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Abstract
As the increasing application of software system in various industry, software reliability
gains more attention from the researchers and practitioners in the past few decades. The goal
of such an expanding application of software system is to continuously bring convenience
and functionality in everyday life. Lots of environmental factors defined by many studies
may have positive/negative impact on software reliability during the development process
(Zhu et al. in J Syst Softw 109:150–160, 2015; Clarke and O’Connor in Inf Softw Technol
54(5):433–447, 2012; Zhu and Pham in J Syst Softw 1–18, 2017b). However, most existing
software reliability models have not incorporated these environmental factors in the model
consideration. In this paper, we propose a theoretic software reliability model incorporating
the fault detection process is a stochastic process due to the randomness caused by the
environmental factors. The environmental factor,Percentage of ReusedModules, is described
as a gamma distribution in this study based on the collected data from industry. Open Source
Software project data are included to demonstrate the effectiveness and predictive power of
the proposed model.

Keywords Environmental factors · Percentage of Reused Modules · Gamma distribution ·
Martingale process · Software reliability growth model · Non-homogeneous Poisson
process · Brownian motion · Standard Gaussian white noise

1 Introduction

Software system is embedded in most products applied in our daily life, such as consumer
electronics, home appliances, network/grid systems, and computer systems (Rana et al. 2014).
The smooth and friendly user-interface and increasing innovation of the embedded software
system bring in more convenience and functionality in everyday life. At the same time,
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software system is becoming more sophisticated to meet various performance from different
perspectives.

As discussed in the recent publication (Bosch 2010), both the size of software system
built and the deployment speed of the new-built software system continue to evolve at a very
enormous speed. Such evolvement requires software practitioner to continuously develop
new approaches to manage the consequent implication of the environments. One of the
major transitions is most software developments have shifted their attention from building
the system toward composing system from the existing open source, commercial and internal
developed components. Under such transition, the goal will be concentrated on the creation
and functionality. Secondly, the lean and agile development approaches are commonly applied
inmany software development processes nowadays. Small team, short development iteration,
and frequent deployment are the main elements of this approach. The third trend is the
increasing adoption of software ecosystem. The development of new functionality can be
occurred outside of the platform, not limited in the organization. App-store styled approaches
are introduced by many companies to provide this feature to the market (Harman et al. 2012;
Ghazawneh and Henfridsson 2013; Basole and Karla 2011).

Two issues are brought to our attention associated with these transitions in software indus-
try: Software Reliability and Environmental Factors in development process. High software
reliability must be demonstrated for each software release to assure it functions as designed
in the operation environment (Palviainen et al. 2011). How to control and measure software
quality is the most challenging issue faced by software industry (Hsu et al. 2011). Devel-
oping software and protecting against software failure contribute to the largest expenses of
software industry (Chang and Liu 2009). Many software measurement metrics are developed
to properly address software quality before its release. One of the most applied software
measurement metrics is software reliability. Software reliability, not only helps manager
with quantifying system behaviors, but allocating testing resource and optimizing release
time. The commonest method to evaluate software reliability is to apply Software Reliability
Growth Model (SRGM).

Since 1970s,many non-homogeneous Poisson process (NHPP) software reliability growth
models in consideration of different assumptions have been proposed for the estimation of
the number of remaining faults, failure rate, and software reliability for software products
given a specific time horizon (Hsu et al. 2011; Goel and Okumoto 1979; Musa 1975; Kapur
et al. 2011; Yamada et al. 1986; Zhu and Pham 2016; Ahmadi et al. 2016; Pachauri et al.
2015; Sukhwani et al. 2016; Yamada 2014; Jin and Jin 2014; Inoue et al. 2016; Fiondella and
Zeephongsekul 2016; Zhu and Pham 2017a; Yamada and Tamura 2016; Zachariah 2015b;
Özdamar andAlanya 2001). For example, incorporating testing effort into software reliability
model has received lots of attention these years. Huang et al. (2007) incorporated logistic
testing effort function into both exponential-type and S-type NHPP models. Lin and Huang
(2008) discussed the multiple change-points into the flexible Weibull-type time dependent
testing effort function. Later, Inoue et al. (2016) developed a bivariate software reliability
growth model considering the uncertainty of the change-point. Additionally, the optimal
release time and resource allocation is studied by many researchers (Xie and Hong 1998;
Huang andLyu2005a; Lo et al. 2005;Huang andLo2006;Yang andXie 2000;Huang andLyu
2005b; Zachariah 2015a). These theoretical software reliability models have been effectively
proven in a wide-range real application in industry and research institution (Almering et al.
2007; Jeske and Zhang 2005; Sukhwani et al. 2016). However, none of them has discussed the
impact of environmental factor on software reliability during software development/operation
and how to incorporate environmental factor into the modeling.
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Zhang and Pham (2000) firstly defined 32 environmental factors during the software
development process. These environmental factors not only included each phase of software
development practice, but considered human nature, teamwork and the interactions amongst
human, software system and hardware system. Later, Zhu et al. (2015) conducted another
comparison study to address the impact level of each environmental factor on software
reliability assessment and provided up-to-date critical environmental factors to software
practitioners.

Only a few literatures incorporated the randomness of the environmental factors in
software reliability model. Teng and Pham (2006) proposed a generalized random field envi-
ronment software reliability model that linked both the testing phase and operation phase.
The fault detection rate for testing and operation phase is not constant. Hsu et al. (2011)
integrated fault reduction factor into software reliability modeling, where fault reduction
factor is defined as the ratio of net fault reduction to the failure experienced. Recently, Pham
(2014) considered the uncertainty of the operation environment into software reliability
model.

In this paper, we consider one of the top 10 critical environmental factors (Zhu et al. 2015),
Percentage of Reused Modules (PoRM), to be a random variable which has random effect
on software fault detection rate. The real data collected from several industries is applied
to obtain the distribution of PoRM in Sect. 2. We then introduce the martingale framework,
specifically, Brownianmotion andwhite noise process in the stochastic fault detection process
to reflect the impact resulting from the randomness of environmental factor. The proposed
NHPP software reliability model incorporating these considerations is presented in Sect. 3.
Parameter estimation and model comparison criteria are discussed in Sect. 4. Two Open
Source Software project data are analyzed in Sect. 5 to illustrate the effectiveness of the
propose model. The reliability prediction and the significance of PoRM are also discussed in
Sect. 5. Specifically, we are interested in the predictive accuracy comparison of the proposed
model with and without considering PoRM. In Sect. 6, we conclude this study, discuss the
directions for the future research and the limitations of the current study.

Notation

m(t, η): expected number of software failures by time t , also mean value function
N (t): total fault content function in the software by time t
h(t, η): time-dependent fault detection rate per unit of time
G(t, η): impact of Percentage of Reused Modules (PoRM) on failure detection rate per
unit of time
f (η): probability density function of PoRM
M(t, w): martingale with respect to the filtration
Ṁ(t, w): derivative of M(t, w) with respect to time t
v(t): measures the impact of time on PoRM
F∗(s): Laplace transform of f (η)

θ, γ : parameters of gamma distribution
η: random variable, which represents PoRM
λ: coefficient along with G(t, η)

b, c, a, k: coefficient in function h(t), v(t), and N (t)
yi : observed number of software failures at time ti
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Fig. 1 Data collection of Percentage of Reused Modules (PoRM)

2 Environmental factor (PoRM) distribution

Although someexisting software reliabilitymodels have considered the environmental factors
in the modeling, most of them assume the distribution of environmental factor based on
their knowledge and model consideration. For example, Teng and Pham (2006) described
the random environmental factor is 1 in in-house testing phase and a random variable in
operation phase. They assumed that this random variable follows gamma distribution or beta
distribution in reliability models. But, there is no real data to support this assumption.

In this study, the definition of Percentage of Reused Modules (PoRM), adopted from
reference (Zhang and Pham 2000; Zhang et al. 2001; Zhu and Pham 2017b), is presented as
follows

PoRM � S0
SN + S0

(1)

where S0 represents kiloline of code for the existing modules and SN represents kiloline of
code for new modules.

In this section,we employ the real data collected fromseveral industries to illustrate the dis-
tribution of PoRM. Participants were asked to provide Percentage of ReusedModules in their
industry based on the relevant working experience. All the participants are currently working
in IT Department in different industry including computer software, banking, semiconduc-
tor, online retailing, IT service and research institution or working on software development
in high-tech company in favor of the validity and reliability of the survey response. The
collected Percentage of Reused Modules (PoRM) are shown in Fig. 1.

Eight different distributions commonly applied tomodel environmental factors are adopted
in the model comparison to estimate the distribution of PoRM. Maximum likelihood estima-
tion (MLE) is applied to compare the effectiveness of each model. The log-likelihood values
for all models are shown in Table 1.

Gamma distribution will be employed to model the distribution of PoRM. The parameters
of gamma distribution are also obtained from model comparison: θ � 14.726, γ � 6.487.

f (η) � θγ ηγ−1e−θη

Γ (γ )
(2)
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Table 1 Log-likelihood value comparison

Normal
dist.

Weibull
dist.

Beta dist. Exponential
dist.

Gamma
dist.

Inverse
Gaussian
dist.

Log-logistic
dist.

Lognormal
dist.

7.041 7.639 7.830 −3.782 8.174 8.002 7.739 8.015

3 Software reliability modeling

3.1 Related works

Wefirst provide the definition of software fault and software failure in order to clearly address
the software reliability models discussed below. Software fault is caused by an incorrect step,
process, or data definition in a computer program (Radatz et al. 1990). Failure is defined
as a system or component is not able to perform its required functions within specified
performance requirements. Software failure is the manifestation of software fault (Radatz
et al. 1990).

Many NHPP software reliability models have been proposed for the past four decades to
address different assumptions. The failure processes are described by NHPP property with
the mean value function (MVF) at time t , m(t), and the failure intensity of the software,
λ(t), which is also the derivative of the mean value function. Most existing NHPP software
reliability models are developed based on the model given as follows

d

dt
m(t) � h(t)(N (t) − m(t)) (3)

where m(t) is the expected number of software failures by time t , N (t) is the total number
of fault content by time t , and h(t) is the time-dependent fault detection rate per unit of time.
The underlying assumption of Eq. (3) is the failure intensity is proportional to the residual
fault content in the software. Lots of NHPP software reliability models are developed based
on Eq. (3). Some examples are given in Table 2.

The software reliability models presented in Table 2, along with other deterministic mod-
els, have not taken into account the effect of randomness from the development/operation
environment. To capture the effect of random environments, a stochastic process can be
incorporated in the fault detection process by imposing h(t) to be h(t, η), where η is the
random effect. The Eq. (3) will be described as

d

dt
m(t, η) � h(t, η)(N (t) − m(t, η)) (4)

For example, in Pham (2014), the author considered

h(t, η) � h(t)η, N (t) � N (5)

where η is a random variable and follows gamma distribution with parameter α and β. By
substitutingEq. (5) toEq. (4), the explicit solution of themean value function can be expressed
as (Pham 2014)

m(t) � N

(
1 −

(
β

β +
∫ t
0 h(s)ds

)α)
(6)
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Table 2 Some existing NHPP software reliability models

NHPP model Functions Mean value function

Geol–Okumoto h(t) � b, N (t) � a m(t) � a
(
1 − e−bt

)
Delayed S-shaped h(t) � bt2

1+bt , N (t) � a m(t) � a
(
1 − (1 + bt)e−bt

)

Inflection S-shaped h(t) � b
1+βe−bt , N (t) � a m(t) � a

(
1− e−bt

)
1+βe−bt

Yamada imperfect debugging
model

h(t) � b, N (t) � a(1 + αt) m(t) �
a
[
1 − e−bt

][
1 − α

b

]
+ αat

PNZ model h(t) � b
1+βe−bt , N (t) �

a(1 + αt)

m(t) � a
[
(1− e−bt )

(
1− α

b

)
+αt

]
1 +βe−bt

Pham–Zhang IFD
h(t) � b2t

1 + bt
+

d

1 + dt
N (t) � a

m(t) � a − ae−bt ×(
1 + (b + d)t + bdt2

)

The above formulation, h(t, η) � h(t)η, proposed in Pham (2014) is referred as dynamic
multiplicative noise model in recent publication from Pham and Pham (2017). They (Pham
and Pham 2017) also proposed a dynamic additive noise model shown as follows

h(t, w) � h(t) + Ṁ(t, w) (7)

where Ṁ(t, w) denotes the derivative of M with respect to time t . M(t) is defined as a
martingalewith respect to the filtration in this function.Oneworth-notingmartingale
property (Mikosch 1998; Mörters and Peres 2010) applied in Eq. (7) is

E

⎛
⎝ t∫

v

h(s, w)ds

⎞
⎠ �

t∫
v

h(s)ds (8)

Brownian motion (Mikosch 1998) is also a martingale. Let {B(t) : t ≥ 0} be Brownian
motion, Mikosch (1998) mentioned that {B(t) : t ≥ 0} and {B2(t) − t : t ≥ 0

}
are martin-

gale with respect to the nature filtration . For the model consideration in this paper,
we also choose M(t) to be Brownian motion since Brownian motion is deeply researched by
many literatures.

A stochastic process {B(t) : t ≥ 0} is called Brownian motion (Mörters and Peres 2010)
with start in x ∈ R if

1. B(0) � x .
2. The process has independent increments. For example, the increments B(tn) −

B(tn−1), B(tn−1) − B(tn−2), . . . , B(t2) − B(t1) are independent for all time 0 ≤ t1 ≤
t2 ≤ · · · ≤ tn .

3. The increments B(t + s) − B(t) are normally distributed, for all t ≥ 0, s ≥ 0.

If B(0) � 0, i.e. the motion is started from the origins, this is called standard Brownian
motion.
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3.2 Proposed NHPP software reliability model

The proposed NHPP software reliability model in this study incorporates both the dynamic
multiplicative and additive noise characteristics discussed in Sect. 3.1. Meanwhile, one of
the top 10 environmental factors from the recent comparison survey study (Zhu et al. 2015),
modeled as gamma distribution with parameter θ and r estimated from real-collected data
from various industries, is incorporated in the model development. In sum, environmental
factor (PoRM), described as gamma distribution from real data, and the randomness caused
by PoRM, illustrated by themartingale, specifically, Brownianmotion, are taken into account
for the proposed software reliability model.

The assumptions for the proposed model are given as follows

1. The fault removal process follows the non-homogeneous Poisson distribution.
2. The failure of software system is subject to the manifestation of the remaining faults in

the software program.
3. All faults in the software are independent.
4. The failure intensity is proportional to the remaining faults in the software.
5. The environmental factor,Percentage of ReusedModules (PoRM), is described as gamma

distribution based on the real data collected from various industry, as discussed in the
Sect. 2. The impact of PoRM is explained by an additive portion alongwith the traditional
fault detection process.

6. The randomness caused by the environmental factor is explained as a martingale, partic-
ularly, Brownian motion in this study.

The proposed NHPP software reliability model is given as

d

dt
m(t, η) � [

h(t) + λG(t, η) + Ḃ(t)
]
[N (t) − m(t, η)] (9)

m(0) � 0 (10)

wherem(t, η) is the expected number of failures by time t , h(t) is the fault detection rate per
unit of time without considering the effect of environmental factor, η is a random variable
and represents the environmental factor, PoRM, G(t, η) is a time-dependent function and
represents the impact of PoRM on failure detection rate per unit of time, λ is the coefficient
along with G(t, η), and Ḃ(t) denotes a standard Gaussian white noise, specifically

d

dt
B(t) � Ḃ(t) (11)

where B(t) is a Brownian motion.
The covariance of Ḃ(t) is

E
(
Ḃ(t)Ḃ(u)

) � δ(u − t), 0 < t < u (12)

From (Pham and Pham 2017), similarly, we can obtain the general solution for Eq. (9) as
follows

m(t, η) � N (t) − N (0)e
−

t∫
0
(h(s)+λG(s,η)+Ḃ(s))ds −

t∫
0

e
−

t∫
u
(h(s)+λG(s,η)+Ḃ(s))ds

N ′(u)du

(13)

The detailed derivation can be found in “Appendix I”.
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Since Ḃ(t) denotes a standard Gaussian white noise, we can also have

t∫
0

(
h(s) + λG(s, η) + Ḃ(s)

)
ds �

t∫
0

(h(s) + λG(s, η))ds + B(t) − B(0)

�
t∫

0

(h(s) + λG(s, η))ds + B(t) (14)

The mean value function can be expressed as

m̄(t) � N (t) − N (0)e
−

t∫
0
h(s)ds

e
t
2 e

−
t∫
0

λG(s,η)ds
−

t∫
0

e
−

t∫
u
h(s)ds

e
t−u
2 e

−
t∫
u

λG(s,η)ds
N ′(u)du

(15)

Let

G(t, η) � ηv(t) (16)

where v(t) is a time-dependent function, measures the impact of time on PoRM.
The environmental factor, η, has a gamma distribution with the parameter θ and r .

f (η) � θγ ηγ−1e−θη

Γ (γ )
(17)

We apply the expectation on Eq. (15) with respect to η. The mean value function can be
obtained

m̄η(t) � N (t) − N (0)e
−

t∫
0
h(s)ds

e
t
2

∞∫
0

e
−

t∫
0

ληv(s)ds
f (η)dη

−
∞∫
0

t∫
0

e
−

t∫
u
h(s)ds

e
t−u
2 e

−
t∫
u

ληv(s)ds
N ′(u) f (η)dudη

� N (t) − N (0)e
−

t∫
0
h(s)ds

e
t
2

∞∫
0

e
−η

t∫
0

λv(s)ds
f (η)dη

−
t∫

0

N ′(u)e
−

t∫
u

(
h(s)− 1

2

)
ds

⎡
⎣ ∞∫

0

e
−η

t∫
u

λv(s)ds
f (η)dη

⎤
⎦du (18)

Compute the equations with Laplace transform
∞∫
0

xe−sx f (x)dx � −dF∗(s)
ds

(19)

The Laplace transform of gamma probability density function is

F∗(s) �
[

θ

θ + s

]γ

(20)
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Therefore

m̄η(t) � N (t) − N (0)e
−

t∫
0
h(s)ds

e
t
2 F∗

⎛
⎝ t∫

0

λv(s)ds

⎞
⎠−

t∫
0

N ′(u)e
−

t∫
u

(
h(s)− 1

2

)
ds
F∗
⎛
⎝ t∫

0

λv(s)ds

⎞
⎠du

� N (t) − N (0)e
−

t∫
0
h(s)ds

e
t
2

[
θ

θ +
∫ t
0 λv(s)ds

]γ

−
t∫

0

N ′(u)e
−

t∫
u

(
h(s)− 1

2

)
ds
[

θ

θ +
∫ t
0 λv(s)ds

]γ

du

� N (t) − N (0)e
−

t∫
0
h(s)ds

e
t
2

[
θ

θ +
∫ t
0 λv(s)ds

]γ

−
[

θ

θ +
∫ t
0 λv(s)ds

]γ t∫
0

N ′(u)e
−

t∫
u

(
h(s)− 1

2

)
ds
du

(21)

The Eq. (21) provides a general solution for the proposedNHPP software reliability model
in consideration of PoRM and the randomness caused by this environmental factor. Different
formulation for h(t), v(t) and N (t) with respect to different assumptions can be plugged in
Eq. (21) to obtain the final solution. In this paper, we apply the formulation as follows.

Let

h(t) � b

1 + ce−bt
(22)

v(t) � e−at (23)

N (t) � 1

k
ekt (24)

As described in Melo et al. (1998), the application process of the reused module can be
described as follows: (1) Reused module selection. (2) The adaption of the reused module
to the new objective. (3) The integration to the new-developed software product. The impact
of PoRM on the software fault detection rate will decrease as software development moves
to the later phase. Thus, we use an exponentially decreasing function e−at to represent v(t)
in this study. Meanwhile, 1

k e
kt is employed to represent N (t) due to 1

k e
kt is a monotonically

increasing function, which can represent the nature growth of the software failures, and the
inspiration from reference (Pham and Pham 2017).

Substitute Eqs. (22–24) to Eq. (21), the mean value function can be expressed as

m(t, η) � 1

k
ekt − 1

k

c + 1

c + ebt
e

t
2

[
θ

θ + λ
a

(
1 − e−at

)
]γ

−
[

θ

θ + λ
a

(
1 − e−at

)
]γ

e
t
2

c + ebt

t∫
0

N ′(u)

[
ce− u

2 + e

(
b− 1

2

)
u
]
du

� 1

k
ekt − e

t
2

c + ebt

[
θ

θ + λ
a

(
1 − e−at

)
]γ

(
c + 1

k
− c

k − 1
2

e

(
k− 1

2

)
t − 1

b + k − 1
2

e

(
b+k− 1

2

)
t
+

c

k − 1
2

+
1

b + k − 1
2

)
(25)

Given the definition of m(t) is the expected number of software failures by time t, we do
knowm(t) is an increasing function and we are also able to showwhen t → ∞,m(t) → ∞
for Eq. (25) based on the numerical example.

We believe the behavior of Eqs. (21) and (25) mainly depends on the formulation of N (t).
For example,
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1. If N (t) is a constant, then m(t) converges to this constant.
2. If N (t) is a time-dependent function and can converge to a finite number, then m(t)

converges to this finite number.
3. If N (t) is a time-dependent function and cannot converge, then m(t) cannot converge.

But in this paper, we are not going to cover the mathematical proof for the above descrip-
tion. The investigation of the function behavior will be further studied in the future research.

4 Parameter estimation and criteria

4.1 Parameter estimation

In practice, parameter estimation can be achieved by applying least square estimate (LSE)
and maximum likelihood estimate (MLE). For example, minimizing Eq. (26) or maximizing
Eq. (27).

S �
n∑

i�1

(m(ti ) − yi )
2 (26)

LLF �
n∑

i�1

(yi − yi−1)log
[
m(ti ) − m(ti−1)

]− m(tn) −
n∑

i�1

log(yi − yi−1)! (27)

where yi is the observed number of failures at time ti . We apply LSE to minimize Eq. (26)
to estimate the parameters. Since the parameters of gamma distribution have already been
estimated from the real data, thus, we need to estimate other five unknown parameters for
Eq. (25), which are k, b, c, λ, and a. The genetic algorithm (GA) is employed in order to
solve the optimization function, as given in Eq. (26). Matlab and R software are used to solve
the optimization function and estimate parameters.

4.2 Comparison criteria

1. Mean squared error (MSE)

MSE �
∑n

i�1(m̂(ti ) − yi )2

n − N
(28)

where n is the total number of observations,N represents the number of unknown parameters
in each model, and yi is the observed number of failures at time ti . The mean squared error
measures the distance of model estimate from the observed data.

2. Predictive-ratio risk (PRR) and predictive power (PP) (Pham 2007)

PRR �
n∑

i�1

(
m̂(ti ) − yi

m̂(ti )

)2

(29)

PP �
n∑

i�1

(
m̂(ti ) − yi

yi

)2

(30)
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The predictive-ratio risk and predictive power are calculated to compare the predictive
performance of different software reliability models. The predictive-ratio risk measures the
distance of the model estimate from the actual data against the model estimate by assigning
a larger penalty to the model that has underestimated the cumulative number of failures. The
predictive power measures the distance of the model estimate from the actual data against
the actual data.

3. Variation

The variation is defined as (Huang and Kuo 2002)

Variation �
√√√√ 1

n − 1

n∑
i�1

(yi − m̂(ti ) − Bias)2 (31)

where

Bias � 1

n

n∑
i�1

(m̂(ti ) − yi ) (32)

For all the criteria discussed above, the smaller of the criteria, the better fit of the model.
As the research problems becomemore complex, it is very nature to contain lots of param-

eters. The proposed software reliability model has five parameters, which is still reasonable
to be applied in industrial application. We have also chosen some model evaluation criteria,
for example, variation, to assign the penalty for the model contains more parameters and
address possible overfitting issue. Additionally, we have applied two datasets collected from
real world to compare the predictability as well as the practical applicability of the proposed
model with other software reliability models in Sect. 5.

5 Applications

In the following experiments, we choose two applications, DS1 and DS2, to validate the
proposed NHPP software reliability model and compare the performance with other existing
software reliability models. The comparison criteria are discussed in the above section. DS1
andDS2 are both collected fromOpen Source Software (OSS) project. Open Source Software
has attracted significant attention in the past decade. Some report shows that a few major
Open Source Software products have surpassed their commercial counterparts in terms of the
market share and quality evaluation (Wheeler 2007). Not only individuals are attracted by the
features of Open Source Software, but many software companies and government-supported
organizations (Zhou and Davis 2005). A research study conducted by CIO Magazine (Cos-
grove 2003) found that IT community is growing better by using open source development
model and open source software will dominate as the Web server application platform and
server operating system. The majority of the companies are using open source today for
web development. To align with the new transitions in software development, Open Source
Software project data are employed to illustrate the performance of the proposed model.

5.1 Dataset 1 (DS1)

DS1 is extracted fromApache Open Source Software project. It was collected from Sep 2010
to April 2013. The collected data are described in Table 3. The column named Failure in
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Table 3 DS1 failure data

Time unit Failures Cumulative
failures

Time unit Failures Cumulative
failures

Time unit Failures Cumulative
failures

1 6 6 12 4 66 23 6 102

2 6 12 13 0 66 24 22 124

3 6 18 14 4 70 25 3 127

4 8 26 15 5 75 26 1 128

5 13 39 16 5 80 27 1 129

6 6 45 17 2 82 28 0 129

7 8 53 18 10 92 29 0 129

8 2 55 19 1 93 30 0 129

9 3 58 20 1 94 31 4 133

10 3 61 21 2 96 32 3 136

11 1 62 22 0 96

Table 3 represents the number of software failures detected between time unit t−1 and t.
The column namedCumulative Failures in Table 3 represents the cumulative software failure
by time t. The parameter estimate and model comparison are presented in Table 4. In this
dataset, we use the first 24 time units to estimate the parameters.

As presented in Table 4, we can see that the proposed model has the smallest MSE, PRR,
and Variation. It is worth noting that MSE is the most critical criteria in terms of model
selection. The PP value for the proposed model is 0.311, which is just slightly larger than
the smallest PP value 0.228, however, all other three criteria for G-O model is significantly
larger than the proposed model. Thus, we conclude that the proposed model has the best fit.
Figure 2 also shows the comparison between the actual failure data and the predicted failure
data from all the models discussed in Table 4. The proposed model yields very close fittings
and predictions on software failure.

Other software reliability measures are also calculated to provide a comprehensive under-
standing of the prediction power for the proposed model. In this study, we are interested in
the estimated software failures for each time unit, which can be obtained bym(t)−m(t − 1),
and the estimated time to detect all the 136 actual software failures that have already appeared
in the program, as seen in Table 3. Figure 3 shows the estimated software failures for 16 time
units, ranging from time unit 25–40, which gives an estimate for software tester in terms
of the number of software failures occurred in the operation field during each time unit and
further helps software multiple release planning. Moreover, the estimated time unit to detect
all the 136 actual software failures is 38.40 based on the proposed model. Software tester
can use this information to estimate how much time will be spent on one project and assign
the corresponding testing resource. In sum, these measures can help software testing team to
optimally assign the available testing resource to each ongoing project, decide when to stop
testing, and plan software multiple release.

5.2 Dataset 2 (DS2)

DS2 is also one of Apache Open Source Software project data. It was collected from Feb
2009 to Feb 2014. 33 sets of failure data are presented in Table 5. The column named Failure
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Fig. 2 Comparison of actual failure data and predicted failure data (DS1)

Fig. 3 Software failure prediction from time unit 25–40 (DS1)

in Table 5 represents the number of software failures detected between time unit t−1 and t.
The column namedCumulative Failures in Table 5 represents the cumulative software failure
by time t. The parameter estimate and model comparison are described in Table 6.

As seen from Table 6, the proposed model has the smallest MSE and Variation. Although
PNZ model has the smallest PRR and PP, the MSE for PNZ model is much larger than the
proposedmodel. GivenMSE is themost critical for model selection, therefore, the best fitting
model is still the proposed model. Figure 4 shows the comparison between the actual failure
data and the predicted failure data from all the models discussed in Table 6. The proposed
model subjects to a very close fittings and predictions on the cumulative software failures for
DS2.
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Table 5 DS2 failure data

Time unit Failures Cumulative
failures

Time unit Failures Cumulative
failures

Time unit Failures Cumulative
failures

1 7 7 12 22 88 23 11 140

2 2 9 13 11 99 24 4 144

3 8 17 14 8 107 25 0 144

4 9 26 15 2 109 26 5 149

5 2 28 16 7 116 27 0 149

6 5 33 17 3 119 28 9 158

7 5 38 18 4 123 29 13 171

8 7 45 19 1 124 30 1 172

9 10 55 20 0 124 31 1 173

10 9 64 21 0 124 32 12 185

11 2 66 22 5 129 33 0 185

We also provide other software reliability measures for DS2. Figure 5 presents the esti-
mated failures for each time unit, ranging from time unit 29 to 44. Moreover, the estimated
time unit to detect all 185 software failures that have been already appeared in the program
is 50.92.

5.3 Reliability prediction

Once the parameters are obtained, the software reliability within (t, t + x) can be determined
as

R(x |t) � e−[m(t+x)−m(t)] (33)

Figure 6 presents the reliability prediction for DS1 and DS2 by varying x from time unit
0 to 1.2. All other models do not take into consideration of environmental factor (PoRM)
and a dynamic fault detection process. As a result, they cannot present reliability prediction
well since OSS projects are influenced by the randomness caused by environmental factors
significantly than traditional projects. Thus, we did not incorporate reliability prediction from
other models.

During the testing phase, as the testing time increases, in general, software testing team
can remove more software faults. In this case, software reliability will increase as the testing
time increases. But after software released to operation phase (customers), the software
reliability will decrease as the operation time increases if there is no updated version for the
current release. First, it is impossible to remove all the software faults in the program due
to the limitation of testing resource, programmer skill and constricted product development
schedule (Zhu et al. 2015; Rana et al. 2014; Almering et al. 2007; Zhang et al. 2001; Zhu and
Pham 2017a, b). Hence, even software product has already been released in the market, it still
contains some software faults. Second, software users will also contribute incorrect/correct
input during the operation phase, which can trigger the undetected software faults existed
in the program. Thus, the total number of software failures will increase as the operation
time increases if there is no updated version, then the software reliability tends to go zero in
this case. The software reliability prediction shown in Fig. 6 also confirms this conclusion.
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Fig. 4 Comparison of actual failure data and predicted failure data (DS2)

Fig. 5 Software failure prediction for time unit 29–44 (DS2)

Therefore, most software companies will release the updated version to fix the issues in the
current release to increase software reliability in the operation phase and introduce some new
features to improve user experience (Zhu and Pham 2017a).

5.4 Discussion of the impact of environmental factor (PoRM)

To emphasize the significance of incorporating PoRM in software reliability model, the
comparison between the software reliability model with and without PoRMwill be discussed
in this section. Without considering PoRM and its impact, Eq. (9) will be formulated as
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Fig. 6 Reliablity predicton for DS1 and DS2

d

dt
m(t, η) � [

h(t) + Ḃ(t)
]
[N (t) − m(t, η)] (34)

This formulation has detailed explanation in Pham and Pham (2017). Substitute Eqs. (10),
(22) and (24) into Eq. (34), the new mean value function without considering environmental
factor (PoRM) can be obtained as follows

m(t) � 1

k
ekt − e

t
2

c + ebt

(
c + 1

k
− c

k − 1
2

− 1

b + k − 1
2

)
− cekt

(
c + ebt

)−1

k − 1
2

− e(k+b)t
(
c + ebt

)−1

b + k − 1
2
(35)

As an illustration for the comparison, DS1will be used to compare themean value function
with PoRM [Eq. (25)] and the mean value function without PoRM [Eq. (35)]. The parameter
estimate for themean value functionwithout PoRM [Eq. (35)] are k̂ � 0.109, ĉ � 0.045, b̂ �
0.501.Using the criteria described in Sect. 4,we haveMSE � 103.238,which is significantly
higher than the model considering PoRM, 35.173, as shown in Table 4. We also present
Fig. 7, which compares the actual failure data, the failure prediction by the model with
PoRM [Eq. (25)], and the failure prediction by the model without PoRM [Eq. (34)]. We can
see that the failure prediction will be more accurate with considering PoRM for OSS project
data. Therefore, incorporating PoRM in software reliability model will significantly improve
the predictive accuracy.
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Fig. 7 Software failure prediction comparison of models with and without PoRM

6 Conclusions and future research

To the best of our knowledge, the environmental factor, in particular, Percentage of Reused
Modules (PoRM) and the martingale framework, specifically, Brownian motion and white
noise process have not been simultaneously employed in NHPP software reliability model.
Lots of software developments have shifted their attention from building a new system toward
composing system from the existing open source platform. On the other hand, there is an
increasing trend on the adoption of software ecosystem. The development of new function-
ality can be occurred outside of the platform. For example, App-store styled approaches are
getting popular in software community (Bosch 2010). Therefore, it is of great importance to
incorporate Percentage of Reused Modules in the software reliability model because it brings
a significant impact on open source project compared with traditional software development.
Pham and Pham’s (2017) recent publication concentrated on the application of martingale
framework and provide a generalized solution for this type of problem, however, they did
not include specific environmental factors and their distributions.

There are several research directions can be pursued in the next step. For instance, (1) we
are currently investigating one environmental factor, PoRM, in this study. Two or more envi-
ronmental factors can be studied in the future research. Correlation could also be considered
between these environmental factors; (2) the total number of fault content is considered as a
time dependent function in this study. The randomness caused by environmental factors may
also affect this time dependent function; (3) the function [Eq. (21)] behavior can be further
investigated.

Acknowledgements The authors would like to thank the editor and the reviewers for their valuable and
constructive comments.

Appendix I

Given a generalized mean value function

d

dt
m(t, η) � h(t, η)[N (t) − m(t, η)]

m(0) � 0
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The general solution for the above function is

m(t, η) � e
−

t∫
0
h(s,η)dt
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0
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u∫
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