
Annals of Operations Research (2019) 275:511–530
https://doi.org/10.1007/s10479-018-2967-z

ORIG INAL RESEARCH

Two-machine flowshop scheduling problemwith
coupled-operations

Nadjat Meziani1,3 · Ammar Oulamara2 ·Mourad Boudhar3

Published online: 6 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
This paper addresses a generalization of the coupled-operations scheduling problem in the
context of a flow shop environment. We consider the two-machine scheduling problem with
the objective of minimizing the makespan. Each job consists of a coupled-operation to be
processed first on the first machine and a single operation to be then processed on the second
machine. A coupled-operation contains two operations separated by an exact time delay. The
single operation can start on the second machine only when the coupled-operation on the
first machine is completed. We prove the NP-completeness of two restricted versions of the
general problem, whereas we also exhibit several other well solvable cases.

Keywords Flowshop · Coupled-operations · Complexity · Polynomial time algorithms

1 Introduction

The coupled-operations scheduling problem was first introduced by Shapiro (1980). It con-
sists of a set of n jobs to be scheduled on a single machine. Each job j consists of a
coupled-operation. A coupled-operation is made of two operations that have to be processed
with an intermediate exact delay L j , i.e., if C1

j and S2j denote the completion time and the
start time of the first and the second operation of job j , respectively, then, in a valid schedule,
we have S2j − C1

j = L j . Each job j is thus described by a triplet (a j , L j , b j), where a j and
b j denote the processing times of the first and the second operation of job j , respectively,

B Ammar Oulamara
oulamara@loria.fr

Nadjat Meziani
ro_nadjet07@yahoo.fr

Mourad Boudhar
mboudhar@yahoo.fr

1 Abderrahmane Mira University, Bejaia, Algeria

2 LORIA Laboratory, UMR CNRS 75003, University of Lorraine, Campus Scientifique, 615 Rue du
Jardin-Botanique, 54506 Vandoeuvre-lès-Nancy, France

3 RECITS Laboratory, Faculty of Mathematics, University of Sciences and Technology Houari
Boumediene (USTHB), BP 32, El-Alia, 16111 Bab-Ezzouar, Algiers, Algeria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-018-2967-z&domain=pdf

512 Annals of Operations Research (2019) 275:511–530

separated by the exact time delay L j , as illustrated in Fig. 1. The objective we seek to mini-
mize is the overall completion time (known as the makespan) or some other regular objective
functions. Orman and Potts (1997) denoted this problem as (a j , L j , b j).

The motivation for the coupled-operation scheduling problem comes from the radar activ-
ities, where two subsequent pulses are used to compute the speed and the trajectory of a
moving object. The emission pulse and the receptive pulse to detect an object are separated
by a fixed time delay (Shapiro 1980). Other applications in robotic cells are cited in Brauner
et al. (2009).

Orman and Potts (1997) studied the (a j , L j , b j) problem where they enumerated several
problems and arranged them hierarchically according to their complexity status. Ageev and
Kononov (2007) provided several approximation algorithms depending on the values of a j

and b j . Ageev and Baburin (2007) proposed a 7/4-approximation algorithm for that problem.
A few works considered additional constraints to the coupled-operation problem. We may
cite Blazewicz et al. (2010) where it is shown that the (a j = b j = 1, L j = l) problem is
NP-hard if precedence constraints between the coupled operations are considered. However,
for a tree, the corresponding problem is solvable in linear time. Simonin et al. (2010) showed
that the (a j = b j = 1, L j) problem with precedence and compatibility constraints among
the coupled operations is NP-hard. Let us also mention the paper of Ahr et al. (2004) for
the (a, L, b) problem for which an algorithm with a time complexity O(nr2L) is presented,
where r ≤ a−1

√
a. A general survey on this problem is presented in Blazewicz et al. (2012).

In the context of the standard flowshop, research has mainly focused on cases with min-
imum time delays in which a minimum time delay must elapse between two successive
operations of a job. The mostly studied problem is the two-machine case with respect to
the makespan, denoted F2|L j |Cmax. The corresponding problem with unit-time operations
is NP-hard (Yu et al. 2004). In the approximation front, Dell’Amico (1996) provided a 2-
approximation algorithm for F2|L j |Cmax, Karuno and Nagamochi (2003) improved on this
and gave an 11

6 -approximation algorithm. Ageev (2008) showed that the worst case ratio
could be improved to 3

2 if a j = b j for each job, j = 1, . . . , n. However, if we restrict the
problem to the permutation case, Mitten (1958) provides a polynomial time algorithm.

Anothermodel has also been proposed in the literature in which, in addition to theminimal
time delay constraints, a maximal time delay is imposed on the processing of jobs (i.e., the
following operation of a jobmust be processedwithin a time interval during their processing).
For more details, see e.g. (Fondrevelle et al. 2006, 2008). Let us note that the flowshop
scheduling problem with exact time delays is a special case of the problem minimum time
delays. This problem received little attention in the literature.

Fig. 1 Examples of job
interleaving

123

Annals of Operations Research (2019) 275:511–530 513

In this paper we consider the two-machine flowshop scheduling problem with coupled-
operations with exact delays. More precisely, in this model, each job consists of a coupled-
operation processed on the first machine and a single operation that has to be processed on the
secondmachine. The coupled-operation on the first machine comprises of two parts separated
by an exact time delay.Moreover, the operation on the secondmachine can start onlywhen the
coupled-operation on the first machine is completed. The motivation of flowshop scheduling
problems with coupled-operations is encountered in chemical workshop production systems
where each machine must carry out several operations of the same job and an exact delay
is imposed between the execution of each two consecutive operations on the same machine
due to some chemical reactions (Chu and Proth 1994).

This paper is organized as follows. In Sect. 2, a description and classification of problems
under study are presented. In Sect. 3, we provide NP-hardness results for several restricted
versions of the general problem, whereas, in Sect. 4, we discuss several well solvable cases.
Section 5 is our conclusion.

2 Problem description and classification

We consider the flowshop scheduling problem with two machines M1 and M2. A set J =
{1, . . . , n} of jobs needs to be scheduled first on M1, and then on M2. Each job j consists of a
coupled-operation O1, j and a single operation O2, j . Each coupled-operation O1, j of job j is
described by a triplet (a j , L j , b j)where a j and b j are the processing times of the first and the
second part, respectively, and L j denotes the exact time delay that separates the processing of
the two parts. Operation O2, j is described by its processing time c j . For each job j , operation
O2, j can start only when the two parts of O1, j are completed on machine M1. The objective
is to minimize the makespan. This problem is denoted hereafter by F2(a j , L j , b j , c j).

Orman and Potts (1997) studied the coupled-operations on a single machine, and derived
several results depending on the values of a j , L j and b j . They also provided a classification
of these problems depending on their complexity status. Clearly, all NP-hard problems on a
single machine remain NP-Hard in the case of a flowshop. Thus, in this paper, we focus our
attention on problems that are already polynomially solvable in the case of a single machine.
Figure 2 provides a graph of all polynomially solvable problems discussed in Orman and
Potts (1997) and the relations between these problems. In this graph arc directed from a
special case to a more general problem and edges connect identical problems. For instance,
problem (a j = a, b j = L j = p) is a special case of problem (a j , b j = L j = p), where a j

(j = 1, . . . , n) is unrestricted.
We thus extend the complexity graph to the two-machine flowshop environment as in

Fig. 3. Table 1 summarizes the results of two-machine flow shop environment with coupled-
operations.

Before developing our contributions, we recall here two main results of the literature
that will be used along this paper. The first result concerns the scheduling of n jobs in two
machines flowshop problem. Given a set S of n jobs, each job J j is characterized by its
processing times p1, j and p2, j on first and second machines respectively, the objective is
minimizing makespan. Johnson (1954) proposed a polynomial time algorithm in O(nlogn)

that proceed as in Algorithm 0.

123

514 Annals of Operations Research (2019) 275:511–530

Algorithm 0
Require: p1, j , p2, j , j = 1, . . . , n
Ensure: optimal sequence S
1: divide the n-job set into two disjoint subsets, S1 and S2, where S1 = {Ji : pi,1 ≤ pi,2} and S2 = {Ji :

pi,1 > pi,2}.
2: order the jobs in S1 in increasing order of pi,1, break ties arbitrarily.
3: order the jobs in S2 in decreasing order of pi,2, break ties arbitrarily.
4: optimal sequence S is given by merging sequence jobs in S1 first, followed by S2.

The second result concerns the scheduling of n jobs with time-lags on two machines
flowshop problem. Time lag is an additional time delay must elapse between completing
a job at first machine and starting it at the second machine. More precisely, each job is
characterized by p1, j , p2, j and l j where p1, j and p2, j are the processing times and l j is the
time lag. When there are no lags, a permutation schedule is always optimal in a two-machine
flowshop for any regular criteria. However with time-lag this is no longer true. When the
job order cannot change from machine one to machine two, i.e., we seek for permutation

aj = Lj = p, bj

aj = Lj = p, bj = b

aj , bj = Lj = p

aj = a, bj = Lj = p aj = bj = p, Lj = l

aj = bj = Lj = p

Fig. 2 Polynomially solvable problems (Orman and Potts 1997)

F2(aj , bj , Lj , cj)

F2(p, p, bj, cj)

F2(p, p, b, cj)F2(a, p, p, cj) F2(p, L, p, cj)

F2(p, p, bj, c)

F2(p, p, bj, p)

F2(aj , p, p, c)

F2(aj , p, p, p)

. .

Polynomial problems

NP-Hard problems

F2(aj , p, p, cj) F2(p, Lj, p, cj)

F2(p, p, p, cj)

Fig. 3 Two-machine flowshop complexity classification problems

123

Annals of Operations Research (2019) 275:511–530 515

Table 1 Complexity status of two-machine flowshop scheduling with coupled-operations

Problem Complexity Reference

F2(a, p, p, c j) O(nlogn) Section 4.1

F2(p, p, b, c j) O(nlogn) Section 4.1

F2(p, L, p, c j) O(nlogn) Section 4.2

F2(a j , p, p, c) O(n2logn) Section 4.3

F2(p, p, b j , c) O(n2logn) Section 4.3

F2(a j , p, p, c j) Weakly NP-hard Section 3.1

F2(p, p, b j , c j) Weakly NP-hard Section 3.2

F2(p, L j , p, c j) Strongly NP-hard Orman and Potts (1997)

Table 2 Jobs processing times Jobs a j c j

U j , j = 1, . . . , 2n p − e j e j
V p + 1 4p

W p 0

T B + p + 1 − n (4n + 1)p − 2B

solution, Mitten (1958) observed that the O(nlogn) algorithm of Johnson could be extended
to handle time lag. Mitten’s algorithm apply Jonhson’s algorithm to modified job processing
times, in which processing times p1, j and p2, j are replaced by p1, j + l j and p2, j + l j ,
respectively.

3 NP-hardness results

This section is entirely devoted to NP-completeness proofs of several variants of the problem
we are considering in this paper.

3.1 Problem F2(aj, p, p, cj)

In this section, we consider the problem F2(a j , p, p, c j). We show its NP-hardness from
the partition problem with equal size, known to be NP-Hard (Garey and Johnson 1979).

The partition with equal size decision problem (PES) is stated as follows: Given is a set
E = {e1, e2, . . . , e2n} of 2n positives integers, where

∑2n
j=1 e j = 2B for some integer B.

Does there exist a partition of E into two disjoint subsets E1 and E2 such as
∑

j∈E1
e j =∑

j∈E2
e j = B and |E1| = |E2| = n? In our proof we assume that e j > 1, j = 1, . . . , 2n.

Given an arbitrary instance of PES,we construct an instanceI of problem F2(a j , p, p, c j)
with a set of 4n + 2 jobs as follows:

• Jobs of type U , denoted Uj , j = 1, . . . , 2n;
• n identical jobs denoted V ;
• n + 1 identical jobs denoted W ;
• One job denoted T ;

For all jobs, we set L j = b j = p, j = 1, . . . , 4n + 2, where p > B. The processing times
of jobs on M1 and M2 are given in Table 2.

123

516 Annals of Operations Research (2019) 275:511–530

Fig. 4 Example of composite job (VW)

We show that the PES problem has a solution if, and only if, the scheduling problem admits
a solution S with Cmax (S) ≤ y, where y = 4(2n + 1)p + 1.

In the following, the notation (XY)-job where X , Y ∈ {T ,U , V ,W } refers to the com-
posite job (XY) in which jobs X and Y are interleaved and the first operation of X is on
the first position. For instance, the composite job (VW) can be seen as a compact job with
processing times 4p+1 and 4p onmachinesM1 andM2, respectively, and a time-lag l = −p
(see Fig. 4).

Lemma 1 If PES problem has a solution then instance I of F2(a j , p, p, c j) has a feasible
solution S such that Cmax (S) ≤ y.

Proof Let E1 and E2 be the partition of set E such that
∑

j∈E1
e j = ∑

j∈E2
e j = B where

each set E1 and E2 contains exactly n elements. We can schedule the jobs of instance I as
follows:

Let I1 and I2 be the subset ofU -jobs corresponding to E1 and E2, respectively. Let S be a fea-
sible schedule of instance I in whichU -jobs of J1 (J2) are interleaved with V -jobs (W -jobs),
and the job T is interleaved with jobW . Let (VU)-jobs = {(VU)1, . . . , (VU)n}, (UW)-jobs
= {(UW)1, . . . , (UW)n} and (WT)-job be the composite jobs obtained by the interleaving
operation. The Schedule S is constructed as follows (see Fig. 5): start by scheduling (VU)-
jobs, followed by (TW)-job, then complete the schedule with (UW)-jobs. The composite
jobs of set (VU)-jobs ((UW)-jobs) in schedule S can be chosen in an arbitrary order. Clearly
in S there is no idle-time between composite jobs on M1 and M2. It then follows

Cmax (S) = p + 1 + 2p + 4np +
∑

j∈J1

e j + (4n + 1)p − 2B +
∑

j∈J2

e j

= 4p + 8np + 1 = 4(2n + 1)p + 1.

��
Let A j and Bj be the processing times of the composite jobs on M1 and M2, respectively,
and � j the time lag of the composite jobs, as shown in Fig. 7. Table 3 summarizes the values
of A j , Bj and � j of all possible composite jobs related to instance I.

Depending on the processing times of the composite jobs, we have

• In a composite job (TU), job T can only be in the first position.
• The processing time of composite job (UjW) is smaller than the processing time of

(WUj) on M1, then in schedule S, all composite jobs (WUj) can be transformed into
(UjW) by changing the interleaving order of jobsW andUj without increasing the value
of the makespan.

123

Annals of Operations Research (2019) 275:511–530 517

Fig. 5 Schedule S

Table 3 Processing times of
composite jobs

Jobs A j B j l j

(VU j) 4p + 1 4p + e j − p

(VW) 4p + 1 4p − p

(TU j) B + 4p + 1 − n (4n + 1)p − 2B + e j − p

(TW) B + 4p + 1 − n (4n + 1)p − 2B − p

(UiU j) 4p − ei ei + e j − ei
(UjW) 4p − e j e j − e j
(WW) 4p 0 0

Fig. 6 Some notations

Let S be a feasible schedule of instance I and let X1, X2, Y1 and Y2 be the processing times
of interleaved jobs related to the position of job T in schedule S as shown in Fig. 6. Clearly,
LB = X1 + max{X2, Y2} is a lower bound on the makespan.

Lemma 2 If instance I admits a feasible solution S with Cmax (S) ≤ y, then PES problem
has a solution.

Proof In order to proof this lemma, we need the following claims. ��
Claim 2.1 In a feasible schedule S, all jobs are interleaved.

Proof of Claim 2.1 Assume that in a schedule S at least two jobs are not interleaved. Let us
consider that the U -jobs are indexed in non increasing order of e j values of their processing
time a j . Since the total processing time of composite jobs on firstmachine is a lower bound on
the makespan, then the best interleaving operation of jobs that minimize the total processing
time on the first machine is a lower bound on S.

Let us consider the following interleaving operation of jobs: n composite jobs (VW),
one composite job (TW), and n − 1 composite jobs (UiUk) where i = n, . . . , 2n − 2;

123

518 Annals of Operations Research (2019) 275:511–530

k = 1, . . . , n − 1, and jobsU2n−1 andU2n are scheduled alone, respectively. It is easy to see
that this interleaving operation of jobs provides the minimal total processing time of jobs on
the first machine when exactly two jobs not interleaved. Thus, comparing the makespan of
S with the total processing times of jobs in S on the first machine, we have

Cmax (S) ≥ (B + p + 1 − n + 3p) + n(4p + 1) + 4np + 2p −
2n−2∑

j=n−1

e j − e2n−1 − e2n

≥ 4(2n + 1)p + 1 + 2p + B −
2n∑

j=n−1

e j

≥ y + 2p + B −
2n∑

j=n−1

e j

Since p > B and
∑2n

j=n−1 e j < 2B, we have 2p+B−∑2n
j=n−1 e j > 0 henceCmax (S) > y.

It then follows that in a feasible solution all jobs are interleaved. ��

Claim 2.2 In a feasible schedule S, there is no composite (UU)-jobs.

Proof of Claim 2.2 Assume that there exists one composite job (UU) in schedule S. Assume
that this (UU)-job is composed of a pair (Ui ,Uj) of jobs in which Ui is interleaved with
Uj and the othersU -jobs are interleaved with V -jobs,W -jobs and T -job. We distinguish the
following cases:

(a) T is interleavedwithW . Then n W -jobs, n V -jobs and (2n−2)U -jobs remain.Depending
on these remaining jobs, two ways of their interleaving are possible, namely,

1. (TW), (WW), (VUk)k∈I1 , (UkW)k∈I2 , where |I1| = n, |I2| = n − 2 and I1 ∪ I2 ∪
{i, j} = {1, . . . , 2n}.

2. (TW), (VW), (VUk)k∈I1 , (UkW)k∈I2 , where |I1| = n − 1, |I2| = n − 1 and I1 ∪
I2 ∪ {i, j} = {1, . . . , 2n}.

(b) T is interleaved with an U -job. Then n V -jobs, (n + 1) W -jobs and (2n − 3) U -jobs
remain. Again, depending on these remaining jobs, three ways of their interleaving are
possible, namely,

1. (TUr), (WW), (WW), (VUk)k∈I1 , (UkW)k∈I2 , where |I1| = n, |I2| = n − 3 and
I1 ∪ I2 ∪ {i, j, r} = {1, . . . , 2n}.

2. (TUr), (WW), (VW), (VUk)k∈I1 , (UkW)k∈I2 , where |I1| = n−1, |I2| = n−2 and
I1 ∪ I2 ∪ {i, j, r} = {1, . . . , 2n}.

3. (T ,Ur), (VW), (VW), (VUk)k∈I1 , (UkW)k∈I2 , where |I1| = n − 2, |I2| = n − 1
and I1 ∪ I2 ∪ {i, j, r} = {1, . . . , 2n}.

In the following we examine the value of the makespan of each sequence of interleaving
jobs.

Case a.1:According to Mitten’s algorithm (Fondrevelle et al. 2006), the optimal schedule of
the composite jobs is given by the sequence S = 〈(VUk)k∈I1 , (TW), (UiU j), (UkW)k∈I2 ,
(WW)〉. Depending on the processing times of these composite jobs given in Table 3, the

123

Annals of Operations Research (2019) 275:511–530 519

parameters X1, X2, Y1 and Y2 (see Fig. 6) of sequence S are as follows:

X1 = 4np + 3p + B + 1, X2 = 4pn + p −
(

∑

k∈I2
ek + ei

)

.

Y1 = 4np +
(

∑

k∈I1
ek

)

, Y2 = 4np + p − 2B +
(

∑

k∈I2
ek + ei + e j

)

.

Then, the lower bound of Cmax (S) is

LB = X1 + max{X2, Y2}

= 8np + 4p + 1 + max

⎧
⎨

⎩
B −

⎛

⎝
∑

k∈I2
ek + ei

⎞

⎠ ,

⎛

⎝
∑

k∈I2
ek + ei + e j

⎞

⎠ − B

⎫
⎬

⎭

= y + max

⎧
⎨

⎩
B −

⎛

⎝
∑

k∈I2
ek + ei

⎞

⎠ ,

⎛

⎝
∑

k∈I2
ek + ei + e j

⎞

⎠ − B

⎫
⎬

⎭

Since max{B − (
∑

k∈I2 ek + ei), (
∑

k∈I2 ek + ei + e j) − B} > 0 then LB > y. Thus S
is not a feasible solution with Cmax (S) ≤ y.

Case a.2: The optimal sequence in this case is S = 〈(VUk)k∈I1 , (TW), (VW), (UiU j),

(UkW)k∈I2〉. The parameters X1, X2, Y1 and Y2 are as follows.

X1 = 4np − p + B, X2 = 4np + 5p + 1 −
(

∑

k∈I2
ek + ei

)

Y1 = 4np − 4p +
(

∑

k∈I1
ek

)

, Y2 = 4np + 5p − 2B +
(

∑

k∈I2
ek + ei + e j

)

.

The lower bound LB is such that

LB = X1 + max{X2, Y2}

= 8np + 4p + 1 + max

⎧
⎨

⎩
B −

⎛

⎝
∑

k∈I2
ek + ei

⎞

⎠ ,

⎛

⎝
∑

k∈I2
ek + ei + e j

⎞

⎠ − B − 1

⎫
⎬

⎭
.

= y + max

⎧
⎨

⎩
B −

⎛

⎝
∑

k∈I2
ek + ei

⎞

⎠ ,

⎛

⎝
∑

k∈I2
ek + ei + e j

⎞

⎠ − B − 1

⎫
⎬

⎭

Since ∀k, ek > 1, we have max{B− (
∑

k∈I2 ek + ei), (
∑

k∈I2 ek + ei + e j)− B−1} > 0,
then LB > y. Thus S is not a feasible solution with Cmax (S) ≤ y.

Case b.1: The optimal sequence of the composite jobs in this case is defined by
S = 〈(VUk)k∈I1 , (TUr), (UiU j), (UkW)k∈I2 , (WW), (WW)〉. The parameters X1, X2,

Y1 and Y2 are:

X1 = 4np + B + 3p + 1, X2 = 4np + p −
(

∑

k∈I2
ek + ei

)

Y1 = 4np + ∑

l∈k1
ek, Y2 = 4np + p − 2B +

(
∑

k∈I2
ek + ei + e j + er

)

.

123

520 Annals of Operations Research (2019) 275:511–530

Then the lowed bound of Cmax (S) is LB = X1 +max{X2, Y2} = y+max{B − (
∑

l∈I2 el +
ei), (

∑
l∈I2 el + ei + e j + ek) − B}. Since max{B − (

∑
l∈I2 el + ei), (

∑
l∈I2 el + ei + e j +

ek) − B} > 0 then LB > y. Thus S is not a feasible solution with Cmax (S) ≤ y.

Case b.2: The optimal sequence of the composite jobs in this case is defined by

S = 〈(VUk)k∈I1 , (TUr), (VW), (UiU j), (UkW)k∈I2 , (WW)〉.
The parameters X1, X2, Y1 and Y2 are:

X1 = 4np − p + B, X2 = 4np + 5p −
(

∑

k∈I2
ek + ei

)

Y1 = 4np − 4p +
(

∑

k∈I1
ek

)

, Y2 = 4np + 5p − 2B + (
∑

k∈I2 ek + ei + er).

Then the lowed bound of Cmax (S) is LB = X1 + max{X2, Y2} = y + max{B −
(
∑

k∈I2 ek + ei + 1), (
∑

k∈I2 ek + ei + e j + er) − B − 1}. Since ∀k, ek > 1, then
max{B − (

∑
k∈I2 ek + ei + 1), (

∑
k∈I2 ek + ei + e j + er)− B − 1} > 0, then LB > y. Thus

S is not a feasible solution with Cmax (S) ≤ y.

Case b.3: The optimal sequence of the composite jobs of this case is defined by
S = 〈(VUk)k∈I1 , (TUr), (VW), (VW), (UiU j), (UkW)k∈I2 . The parameters X1, X2, Y1

and Y2 are:

X1 = 4np − 5p − 1 + B, X2 = 4np + 9p + 2 −
(

∑

k∈I2
ek + ei

)

Y1 = 4np − 8p +
(

∑

k∈I1
ek

)

, Y2 = 4np + 9p − 2B +
(

∑

k∈I2
ek + ei + e j + er

)

.

Then the lowed bound ofCmax (S) is LB = X1 +max{X2, Y2} = y+max{B− (
∑

k∈I2 ek +
ei), (

∑
k∈I2 ek + ei + e j + er) − B − 1}. Since ∀k, ek > 1, we have max{B − (

∑
k∈I2 ek +

ei), (
∑

k∈I2 ek + ei + e j + er) − B − 1} > 0, then LB > y. Thus S is not a feasible solution
with Cmax (S) ≤ y.

Note that if we havemore than one interleaving (UU)-jobs then X2 increases and LB > y.
��

Claim 2.3 In a feasible schedule S, the T -job is interleaved with W-job.

Proof of Claim 2.3 Assume that in a schedule S, T is interleaved with U -job, and let Ur be
that job. From Claims 2.1 and 2.2, the only possible composite jobs are

1. (VUk)k∈I1 , (UkW)k∈I2 , (VW) where |I1| = n − 1, |I2| = n and I1 ∪ I2 ∪ {r} =
{1, . . . , 2n}.

2. (VUk)k∈I1 , (UkW)k∈I2 , (WW) where |I1| = n, |I2| = n − 1 and I1 ∪ I2 ∪ {r} =
{1, . . . , 2n}.

For above cases the optimal sequences are

• Case 1. S = 〈(VUk)k∈I1 , (TUr), (VW), (UkW)k∈I2〉
• Case 2. S = 〈(VUk)k∈I1 , (TUr), (UkW)k∈I2 , (WW)〉

123

Annals of Operations Research (2019) 275:511–530 521

Table 4 Jobs processing times

Jobs b j c j

U j , j = 1, . . . , 2n p − e j e j
V p + 1 5p + 1

W p 0

T (n + 2)p + B + 1 4p(n + 1) − 2B + 1

R p + 1 0

Similarly to the proof of Claim2.2, it is easy to show that for each case, we haveCmax (S) > y,
then in schedule S job T is interleaved with job W . ��

Let S be a feasible solution of instance I such that Cmax (S) ≤ y. From Claims 2.1, 2.2
and 2.3, the unique interleaved operations of jobs in schedule S is (VUk)k∈I1 , (TW) and
(UkW)k∈I2 where |I1| = n, |I2| = n and I1 ∪ I2 = {1, . . . , 2n}. The optimal sequence of
these composite jobs is S = 〈(VUk)k∈I1 , (TW), (UkW)k∈I2〉. The parameters X1, Y1, X2

and Y2 of this sequence are,

X1 = 4np + p + 1 + B, X2 = 4np + p − ∑

k∈I2
ek

Y1 = 4np + ∑

k∈I1
ek, Y2 = 4np + p − 2B + ∑

k∈I2
ek .

The lower bound LB of Cmax (S) is LB = X1 + max{X2, Y2} = y + max{B −∑
k∈I2 ek,

∑
k∈I2 ek − B}. SinceCmax (S) ≤ y, then max{B−∑

k∈I2 ek,
∑

k∈I2 ek − B} = 0.
Thus

∑
k∈I2 ek = B and

∑
k∈I1 ek = B. Then we obtain a solution for the PES problem. ��

From Lemmas 1 and 2, we have the following result.

Theorem 1 The problem F2(a j , p, p, c j) is binary NP-hard.

3.2 Problem F2(p, p, bj, cj)

In this section, we show that F2(p, p, b j , c j) is NP-hard using a reduction from the Partition
problemwithEqual Size.Given an arbitrary instance of the PESproblem,we build an instance
I of problem F2(p, p, b j , c j) with a set of 4n + 4 jobs as follows:

• Jobs of type U , denoted Uj , j = 1, . . . , 2n;
• n identical jobs denoted V ;
• n + 2 identical jobs denoted W ;
• One job denoted T ;
• One job denoted R;

For all the jobs, we set a j = L j = p, j = 1, . . . , 4n + 4, where p > B. Processing times
of jobs on M1 and M2 are given in Table 4.

We show that PES problem has a solution if, and only if, instance (I) admits a feasible
solution with Cmax(S) ≤ y, where y = 9(n + 1)p + n + 2.

Lemma 3 If PES problem has a solution, then there exists a schedule S with Cmax(S) ≤ y.

123

522 Annals of Operations Research (2019) 275:511–530

Table 5 Processing times of the
composite jobs

Jobs A j B j l j

(Uj V) 4p + 1 5p + 1 + e j − e j
(WV) 4p + 1 5p + 1 0

(WUj) 4p − e j e j 0

(Uj R) 4p + 1 e j − e j
(WW) 4p 0 0

(WR) 4p + 1 0 0

(UiU j) 4p − ei ei + e j − ei
(Uj T) B + (n + 5)p + 1 4p(n + 1) − 2B + e j − e j
(WT) B + (n + 5)p + 1 4p(n + 1) − 2B 0

Proof Assume that PES problem has a solution, and let E1 and E2 be the required subset of
E such that

∑
j∈E1

e j = ∑
j∈E2

e j = B and |E1| = |E2| = n. Let I1 and I2 be the subsets of
U -jobs corresponding to the sets E1 and E2, respectively. Then the desired schedule S exists
where the completion timeCmax(S) of schedule S is equal to 9(n+1)p+n+2. The composite
jobs and their schedule is given by sequence S = 〈(UkV)k∈J1 , (WT), (WUk)k∈J2 , (WR)〉.

��
Assume now that there exists a schedule S with makespan ≤ y, then we show that PES

problem has a solution.
As presented in Sect. 3.1, Table 5 summarizes the values of A j , Bj and l j of all possible

composite jobs related to the instance I.

Lemma 4 If instance I admits a feasible solution with Cmax (S) ≤ y, then PES problem has
a solution.

Proof In order to proof this result we need the following claims. Proof of Claims 4.1, 4.2
and 4.3 are similar to that of Claims 2.1, 2.2 and 2.3, respectively. ��
Claim 4.1 In a feasible schedule S, all jobs are interleaved.

Claim 4.2 In a feasible schedule S, there is no composite (UU)-jobs.

Claim 4.3 In a feasible schedule S, T is interleaved with W.

Claim 4.4 In a feasible schedule S, R is interleaved with W.

Proof of Claim 4.1 Assume that in schedule S, job R is not interleaved with job W but with
a job of type U . Let Ur be the U -job interleaved with R. From Claims 4.1, 4.2 and 4.3, the
only possible composite jobs are

1. (WT), (Ur R), (UkV)k∈I1 , (WUk)k∈I2 , and (WW) where |I1| = n, |I2| = n − 1 and
I1 ∪ I2 ∪ {r} = {1, . . . , 2n}.

2. (WT), (Ur R), (WV), (VUk)k∈I1 , and (UkW)k∈I2 , where |I1| = n − 1, |I2| = n and
I1 ∪ I2 ∪ {r} = {1, . . . , 2n}.

For cases 1 and 2, the optimal sequences are

• Case 1. S = 〈(VUk)k∈I1 , (WT), (UkW)k∈I2 , (Ur R), (WW)〉.
• Case 2. S = 〈(VUk)k∈I1 , (WV), (WT), (UkW)k∈I2 , (Ur R)〉.

123

Annals of Operations Research (2019) 275:511–530 523

Similarly to the proof of Claim 2.2, it is easy to show that for each above case Cmax (S) > y,
then in schedule S job R is interleaved with job W . ��

From Claims 4.1, 4.2, 4.3 and 4.4, the unique interleaved jobs operations in schedule S is
(WT), (WR), (UkV)k∈I1 , (WUk)k∈I2 where |I1| = n, |I2| = n and I1 ∪ I2 = {1, . . . , 2n}.
The optimal sequence of these composite jobs is S = 〈(UkV)k∈I1 , (WT), (WUk)k∈I2(WR)〉.
The parameters X1, X2 and Y2 of this sequence are,

X1 = 5np + 5p + B + n + 1, X2 = 4np + 4p + 1 − ∑

k∈I2
ek

Y2 = 4np + 4p + 1 − 2B + ∑

k∈I2
ek .

The lower bound LB of Cmax (S) is LB = X1 + max{X2, Y2} = y + max{B −∑
k∈I2 ek,

∑
k∈I2 ek − B}. since Cmax (S) ≤ y, then max{B−∑

k∈I2 ek,
∑

k∈I2 ek − B} = 0.
Thus

∑
k∈I2 ek = B and

∑
k∈I1 ek = B. Then we obtain a solution for the PES problem. ��

From Lemmas 3 and 4, we have the following result.

Theorem 2 F2(p, p, b j , c j) is binary NP-hard.

4 Well solvable cases

In this section, we discuss special cases that can be solved polynomially.

4.1 Problem F2(a, p, p, cj)

In this section we consider the problem F2(a, p, p, c j). Clearly, interleaving operation is
possible only if a ≤ p, otherwise each job is scheduled separately. In the following we
assume that a ≤ p. The following lemmas are useful to provide a polynomial algorithm for
F2(a, p, p, c j).

Lemma 5 There exists an optimal schedule in which all jobs are interleaved except one if the
number of jobs is odd.

Proof Let S be an optimal schedule. Assume that there exist in S two jobs Ji and J j that
are scheduled separately, and assume that job Ji is scheduled before J j . Let us consider a
new schedule S′ obtained from S in which J j is interleaved with Ji to form a new composite
job (Ji J j), and the new composite job is scheduled at the position of Ji in S. The total
processing time of S′ on M1 is reduced by p + a with respect to S, and the makespan of S′
is not increased. Therefore, S′ is an optimal schedule. Repeating this argument generates a
schedule with interleaved jobs except the last if the number of jobs is odd. ��
Lemma 6 There exists un optimal schedule in which jobs are scheduled in non increasing
order of c j on the second machine.

Proof Let S be an optimal schedule in which Lemma 6 does not hold. Let Ji and J j be
the first two jobs of S for which ci ≤ c j and Ji is scheduled before J j . Consider a new
schedule S′ in which Ji and J j exchange their positions. Since all composite jobs have the
same processing time on M1, then the completion time of S′ on M1 remains unchanged.
Furthermore, the completion time of the composite job that contains Ji in S′ is not greater

123

524 Annals of Operations Research (2019) 275:511–530

than jobs in S. Thus, the new schedule S′ is also optimal. Repeating this operation yields a
schedule with the desired properties. ��
A polynomial algorithm for the problem F2(a, p, p, c j) is detailed below.

Algorithm 1
1: if a > p then
2: Apply Johnson Algorithm, where the processing times of the jobs on M1 and M2 are p1 j = a + 2p and

p2 j = c j , j = 1, . . . , n, respectively.
3: else
4: Reindex the jobs in non increasing order of their c j , j = 1, . . . , n.
5: Build the composite jobs Tj = (J2 j−1 J2 j), j = 1, . . . , n/2, if n is even or Tj = (J2 j−1 J2 j),

j = 1, . . . , (n − 1)/2 and Tn−1
2 +1 = (Jn) if n is odd.

6: Schedule composite jobs Tj in order of their indices on both machines as early as possible.
7: end if

Theorem 3 Algorithm 1 provides an optimal solution for F2(a, p, p, c j) in O(n log n)-time.

Proof If a > p jobs cannot be interleaved, then an optimal schedule is obtained by applying
Johnson’s algorithm. If a ≤ p, then from Lemmas 5 and 6, all jobs are interleaved expect the
last job if n is odd, and jobs are scheduled in nonincreasing order of their processing times on
the second machine. Algorithm 1 generates an optimal schedule with respect to Lemmas 5
and 6. Furthermore, this solution is generated in O(n log n)-time. ��
We end this section by a remark on problem F2(p, p, b, c j). Since composite jobs of prob-
lems F2(p, p, a, c j) and F2(a, p, p, c j) have same processing times on the first machine,
then F2(p, p, b, c j) and F2(a, p, p, c j) are similar and results of Lemmas 5 and 6 remain
valid for F2(p, p, b, c j). Thus, Algorithm 1 provides an optimal solution for F2(p, p, b, c j)
in O(n log n)-time.

4.2 Problem F2(p, L, p, cj)

In this section, we consider the problem F2(p, L, p, c j). When L < p, the interleaving
operation is not possible, and jobs are scheduled using Johnson Algorithm where processing
times of jobs on machines M1 and M2 are p1 j = 2p + L and p2 j = c j , j = 1, . . . , n,
respectively. Otherwise we assume, without loss of generality, that L = vp+ r where r < p
and v is non-negative integer value. In the following a composite job is called full if it consists
of (v+1) interleaved jobs (see Fig. 1). Such composite job has processing time (v+2)p+ L
on the first machine. Clearly there is an optimal schedule for the problem F2(p, L, p, c j) in
which jobs are processed on the first machine as early as possible. Such schedule contains
full composite jobs except one if the number of jobs is not multiple of (v + 1) (Fig. 7).

Fig. 7 Example of composite job

123

Annals of Operations Research (2019) 275:511–530 525

Lemma 7 In an optimal schedule, all composite jobs are full except one if the number of jobs
is not a multiple of (v + 1).

Proof Let S be an optimal schedule containing the composite jobs B1, . . . , Bu . Let Bj be the
first not full composite job of S. Let Bk be another not full composite job of S scheduled after
Bj in S. A new schedule S′ is built from S by completing Bj with jobs from Bk and shifting
all composite jobs that follow Bk in the schedule to the right. Clearly the completion time
of S′ is not greater than the makespan of S. Therefore S′ is an optimal schedule. Repeating
such modification yields a schedule whose composite jobs are full excepting the last if the
number of jobs is not a multiple of (v + 1) ��

Lemma 8 There is at least one optimal schedule in that jobs are scheduled in non increasing
order of c j on the second machine.

Proof Let S be an optimal schedule in which Lemma 8 does not hold. Let Ji and J j be the
two first jobs of S for which ci ≤ c j and Ji is scheduled before J j . Consider a new schedule
S′ in which Ji and J j exchange their positions. Since all composite jobs have the same
processing time on the first machine, then the completion time of S′ on M1 is not changed.
Furthermore, the completion time of the composite job that contains Ji in S′ is not greater than
the completion time of the composite job that contains job J j in S. Thus, the new schedule
S′ is also optimal. Repeating this operation yields a schedule with the desired properties. ��

A polynomial algorithm for F2(p, L, p, c j) is detailed below.

Algorithm 2
1: if p > L then
2: Apply JohnsonAlgorithm to the jobs,where processingof jobs onmachinesM1 andM2 are p1 j = 2p+L

and p2 j = c j , j = 1, . . . , n, respectively.
3: else
4: Let L = vp + r and n = k(v + 1) + u
5: Reindex the jobs in non increasing order of their c j , j = 1, . . . , n.
6: Build the composite jobs B j = (Jv(j−1)+ j , Jv(j−1)+ j+1, . . . , Jv(j−1)+ j+v), j = 1, . . . , k, and

Bk+1 = (Jk(v+1)+1, Jk(v+1)+2, . . . , Jk(v+1)+u).
7: Schedule composite jobs B j in order of their indices on both machines as early as possible.
8: end if

Theorem 4 Algorithm 2 provides an optimal solution for the problem F2(p, L, p, c j) in
O(nlogn)-time.

Proof If L < p jobs cannot be interleaved, then an optimal schedule is obtained by applying
Johnson’s algorithm on the jobs. If L ≥ p, then according to Lemmas 7 and 8, all composite
jobs are full expect the last job if n is not a multiple of (v+1)where L = vp+r , and jobs are
assigned to composite jobs in non increasing order of their processing times on the second
machine. Algorithm 2 generates a schedule with respect to Lemmas 5 and 8. Furthermore,
this solution is provided in O(nlogn)-time. ��

123

526 Annals of Operations Research (2019) 275:511–530

4.3 Problem F2(aj, p, p, c)

In this section, we consider the problem F2(a j , p, p, c). Let K1 = {J j | a j > p} and
K2 = {J j | a j ≤ p}, n1 and n2 the size of sets K1 and K2, respectively. We assume that jobs
in K1 and K2 are indexed in nondecreasing order of their ai . Clearly, jobs of K1 can only be
interleaved with jobs of K2, where a job of K1 is in the first position of the composite job.
However, a job of K2 can be interleaved with a job of either K1 or K2.

Let S� be the set of all jobs in which exactly � jobs of K1 are interleaved with � jobs of
K2, 0 ≤ � ≤ min{n1, n2}, and the other jobs of K1 remain single. The rest of jobs of K2

may either be interleaved between them or not. The following results are useful to build a
polynomial algorithm.

Lemma 9 There exists an optimal schedule of set S� in which the � last jobs of K2 are
interleaved with the � first jobs of K1.

Proof Wefirst prove that if in an optimal schedule of set S� the � last jobs of K2 are interleaved,
then we show that jobs of K2 are interleaved with the � first jobs of K1.

(i) Let S0 be an optimal schedule of S� that does not satisfy the first statement of Lemma 9.
Then there exists a job J K2

i , i ≤ n2−�, which is interleaved with a job of K1. Since exactly �

jobs of K1 are interleaved with jobs of K2, then there exists a job J K2
j , j ≥ n2 − �, such that

J K2
j is not interleaved in schedule S0. Let us consider a new schedule S∗ of set S� obtained

from schedule S0 by exchanging J K2
i with J K2

j . Since a j ≥ ai and J K2
i and J K2

j have the

same processing time on M2, then we haveCmax(S∗) ≤ Cmax(S0). Repeating this arguments
establishes the first statement of Lemma 9.

(ii) Let S0 be an optimal schedule of S� that satisfies the first statement of Lemma 9 but
not the second statement. Then there exists two jobs J K1

i and J K1
j , i < j , j > �, such that

J K1
j is interleaved with job J K2

k and J K1
i is scheduled on its own. In S0 we have either J K1

j

scheduled before J K1
i or scheduled after J K1

i depending on their processing times. Let us
distinguish two cases.

1. J K1
i is scheduled before J K1

j . In this case we distinguish three situations depending on

the contribution of J K1
i and J K1

j to the value of Cmax(S0): (i) J
K1
i and J K1

j are on the

critical path on M1, i.e., J
K1
i and J K1

j contribute to the value of makespan with their

processing times on M1, (ii) J
K1
i and J K1

j are not on the critical path on M1, and (iii) job

J K1
i is on the critical path on M1 but not J

K1
j . Let us consider a new schedule S∗ of set

S� obtained from schedule S0 in which J K2
k form a new composite job with J K1

i , and let
Cmax(S∗) be the makespan of S∗. If Cmax(S0) is given by Case (i) or (ii) then it is easy
to see that Cmax(S∗) = Cmax(S0). If Cmax(S0) is given by Case (iii) (see Fig. 8) then we
have c > p. From Fig. 8, we have

Cmax(S
∗) ≤ t + p + max{0, c − δ − p} + L − c

≤ t + L + max{p − c,−δ}
≤ t + L = Cmax(S

0)

2. J K1
i is scheduled after J K1

j . Again we distinguish the same three points as in Case 1,

depending on the contribution of J K1
i and J K1

j to the value of Cmax(S0). The proof of

123

Annals of Operations Research (2019) 275:511–530 527

Fig. 8 The third point of Case 1 (after the transfer of job J
K2
k)

Fig. 9 The third situation of Case 2 (after exchanging J
K2
i with J

K2
j)

point (i) and (ii) is similar to that of Case 1. We consider only the case in which job J K1
j

is on the critical path on M1 and job J K1
i is not on the critical path.

Let us consider a new schedule S∗ of set S� obtained from schedule S0 in which we
exchange J K2

i with J K2
j and J K2

k is interleaved with J K2
i . Let Cmax(S∗) be the makespan

of S∗. From Fig. 9, we have Cmax(S∗) = t + L − min{δ, a j − ai } ≤ Cmax(S0).

Repeating the arguments of Case 1 and 2 establishes the second statement of Lemma 9. ��

123

528 Annals of Operations Research (2019) 275:511–530

Fig. 10 The third point (after the transfer of the jobs J j)

In the following, we assume that set S� satisfies the statement of Lemma 9.

Lemma 10 There exists an optimal schedule of set S� in which

1. All remaining jobs of K2 are interleaved between them, except one if their number is odd.
2. Jobs J K2

1 , . . . , J K2

� n2−�

2 � are in the first positions in the new composite jobs.

Proof (1) Let S0 be an optimal schedule of S� that does not satisfy Lemma 10. Let Ji and
J j be two jobs of K2 where i < j and Ji and J j are processed on their own. According to
Mitten Algorithm, job Ji is scheduled before J j . Depending on the contribution of Ji and J j
to the value of Cmax(S0), we distinguish three cases, (i) Ji and J j are on the critical path on
the first machine, (ii) Ji and J j are not on the critical path on M1, and (iii) job Ji is on the
critical path on M1 but not J j .

Let S∗ be a new schedule of set S� obtained from schedule S0 in which a new composite
job (Ji J j) is created and scheduled at the position of Ji , and Cmax(S∗) its makespan. Clearly
if Cmax(S0) is given either by case (i) or (ii), we have Cmax(S∗) ≤ Cmax(S0). It follows S∗ is
optimal. If Cmax(S0) is given by Case (iii), we have c < 3p. In this case Cmax(S∗) decreases
by δ (see Fig. 10), i.e., Cmax(S∗) = t + (c − δ) + (L − c) = Cmax(S0) − δ. Repeating this
argument establishes the statement of Lemma 10.

(2) The second statement of Lemma 10 can be easily established with an exchange argument.
��

From Lemmas 9 and 10, the following result is straightforward.

Lemma 11 Mitten algorithm generates an optimal schedule for set S� in O(n)-time.

Let us consider the following algorithm.

123

Annals of Operations Research (2019) 275:511–530 529

Algorithm 3
1: Sort the jobs of K1 and K2 in nondecreasing order of their ai . Let S

∗ be an optimal schedule. Initially set
S∗ = ∅ and Cmax(S∗) = +∞.

2: for l = 0 to min{n1, n2} do
3: Interleave the � last jobs of K2 with the � first jobs of K1.

4: Interleave the remaining jobs of K2 between them, such that jobs J
K2
1 , . . . , J

K2

� n2−�
2 �

are in the first

positions of new composite jobs.
5: Apply Mitten’ Algorithm to schedule the new jobs. Let S∗

�
be the generated schedule.

6: if Cmax(S∗
�
) < Cmax(S∗) then

7: S∗ = S∗
�
and Cmax(S∗

�
) = Cmax(S∗)

8: end if
9: end for

Theorem 5 Algorithm 3 solves F2(ai , p, p, c) in O(n2)-time.

Proof In Algorithm 3, for each value of �, the constructed set of composite jobs satisfies
Lemmas 9 and 10. Furthermore, Algorithm 3 selects the best solution among all values of �

leading to an optimal solution for F2(a j , p, p, c). Clearly, Algorithm 3 runs in O(n2)-time.
��

Weend this section by a remark on problem F2(p, p, b j , c). Since composite jobs of prob-
lems F2(a j , p, p, c) and F2(p, p, a j , c) have same processing times on the first machine,
then F2(p, p, b j , c) and F2(a j , p, p, c) are similar and results of Lemmas 9 and 10 remain
valid for F2(p, p, b j , c). Thus, Algorithm 3 in which jobs of K1 and K2 are now sorted in
nondecreasing order of their bi provides an optimal solution for F2(p, p, b j , c) in O(n2)-
time.

5 Conclusion

In this paper, we have considered the two-machine flowshop scheduling problem with cou-
pled operations on the first machine. We showed that the two problems F2(a j , p, p, c j) and
F2(p, p, b j , c j) are weakly NP-hard. Besides, we designed polynomial algorithms for sev-
eral special cases. Let us mention a symmetric model, with respect to the makespan, may be
derived from the model we considered in this paper, namely the model in which the coupled
operations are now on the second machine. For further research, it would be interesting to
generalize our study to the case where the coupled-operations occur on both machines.

Acknowledgements The authors gratefully wish to thank the anonymous reviewers for their careful reading
of this paper and for their valuable and useful comments. Their contributions greatly helped to improve the
paper.

References

Ageev, A. (2008). A 3
2 -approximation for the proportionate two-machine flow shop scheduling with minimum

delays. In Lecture Notes in Computer Science (Vol. 4927, pp. 55–66).
Ageev, A. A., & Baburin, A. E. (2007). Approximation algorithms for UET scheduling problems with exact

delays. Operations Research Letters, 35, 533–540.
Ageev, A. A., &Kononov, A. V. (2007). Approximation algorithms for scheduling problems with exact delays.

InWAOA 2006, LNCS (Vol. 4368, pp. 1–14).

123

530 Annals of Operations Research (2019) 275:511–530

Ahr, D., Békési, J., Galambos, G., Oswald, M., & Reinelt, G. (2004). An exact algorithm for scheduling
identical coupled tasks. Mathematical Methods of Operational Research, 59, 193–203.

Blazewicz, J., Ecker, K., Kis, T., Potts, C. N., Tanas, M., &Whitehead, J. (2010). Scheduling of coupled tasks
with unit processing times. Journal of Scheduling, 13, 453–461.

Blazewicz, J., Pawlak, G., Tanas, M., & Wojciechowicz, W. (2012). New algorithms for coupled tasks
scheduling—A survey. RAIRO - Operations Research, 46(04), 335–353.

Brauner, N., Finke, G., Lehoux-Lebacque, V., Potts, C., & Whitehead, J. (2009). Scheduling of coupled tasks
and one-machine no-wait robotic cells. Computers and Operational Research, 36(2), 301–307.

Chu C., & Proth, J.-M. (1994). Sequencing with chain structured precedence constraints and minimal and
maximal separation times. In Proceedings of the fourth international conference on computer integrated
manufacturing and automation technology (pp. 333–338).

Dell’Amico, M. (1996). Shop problems with two machines and time lags. Operations Research, 44(5), 777–
787.

Fondrevelle, J., Oulamara, A., & Portmann, M. C. (2006). Permutation flowshop scheduling problem with
maximal and minimal time lags. Computers and Operations Research, 33, 1540–1556.

Fondrevelle, J., Oulamara, A., & Portmann, M. C. (2008). Permutation flow shop scheduling problems with
time lags tominimize theweighted sumofmachine completion times. International Journal ofProduction
Economics, 112, 168–176.

GareyM. R., & Johnson D. S. (1979).Computers and intractability: A guide to the theory of NP-completeness,
V. Klee (Ed.). A series of books in the mathematical sciences. San Francisco, CA: W.H. Freeman and
Co.

Johnson, S. M. (1954). Optimal two and three stage production schedules with setup time included. Naval
Research Logistics Quarterly, 1, 61–67.

Karuno, Y., & Nagamochi, H. (2003). A better approximation for the two-machine flowshop scheduling
problem with time lags. In Algorithms and computation: 14th international symposium, ISAAC 2003,
Kyoto, Japan, December 15–17, 2003.

Mitten, L. G. (1958). Sequencing n jobs on two jobs with arbitrary time lags. Management Science, 5(3),
293–298.

Orman, A. J., & Potts, C. N. (1997). On the complexity of coupled-task scheduling. Discrete Applied Mathe-
matics, 72, 141–154.

Shapiro, R. D. (1980). Scheduling coupled tasks. Naval Research Logistics Quarterly, 20, 489–498.
Simonin, G., Giroudeau, R., & Konig, J. C. (2010). Polynomial-time algorithms for scheduling problem for

coupled-tasks in presence of treatment tasks. Electronic Notes in Discrete Mathematics, 36, 647–654.
Yu, W., Hoogeveen, H., & Lenstra, J. K. (2004). Minimizing makespan in a two-machine flow shop with

delays and unit-time operations is NP-hard. Journal of Scheduling, 7, 333–348.

123

	Two-machine flowshop scheduling problem with coupled-operations
	Abstract
	1 Introduction
	2 Problem description and classification
	3 NP-hardness results
	3.1 Problem F2(aj,p,p,cj)
	3.2 Problem F2(p,p,bj,cj)

	4 Well solvable cases
	4.1 Problem F2(a, p,p,cj)
	4.2 Problem F2(p,L,p,cj)
	4.3 Problem F2(aj, p,p, c)

	5 Conclusion
	Acknowledgements
	References

