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Abstract
In the 2 years since our last 4OR review of distance geometry methods with applications
to proteins and nanostructures, there has been rapid progress in treating uncertainties in the
discretizable distance geometry problem; and a new class of geometry problems started to
be explored, namely vector geometry problems. In this work we review this progress in the
context of the earlier literature.

Keywords Distance geometry · Graph rigidity · Molecular conformations · Nanostructures

1 Introduction

This contribution provides an update on the state of the art reviewed in our 2016 4OR paper
(Billinge et al. 2016) on the topic of assigned (aDGP) and unassigned (uDGP) distance
geometry problems. Here we give a summary of the definitions, notations and results in
Billinge et al. (2016); and we discuss two important advances that have emerged over the
past two years: (i) development of mathematical methods to treat uncertainty in the distances
in aDGP, using distance intervals, (ii) generalization of the mathematical description to a new
class of problems called vector geometry problems (VGPs) for both the assigned (aVGP) and
unassigned (uVGP) variants. VGPs arise in the use of Patterson methods in crystallography
and in vector PDF methods related to the nanostructure problem (see Sect. 5.3).

The general form of the problems we consider consists of finding a graph embedding
based on a set of vectors of dimension d in an embedding space of dimension K . We call this
problem the d-K geometry problem (d-K-GP). The vector information consists of distances
and angles, with the distances always given, and d − 1 bond angles given. In this review
we restrict attention to two subclasses of d-K-GPs, the distance geometry problem (DGP)

This is an updated version of the paper “Assigned and unassigned distance geometry: applications to
biological molecules and nanostructures” that appeared in 4OR—Q J Oper Res (2016) 14: 337–376.

B Douglas S. Gonçalves
douglas.goncalves@ufsc.br

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-018-2989-6&domain=pdf
http://orcid.org/0000-0002-8673-1319


162 Annals of Operations Research (2018) 271:161–203

which is the 1-K-GP case; and the vector geometry problem (VGP) which corresponds to the
K-K-GP case. In the latter case, the vectors have the same dimension as the embedding space,
so that K − 1 bond angles are given. For most of the discussion we also restrict attention to
embedding dimensions K = 1, 2, 3.

Before starting our discussion, we mention some previous publications available in the
scientific literature, which review some developments in this research domain. Awide survey
on the DGP is given in Liberti et al. (2014); an edited book and a journal special issue com-
pletely devoted to DGP solutions methods and to its applications can be found in Mucherino
et al. (2013) and Mucherino et al. (2015), respectively. Classic books on aDGP include Crip-
pen and Havel’s book (Crippen and Havel 1988), Donald’s book (Donald 2011), and more
recent books (Lavor et al. 2017; Liberti and Lavor 2017). Applications to signal processing
are reviewed in Dokmanic et al. (2015) and Dokmanic and Lu (2016).

Let V be a set of n objects and

x : V → R
K

be the function that assigns positions (coordinates) in a Euclidean space of dimension K > 0
to the n objects belonging to the set V , whose elements are called vertices. The function x is
referred to as a realization.

For DGPs, letD = (d1, d2, . . . , dm) be a finite sequence consisting ofm distances, called
a distance list, where repeated distances, i.e. di = d j for i �= j , are allowed. Distances in D
can be represented either with a nonnegative real number (when the distance is exact) or by
an interval [d, d̄], where 0 < d < d̄.

For VGPs, let Ds = (± s1,± s2, . . . ,± sm) be a finite sequence consisting of m interpar-
ticle vectors, where repeated vectors, ± si = ± sj, are allowed. Note that for every vector si
in the list, its negative − si also appears. For a complete graph of n points, the cardinality of
Ds is then n(n − 1).

Considering the set of all possible unordered pairs {u, v} of vertices in V , called Ê , we
define an injective function �, called assignment function, given by

� : {1, 2, . . . ,m} −→ Ê,

that relates an index of an element of the distance list D or the vector list Ds to an unordered
pair of vertices of V . Thus, �( j) = {u, v} means that the j-th entry of D (or Ds) is assigned
to {u, v} and we denote its corresponding edge weight by d(u, v) = d�−1({u,v}) = d j (or
associated vector by s(u, v) = s�−1({u,v}) = s j ). We will use the compact notation duv for
d(u, v) and similarly for s.

First consider DGPs. From the assignment function �, we can define the edge set E as the
image of �, that is E = �({1, . . . ,m}) ⊂ Ê . The edge weight function d : E → {d1, . . . , dm}
is given, also from the assignment function, by

d(u, v) = d�−1({u,v}).

Using V , E, d we define a simple weighted undirected graph G = (V , E, d).
We give the following definition for the unassigned DGP (uDGP) (Duxbury et al. 2016).

Definition 1 Given a list D of m distances, the unassigned Distance Geometry Problem
(uDGP) in dimension K > 0 asks to find an assignment function � : {1, . . . ,m} → Ê and a
realization x : V → R

K such that

∀{u, v} ∈ �({1, . . . ,m}) : d(u, v) = d�−1({u,v}) , ‖x(u) − x(v)‖ = d(u, v). (1)
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Let duv be the short notation for d(u, v). Since precise values for distances may not be
available, the equality constraint in (1) becomes

duv ≤ ‖x(u) − x(v)‖ ≤ d̄uv,

where duv and duv are, respectively, the lower and upper bounds on the distance duv (duv =
duv when duv is an exact distance).

When distances are already assigned to pairs of vertices, we can assume that the associated
graph G is known a priori. We give the following definition for the assigned case (Liberti
et al. 2014).

Definition 2 Given a weighted undirected graph G = (V , E, d), the assigned Distance
Geometry Problem (aDGP) in dimension K > 0 asks to find a realization x : V → R

K such
that

∀{u, v} ∈ E, ‖x(u) − x(v)‖ = duv. (2)

As in Definition 1, the equality constraint in (2) becomes an inequality constraint when
interval distances are considered.

We point out that several methods for uDGP and aDGP are based on a global optimization
approach,where a penalty function is defined so that its optimization is equivalent to having all
distance constraints satisfied (Liberti et al. 2014). When all distances are exact, one possible
penalty function related to the constraint (2) is

F(x ; d, �) =
∑

{u,v}∈E

(‖x(u) − x(v)‖2 − d2uv

)2
. (3)

Turning to the vector problems, we consider first the definition of uVGP.

Definition 3 Given a list Ds of m vector interpoint separations, the unassigned Vector
Geometry Problem (uVGP) in dimension K > 0 asks to find an assignment function
� : {1, . . . ,m} → Ê and a realization x : V → R

K such that

∀{u, v} ∈ �({1, . . . ,m}) : s(u, v) = s�−1({u,v}) , x(u) − x(v) = s(u, v). (4)

Whenvector separations are assigned to pairs of vertices,we can assume that the associated
graph G is known a priori.

Definition 4 Given a weighted undirected graph G = (V , E, s), the assigned Vector Geom-
etry Problem (aVGP) in dimension K > 0 asks to find a realization x : V → R

K such
that

∀{u, v} ∈ E, x(u) − x(v) = suv. (5)

As in Definition 1, the equality constraint in (5) becomes an inequality constraint when
interval distances are considered.

An optimization formulation for cases where vector separations are exact (5) may utilize
the penalty function

F(x ; d, �) =
∑

{u,v}∈E

(‖x(u) − x(v)‖2 − ‖suv‖2
)2

. (6)

Since precise values for interpoint vectors may not be available, the equality constraint in
(4) becomes

suv ≤ x(u) − x(v) ≤ s̄uv,
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where suv and suv are, respectively, the lower and upper bounds on the vector suv (suv = suv

when suv has exact entries).
We conclude this introductory section by briefly reviewing the main applications in this

research domain. In dimension 1, the clock synchronization problem can be formulated as a
DGP (Freris et al. 2010;Wu et al. 2011). The problem consists in computing the internal clock
time for sensors in a given network by exploiting their own offset with respect to a predefined
clock, which is used as a reference. When all offsets are precisely provided, the identification
of solutions can be performed by a tree search (see Sect. 4.7), even when the numerical
information about the offsets is not precise. More applications in the one-dimensional space
can be found in Jaganathan and Hassibi (2013).

In dimension 2, the sensor network localization problem is the one of positioning the
sensors of a given network by using the available relative distances. Such distances can be
estimated by measuring the power for a 2-way communication between pairs of sensors
(Biswas et al. 2006; Biswas and Ye 2006; Ding et al. 2010; Wang et al. 2008).

In dimension 3, conformations of protein molecules and nanostructures can be obtained
by exploiting information about distances between atom pairs that can be either derived
from experimental techniques, such as Nuclear Magnetic Resonance (NMR) experiments
(Almeida et al. 2013; Malliavin et al. 2013) or from the pair distribution function (PDF)
method (Juhás et al. 2006). A recent and interesting application is related to determining
small-field astrometric point-patterns (Santiago et al. 2018).

The aVGP problem arises from the Patterson function which is a Fourier transform of
the intensity of the elastic scattering from single crystals; as found experimentally by using
x-ray, neutron or electron beams. The Patterson function gives a assignment of vectors to
edges in a graph and it can also be used to construct a vector matrix completion problem
where the entries in the matrix, which we call vM , are the vectors associated with each edge
in the graph. For example, the matrix in Table 2.3.1.1 of Rossmann and Arnold (2006) can
be used to construct vM .

In most applications mentioned above, the available distances are pre-assigned to the
vertex pairs. For example, the DGP usually solved in the context of molecular conformations
using NMRdata starts from a known graph structure and proceeds to find a graph embedding.
However, the information that is actually given by the NMR experiments consists of a list
D of distances, that are only subsequently assigned to atom pairs. Therefore, the Molecular
Distance Geometry Problem (MDGP) can also be considered as a uDGP. Figure 1 gives a
schematic illustration of the input data for a uDGP, as well as for an aDGP. The aDGP is NP-
hard (Saxe 1979). Moreover, the uDGP class is particularly challenging because the graph
structure and the graph embedding both need to be determined at the same time. As noted
above, the aDGP is strictly related to the problem of finding missing entries of a Euclidean
distance matrix (Moreira et al. 2018). The vector matrix, vM , is similar to the conventional

Fig. 1 (Color online) Schematic of the differences between uDGP and aDGP, for a simple case. (Image from
Gujarathi 2014)
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distance matrix except that the entries are vectors instead of scalar distances. This defines a
new type of matrix completion problem.

This survey is arranged as follows. In the next section (Sect. 2) the basic definitions and
theorems essential to build up algorithms are introduced. In Sect. 2.2, two basic theorems for
VGP are presented here for the first time. Section 3 describes algorithms developed for the
uDGP; including the treatment of experimental error. In Sect. 4, the discretizable distance
geometry problem with intervals is discussed in detail and an exact algorithm for the one-
dimensional case is given in Sect. 4.7. Applications to the protein structure problem and to
the nanostructure problem are presented in Sect. 5, while Sect. 6 provides a summary of the
main points and discussion of future research directions that look promising to us.

2 Graph rigidity and unique embeddability

2.1 Introduction

Our aim is to find a set of n positions for a given set of objects (vertices in V ), in the Euclidean
space having dimension K > 0, that are consistent with a given listD of distances or vectors
Ds (see Introduction). In other words, we are interested in finding an embedding x for which
a list of distances or vectors, pre-assigned or not to pairs of vertices, is satisfied. The first
question we may ask ourselves is related to the uniqueness of the DGP solution. Given a list
D or the list Ds , is there more than one realization?

Clearly, if only a few (compatible) distances or vectors are given, many solutions can be
found that are consistent with the constraints. The opposite extreme case is the one where
the full set of n(n − 1)/2 distances or vectors is given. The number of translational degrees
of freedom of an embedding of n vertices in R

K is nK , while K (K + 1)/2 is the number of
degrees of freedom associatedwith translations and rotations of a rigid body in K dimensions.
As a consequence, when all available distances are exact, since n(n− 1)/2 	 nK − K (K +
1)/2 for large values of n, it is a likely event to have a unique realization. The constraint due
to vectors in a clique is K times n(n − 1)/2 which is more strongly constrained than the
scalar distance case. Thus if we are given the complete set of exact interpoint distances or
vectors for a large point set, it is typical that the resulting graph embedding is unique.

A related question was raised by Patterson (1944) in his early work considering the
determination of crystal structures from scattering data, and there is a large subsequent
literature (Gommes et al. 2012). An important result is that there is a subclass of instances that
are homometric, which means that elastic scattering data, and hence the full set of interpoint
vector distances, is not sufficient to determine a unique realization (Jain and Trigunayat 1977;
Schneider et al. 2010). Patterson’s original paper discussed the vector separations x(u)−x(v),
whereas the uDGP considers the distances ||x(u)− x(v)||. Two distinct point sets are weakly
homometric when their complete sets of interpoint distances are the same (Senechal 2008),
where point sets related by rigid rotations, translations or reflections are not distinct within the
context of this discussion. We then have two definitions concerning homometric structures:

Definition 5 If a list of interpoint vectors,Ds , is sufficient to yield a unique framework, then
the vector list is not homometric (NH).

Definition 6 If a set of interpoint distances,D, is sufficient to yield a unique framework, then
the distance list is not weakly homometric (NWH).

Weakly homometric point sets are of interest in the uDGP and in a variety of contexts
(Skiena et al. 1990; Boutin and Kemper 2007; Senechal 2008). Figure 2 shows two three-

123



166 Annals of Operations Research (2018) 271:161–203

Fig. 2 (Color online) The hexagon has three distinct distances with degeneracies (6—grey, 6—blue, 3—
green). The two three-dimensional conformations in the figure are weakly homometric with the hexagon.
(Reproduced with permission from Juhás et al. 2006)

dimensional conformations that are weakly homometric with a hexagon. When the distance
list has a large number of entries in comparison to the number of degrees of freedom, the
probability of having homometric variants decreases rapidly, though no rigorous tests are
available. Similarly this is also true of VGP problems, and the cases found by Patterson
(1944) are crystals with special symmetries.

However if the number of distances or edges is sufficiently small, there are subclasses
of problems where a discrete number of homometric or weakly homometric structures may
occur. This has been called the discretizable distance geometry problem (DDGP) for DGP
cases, and it has extensions to the VGP cases as discussed below. This is especially impor-
tant in discovering discrete families of structures in proteins, as discussed in detail later (in
Sects. 4, 5).

A beautiful and rich literature on uniqueness of structures is based on the theory of generic
graph rigidity. The beauty of this theory is based on the fact that generic graph rigidity is a
topological property where the rigidity of all graph realizations that are generic is dependent
only on the graph connectivity and not on the specifics of the realization (Connelly 1991;
Hendrickson 1992; Graver et al. 1993). Conditions for a unique graph realization have been
determined precisely for generic cases, where it has been proven that a unique solution
exists if and only if the kernel of the stress matrix has dimension K + 1, the minimum
possible (Connelly 1991; Hendrickson 1992; Connelly 2005; Jackson and Jordan 2005;
Gortler et al. 2010). A second approach is to use rigorous constraint counting methods that
have associated algorithms based on bipartite matching. Combinatorial algorithms of this
type to test for generic global rigidity (Hendrickson 1992; Connelly 2013), based on Laman’s
theorem (Laman 1970) and its extensions (Tay 1984; Connelly 2013), are also efficient for
testing the rigidity of a variety of graphs relevant to materials science, statistical physics and
the rigidity of proteins (Jacobs and Thorpe 1995; Jacobs and Hendrickson 1997; Moukarzel
and Duxbury 1995; Moukarzel 1996; Thorpe and Duxbury 1999; Rader et al. 2002).

In the following, we will concentrate on constructing graph realizations using Globally
Rigid Build-up (GRB) methods that have sufficient distance or vector constraints to ensure
generic global rigidity at each step in the process; or on less constrained cases where a binary
tree of possible DDGP structures is developed using build up strategies and branch and prune
methods (BP) (Lavor et al. 2013).

These buildup procedures can be applied to both generic and non-generic cases. GRB
methods have been developed for the aDGP case (Dong and Wu 2002; Wu and Wu 2007;
Voller and Wu 2013), and more recently for the uDGP case (Gujarathi et al. 2014; Duxbury
et al. 2016). GRB methods iteratively add a site and K + 1 (or more) edges to an existing
globally rigid structure. In two dimensions this approach is called trilateration for the distance
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list cases. GRB methods for NH and NWH problems are polynomial for the case of precise
distance lists satisfying the additional condition that all substructures are unique, for both
the assigned and unassigned cases (see Sect. 3), in contrast to the most difficult DGP cases
defined by Saxe (1979), where the DGP is NP-hard. The NP-hard instances of DGP with
precise distances correspond to families of locally rigid structures that are consistent with
an exponentially growing number of different nanostructures as the size of the structure
grows (Lavor et al. 2012a). If global rigidity is only imposed at the final step in the process,
the algorithm must search an exponential number of intermediate locally rigid structures
from which the final unique structure is selected, for example using the BP algorithm (see
Sect. 4.1). If globally rigid substructures occur at intermediate steps however, the complexity
of the search can be reduced, as has been demonstrated in recent branch and prune approaches
(Liberti et al. 2014).

Significant extensions of GRBs are required to fully treat imprecise distance lists that
occur in experimental data.Onepromising approach, theLIGAalgorithm, utilizes a stochastic
build-upheuristicwith backtracking and tournament strategies tomitigate experimental errors
(Juhás et al. 2006, 2008). LIGA has been used to successfully reconstruct C60 and several
crystal structures using distance lists extracted from experimental x-ray or neutron scattering
data (Juhás et al. 2006, 2008; Juhas et al. 2010). More recently progress has been made
in finding feasible solutions for discretizable distance geometry problems with intervals, as
summarized in Gonçalves et al. (2017).

The theorems presented below summarize the results necessary for polynomial-time build-
up algorithms for the exact distance cases of aDGP, uDGP, aVGP and uVGP. This theory
also provides useful background in understanding other algorithms for finding nanostructure
from experimental data (see Sect. 5.3), such as the LIGA algorithm (see Sect. 3.2).

An important concept in the following is that of a redundant edge in a graph. If a redundant
edge is removed from a graph, the graph remains stable to local distortions. Therefore the
distance associated with a redundant edge must have a length that does not produce local
distortions in the structure. Randomly chosen distances do not have that property, but dis-
tances derived from random point sets do. Distances derived from random point sets are thus
compatable, in the sense that if they are placed in their correct positions, they fit perfectly.

2.2 Globally rigid buildup for precise DGP problems

A Globally rigid buildup (GRB) process that ensures global rigidity for systems that are not
weakly homometric at each step of the algorithm is stated in Theorems 1 and 2 below. First,
we need the following definitions.

Definition 7 A compatable subcluster is a substructure that has at least one redundant bond
and which does not violate any of the distance constraints in the substructure.

Definition 8 A distance list is strongly generic if all compatable substructures that have at
least one redundant edge are NWH.

Theorem 1 (Follows from Dong and Wu 2002)
A GRB algorithm in R

2 that adds three compatible distances connecting a new site to an
existing globally rigid structure yields a structure that is globally rigid, if the three sites of
the existing structure at which the three added distances connect are not on the same line.
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Theorem 2 (Dong and Wu 2002)
A GRB algorithm in R

3 that adds four compatible distances connecting a new site to an
existing globally rigid structure yields a structure that is globally rigid, if the four sites of
the existing structure at which the four distances connect are not in the same plane.

Theorems 1 and 2 provide sufficient conditions for generating a unique realization from
a strongly generic distance list, provided there are enough distances in the list to enable the
process to proceed to a complete reconstruction. Algorithms for uDGP are described in more
detail in Sect. 3.

2.3 Assigned and unassigned vector geometry problems (aVGP, uVGP)

In the unassigned vector geometry problem (uVGP) a list of interpoint vectors is given. In
this case both the underlying graph and the point positions need to be determined. Figure 3
illustrates the difference between aVGP and uVGP.

GRB methods for aVGP and uVGP follow straightforwardly from the aDGP and uDGP
cases described in the previous subsection. We start with definition of compatable vectors.

Definition 9 An assignment of a set of interpoint vectors to a graph is compatable if this
assignment leads to no violation of the constraints imposed by the vectors. A globally rigid
substructure and the associated set of compatible distances or vectors is called a compatable
substructure.

A strongly generic vector list is defined as:

Definition 10 A vector list is strongly generic if all compatable substructures containing at
least one redundant edge (vector) are part of the correct unique reconstruction. That is, the
reconstruction is unique and all possible compatable redundant substructures are part of the
unique reconstruction.

For exact strongly generic vector lists, GRB leads to correct reconstruction due to the
following Theorem.

Theorem 3 For an exact strongly generic vector list derived from a set of n points in K
Euclidean dimensions, completion of the following buildup yields the unique reconstruction
of a point set.

1. Start with a correct unique globally rigid substructure.
2. Recursively add a new point and two compatable vectors to the structure; ensuring that

the 2K implied connecting vertices have a subset of K + 1 of these vertices that do not
lie in a Euclidean subspace of dimension K − 1.

3. If this process yields an embedding of n points in K dimensions, the process terminates
with a unique final structure.

Fig. 3 (Color online) Schematic of the differences between uVGP and aVGP for a simple case

123



Annals of Operations Research (2018) 271:161–203 169

Proof First note that a vector in K dimensions defines K constraints, one distance and K −1
angles. However the K −1 angular constraints can be captured using K −1 implied distance
constraints. These implied distance constraints have one endpoint as the newly added point,
and the others as implied points in the existing substructures. When two edges (vectors) and
a new vertex are added to an existing rigid substructure, 2 connecting vertices are used, and
2(K − 1) implied connecting vertices and distances are also defined. There are then 2K
connecting vertices and edges, of which K are redundant. This vertex and vector addition is
thus highly overconstrained. If any subset of K +1 of the true or implied connecting vertices
do not lie in a subspace of dimension K − 1, then the vertex position is unique if the vector
list is strongly generic. This follows from Theorems 1 and 2; and Definitions 9 and 10. 
�

For VGP, two points connected by a vector provide a unique starting structure, making
VGP buildup efficient in comparison to DGP. An upper bound on the time taken to execute
an algorithm based on Theorem 1 for complete precise sets of interpoint vectors is given by.

Theorem 4 GRB for VGP is polynomial (O(nt )) for complete precise vector sets; where for
aVGP the exponent ta = 1, while for uVGP tu ≤ 3.

Proof AnaVGPalgorithmbased onTheorem3 consists of adding a newpoint and two vectors
at each step. Since the graph is given and the vectors are assigned to the edges of the graph,
sequential addition of a vertex using two edges at each step yields an exact reconstruction. In
this case, the algorithm reconstructs the point set in computational time O(n), so that ta = 1.
Checking that all vectors are compatable with a reconstruction is O(n2).

In the uVGPcase, vectorswith positive and negative signs occur in the vector list. To ensure
global rigidity, two vectors from the vector list are checked for compatability, including a
check of the four possible signs of the four vectors (++,+−,−+,−−). Checking of all pairs
of vectors in the list for compatability is bounded above by n2. Reconstruction is complete
when n single vertex GRB steps have occurred. The time to reconstruct is then O(n3), so
that tu = 3. 
�

3 Algorithms for the uDGP

In some applications, the information about the pairs of vertices that corresponds to a given
known distance is not provided. In other words, while the distance is known, the identity of
the two vertices having such a relative distance is not. In this case, the graph G is actually
unknown, and the only input is the listD of distances (see Definition 1 and Fig. 1). This is the
uDGP and it has received much less attention than the aDGP. In this section we survey two
algorithms that have recently been developed for uDGPs. The first (TRIBONDGujarathi et al.
2014) is related to a GRB approach that is based on extensions of the results of Theorems 1
and 2 to the uDGP case. The second algorithm (LIGA Juhás et al. 2006) is also a build-up
approach, however it is stochastic and relies on backtracking to resolve incorrect structures
generated during buildup. LIGA is a heuristic designed to treat distance lists extracted from
experimental data, which requires robustness to errors in the distances and missing distances.
To develop the GRB approach, we start with a definition and a theorem (full details are found
in Duxbury et al. 2016).

Definition 11 LetD be a distance list withm elements. Amongst all the possible assignments
of D to the set Ê of the underlying graph, � : {1, . . . ,m} → Ê , there is one assignment
that corresponds to the structure from which the distance list was calculated. We call that
assignment the true assignment (TA).
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Fig. 4 (Color online) Examples of cores in K = 2 (left) and K = 3 (right). A core is the smallest cluster
that contains a redundant bond in a generic graph rigidity sense. For the two dimensional case (left figure),
the horizontal bond is the base (in black), the bonds below it (in blue) make up the base triangle while those
above it (in red) make up the top triangle. The vertical bond is the bridge bond (in green). The extension to
K = 3 requires a base triangle (black), feasible tetrahedra compatible with the base triangle (blue, red) and
finally a bridging bond (green) that is consistent with the target distance list. (Reproduced with permission
from Duxbury et al. 2016)

In general, for distance lists containing precise and compatible distances, assignments
different from the TA leading to a feasible aDGP may exist. However, for a NWH distance
list, the only assignment that leads to a aDGP having a solution is the TA.

Theorem 5 The smallest generic graph that has a redundant edge and is globally rigid in
dimensions K = 2, 3 is the clique of size K + 2.

Proof Cliques in three dimensions satisfy the molecular conjecture so constraint counting
can be used (Laman 1970; Connelly 2013). By constraint counting, a generic graph with n
vertices, having no floppy modes and n(n − 1)/2 edges has one redundant edge if:

n(n − 1)/2 = nK − K (K + 1)/2 + 1, (7)

which gives n = K +2. nK is the number of degrees of freedom of the nodes in the structure,
while K (K + 1)/2 is the set of global degrees of freedom that occur for any rigid body and
is not affected by the edge constraints. 
�

Theorem 5 states that the smallest globally rigid structure in two dimensions has four
vertices and in three dimensions has five vertices, as presented in Fig. 4. We call these
structures the core of the buildup, and in order to start a build-up procedure, a core compatible
with the input distance list must be found. This is the most time consuming step in the
reconstruction for uDGPs. If the distances are imprecise, larger cores should be used for the
buildup process to reduce the chances of incorrect starting structures.

3.1 GRB algorithm for uDGPs (TRIBOND)

The input to the TRIBOND algorithm consists of a distance list D and the number n of
vertices to be embedded. The first step in the algorithm is finding a core, and from Theorem
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Algorithm 1: The TRIBOND algorithm.
1: TRIBOND(D, n, K )
2: // Find a core.

Search in D for a set of (K + 2)(K + 1)/2 distances, and their TA, leading to a realizable
clique of size K + 2.
The set of vertex positions of the realized (K + 2)-clique is the starting framework F .

3: for i = K + 3, . . . , n do
4: // Add a new vertex

Find a set of K + 1 “connecting” vertices in F , such that their position vectors are affinely
independent. Search the interpoint distance list to find a set of K + 1 compatible distances
defining a unique position for the new vertex (the correctness of the new vertex position may be
verified by using redundant bond checks).
If a set of compatible distances cannot be found, find a new CORE (go to Step 2) and restart.

5: end for

5 we know that a core in two dimensions has four sites and in three dimensions five sites.
The procedures that TRIBOND uses to find cores are illustrated in Fig. 4. Once a core has
been found, build-up is carried out utilizing Theorems 1 or 2 to ensure that the conformation
remains globally rigid at each step in the process.

A sketch of the TRIBOND algorithm is given in Algorithm 1. The framework F is the
structure that is built, starting with the CORE and increased in size by adding one vertex
position at a time. In this discussion, it is assumed that the distance list is complete and
precise, so that there are n(n − 1)/2 precise distances in D.

If TRIBOND runs to completion it generates the correct unique structure for distance
lists that are NWH. However, during buildup, incorrect “decoy” positions may be generated
leading to failure of buildup. A decoy position is a vertex position that is consistent with the
input distance list at an intermediate stage of the buildup, but which fails to be part of a correct
completed structure. Although for cases that we have studied decoy positions are unlikely,
distance lists leading to decoy positions can be constructed. A restricted set of distance lists
has no intermediate decoy positions, and we define such distance lists to be strongly generic
(see Definition 8).

Strongly generic distance lists have no decoy positions and for these cases, for a list D of
exact distances, TRIBOND runs deterministically to completion. Moreover, we find that in
practice distance lists of randompoint sets can be reconstructed in polynomial time (Gujarathi
et al. 2014; Duxbury et al. 2016), though random restarts are needed in some cases. Due to
the need for random restarts, in general TRIBOND is a combinatorial heuristic algorithm.
For strongly generic distance lists, it is straightforward to find a polynomial upper bound
on TRIBOND by estimating the worst-case computational time for core-finding and for
buildup. Since the number of ways of choosing six distances from the set ofm = n(n−1)/2
unique distances is

(m
6

)
, a brute force search would find a core in computational time τcore <(m

6

) ∼ n12, which demonstrates that the algorithm is polynomial in two dimensions. Similar
arguments show that TRIBOND is polynomial in any embedding dimension for strongly
generic distance lists, though the polynomial exponent is large.

These arguments are useful to show that the computational complexity of TRIBOND is
polynomial for strongly generic distance lists for any K (Gujarathi et al. 2014; Duxbury
et al. 2016), however these upper bounds on the algorithmic efficiency are loose. In practice,
the scaling of the computational time with the size of random point sets in the plane is
approximately n3.3 and point sets with over 1000 sites have been reconstructed on a laptop
(see Gujarathi et al. 2014).
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Algorithm 2: The LIGA algorithm.
1: LIGA(D, n, s, ns)
2: Start with an edge (distance) and its two vertices on the x-axis. One vertex is at the origin.
3: while number of sweeps is less than ns do
4: for all substructure size smaller than n do
5: while population size is smaller than s do
6: // PROMOTION PROCEDURE

Using vertex addition procedures one or more vertices may be added to a substructure.
Typically 10,000 random trials are generated.
Low cost trials are chosen with probability 1/cost .

7: // RELEGATION PROCEDURE
Choose a substructure with probability proportional to cost .
Each vertex has cost equal to its contributions to Eq. (8).
Remove highest cost vertex and relegate the substructure.

8: end while //End population loop
9: end for //End substructure size loop
10: end while //End sweeps loop
11: // Set of co-ordinates found for the lowest cost structure
12: Print current conformation;

3.2 LIGA: a robust heuristic for uDGP

The LIGA heuristic is efficient for precise and imprecise uDGPswith a relatively low number
of distinct distances. The input of the algorithm may only consist of the distance list D.
In some cases, the number of vertices, n, in the solution is given as well; in other cases,
only approximate information about the number of vertices may be given. Using LIGA, the
structure of C60 and a range of crystal structures (Juhás et al. 2006, 2008; Juhas et al. 2010)
have been solved using distances extracted from x-ray or neutron scattering experiments
(see Sect. 5.3). This algorithm uses a combination of ideas from dynamic programming with
backtracking, and tournaments (see Algorithm 2). The input to LIGA is the ordered distance
list D, the number of vertices n, and the size of the population s that is kept for each cluster
size in the algorithm. LIGA builds up a candidate structure by starting with a single vertex
and adding additional vertices one at a time. The algorithm keeps a population of candidate
structures at each size and uses promotion and relegation procedures to move toward higher
quality nanostructures (see Juhás et al. 2008).

A key feature of the LIGA algorithm is the choice of a cost function. If we have n vertices
andm distances inD, withm ≤ n(n−1)/2, then the cost of constructing amodel substructure
with label i is the following:

ci = min
�

1

m

∑

{u,v}

(
dmodel
uv − t�−1({u,v})

)2
, (8)

where dmodel
uv is a distance in the model and t�−1({u,v}) is a distance in D. The minimum is

taken over all ways of assigning model distances to nearest distances and the sum is over all
distances in the model. A pseudocode for LIGA is given in Algorithm 2.

Promotion is the process of changing the level of a candidate substructure (also called
“cluster”) by adding one or more vertices to it. LIGA generates possible positions for new
vertices using three different methods:

1. Line trials This method places new sites in-line with two existing vertices in the cluster.
2. Planar trials This method adds vertices in plane to account for occurrence of vertex

planes in crystal structures.
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3. Pyramid trials Three vertices in a subcluster are randomly selected based on their fitness
to form a base for a pyramid of four vertices. The remaining vertex is constructed using
three randomly chosen lengths from the list of distances. As there are 3!ways of assigning
three lengths to three vertices, and because a pyramid vertex can be placed above or below
the base plane, this method generates 12 candidate positions.

Each of these methods is repeated many times (typically, 10,000 times in our trials) to
provide a large pool of possible positions for a new vertex. For each of the generated sites,
LIGA calculates the associated cost increase for the enlarged candidate and filters the ‘good’
positions with the new cost in a low cost window. The positions outside the cost window
are discarded and the winner is chosen randomly from the remaining possibilities with a
probability proportional to 1/cost (the cost of a vertex is the contribution to Eq. (8) of the
edges incident to the vertex). Thewinner vertex is added to the candidate substructure, and the
distances it uses are removed fromD. The costs of other vertices in the pool are recalculated
with respect to the new candidate subcluster and the shortened distance table. If the candidate
has fewer than n vertices and there are any vertices inside the cost window, a new winner is
selected and added. This can lead to an avalanche of added vertices, potentially reducing the
long-term overhead associated with generating larger high-quality candidates.

Each level is set to contain a fixed number of candidates, but at the beginning they are
completely or partially empty. When a winner for promotion is selected from a level that is
not full it adds a copy of itself to that level in addition to being promoted. Similarly, when
a loser is selected for relegation from a division that is not full it adds a copy of itself to
that division before being relegated. Finally, after a winner is promoted it checks to see if
there are any empty levels below its new level. If this is the case then it adds an appropriately
relegated clone of itself to those empty levels.

4 Discretizable distance geometry

BuildUp methods are potentially able to find solutions to DGP instances in polynomial time
(Dong and Wu 2002; Wu and Wu 2007). In fact, at every iteration of the corresponding
algorithms, one unique position for the current vertex can be computed. In other words, the
search space is discrete and reduced to one singleton per vertex. However, in order to make
this possible in dimension K , a vertex order on the vertices of G must exist so that every
vertex v shares edges with at least K + 1 predecessors.

The work in Carvalho et al. (2008) showed for the first time that weaker assumptions
are actually necessary for performing the discretization of the search space. These weaker
assumptions allow in fact to consider real-life instances of the DGP (Liberti et al. 2010; Lavor
et al. 2012b). In this context, an important theoretical contribution was the formalization of
the concept of discretization orders (Lavor et al. 2012).

DGP instances need to satisfy the following assumptions in order to perform the dis-
cretization. To simplify notations, let us focus in this paragraph on the three-dimensional
case. The main requirement is that the vertices need to be sorted in a way such that there are
at least three reference vertices for each of them, aside, obviously, the first three. We say that
a vertex u is a reference for another vertex v when u precedes v in the given vertex order,
and the distance duv is known. In such a case, indeed, candidate positions for v belong to the
sphere centered in u and having radius duv . When the reference distance duv is given through
a real-valued interval, the sphere becomes a spherical shell. If three reference vertices are
available for v, then candidate positions (for v) belong to the intersection of three spherical
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shells. The easiest situation is the one where the three available distances are exact, and the
intersection gives, in general, two possible positions for v (Lavor et al. 2012a). However,
if only one of the three distances is allowed to take values into a certain interval, then the
intersection gives two arcs, generally disjoint, where sample points can be chosen (Lavor
et al. 2013). In both situations, the discretization can be performed. The discretization allows
to define a search domain that has the structure of a tree, where possible positions for the
same vertex are grouped on the same layer of the tree.

Let G = (V , E, d) be a simple weighted undirected graph representing an instance on
the DGP in dimension K > 0. Let n = |V | > K , and E ′ be the subset of edges in E related
to exact distances; as a consequence, the subset E \ E ′ contains all edges that are related to
distances represented by suitable intervals. We suppose that a vertex ordering is associated to
the vertex set V , so that a rank is associated to each vertex. The Discretizable DGP (DDGP)
is a class of instances of the DGP for which there exists a vertex order (v1, v2, . . . , vn) that
satisfies the following assumptions (Lavor et al. 2012a; Lavor et al. 2013; Mucherino et al.
2012a):

(a) G[{v1, v2, . . . , vK }] is a clique;
(b) ∀v ∈ {vK+1, . . . , vn}, there exist K vertices u1, u2, . . . , uK ∈ V such that

1. u1 < v, u2 < v, …, uK < v;
2. {{u1, v}, {u2, v}, . . . , {uK−1, v}} ⊂ E ′ and {uK , v} ∈ E ;
3. VS(u1, u2, . . . , uK ) > 0, if K > 1,

whereG[·] is the subgraph inducedby a subset of vertices ofV , “u < v”means thatu precedes
v in the vertex order, and VS(·) is the volume of the simplex generated by an embedding of the
vertices u1, u2, . . . , uK . Notice that a unique realization (modulo congruent transformations)
for such vertices can be identified, before the solution of the instance, as far as they form a K -
clique in G; if not, this verification cannot be performed in advance. However, when dealing
with real-life instances, the volume VS can be zero with probability 0, and it is therefore
common use to neglect this assumption (Lavor et al. 2013).

Assumption (a) allows us to fix the positions of the first K vertices, avoiding to consider
congruent solutions that can be obtained by total translations, rotations and reflections (except
the total reflection around the (hyper-)plane defined by these K vertices). Assumption (b.1)
ensures the existence of the K reference vertices for every vertex vi , with i > K , and
assumptions (b.2) ensures that at most one of the K reference distances is represented by an
interval. We call “reference distances” the ones that are used in the discretization process;
additional distances can also be available and exploited for the pruning process (see below).
Finally, assumption (b.3)makes it sure that {u1, . . . , uK } is an affinely independent set, which
implies, in case of exact distances, that the spheres provide finitely many points.

Under the assumptions (a) and (b), theDGPcanbediscretized.The searchdomainbecomes
a tree containing, layer by layer, the possible positions for a given atom. In this tree, the number
of branches increases exponentially layer by layer. After the discretization, the DGP can be
seen as a combinatorial problem.

4.1 The Branch-and-Prune (BP) algorithm

The Branch-and-Prune (BP) algorithm was initially proposed in 2008 for solving DDGP
problems with exact distances (Liberti et al. 2008). Subsequently, it was extended to deal
with instances containing uncertainty, which are often represented by suitable intervals;
i.e. lower and upper bounds are available for such distances (Lavor et al. 2013).
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Algorithm 3: The BP algorithm.
1: BP(v,G, D)

2: for (i = 1, 2) do
3: compute the i th arc Civ by sphere intersection;

4: extract D different sample positions xi,�v from Civ ;
5: for each � ∈ {1, 2, . . . , D} do
6: if (xi,�v is feasible wrt the pruning distances) then
7: if (v = |V |) then
8: print solution;
9: else
10: BP(v + 1,G, D);
11: end if
12: end if
13: end for
14: end for

Algorithm 3 is a sketch of the BP algorithm for DDGP instances in dimension K > 0.
The algorithm takes as input the graph G representing a DDGP instance, the discretization
factor D, and the current vertex v; once the initial clique is realized and fixed into a unique
configuration, the algorithm recursively calls itself from the vertex ranked K + 1 in the
vertex order, in order to perform the exploration of the search tree. By computing the sphere
intersections, two disjoint arcs are obtained in the general case, which are subsequently
“discretized” by choosing a set of D equidistant sample points. For each sample point, a new
branch of the tree is added at the next layer, and the feasibility of the branch is immediately
verified by checking the unique point it currently contains. If the branch is infeasible, then it
is pruned. Otherwise, the algorithm invokes itself for an exploration of the layer v + 1.

As it is easy to see from the above discussion, the BP algorithm has two main phases: the
branching phase, where vertex positions are computed and new tree branches are initialized,
and the pruning phase, where the feasibility of such newly generated positions is verified.
Even if tree branches grow exponentially layer by layer, the pruning devices allowBP to focus
the search on the feasible parts of the tree. The easiest and probably most natural pruning
device is the Direct Distance Feasibility (DDF) criterion (Lavor et al. 2012a), which consists
in verifying the ε-feasibility of the constraints:

d(w, v) − ε ≤ ||xv − xw|| ≤ d(w, v) + ε, ∀{w, v} ∈ E, with w < v. (9)

All distances related to edges {w, v}, with w < v and that are not used in the discretization,
are named pruning distances, because they can be used byDDF for discovering infeasibilities.
Several pruning devices can be integrated in BP, that can be based on either pure geometric
features of molecules, or rather on chemical and biological properties (Cassioli et al. 2015;
Mucherino et al. 2011; Worley et al. 2018).

While the branching phase of BP algorithm can be implemented in different efficient ways
(see for example the discussions inMucherino et al. 2012a; Gonçalves andMucherino 2014),
some questions are still open on the way the pruning phase is executed. As far as all available
distances are exact (as in the original version of the paper published in Liberti et al. 2008),
then the BP algorithm is able to perform a complete exploration of the search tree, and to
provide a finite set of solutions (see for example the computational experiments presented in
Lavor et al. (2012a)). This set of solutions is complete, in the sense that no realization can be
a solution to the DDGP if it is not included in this solution set. However, this high efficiency
of the algorithm is lost when it is necessary to deal with interval distances. In such a case,
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BP basically turns into a heuristic, so that the complete enumeration of the solution set is not
possible any longer, and the propagation of the errors caused by the distance approximations
can lead to convergence problems.

In terms of computational time, the BP algorithm needs more and more computational
power as the imprecision of the available distances increases (larger range of the correspond-
ing intervals). In the last years, we have been working therefore on parallel implementations
of the algorithm. In Gramacho et al. (2012), we considered general instances of the DDGP;
we focused instead on DDGP instances having vertex orders satisfying the consecutivity
assumption in Mucherino et al. (2010).

In the next section, we will discuss the methods that we employ for the computation of
vertex coordinates. In Sect. 4.3, we will describe a technique for reducing the size of the arcs
obtained with the sphere intersections by using the information about the pruning distances
before performing the branching phase of the algorithm. Thereafter, we will give a larger
emphasis on possible methods for improving the pruning phase of the BP algorithm (see
Sect. 4.4). Our focus will mainly be on recently published results; the reader interested in
additional information can find a wider discussion on the management of errors in the BP
algorithm in Costa et al. (2017), D’Ambrosio et al. (2017), Gonçalves (2018), Gonçalves
et al. (2017) and Souza et al. (2013). In Sect. 4.5, we will discuss how to exploit tools for
local (continuous) optimization for correcting the errors that are introduced in the branching
phase of the BP algorithm. Section 4.6 will be devoted to the various discretization orders
that have been proposed over the last years for the DDGP. In Sect. 4.7, we will focus on the
one-dimensional case, and we will present a variant of the BP algorithm that is able to deal
efficiently with interval data. Finally, we will briefly discuss the symmetry properties of BP
trees in Sect. 4.8.

4.2 Computing vertex coordinates

In the BP algorithm (see sketch in Algorithm 3), when candidate vertex positions for the
vertex v are searched, it is supposed that K reference vertices for v are already positioned
on the current branch of the search tree. In the following, in order to avoid including too
complex notations, the discussion will focused on the three-dimensional case, i.e. for K = 3.
However, both methods discussed below can be extended for any K ≥ 1 (the reader is
referred to Gonçalves 2018; Maioli et al. 2017).

When K = 3, the discretization assumptions ensure that there exist 3 reference vertices
{u1, u2, u3} for the current vertex v. In order to simplify the notations,wewill refer to {a, b, c}
as the set of reference vertices.

Whenever the three reference distances belong to E ′, three spheres are defined, whose
intersection gives 2 points, with probability 1 (Lavor et al. 2012a). The two points x+

v and x−
v

for vertex v are symmetric with respect to the plane defined by the reference vertices. When
one of the three distances belongs instead to E \ E ′, the intersection involves two spheres and
one spherical shell, which results in two arcs (see Fig. 5). These two arcs correspond to two
intervals, [ω+

v ,ω+
v ] and [ω−

v ,ω−
v ], for the angle ωv . In order to discretize these intervals, D

points can be selected from the two arcs. This selection can be performed in different ways: (i)
D equally spaced distances can be extracted from the intervals; (ii) D equally spaced angles
can be extracted from the angle intervals; (iii) D equidistant points can be selected from the
obtained arcs. All these techniques are simple to implement, and they are equivalent in terms
of complexity. In all situations, after performing this selection, the problem is reduced to the
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Fig. 5 The intersection of 2 spheres with one spherical shell in dimension 3

Fig. 6 The reference vertices a, b and c induce a local system of coordinates

one of computing the intersection among three spheres. Therefore, we will suppose in the
following that the available discretization distances are exact.

From the equations of the spheres in the three-dimensional space, we can deduce that
the points belonging to the intersection of the three spheres can be obtained by solving the
following system of quadratic equations:

⎧
⎨

⎩

||xv − xa ||2 = d2v,a
||xv − xb||2 = d2v,b
||xv − xc||2 = d2v,c.

(10)

This particular quadratic system can be solved by calculating the solutions of two linear
systems (Coope 2000). However, solution methods for both quadratic and linear systems can
lead to numerical instabilities (Mucherino et al. 2012a).

A different method, proposed in Gonçalves and Mucherino (2014), is based on the fact
that the reference vertices {a, b, c} define a local coordinate system centered at the vertex a
(Gonçalves and Mucherino 2014; Thompson 1967), illustrated in Fig. 6. In this coordinate
system, a is the origin, the x-axis is defined in such a way that b is on its negative side,
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and the y-axis (orthogonal to the x-axis) is defined such that the vertex c is on the xy-plane
and has negative y coordinate (see Fig. 6). We remark that this setting allows us to have
a clockwise orientation for the angles ωv , in a way that the minimum distance between c
and v is achieved when ωv = 0 (equivalently, we have the maximal achieved distance when
ωv = π). Naturally, the z-axis is normal to the xy-plane. In the following, we will refer to
this coordinate system as the system defined in a.

Similarly, we define a matrix Ua ∈ R
3×3 which is able to convert position coordinates

from the system defined in a to the system defined by the canonical system (the one defined
by the initial clique). Let v1 be the vector from b to a and v2 be the vector from b to c (see
Fig. 6). The x-axis for the system in a can be defined by v1, and the unit vector in this direction
is x̂ = v1/‖v1‖. Moreover, the vectorial product v1 × v2 gives the vector that defines the
z-axis, whose corresponding unit vector is ẑ. Finally, the vectorial product x̂ × ẑ provides
the vector that defines the y-axis (let the unit vector be ŷ).

These three unit vectors are the columns of the matrix Ua = [
x̂ ŷ ẑ

]
, whose role is to

directly convert vertex positions from the coordinate system defined in a to the canonical
system. Once the matrix Ua has been computed, the canonical Cartesian coordinates for a
candidate position for the vertex v can be obtained by:

xv(ωv) = xa +Ua

⎡

⎣
−da,v cos θv

da,v sin θv cosωv

da,v sin θv sinωv

⎤

⎦ , (11)

where θv is the angle formed by the two segments (v, a) and (a, b), and ωv is the angle
formed by the two planes defined by the triplets (a, b, c) and (b, a, v). The two angles θv

and ωv , correspond to the spherical coordinates of vertex v.
Thus, the two possible positions for the vertex v, x+

v and x−
v , correspond to the two possible

opposite values, ω+
v and ω−

v , for the angle ωv . More precisely, the sine and cosine of the
angles θv and ωv can be computed by exploiting the positions of the reference vertices a,
b and c, as well as the discretization distances da,v , db,v and dc,v (recall this information
is available because the discretization assumptions are satisfied). More details in Gonçalves
and Mucherino (2014) and Gonçalves et al. (2017).

4.3 Arc reduction technique

As previously discussed, in dimension K = 3, D sample positions can be extracted from the
two arcs that are obtained when intersecting two spheres with one spherical shell. This allows
to approximate the original search tree, containing either positions or arcs on its nodes, with
another tree containing only vertex positions. In this section, we describe a procedure that
can be executed before selecting the D sample positions per arc, so that all these selected
positions are at least feasible for the DDF pruning device. This procedure allows therefore to
avoid generating sample positions that can immediately be discarded at the same layer when
applying the DDF pruning device.

Our adaptive scheme is based on the idea to identify, before the branching phase of the
algorithm, the subset of positions on the two computed arcs that is feasible with respect to
all pruning distances that can be verified at the current layer (Gonçalves et al. 2014). Let us
suppose that, at the current layer v, the distance dcv is represented by the interval [dcv, dcv].
By using Eq. (11), two intervals for the angle ωv can be identified: [ω+

v ,ω+
v ] ⊂ [0,π] and

[ω−
v ,ω−

v ] ⊂ [π, 2π], such that the distance constraints
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‖xa − xv(ωv)‖ = dav,

‖xb − xv(ωv)‖ = dbv,
dc,v ≤ ‖xc − xv(ωv)‖ ≤ dcv,

(12)

are satisfied.
Let us suppose there is a vertex u ∈ {w < v | v /∈ {a, b, c}}, such that the distance duv is

known and lies in the interval [duv, duv]. The solution set of the inequalities

duv ≤ ||xu − xv(ω v)|| ≤ duv (13)

consists of intervals forωv that are compatible with the distance duv . A discussion about how
to solve the inequalities (12) is given in details in Gonçalves et al. (2014), where all possible
scenarios are taken into consideration.

The feasible positions for the vertex v can be therefore obtained by intersecting the two
previously computed arcs (in bold in Fig. 6), and several spherical shells, each of themdefined
by considering one pruning distance between v and u < v. The final subset of C, which is
compatible with all available distances, can be found by intersecting the arcs obtained for
each pruning distance with the two initial disjoint arcs, given by Eq. (12). From this final set,
we can extract 2D sample positions, that all satisfy the DDF pruning device.

We remark that similar results can be obtained by applying a novel methodology based
on Clifford Algebra (Alves and Lavor 2017; Alves et al. 2018; Lavor et al. 2015; Lavor et al.
2018), having as a main advantage the fact that the equations of the arcs obtained by the
intersections can be written in algebraic form.

4.4 Limitations of BP algorithm

Recent computational experiments have shown that taking equidistant sample points on
feasible arcs (or equidistant samples from interval distances), even after the intersection
with the available pruning distances, is not enough to allow the BP algorithm to solve some
instances within a predefined precision (Gonçalves et al. 2017). The sampled distances are
taken independently in each layer of the tree and, in particular for small D values, it is not
likely that they are compatible with each other and with other pruning distances available at
deeper layers.

The underlying issue is related to the conditions a given set of distances must verify in
order to admit a realization in R

k . We present below a result of Havel et al. (1983) based
on Cayley–Menger determinants (Sippl and Scheraga 1986) that is extensively discussed in
Blumenthal (1953).

Definition 12 Given a matrix D ∈ R
(m+1)×(m+1) whose entries Di j = d2i j correspond to the

squares of the distances between points {v0, v1, . . . , vm}, the Cayley-Menger determinant of
these m + 1 points is defined as

CM(v0, v1, . . . , vm) = det

([
D 1
1T 0

])
,

where 1T = (1, 1, . . . , 1)T ∈ R
m+1.

Theorem 6 A (n + 1)-clique admits a realization in R
k for k ≤ n, if and only if all non-

vanishing Cayley-Menger determinants of m + 1 points have sign (−1)m+1 for all m =
1, 2, . . . , k, while the value of all Cayley-Menger determinants of more than k + 1 points
must be zero.
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For example, if we want to determine whether a set of n + 1 points with distance matrix
D ∈ R

(n+1)×(n+1) admits realizations in R
3, we must verify the following conditions:

– CM(v0, v1) ≥ 0, for all pairs {v0, v1};
– CM(v0, v1, v2) ≤ 0, for all triplets {v0, v1, v2};
– CM(v0, v1, v2, v3) ≥ 0, for all quadruplets {v0, v1, v2, v3};
– CM(v0, v1, v2, v3, v4) = 0, for all set of five points {v0, v1, v2, v3, v4};
– CM(v0, v1, v2, v3, v4, v5) = 0, for all set of six points {v0, v1, v2, v3, v4, v5}.
Now, suppose we know exactly all the distances between five points, except for two of

them, that are represented by a real interval: x ∈ [x, x] and y ∈ [y, y]. It is not hard to
check that the condition CM(v0, v1, v2, v3, v4) = 0 is a nonlinear equation and generally,
the solution set for such equation, w.r.t. x and y, constitute a curve (Gonçalves et al. 2017).
It is clear then, that not every pair of points in [x, x] × [y, y] will be feasible, and it is likely
that uniformly sampling distances values in such intervals will not lead to a solution, mainly
if the number of samples is small.

For this reason, we can see the current version of the BP algorithm, which takes samples
on interval distances or on feasible arcs, as a heuristic that is only able to provide approximate
solutions, in general.

Another difficulty found in previous experiments is related to long-range pruning dis-
tances. Long-range distance restraints (or long pruning distances for short) are related to
atoms that are at least 4 amino-acids apart in the protein sequence. Even if far in the protein
sequence, some atom pairs may be in condition to be detected by an experimental technique.
For example, if we consider NMR, it is typical to detect distances between atoms that are
very far in the sequence, but quite close in space (≤ 5 Å).

Furthermore, since other interval distances are also employed in the discretization, the
sampled positions in the feasible arcs for previous atoms are only approximations for their
true positions, and such a sequence of approximate positions may lead to an infeasibility at
a further layer. For this reason, the longest-range pruning distances may fail to be verified
(even if they are represented by an interval).

An error introduced during the intersection discretization, in a certain tree layer, might
make every sampled candidate position infeasible with pruning distances in a further layer.
This phenomenon is more evident when considering long-range distance restraints.

Considering the “sampling problem” that may lead to the violation of long pruning dis-
tances, one possibility to avoid pruning out all branches of the search tree and to obtain
approximate solutions to the DDGP is to relax those distance constraints. For this, we define
the set

L = {{i, j} ∈ E | |i − j | ≥ M}, (14)

where M is a positive integer used to identify long-range distance restraints. Our relaxation
consists in avoiding the application of the DDF feasibility test, as well as the intersection
scheme (arc reduction) to pruning distances in L.

Naturally, when such pruning distances are neglected, some information is lost and this
can have an impact on the found solutions. In fact, long-range distance restraints are the main
responsible for the global fold. Thus, in order to mitigate this effect, we introduce another
pruning criterion based on the partial Mean Distance Error (MDE) at the current layer k,

PMDEk(X) = 1

|Jk |
∑

{i, j}∈Jk

⎡

⎣
max

{
di, j − ‖xi − x j‖ , 0

}

di, j
+ max

{‖xi − x j‖ − di, j , 0
}

di, j

⎤

⎦,

(15)
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where

Jk = {{i, j} ∈ E | i ≤ k ∧ j ≤ k}.
Let n = |V | and note that Jn = E . Thus, by monitoring the PMDEk(X) for k < n, we can
control the quality of partial realizations. This suggests the PMDE pruning device: if at layer
k, PMDEk(X) > ε̂, then the candidate partial realization may be pruned. We set ε̂ > ε,
where ε is the tolerance used in DDF.

When this new pruning device is introduced, a solution found by BP is actually an approx-
imate solution in the sense that it satisfies all distances related to E \ L (with tolerance ε),
while some distances related to L can be violated.

4.5 Solution refinement by continuous optimization

Since some long pruning distances are not considered in the “relaxed BP”, in general, such
distance constraints are not satisfied at any incongruent realization found by the algorithm
(Gonçalves et al. 2017). Thus, in order to refine the solutions found by BP, following the
ideas of Glunt et al. (1993), we consider the following optimization problem:

min
X ,y

1

2

∑

{u,v}∈E
πuv (‖Xu − Xv‖ − yuv)

2 := σ(X , y)

s.t. duv ≤ yuv ≤ duv, ∀ {u, v} ∈ E,

(16)

where X ∈ R
n×3 is a matrix whose rows correspond to the atom positions xv ∈ R

3, y ∈ R
|E |

and πuv is a non-negative weight of the distance constraint related to the edge {u, v}.
As shown in de Leeuw (1988) and discussed in Glunt et al. (1993, 1994), the function

σ(X , y) is differentiable at (X , y) if and only if ‖xu − xv‖ > 0 for all {u, v} ∈ E such that
πuv yuv > 0. In such case, the gradient, with respect to X , can be written as

∇X σ(X , y) = 2(V X − B(X , y)X), (17)

where the matrix V is defined by

vuv =

⎧
⎪⎨

⎪⎩

−πuv, if u �= v∑

w �=u

π
uw

, otherwise.

In expression (17), the matrix B(X , y) = [buv(X , y)] is a function of (X , y) defined by

buv(X , y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− πuv yuv

‖xu − xv‖ , if u �= v and ‖xu − xv‖ > 0

0, if u �= v and ‖xu − xv‖ = 0

−
∑

w �=u

buw(X , y), otherwise.

The only kind of constraints defining the feasible set

� =
{
(X , y) ∈ R

n×3 × R
|E | : duv ≤ yuv ≤ duv,∀ {u, v} ∈ E

}

are box constraints on the variables y. Therefore, it is simple to compute the projection of a
pair (X , y) onto �:

P�(X , y) = (X , ỹ),
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Algorithm 4: Non-monotone spectral projected gradient method for (16).
Initialization. Given (X0, y0) ∈ �, 0 < μmin < μmax < ∞, ε > 0, γ ∈ (0, 1),
0 ≤ ηmin ≤ ηmax < 1. Set k = 0, Q0 = 1 and C0 = σ(X0, y0).

Step 1. Evaluate σ(Xk , yk ) and ∇ σ(Xk , yk ). If k = 0, set μ0 = 1 and go to Step 3.

Step 2. Set Yk−1 = ∇ σ(Xk , yk ) − ∇ σ(Xk−1, yk−1) and Sk−1 = (Xk , yk ) − (Xk−1, yk−1). Compute

μk = min

(
μmax,max

(
μmin,

〈Yk−1, Sk−1〉
〈Sk−1, Sk−1〉

))
.

Step 3. Compute Dk = P�

(
(Xk , yk ) − 1

μk
∇ σ(Xk , yk )

)
− (Xk , yk ). If ‖Dk‖ ≤ ε, stop.

Step 4. Set α = 1.While σ((Xk , yk ) + α Dk ) > Ck + γ α〈∇ σ(Xk , yk ), Dk 〉 do α = α /2 end while.

Step 5. Set αk = α and update (Xk+1, yk+1) = (Xk , yk ) + αk Dk .
Choose ηk ∈ [ηmin,ηmax] and set Qk+1 = ηk Qk + 1, Ck+1 = (ηk QkCk + σ(Xk+1, yk+1))/Qk+1.
Set k = k + 1 and go to Step 1.

where ỹuv = min
{
duv , max

{
duv , yuv

}}
, for all {u, v} ∈ E .

Considering this structure, we tackle the optimization problem (16) with a non-monotone
spectral projected gradient method (SPG) proposed by Birgin et al. (2000). In our implemen-
tation, a spectral parameter (Barzilai and Borwein 1988) is employed to scale the negative
gradient direction before the projection onto the feasible set, followed by a non-monotone
line-search, as described in Zhang and Hager (2004), to ensure a sufficient decrease of the
objective function at every iteration.

The main steps are summarized in Algorithm 4. In Step 2, it is described a safeguarded
expression for the spectral parameterμk used to scaled the gradient direction.1 The safeguards
are necessary in order to show that the search directions Dk satisfy certain properties used
to demonstrate global convergence (that every limit point of the sequence generated by
Algorithm 4 is a stationary point of (16) Birgin et al. 2000; Zhang and Hager 2004).

Steps 4 and 5 implement the non-monotone line-search (Zhang and Hager 2004). While
the non-monotone Armijo condition is not satisfied we reduce α by half. Following the
non-monotone line search in Zhang and Hager (2004), by setting ηk = 0 one obtains, a
classical monotone line-search whereas ηk = 1 implies a non-monotone line search where
Ck corresponds to the average of objective function values over the previous iterations.

Although the algorithm only stops when ‖Dk‖ ≤ ε (‖Dk‖ = 0 only occurs if (Xk, yk)
is a stationary point), in practice we employ other stopping criteria. For example, since we
know the global minima of σ(X , y) is zero, we could also stop when σ(Xk, yk) < ε f .

We recall that (16) is a non-convex global optimization problem, thus the starting point
for SPG is crucial. So, we take the approximate solutions given by relaxed BP as starting
points to SPG: in other words, SPG acts as a refinement tool.

4.6 Vertex orders

As pointed out in the beginning of Sect. 4, it is a fundamental pre-processing step for the
solution of DDGPs by the BP approach to identify a suitable discretization order for the

1 〈(X , y), (X̂ , ŷ)〉 := tr(X X̂T ) + yT ŷ.
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vertices of the DGP graph G = (V , E, d). Discretization orders for the DDGP have been
identified over the last years by employing different approaches. In Costa et al. (2014) and
Lavor et al. (2013), handcrafted orders were presented for the protein backbone and the side
chains belonging to the 20 amino acids that can take part to the protein synthesis. More
recently, in Mucherino (2015b), orders were identified by searching for total paths on pseudo
de Bruijn graphs containing cliques of the original graph G. These orders were all conceived
for satisfying an additional assumption, which requires that the reference vertices, together
with the current vertex v, form a subset of vertices having consecutive ranks in the vertex
ordering.We call this assumption the consecutivity assumption. The following class of vertex
orders satisfies the consecutivity assumption.

Definition 13 A repetition order (re-order) is a sequence r : N → V ∪ {0} with length
|r | ∈ N (for which ri = 0 for all i > |r |) such that:

– G[{r1, r2, . . . , rK }] is a clique
– for all i ∈ {K + 1, . . . , |r |} the sets {ri−K+1, ri }, {ri−1, ri } are exact edges;
– for all i ∈ {K + 1, . . . , |r |} the set {ri−K , ri } is either a singleton (i.e. ri−K = ri ) or an

edge of E .

Notice that the edges {ri−K , ri }, when they do not correspond to singletons, they can be
related to either exact distances or to distances represented by intervals.

Another way to construct discretization orders is given by the greedy algorithm firstly pro-
posed in Lavor et al. (2012) and subsequently extended for interval distances in Mucherino
(2013). This algorithm is able to find orders where the consecutivity assumption is not
ensured. A heuristic has also been proposed for finding discretization orders without con-
secutivity assumption, which outperformed the greedy algorithm on large instances, but for
which there is no guarantee of convergence (Gramacho et al. 2013).

More recently, we have been working on discretization orders that are optimal w.r.t. a
certain number of objectives (Mucherino 2015a). In Gonçalves et al. (2015), we found some
optimal orders for the protein backbones by using Answer Set Programming (ASP). In
Gonçalves and Mucherino (2016), we extended the previously proposed greedy algorithm
and we proved that it can still find orders in polynomial time when the objectives are simple
functions. In Sect. 5.1.1, we will present a new handcrafted order for protein backbones
where several constraints arising in structural biology are taken into consideration.

4.7 The one-dimensional case

In the one-dimensional case, the BP framework has the particular feature to allow to perform
a deterministic search even when non-exact distances are available (Mucherino 2018). Let G
be an instance of the aDGP in dimension K = 1, such that the discretization assumptions are
satisfied. In this case, the discretization assumption basically ensures that a vertex ordering
on V exists so that, for every vertex v ∈ V which is not the first in the order, there exists
at least one vertex u < v such that {u, v} ∈ E . At every level of the tree search, the set of
feasible positions for the current vertex can be obtained by intersecting real-valued intervals,
which correspond to a set of intervals on which the algorithm can branch. Differently from
the case where K > 1, it is not necessary to discretize the position intervals, i.e. to select
sample points from these intervals (see Sect. 4.1).

There are two important remarks related to the one-dimensional case, which are direct
consequence of the fact that position intervals do not need to be discretized during the search,
and that vertex positions can be obtained only after having performed the search. Firstly, the
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solutions that the algorithm can output in these settings are composed by real-valued intervals
and not by positions. We define therefore the following function:

z : v ∈ V −→ [zLv , zUv ] ∈ I(R), (18)

which associates a real-valued interval to every vertex of the graph G. Notice that I(R) is the
set of all real-valued intervals in R. Secondly, it is necessary to consider, in these settings,
distances between pairs of intervals and not distances between singletons. We define the
minimal and the maximal distance between two position intervals [zLu , zUu ] and [zLv , zUv ] as
follows:

dmin

(
[zLu , zUu ], [zLv , zUv ]

)
=

{
max{zLu , zLv } − min{zUu , zUv } if [zLu , zUu ] ∩ [zLv , zUv ] = ∅
0 otherwise,

dmax

(
[zLu , zUu ], [zLv , zUv ]

)
= max{zUu , zUv } − min{zLu , zLv }.

BP1 is an adaptation of the BP algorithm (see Sect. 4.1) for the one-dimensional case,
which can deal with instances consisting of interval distances. However, the solutions given
by BP1 are sets of functions z (see Eq. (18)) satisfying the following property:

∀{u, v} ∈ E dL
uv ≤ dmin

(
[zLu , zUu ], [zLv , zUv ]

)
≤ dmax

(
[zLu , zUu ], [zLv , zUv ]

)
≤ dUuv.

From one obtained function z, it is possible to subsequently extract valid realizations x of
G. In the following, the functions z will be referred to as a “BP1 solutions”, which do not
correspond to the realizations.

A sketch of the BP1 algorithm is given in Algorithm 5. At each recursive call, it begins
by generating the two initial position intervals, by considering the reference vertex w that is
the closest to the current v in the vertex order. The existence of at least one reference vertex
is guaranteed by our assumptions. Then, the pruning phase of BP (as in Algorithm 3) is
executed, but this phase takes into consideration intervals in BP1. After the intersections, if
the resulting Iv is empty, then the current branch is infeasible, and the search is back-tracked
(there is no branching over intervals at line 20). Once the intersections are performed, a
new pruning device, particularly adapted for BP1, is executed: we named this new device the
back-tracking pruning. In fact, it is able to refine (or completely discard) intervals of positions
that were obtained at previous layers of the search tree. Naturally, the position intervals that
are concerned are those adjacent to the current v. The branching phase is left at the end,
when all infeasible positions, up to the current layer, have been removed from the intervals.
In BP1, branching is performed over the final number of intervals in Iv , and BP1 is invoked
for each of them and with v + 1 as current vertex.

It is important to remark that, when some previous position intervals are refined by the
back-tracking pruning, the current branch is re-initialized at the higher layer where a position
interval was modified. If this position interval is now empty, then the current branch can be
pruned. Otherwise, its construction can be restarted from this layer, so that all intermediate
position intervals can be updated.

4.8 Symmetries of the search tree

Given aDDGP instance for which a discretization order exists that satisfies the “consecutivity
assumption”, then this instance admits an even number of solutions (Lavor et al. 2012a). Our
computational experiments confirmed this result. Moreover, the solution sets found by the
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Algorithm 5: The BP1 algorithm.
1: BP1 (v,G)

2: // generation of two initial position intervals
3: let w be the reference vertex of v with rank closest to v;
4: let Iv = [zLw − dUwv, zUw − dLwv] ∪ [zLw + dLwv, zUw + dUwv];
5: // “classical” pruning
6: for (all other reference vertices u) do
7: let J1 = [zLu − dUuv, zUu − dLuv]; J2 = [zLu + dLuv, zUu + dUuv];
8: let Iv = Iv ∩ (J1 ∪ J2);
9: end for
10: // back-tracking pruning
11: set back = 0;
12: for (all reference vertices u (including the initial one: w), from the closest to the farthest

rank) do

13: let Q = Iu ∩ ⋃ (
[zLv − dUuv, zUv − dLuv] ∪ [zLv + dLuv, zUv + dUuv]

)
;

14: if (Q �= Iu ) then
15: let back = u;
16: let Iu = Q;
17: end if
18: end for
19: // branching
20: for (all intervals in Iv) do
21: if (v = |V |) then
22: print intervals I∗ belonging to the current branch;
23: else
24: // restarting with refined position intervals
25: if (back = 0) then
26: call BP1 (v + 1,G);
27: else if (back = v) then
28: recall BP1 v,G) with the updated Iv ;
29: end if
30: end if
31: end for

BP algorithm always satisfies a stronger property: the cardinality of the set of solutions is
always a power of 2 (Mucherino et al. 2012c).

This theoretical result remained unproved for a long time. At a certain point, we found
indeed a counterexample, i.e. an instance, artificially generated in a special way, for which
the total number of solutions is not a power of 2. Subsequently, we were able to prove that
the Lebesgue measure of the subset of instances for which this property is not satisfied is 0
(Liberti et al. 2013; Liberti et al. 2011). As a consequence, we can say that, in practice,
real-life instances should always have a power of 2 number of solutions. This result has
been formally proved for the DDGP instances with vertex orders satisfying the consecutivity
assumption (Liberti et al. 2014); we are currently working for extending this result to the
DDGP (Abud et al. 2018).

The “power of 2” property is due to the presence of various symmetries in BP binary
trees (Lavor et al. 2012a). First of all, there is a symmetry at layer 4 of all BP trees, which
makes even the total number of solutions. We usually refer to this symmetry as the first
symmetry. At layer 4, there are no distances for pruning, and the two branches rooted at node
3 are perfectly symmetric. In other words, any solution found on the first branch is related
to another solution on the second one, which can be obtained by inverting, at each layer, left
with right branches, and vice versa.
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Fig. 7 (Color online) All symmetries of an instance with 9 vertices and B = {4, 6, 8}. Feasible branches are
marked in light yellow

In the DDGP with consecutivity assumption, as for the first symmetry, each partial reflec-
tion symmetry appears every time there are no pruning distances concerning some layer v. In
such a case, the number of feasible branches on layer v is duplicated with respect to the one
of the previous layer v − 1, and pairs of branches rooted at the same node xv−1 are perfectly
symmetric. Figure 7 shows a BP tree containing 3 symmetries.

A solution to a DDGP instance can be represented in different ways, such as a path on
the tree and a list of binary choices 0–1 (we suppose here that all distances are exact). Since
solutions sharing symmetric branches of the tree have symmetric local binary representations,
we can derive a very easy strategy for generating all solutions to a DDGP from one found
solution and the information on the symmetries in the corresponding tree (Mucherino et al.
2011). Let us consider for example the solution in Fig. 7 corresponding to the second leaf
node (from left to right). The binary vector corresponding to this solution is

s2 = (0, 0, 0, 0, 0, 0, 0, 1, 1),

where we suppose that 0 represents the choice left, and 1 represents right (the first three zeros
are associated to the first three fixed vertices of the graph). Since there is a symmetry at layer
6, another solution to the problem can be easily computed by repeating all choices from the
root node until the layer 5, and by inverting all other choices. On the binary vector, repeating
means copying, and inverting means flipping. So, another solution to the problem is

s3 = (0, 0, 0, 0, 0, 1, 1, 0, 0).

This solution corresponds to the third feasible leaf node in Fig. 7.
This property can be exploited for speeding up the solution to DDGPs. The procedure we

mentioned above can indeed be used for reconstructing any solution to the problem. Thus,
once one solution to the problem is known, all the others can be obtained by exploiting
information on the symmetries of BP trees. The set

B = {v ∈ V : �(u, w) s.t. u + 3 < v ≤ w}
contains all layers v of the tree where there is a symmetry (Mucherino et al. 2011). As a
consequence, |B| is the number of symmetries that are present in the tree. Naturally, since
the first symmetry is present in all BP trees, |B| ≥ 1. The total number of solutions is, with
probability 1, equal to 2|B|.
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If the current layer corresponds to the vertex v ∈ B, for each xv−1 on the previous layer,
both the newly generated positions for xv are feasible. If v /∈ B, instead, only one of the two
positions can be part of a branch leading to a solution. The other position is either infeasible
or it defines a branch that will be pruned later on at a further layer v, in correspondence with
a pruning distance whose graph edge {u, w} is such that u + 3 < v ≤ w. Therefore, we can
exploit such information for performing the selection of the branches that actually define a
solution to the problem. When v /∈ B (only one position is feasible), it is not known a priori
which of the two branches (left/right) is the correct one. This is the reason why at least one
solution must be computed before having the possibility of exploiting the symmetries for
computing all the others.

We remark that the symmetry properties of BP trees can be exploited for speeding up
the algorithm, as shown in Mucherino et al. (2012b). Very recently, a parallel version of BP
which exploits the presence of symmetries was proposed in Fidalgo et al. (2018).

5 Applications

5.1 DGP for protein molecules

The distance information from NMR experiments are distances between nuclei in proteins
(Almeida et al. 2013; Crippen and Havel 1988; Wuthrich 1989; Hendrickson 1995; Nilges
and O’Donoghue 1998), though these distances have significant errors so they are treated as
restraints rather than constraints (Clore andGronenborn 1997; Brunger et al. 1998;Nilges and
O’Donoghue 1998). More recently, a variety of other approaches to distance measurements
in biological and inorganic materials have been developed and there is considerable promise
for continuing progress in this area (Guerry and Herrmann 2011; Bouchevreau et al. 2013).
Considerable experimental work is carried out to determine the pair of nuclei assigned to
each distance extracted from the NMR data, allowing the problem to be represented by a
graph G = (V , E, d), where V represents the set of atoms and E is the set of atom pairs for
which a distance is available.

5.1.1 Identifying vertex orders for protein backbones

In this section, we consider graphs related to the backbone of a protein, fromwhich its general
structure is determined. The backbone is defined by a sequence of three atoms, N ,Cα,C ,
where each Cα is bonded to another group of atoms (the side chains of the protein) that
distinguishes one amino acid from another. We also consider the atoms attached to N ,Cα,C ,
respectively H , Hα, O . More details about protein graphs including side chains are given in
Costa et al. (2014) and Sallaume et al. (2013).

Since we are interested in determining the structure of the backbone of a protein, the
sequence of atoms Ni ,Ci

α,C
i , for i = 1, . . . , p (where p is the number of amino acids),

would be the first candidate for defining aDMDGP (DiscretizableMolecular DistanceGeom-
etry Problem) order. However, for this kind of order, it is not guaranteed that we have all
the distances di−3,i necessary to define a DMDGP instance. On the other hand, NMR exper-
iments, in general, provide distances between hydrogen atoms that are close enough. An
order involving only hydrogens was defined in Lavor et al. (2011), but it does not work well
because of uncertainty in NMR data. This has been partially addressed by simultaneously
using hydrogen atoms bonded to the backbone and the backbone itself (Lavor et al. 2013).
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Fig. 8 A new re-order for protein backbones

As it was done in Lavor et al. (2013), the idea is to allow the repetition of some vertices in
the order, so that at least three adjacent predecessors can always be chosen to be contiguous.
Such orders are called re-orders, and they are defined in Sect. 4.6. In this section, we will
give a specific definition in dimension K = 3. First of all, the set of edges E of the protein
graph G = (V , E, d) is partitioned into E = E ′ ∪ E ′′, where {u, v} ∈ E ′ if duv ∈ (0,∞),
and {u, v} ∈ E ′′ if duv = [duv, duv], with 0 < duv < duv . Note that the function d is now
more general: the interval values represent the uncertainties in NMR data. As we will see, E ′
represents pairs of atoms separated by one and two covalent bonds and E ′′ represents pairs
of hydrogen atoms whose distances are provided by NMR.

Therefore, a re-order in dimension 3 is a sequence r : N �→ V ∪ {0}, with length |r | ∈ N

(for which ri = r(i) = 0 for all i > |r |), such that

1. {r1, r2}, {r1, r3}, {r2, r3} ∈ E ′;
2. ∀i ∈ {4, . . . , |r |}, {ri−1, ri }, {ri−2, ri } ∈ E ′;
3. ∀i ∈ {4, . . . , |r |}, {ri−3, ri } ∈ E ′ ∪ E ′′ or ri−3 = ri .

The first property says that dr1r2 , dr1r3 , dr2r3 ∈ (0,∞) and the second one says that
dri−1ri , dri−2ri ∈ (0,∞), for i = 4, . . . , |r |. That is, all of them must be precise distances and
greater than zero.

From the third property, there are three possibilities for dri−3ri , i = 4, . . . , |r |:

– dri−3ri = 0, meaning that there is a vertex repetition (ri−3 = ri );
– dri−3ri ∈ (0,∞), when ri−3, ri are related to atoms separated by one or two covalent

bonds;
– dri−3ri = [dri−3ri , dri−3ri ], with 0 < dri−3ri < dri−3ri (these distances are called interval

distances).

Any re-order corresponds to a DMDGP order, where some of the pairs {ri , r j }, with
|i − j | ≥ 3, may not correspond to precise distances, but rather to intervals.

The most important property of the re-order described below is that it allows branches
(in the BP search) only at hydrogen atoms that are bonded to the protein backbone. Previous
re-orders (Gonçalves et al. 2017; Lavor et al. 2013) do not have this property.

Let us define a graphG = (V , E, d) associated to the backbone of a protein ({Nk ,Ck
α,Ck},

for k = 1, . . . , p), including oxygen atoms Ok , bonded to Ck , and hydrogen atoms Hk and
Hk

α , bonded to Nk and Ck
α , respectively (see Fig. 8, for p = 3).
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The hand-crafted vertex order (hc order) is the following:

hc = {
N 1, H1, H1′

,C1
α, N 1, H1

α ,C1,C1
α, . . . ,

Hi ,Ci
α, O

i−1, Ni , Hi ,Ci
α, N

i , Hi
α,C

i ,Ci
α, . . . ,

H p,C p
α , O p−1, N p, H p,C p

α , N p, H p
α ,C p,C p

α , O p,C p, O p′}
, (19)

where i = 2, . . . , p − 1, H1′
is the second hydrogen bonded to N 1 and O p′

is the second
oxygen bonded to C p .

In Lavor et al. (2018), it was proved that hc is a re-order and the following theorem was
established.

Theorem 7 Using the hc order, the rigid geometry hypothesis, the peptide plane properties,
the chirality property, and the set of distances between the pairs of hydrogen atoms

{H1′
, H1

α }, . . . , {Hi−1
α , Hi }, {Hi , Hi

α}, {Hi
α, H

i+1}, . . . , {H p, H p
α }, (20)

where i = 2, . . . , p− 1 and p is the number of amino acids of a protein, the branches in the
search tree occur only at hydrogen atoms given by

{H1
α , . . . , Hi , Hi

α, . . . , H
p, H p

α }. (21)

The two main consequences of this theorem, as explained in Lavor et al. (2018), are the
following: (a) If the distances related to the pairs (20) are precise values, the search space of
the associated DGP is finite, represented as a binary tree; (b) If the distances related to the
pairs (20) are precise values and there is at least one additional (also precise) distance (from
NMR data) for each hydrogen in the list (21) to previous hydrogens, there is only one DGP
solution that can be found in linear time.

Although precise and additional distances are very strong hypotheses, this kind of infor-
mation emphasizes the relationship of the cardinality of the DGP solution set with the
computational complexity of the problem.

Since atoms Hi , Hi
α are in the same amino acid, the associated distance d(Hi , Hi

α) is likely
to be detected byNMR.Although atoms Hi−1

α , Hi are in consecutive amino acids, there is just
one torsion angle (the one defined by {Ni−1,Ci−1

α ,Ci−1, Ni }) related to the position of Hi ,
because the peptide plane “constrains” the torsion angle defined by {Ci−1

α ,Ci−1, Ni−1,Ci
α}

to be π radians. In the worst case, supposing that the distance d(Hi−1
α , Hi ) is not available,

we can use “implicit” information associated with the fact that the distance was not detected
(Agra et al. 2017) or some estimations given in Wüthrich (1986).

5.1.2 Some numerical results

The previous section shows that, by considering the theoretical model for the protein back-
bone along with experimental distance data provided by NMR, it is possible to devise a
suitable vertex order that allows for the discretization. Then, we can employ the variant of
BP algorithm (Algorithm 3) described in Sect. (4.4) to obtain approximate solutions for the
DGP.

We present some results obtained by the relaxed version of BP (see Sect. 4.4) and the
improvements achieved by the refinement step with SPG (Sect. 4.5).

The artificial instances are the same as those in Gonçalves et al. (2017). Based on protein
files from the PDB, we compute all distances between the atoms and to generate an instance
we keep those between atoms separated by one or two covalent bonds and those between
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Table 1 Results obtained by BP (Gonçalves et al. 2017) and respective refined solutions by SPG

PDB |V | |E | BP (Gonçalves et al. 2017) Refinement (SPG)

D M Time σ(X0, y0) RMSD Time σ(X ′, y′) RMSD

2JMY 120 660 5 – 0.01 0 0.15 0 0 0.15

2KXA 177 973 3 – 0.06 9e−07 0.22 0.87 4e−07 0.21

1DSK 222 1210 4 – 0.29 8e−07 0.25 1.12 4e−07 0.25

2PPZ 287 1522 3 – 6.71 1e−09 0.39 0 1e−09 0.39

1AQR 310 1596 4 40 0.72 2e+01 0.88 2.05 1e−04 0.41

2E2F 315 1716 3 40 0.19 2e+01 0.75 1.57 1e−04 0.43

2ERL 324 1792 3 – 13.22 2e−06 0.29 0.08 8e−07 0.29

2ERL 324 1792 3 40 0.08 3e+00 0.85 2.19 1e−04 0.74

1FJK 417 2306 4 – 6.87 2e−06 0.62 0.14 1e−06 0.62

2RTU 429 1858 3 30 0.03 7e+02 3.63 4.00 1e+00 3.07

2RTU 429 1858 3 120 2.63 1e+03 2.82 5.10 1e−01 3.00

2JWU 448 2416 4 40 1.97 1e+02 1.80 3.77 1e−03 0.97

2KIQ 455 2452 4 40 1.92 2e+00 0.81 3.21 7e−05 0.74

2LOW 497 2650 3 – 29.13 3e−07 0.75 0.06 1e−07 0.75

2LOW 497 2650 3 30 2.21 5e−01 0.61 2.00 1e−05 0.60

D is the discretization factor and M is maximum “length” of the long pruning distances that are considered
in BP. The reported RMSD is with respect to the first model in the corresponding PDB files

atoms of the same peptide plane; such distances are considered as exact. Distances between
hydrogen atoms that are smaller than 5Å are also considered as random intervals of size 1Å
containing their actual value.

In Algorithm 4, we have used the safeguards μmin = 10−8 and μmax = 108, γ = 10−4.
The iterations were stopped when ‖∇ σ(Xk, yk)‖ < εg = 10−7 or σ(Xk, yk) < ε f = 10−9

or when the number of iterations reach 20,000. For the non-monotone line search we chose
ηk = 0.99. We have considered all the weights πuv equal to one. In BP the tolerance in the
DDF test was ε = 10−3 and in the PMDE test ε̂ = 10−2.

Our initial points for SPG have the form (X0, y0), where X0 is a solution given by BP
and

(y0)uv = min
{
duv ,max

{
duv , ‖(X0)u − (X0)v‖

}}
,∀ {u, v} ∈ E .

Table 1 reports the numerical results. It presents for each instance, its PDB name, number
of atoms |V | and number of available distances (exact and interval ones) |E |. Concerning BP,
we report the smallest number of samples D taken in the feasible arcs that allow it to find a
solution and the maximum length (in the vertex order) M of the pruning distances considered
in the DDF feasibility test and in the arc reduction procedure. The symbol “−” means that
none pruning distance was neglected. It is important to remark that we have stopped BP after
reaching the first leaf node. The table also brings the CPU time in seconds spent by BP to
find this first solution and by SPG to refine it. The quality of the solutions is measured by the
value of the stress function σ(X , y), which indicates how well the distance constraints are
satisfied, and by the RMSD (root mean squared deviation) with respect to the actual protein
structure from the PDB.

As one can see from the figures of Table 1, when all pruning distances are taken into
account the improvement in the solution quality after the refinement is very small, if any. On
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Fig. 9 (Color online) Backbone structure for the protein 2JWU. In blue is the actual conformation from PDB
and in red are the reconstructed structures. On the left is the solution found by BP (RMSD = 1.80) and on the
right is the solution refined by SPG (RMSD = 0.97)

the other hand, as the number of neglected distances increases (M decreases) the solutions
provided by BP have a relatively high value for the stress function, indicating that those
distance constraints are not well satisfied. For most of these instances, we can observe a
considerable improvement after the SPG refinement, not only in terms of the stress (almost
five orders of magnitude), but also in terms of RMSD (highlighted in boldface in the table).
For example, the actual backbone structure for the instance 2JWU is shown in Fig. 9 in blue,
superimposed with the solution found by BP on the left and with the refined solution on the
right.

5.2 DGP andVGP in nanostructures

The Nanostructure Problem is the problem of finding, at high precision, the atomic positions
of molecular, biomolecular or solid state systems when it is difficult or impractical to grow
a single crystal or even a polycrystal sample (Billinge and Levin 2007). The meaning of
high precision is context dependent, however a typical requirement in a solid state system
is the determination of the positions of all atoms in a nanostructure to better than 2% for
each interatomic distance in the nanostructure, and in some cases even higher resolution is
necessary. High resolution is required as the function of nanostructured materials and com-
plex molecules is highly sensitive to small changes in the interatomic distances, making it
essential to determine nanostructure to high precision to enable understanding and design
of materials. Nanostructure problems are encountered in a wide variety of materials, includ-
ing complex molecules, nanoparticles, polymers, proteins, non-crystalline motifs embedded
in a crystalline matrix and many others (see Fig. 10 for three examples). We consider sin-
gle phase problems where one nanostructure is dominant, though extensions to multiphase
nanostructures are possible once the single phase case can be solved efficiently.

The pair-distribution function (PDF) method is a versatile and readily available approach
to probing the local atomic structure of nanostructured materials (Egami and Billinge 2012).
PDF results can be extracted from x-ray, neutron or electron total scattering data and in many
cases the data can be collected efficiently. The major bottleneck in PDF analysis is the extrac-
tion of nanostructures from the data, as standard techniques are based on either refinement
from a good initial guess (Farrow et al. 2007); or on simulated annealing (McGreevy and
Pusztai 1988; Evrard and Pusztai 2005; Tucker et al. 2007).
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Fig. 10 (Color online) Examples of nanostructured materials. a Nanostructured bulk materials. b Intercalated
mesoporous materials. c Discrete nanoparticles. In each case, ball-and-stick renditions of possible structures
are shown on the top, and TEM images of examples are shown on the bottom. (Reproduced with permission
from Billinge and Levin 2007)

Amore systematic approach to finding good starting structures is a high priority in the field
and provides the motivation for developing ab-initio DG approaches (Gujarathi et al. 2014;
Juhás et al. 2006). Alternative experimental approaches such as high resolution transmission
electron microscopy (see Fig. 10) are very useful for larger scale morphological studies, but
they do not yield the high precision atomic structures available from diffraction and scattering
approaches. Local structural information can also be found using extended x-ray absorption
fine-structure (EXAFS) and related near-edge absorption spectroscopies, solid-state NMR,
and scanning probe methods at sample surfaces. An innovative emerging approach utilizes
ultrafast x-ray laser pump-probe “diffract and destroy” methods which require a separate
suite of analysis algorithms (Gaffney and Chapman 2007).

A longer term goal in the field is to develop modeling frameworks incorporating all of the
available experimental probes to yield consensus best local atomic structures, and the most
recent software packages are moving in this direction. Here, we focus on the determination
of local atomic structure from PDF data.

The ideal PDF contains a list of the interatomic distances in a material for both crys-
talline or non-crystalline cases (see the next subsection). There is a very extensive literature
describing PDF experiments on a wide range of complex nanostructured materials (Egami
and Billinge 2012). Nanostructures consistent with the experimental PDF data are usually
discovered using one of two approaches: (i) By using physical intuition or theoretical mod-
eling to propose a starting structure, followed by structure refinement (Farrow et al. 2007)
or (ii) Use of global optimization methods to find structures, most often using a simulated
annealing approach that in this literature is called Reverse Monte Carlo (RMC) (McGreevy
and Pusztai 1988; Tucker et al. 2007). Nanostructures found to be consistent with the PDF
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data are then tested further by checking their properties against known results from other
experimental structural characterization approaches such as TEM, STM etc, and experimen-
tal results for electrical, mechanical, thermodynamic, optical, magnetic and other physical
properties. Quantum mechanical calculations to predict the structure and properties of com-
plex materials are utilized in making these comparisons. Though the RMCmethod is a global
optimization approach it is of limited use in finding unique nanostructures, due to the strong
metastability of the nanostructure optimization problem. However, RMC is widely utilized to
find populations of local nanostructures consistent with materials with varying local atomic
structures, such as structural glasses and liquids.

Attempts at finding unique global minimum nanostructures of solid state materials using
DG approaches is recent (see Sect. 3), despite the long history of finding global minimum
atomic structures using Bragg diffraction from single crystals. This is partly due to the fact
that only recently PDF methods have become sufficiently refined to provide high quality
distance lists.

5.3 The pair distribution function

The distances between atoms in a material are contained in the pair distribution function
(PDF). The PDF is found by taking a Fourier transform of the structure factor (see Eq. 23
below) which is extracted from the experimentally measured total scattering of x-rays,
neutrons or electrons from a sample (Egami and Billinge 2012; Billinge and Kanatzidis
2004). The PDF method is widely used to study nanostructures (Egami and Billinge 2012;
Billinge and Kanatzidis 2004; Billinge and Levin 2007) and several software packages to
find atomic structures that are consistent with PDF data are available (Evrard and Pusz-
tai 2005; Farrow et al. 2007; Tucker et al. 2007). Despite the successes of these methods,
finding high quality nanostructures from experimental PDF data remains challenging and
subject to interpretation. There is a need for efficient computational methods that have a
stronger mathematical foundation and performance guarantees. DG methods provide one
avenue to achieve these more rigorous approaches to nanostructure determination. As we
show below, a perfect PDF would yield all of the interatomic distances in the sample.
However there are many limitations in the real PDF data. First, the data is truncated at
an upper interatomic distance that is typically 3.5 nm or less, and the data is imprecise
leading to overlap of peaks and hence difficulty in extracting distances that are close in
length.

The ideal pair distribution function is defined by

g(r) = 1

r

1

n(〈 f 〉)2
∑

j �=l

f ∗
j fl δ(r − r jl). (22)

The delta function in this expression yields a set of peaks in g(r), that are located at the
values of the interatomic distances. Here, r jl is the distance between atoms j and l located
at positions r j and rl so that r jl = ||rl − r j ||. n is the total number of atoms in the structure,
where j = 1, . . . , n and l = 1, . . . , n. f j is the scattering power of the atomat position r j , and
f ∗
j is its complex conjugate. The scattering power is found by taking a Fourier transform of

the electron charge density (for x-ray or electron scattering) or the nuclear potential (neutron
scattering).

The measured structure factor, extracted from scattering experiments in the kinematical
limit where multiple scattering is ignored, is given by (see Sivia 2011, Chapter 3)
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S(Q) ∝
∑

j,l

f ∗
j fl e

iQ·(r j−rl ), (23)

where Q = k − k′ is the scattering wavevector which is the difference of the incoming and
outgoing wavevectors of the particle that is scattered. For elastic scattering, the magnitudes
of the scattering wavevectors are the same, k = k′, where k is the magnitude of k. The term
j = l is called the self-scattering term, and is usually treated separately and normalized in
the following way,

S(Q) = 1 + 1

n(〈 f 〉)2
∑

j �=l

f ∗
j fl exp

(
iQ · r jl

)
. (24)

(〈 f 〉)2 is the mean square averaged scattering power, where the average is taken over all scat-
terers in the system. PDF analysis is usually used when the material samples are amorphous
or powders so that the scattering is independent of sample orientation and an average over
the scattering angles yields

S(Q) = 1 + 1

n(〈 f 〉)2
∑

j �=l

f ∗
j fl

sin
(
Q r jl

)

Qr jl
, (25)

where Q is the magnitude of Q and r jl is the magnitude of r jl .
For convenience in comparing different materials, the PDF above is often normalized so

that it approaches one at large distances. From the relations (22) and (25), it is easy to see that
the structure factor (the experimentally measured quantity) is related to the pair distribution
function through

g(r) = 2
π

∫ ∞

0
Q[S(Q) − 1]sin(Qr)dQ. (26)

From the point of view of DG, the key feature of the pair distribution function as defined in
Eq. (22) is that it contains a list of interatomic distances without any specific reference to the
particular atoms at the endpoints of each distance, so finding atomic structure from the PDF
requires solution to a uDGP.

The vector PDF is given by,

G(r) = 1

(2π)3

∫ ∞

−∞
Q[S(Q) − 1]eiQṙdQ. (27)

The vector PDF contains a list of interatomic vectors without specific reference to the par-
ticular atoms at the endpoints of each distance, so that a uVGP needs to be solved. It is
interesting to note that Patterson methods used in solving structure from crystals leads to an
aVGP problem (see Sect. 5.5).

The experimental PDF does not have delta function peaks as occurs in the ideal PDF
of Eq. (22). The experimental peak width is determined by both physical processes and
experimental resolution (Egami and Billinge 2012). In structures with high symmetry, such
as Ni which crystallizes into a face-centered cubic structure, distances of the same length
occur frequently and the degeneracy of each distance can be estimated from the area of each
peak. Extraction of high quality distance lists requires high purity samples, high resolution
detectors and careful data analysis.
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Fig. 11 Reconstruction of a buckeyball from experimental neutron scattering data. a–c Are various forms of
the experimental data, starting with the raw structure factor data. The imprecise distance list of d extracted
from this data is the only information that is used to find the correct structure. (Reroduced with permission
from Juhás et al. 2006, 2008)

5.4 Solution to uDGP for a fullerenemolecule

An illustration of the solution to the C60 fullerene using the LIGA algorithm for uDGP is
presented in Fig. 11, showing that it is possible to reconstruct interesting nanostructures
from unassigned distance lists extracted from real experimental PDF data. A large number
of other structures have been reconstructed using LIGA using precise distance lists and also
from experimental data (Juhas et al. 2010). LIGA works well when structures have high
symmetry leading to a limited number of unique distances. However, LIGA has difficulty
with structures that have a large number of different distances due to the stochastic nature of
its vertex addition procedures. The emergence of DGP GRB methods, such as those used in
TRIBOND, provide new avenues for improving LIGA (see Sect. 3.2).

When the distance list D is obtained from experimental PDF data (see Sect. 5.3), they
may contain significant errors in the multiplicity and values of the distances (see Fig. 11).
This is a problem especially because underestimated multiplicities may greatly increase the
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cost of the correct structure. Under such circumstances it is advantageous to relax or even
ignoremultiplicities altogether. In the first case, the distance table is constructedwith distance
multiplicities increased by a fixed percentage, and thus it contains more lengths than actually
present in the searched structure. In the second case, the program allows any distance to be
compared with the model structure an arbitrary number of times. This is in effect the same
as setting infinite multiplicities for all lengths in the target set. It is also possible to relax
the condition of a fixed target size n, in which case the largest cluster size keeps growing.
However since the distances have a fixed maximum length, the cost of the large structures
grows significantly, indicating the true largest cluster consistent with the input distance list.

One clear lesson emerging from experiences with the TRIBOND and LIGA algorithms,
and which has also been emphasized in recent work on BP methods for DGPs, is that the
ordering of vertices used in reconstruction from distance information is very important. This
leads to the viewpoint that it is more effective to find a smaller number of high precision
distances in a core, than it is to find a larger number of low precision distances that are not
closely related.

5.5 VGP and the Patterson function

Patterson (1934) realized that x-ray scattering data from single crystals could be used to find
the vector distances between atoms in the unit cell of the crystal. The Patterson function is
defined through the relation.

P(u, v, w) =
∑

hkl

|Fhkl |2 e−2π i(hu+kv+lw). (28)

It is essentially the Fourier transform of the scattering intensities and does not include the
phase. The Patterson function is also equivalent to the electron density convolved with its
inverse:

P (u) = ρ (r) ∗ ρ (−r) . (29)

A Patterson map of n random points has n(n − 1) unique peaks, excluding the central
(origin) peak and any overlap.

The peaks positions in the Patterson function give the interatomic distance vectors and the
peak heights are proportional to the product of the number of electrons in the atoms concerned.
For each vector between atoms i and j there is an oppositely oriented vector of the same
length (between atoms j and i). Though the phase is not explicitly used in the analysis,
Patterson realized that if the interatomic vectors could be used to find the atomic structure,
then the “phase” problem would be solved. There was thus a great deal of excitement about
this method. However despite early successes on small molecules Patterson methods were
found to be best when used to find the locations of heavy atoms which give the strongest
peaks in the Patterson map.
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6 Conclusions

We updated our earlier review on some methods for the assigned and the unassigned dis-
tance geometry problems (aDGP and uDGP); particularly methods that determine graph
embeddings by iteratively growing substructures. Starting with a general discussion on graph
rigidity, we have presented twomain approaches to theDGP. The first approach, for the uDGP,
is strongly based on the concept of finding unique substructures during iterative growth of
a final unique realization. The second, the discretizable distance geometry problem was ini-
tially conceived for the aDGP, and reduces the search space to a discrete one having the
structure of a tree. We focused our attention on two particular applications: the identifica-
tion of conformations of protein molecules and determining the nanostructures of complex
materials.

The discretizable distance geometry problem is unique in that it maps out different con-
formational states in proteins. These states are typically related to each other by large scale
motion of rigid regions of the protein, making it difficult to explore them using conventional
methods. The use of these different conformational states as initial states for conventional
methods is an interesting direction for future work. Significant progress has also been out-
lined in treating uncertainty intervals, particularly toward finding feasible solutions in systems
with intervals. An alternative approach in emerging work is to consider lists of incompatable
distances chosen according to typical experimental uncertainties, and to look for optimal
structures.

The unassigned distance geometry problem is relatively unexplored and the build up
methods, like TRIBOND and LIGA are first generation algorithms. Though LIGA is able to
treat errors in experimental distance lists, the method is not designed to handle low symmetry
structures, like polymers or proteins, or even solid state nanoparticles with little symmetry.
Nevertheless LIGA finds structures that are optimal and for high symmetry structures is very
effective, for example the fullerene case. From a modeling perspective, the GRB studies
clearly show that the most time consuming part of the TRIBOND and LIGA algorithms is
finding a good starting core, so this is an interesting direction for future studies. There are
a variety of strategies to implant a known core into a system so that the unknown structure
can be determined with respect to it. Larger known cores also help mitigate errors in buildup
due to experimental uncertainties.

The vector geometry problem introduced here does not seem to be an active area of
research in the mathematics and OR communities, though its importance to protein structure
determination has been known since the very early days of x-ray crystallography. The Patter-
son function found from scattering data from crystals leads to the set of interatomic vectors in
the atomic structure, and the inverse problem is to find the atom locations from these vectors.
We showed that the buildup methods developed for the DGP can be adapted to the VGP
and that the latter problem is computationally more efficient. The interatomic vectors found
from the Patterson function are assigned leading to a new matrix completion problem where
the entries in the matrix are the interatomic vectors. The PDF is also being extended to the
vector case, and from the vector PDF an unassigned list of interatomic vectors is found. The
aVGP and uVGP thus have interesting experiment connections, and for this reason and their
interesting mathematical structure makes them intriguing directions for future work.

Further discussion of interesting future directions can be found in Gonçalves et al. (2017),
Liberti and Lavor (2016, 2018).
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