuristic approaches.
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6 Conclusions and future works

In this work, we proposed a realistic dynamic asset allocation model that considers multiple
assets, transactional costs and a Markov factor model for asset returns. We introduce risk
aversion using an intuitive user-defined parameter to limit the maximum percentage loss in
one period. The model maximizes the expected portfolio return with one-period conditional
CV@R constraints, guaranteeing a time-consistent optimal policy, i.e., planned decisions are
actually going to be implemented. We extend the literature results of myopic policies for our
risk-constrainedmodel if we assume no transactional costs and stage-wise (time) independent
asset returns. Moreover, we proved a relatively complete recourse model when the maximum
percentage loss limit is greater than or equal to the transactional cost rate.We efficiently solve
the proposed model using Markov chained stochastic dual dynamic programming (MSDDP)
for an illustrative problem with 3 assets and 1 factor with an autoregressive dynamic and for
a high-dimensional problemwith 100 assets and 5 factors following a discrete Markov chain.

For the 3-asset problem, we obtain a Markov chain surrogate for the true factor dynamic
and solve the sample average approximation of the proposedmodel viaMSDDP. Considering
no transactional costs, we assess solution quality comparing the optimal policy (obtained via
traditional dynamic programming techniques) against our approximate solution.We show the
Markov approximate policy to be sufficiently accurate since one cannot reject the hypothesis
that its expected return is equal to the optimal expected return. With transaction cost, we
empirically show that our approximate solution outperforms selected heuristic benchmarks.
We observe that these heuristics are close the optimal when transactional costs are small but
perform poorly otherwise. Indeed, we observe that, at a certain level of transactional costs,
one-period portfolio optimization does not invest in risky assets, while our approximate
policy suggests significant allocation in the risky assets.

To show the computational tractability and scalability of our approach, we solve a sample
average approximation of a high-dimensional 100-asset problem with 5 factors following a
Markov chain with 3 discrete states. We provide convergence graphs that illustrate a proba-
bilistic guarantee of optimality, i.e., we ensure with 90% probability that the optimality gap is
smaller than or equal to 1.02% in terms of expected rate of returns.We also illustrate how first
stage percentage asset allocation changes as the MSDDP converges. Indeed, the allocation in
the first iterations of the algorithm is close to the static (one-period) counterpart and converges
to the optimal solution of the dynamic problem. Finally, we assess solution quality of our
approach by solving 10 randomly generated SAA instances to obtain a probabilistic optimal-
ity gap for the “true” (continuously distributed) problem. We empirically show a optimality
gap for the “true” problem is smaller than 1.02% with a probabilistic guarantee of 90%. We
also present superior risk-return curves computed with randomly generated out-of-sample
paths for asset returns.

To the best of our knowledge, this is the first systematic approach for time-consistent
risk-constrained dynamic portfolio optimization with transactional costs and time-dependent
returns.We argue that our framework is flexible enough to approximately represent a relevant
set of dynamic portfolio models and operational constraints on holdings and turnovers. In
addition, we believe that time-consistent risk-constrained policies are better suited for practi-
cal applications since its risk aversion parameterization is direct and intuitive for all investors
capable of determining a maximum percentage loss allowed in a given period.

It is important to note that the proposed model uses the Markov model estimates as the
true underlying stochastic process. In practice however, investors face estimation errors that
compromise significantly out-of-sample portfolio performance. As future research topic, we
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Table 3 3-asset regression model

Large-cap Mid-cap Small-cap Dividend Yield

Mean (ar , az ) 0.0053 0.0067 0.0072 0.0000

Regression coeff. (br , bz ) 0.0028 0.0049 0.0061 0.9700

Covariance (Σev)

Large-cap 0.002894 0.003532 0.00391 − 0.000115

Mid-cap 0.004886 0.005712 − 0.000144

Small-cap 0.007259 − 0.000163

Dividend yield 0.052900

envision a distributionally robust extension of the proposed model that can efficiently handle
estimation error seeking superior out-of-sample results.

Details of case studies

Illustrative 3-asset case study

Themain goal of this experiment was to compare the SDP alternative approachwithMSDDP.
Regression coefficients ar and br was the same as Brown and Smith (2011) as shown in
Table 3.

and r f = 0.00042.

Realistic 100-asset and 5-factor case study

As it is a factor model the Markov states are only evaluated for the factors. To construct the
returns regression it was used vectors ar and br that are obtained using linear regression. The
estimates of factor probability distributions conditioned to each Markov state is given by

f1 ∼ N

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

0.0232
0.0073

−0.0135
−0.0145
−0.0024

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎝

−0.0004 0.0039
−0.0015 −0.0008 0.0033
−0.0001 −0.0017 0.0016 0.0029
−0.0005 0.0004 0.0014 −0.0002 0.0014

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ ,

f2 ∼ N

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

0.0070
0.0021
0.0024
0.0024
0.0017

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0.0013
0.0003 0.0006

−0.0002 0.0000 0.0005
0.0000 −0.0001 −0.0001 0.0002

−0.0001 0.0000 0.0003 −0.0001 0.0003

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ ,

f3 ∼ N

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

−0.0375
−0.0013
0.0195
0.0125
0.0174

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0.0062
0.0024 0.0023
0.0000 0.0005 0.0022

−0.0007 −0.0001 0.0006 0.0013
−0.0009 −0.0001 0.0012 0.0007 0.0012

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ ,

where log(1 + rt+1) = ar + brFt + εt and Ft = fk if Kt = k.
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