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Abstract This paper proposes a strategic model of pollution control. A firm, representative
of the productive sector of a country, aims at maximizing its profits by expanding its pro-
duction. Assuming that the output of production is proportional to the level of pollutants’
emissions, the firm increases the level of pollution. The government of the country aims at
minimizing the social costs due to the pollution, and introduces regulatory constraints on
the emissions’ level, which then effectively cap the output of production. Supposing that
the firm and the government face both proportional and fixed costs in order to adopt their
policies, we model the previous problem as a stochastic impulse two-person nonzero-sum
game. The state variable of the game is the level of the output of production which evolves
as a general linearly controlled one-dimensional Itô-diffusion. Following an educated guess,
we first construct a pair of candidate equilibrium policies and of corresponding equilibrium
values, and we then provide a set of sufficient conditions under which they indeed realize
an equilibrium. Our results are complemented by a numerical study when the (uncontrolled)
output of production evolves as a geometric Brownian motion, and the firm’s operating profit
and the government’s running cost functions are of power type. An analysis of the depen-
dency of the equilibrium policies and values on the model parameters yields interesting new
behaviors that we explain as a consequence of the strategic interaction between the firm and
the government.
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1 Introduction

In recent years, the growing importance of global environmental issues, such as the global
warming, pushed countries or institutions to adopt environmental policies aiming at reducing
the level of pollution. Some of these policies are the result of international agreements (such
as the Kyoto Protocol, or the Paris Climate Agreement of 2016); some others are adopted
more on a local scale: it is indeed a news of December 2016 that the authorities of Beijing
issued a five-day warning and ordered heavy industries to slow or halt their production due
to increasing smog.1

Environmental problems have attracted the interest of the scientific community as well
(see, e.g, Nordhaus (1994), and Chapter 9 of Perman et al. (2003) for an exhaustive introduc-
tion to pollution control policies). Many papers in the mathematical and economic literature
take the point of view of a social planner to model the problem of reducing emissions of pol-
lutants arising from the production process of the industrial sector. For example, in Pindyck
(2000, 2002) a social planner aims at finding a time at which the reduction of the rate of
emissions gives rise to the minimal social costs. In Pommeret and Prieur (2013) the optimal
environmental policy to be adopted is the one that maximizes the economy’s instantaneous
net payoff, i.e. the sum of the economic damage of pollution and of the economic benefits
from production. Finally, Goulder and Mathai (2000) and Schwoon and Tol (2006) con-
sider the planner’s problem of choosing the abatement policy, and research and development
investment, that minimize the costs of achieving a given target of CO2 concentration. All
those works tackle the resulting mathematical problems with techniques from (stochastic)
optimal control theory, and provide policy recommendations.

In this paper we do not take the point of view of a fictitious social planner, but we
propose a strategic model of pollution control. An infinitely-lived profit maximizing firm,
representative of the productive sector of a country, produces a single good, and faces fixed
and proportional costs of capacity expansion. In line with other papers in the environmental
economics literature (cf. Pindyck 2002; Pommeret and Prieur 2013), we suppose that the
output of production is proportional to the level of pollutants’ emissions. Those are negatively
perceived by the society, andwe assume that the social costs of pollution can bemeasured by a
suitable penalty function. A government (or a government environmental agency) intervenes
in order to dam the level of emissions, e.g., by introducing regulatory constraints on the
emissions’ level, which then effectively cap the output of production. We suppose that the
interventions of the government have also some negative impact on the social welfare (e.g.,
they might cause an increase in the level of unemployment or foregone taxes), and we assume
that such negative externality can be quantified in terms of instantaneous costs with fixed
and proportional components. The government thus aims at minimizing the total costs of
pollution and of the interventions on it.

Due to the fixed costs of interventions faced by the firm and the government, it is reason-
able to expect that the two agents intervene only at discrete times on the output of production.
Between two consecutive intervention times, the latter is assumed to evolve as a general reg-
ular one-dimensional Itô-diffusion.2 We therefore model the previously discussed pollution

1 See, e.g., https://www.theguardian.com/world/2016/dec/17/beijing-smog-pollution-red-alert-declared-in-
china-capital-and-21-other-cities.
2 Uncertain capital depreciation or technological uncertainty might justify the stochastic nature of the output
of production (see also Asea and Turnovsky 1998; Eaton 1981; Epaulard and Pommeret 2003; Wälde 2011).
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control problem as a stochastic impulse3 nonzero-sum game between the government and the
firm. The policy of each player is a pair consisting of a sequence of times, and a sequence of
sizes of interventions on the output of production, and each player aims at picking a policy
that optimizes her own performance criterion, given the policy adopted by the other player.
The two players thus interact strategically in order to determine an equilibrium level of the
output of production, i.e. of the level of pollutants’ emissions.

Following an educated guess, we first construct a couple of candidate equilibrium policies,
and of associated equilibrium values. In particular, we suppose that the equilibrium policies
adopted by the firm and the government are characterized by four constant trigger values:
on the one hand, whenever the output of production falls below a constant threshold, we
conjecture that it is optimal for the firm to push the output of production to an upper constant
level; on the other hand, whenever the level of emissions reaches an upper threshold, the
government should provide regulatory constraints which let the output of production jump
to a constant lower value. It turns out that, by employing these policies, the two agents keep
the output of production (equivalently, the level of pollutants’ emissions) within an interval
whose size is the result of their strategic interaction.

In order to choose those four trigger values we require that the agents’ performance crite-
ria associated to the previous policies are suitably smooth, as functions of the current output
of production level. Namely, each agent imposes that her own candidate equilibrium value
is continuously differentiable at her own trigger values. We then move on proving a veri-
fication theorem which provides sufficient conditions under which the previous candidate
strategies indeed form an equilibrium. In particular, we show that if the solution of a suitable
system of four highly nonlinear algebraic equations exists and satisfies a set of appropriate
inequalities, then such a solution will trigger an equilibrium. Our results are finally comple-
mented by a numerical study in the case of (uncontrolled) output of production given by a
geometric Brownian motion. Also, we discuss the dependency of the trigger values and of
the equilibrium impulses’ size on the model parameters. This comparative statics analysis
shows interesting new behaviors that we explain as a consequence of the strategic interaction
between the firm and the government. As an example, we find, surprisingly, that the higher
the fixed costs for the firm, the smaller the sizes of the impulses applied by both the agents
on the production process.

The contribution of this paper is twofold. On the one hand, we propose a general strategic
model that highlights the interplay between the productive sector and the government of a
country for the management of the pollution which inevitably arises from the production
process.4 On the other hand, from a mathematical point of view, ours is one of the first papers
dealing with a two-player nonzero-sum stochastic impulse game. It is worth noticing that
a verification theorem for two-player nonzero-sum stochastic impulse games, in which the
uncontrolled process is a multi-dimensional Itô-diffusion, has been recently proved in Aïd
et al. (2018). There the authors give a set of sufficient conditions under which the solutions
(in an appropriate sense) of a system of coupled constrained PDE problems (the so-called

3 Stochastic impulse control problems naturally arise in many areas of applications. Among these we refer
to optimal control of exchange and interest rates (Cadenillas and Zapatero 1999; Mitchell et al. 2014; Perera
et al. 2016, among others), portfolio optimization with fixed transaction costs (Korn 1999), optimal inventory
control (Bensoussan et al. 2010; Harrison et al. 1983), rational harvesting of renewable resources (Alvarez
2004), and optimal dividend problems (Cadenillas et al. 2006).
4 For other works modeling the pollution control problem as a dynamic game one can refer, among others,
to the example in Section 4 of De Angelis and Ferrari (2016), Long (1992) and van der Ploeg and de Zeeuw
(1991).

123



300 Ann Oper Res (2019) 275:297–319

quasi-variational inequalities, QVIs5) identify equilibrium values of the game. Then, they
consider a one-dimensional symmetric gamewith linear running costs, and obtain equilibrium
values and equilibrium policies by finding the solutions of the related system of QVIs, and
by verifying their optimality.

Our methodology is different with respect to that of Aïd et al. (2018). Here we obtain
candidate equilibrium values without relying on solving the system of QVIs that would
be associated to our game. Indeed, our candidate equilibrium values are constructed as the
performance criteria that the players obtain by applying a potentially suboptimal policy. This
construction, which employs probabilistic properties of one-dimensional Itô-diffusions, has
been already used in single-agent impulse control problems (see, e.g., Alvarez 2004; Alvarez
and Lempa 2008; Egami 2008), and has the advantage of providing candidate equilibrium
values which are automatically continuous functions of the underlying state variable. As a
computationally useful byproduct, in our asymmetric setting we only have to find the four
equilibrium trigger values, and for that we only need four equations. This is in contrast to
the eight equations one would obtain by imposing C0 and C1-regularity of the solutions to
the system of QVIs (cf. Aïd et al. 2018).

The rest of the paper is organized as follows. In Sect. 2 we introduce the setting and
formulate the problem. In Sect. 3.1 we construct candidate equilibrium policies and candidate
equilibrium values, whereas in Sect. 3.2 we provide a verification theorem. Finally, in Sect. 4
we provide the numerical solution to an example, and we study the dependency of the
equilibrium with respect to the model parameters. Conclusions are finally drawn in Sect. 5.

2 Setting and problem formulation

Weconsider a firm (agent 1), and a government (agent 2). Thefirmproduces a single good, and
its profits from production are described by a function π : R+ �→ R+ which is continuous,
strictly concave and increasing. We assume that the production process leads to emissions,
for example of greenhouse gases such as CO2, that are proportional to the level of the output
(see also Pindyck (2002) and Pommeret and Prieur (2013), among others). These emissions
have a negative externality on the social welfare, and the resulting disutility incurred by the
society is measured by a cost function C : R+ �→ R+ that depends on the rate of emissions.
The function C is continuous, strictly convex and increasing.

The production process is assumed to be stochastic, since it may depend on uncertain
capital depreciation or other exogenous random factors (see also Asea and Turnovsky 1998;
Bertola 1998; Epaulard and Pommeret 2003; Wälde 2011, among others). In particular, let
W = (Wt )t≥0 be a one-dimensional, standard Brownian motion on a complete filtered prob-
ability space (�,F,F,P), where F := (Ft )t≥0 is a filtration satisfying the usual conditions.
The output of production at time t ≥ 0 is denoted by Xt , and it evolves as a linear Itô-diffusion
on (0,∞); that is,

dXt = μ(Xt )dt + σ(Xt )dWt , X0 = x > 0, (2.1)

for some Borel-measurable functions μ, σ to be specified. Here, μ is the trend of the pro-
duction, while σ is a measure of the fluctuations around this trend.

To account for the dependency of X on its initial level, from now on we shall write
Xx where appropriate, and Px to refer to the probability measure on (�,F) such that
Px ( · ) = P( · |X0 = x), x ∈ (0,∞). Throughout this paper we will equivalently use the

5 The interested reader may refer to the book by Bensoussan and Lions (1984) for the theory of QVIs.
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notations E[ f (Xx
t )] and Ex [ f (Xt )], f : R → R Borel-measurable and integrable, to refer

to expectations under the measure Px .
For the coefficients of the SDE (2.1) we make the following assumption, which will hold

throughout the paper.

Assumption 2.1 The functions μ : R �→ R and σ : R �→ (0,∞) are such that

|μ(x) − μ(y)| ≤ K |x − y|, |σ(x) − σ(y)| ≤ h(|x − y|), x, y ∈ (0,∞), (2.2)

for some K > 0, and h : R+ �→ R+ strictly increasing such that h(0) = 0 and∫
(0,ε)

du

h2(u)
= ∞ for every ε > 0. (2.3)

As a consequence of the above assumption one has that if a solution to (2.1) exists,
then it is pathwise unique by the Yamada-Watanabe’s Theorem (cf. Karatzas and Shreve
1998, Proposition 5.2.13 and Remark 5.3.3, among others). Moreover, from (2.2) and (2.3)
it follows that for every x ∈ (0,∞) there exists ε > 0 such that∫ x+ε

x−ε

1 + |μ(y)|
σ 2(y)

dy < +∞. (2.4)

Local integrability condition (2.4) implies that (2.1) has a weak solution (up to a possible
explosion time) that is unique in the sense of probability law (cf. Karatzas and Shreve 1998,
Section 5.5C). Therefore, (2.1) has a unique strong solution (possibly up to an explosion
time) due to Karatzas and Shreve (1998), Corollary 5.3.23. One-dimensional diffusions like
the geometric Brownian motion and the CIR process (under a suitable restriction on the
parameters, i.e. the so-called Novikov’s conditions) satisfy the assumptions of our setting.

Remark 2.2 An example of microfoundation for a stochastic dynamics of the output of
production is the following (cf. Bertola 1998). Assume that at time t ≥ 0 the output of
production Xt is given in terms of the capital stock, Kt , and the output of labor, Lt , by

Xt =
(
K ρ
t L

1−ρ
t

)γ

, 0 < ρ ≤ 1, and γ > 0. (2.5)

Also, suppose that the firm is faced with a constant elasticity demand function

Pt = Xλ−1
t , 0 < γλ < 1, (2.6)

where Pt is the product price at time t ≥ 0, and λ is a measure of the firm’s monopoly power.
Since the input of labor Lt is chosen such that Lt = argmaxL

{
Pt Xt − wL

}
, for some wage

w > 0, one can obtain from (2.5) and (2.6) that

Lt =
[

γ λ

w
(1 − ρ)

] 1
1−(1−ρ)γ λ

K
ργλ

1−(1−ρ)γ λ

t = α̂K
ργλ

1−(1−ρ)γ λ

t , (2.7)

where α̂ := [ γ λ
w

(1 − ρ)
] 1
1−(1−ρ)γ λ . Hence, by plugging (2.7) into (2.5) we have

Xt = α̂(1−ρ)γ K
γρ

1−(1−ρ)γ λ

t . (2.8)

If now capital stock is stochastic and depreciates at a rate δ > 0, i.e. dKt = −δKtdt +
σKtdWt for some Brownian motion W (see, e.g., Wälde 2011), by Itô’s formula one finds
that Xt evolves as

dXt = μ̂Xtdt + σ̂ XtdWt ,

for suitable constants μ̂, σ̂ .
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Both the agents can influence the process of production: on the one hand, the firm can
instantaneously increase the level of production, for example by increasing the capital stock.
This leads to instantaneous costs for the firm which have both a variable and a fixed compo-
nent, and that we model through a function g1 : R+ �→ R+ of the size of interventions on
the production. In particular we take

g1(ξ) := K1 + κ1ξ, ξ ≥ 0,

with K1, κ1 > 0. On the other hand, the government can introduce regulatory constraints
that effectively force the firm to decrease the level of production,6 hence of the emissions.
A similar situation has happened in December 2016 in Beijing where authorities issued a
five-day warning and ordered heavy industries to slow or halt production in order to reduce
the smog in the air. We assume that the instantaneous costs of a similar policy incurred by
the government can be measured by a function g2 : R+ �→ R+ given by

g2(η) := K2 + κ2η, η ≥ 0,

with K2, κ2 > 0. Such costs might arise because of an increase in the rate of unemployment
or forgone taxes due to a possible decrease of the production capacity.

Because of the presence of fixed costs, it is reasonable to expect that the firm (resp. the
government) intervenes only at discrete times on the output of production by shifting the
current level of output up (resp. down) of some nonzero amount. More formally, the policy
of any agent is defined as follows.

Definition 2.3 The policies ϕ1 and ϕ2 of the firm and of the government, respectively, are
pairs

ϕ1 := (τ1,1, . . . , τ1,n, . . . ; ξ1, . . . , ξn, . . . ),

ϕ2 := (τ2,1, . . . , τ2,n, . . . ; η1, . . . , ηn, . . . )

where 0 ≤ τi,1 ≤ τi,2 ≤ · · · , for i = 1, 2, is an increasing sequence of F-stopping times, ξn
are positiveFτ1,n -measurable random variables, and ηn are positiveFτ2,n -measurable random
variables.

Intervening on the output of production, the two agents modify the dynamics of the
production process which then becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xx,ϕ1,ϕ2
t = x +

t∫
0

μ(Xx,ϕ1,ϕ2
s )ds +

t∫
0

σ(Xx,ϕ1,ϕ2
s )dWs

+α
∑

k:τ1,k≤t
ξk

∏
l≥1

1{τ1,k �=τ2,l } − ∑
k:τ2,k≤t

ηk, t ≥ 0,

Xx,ϕ1,ϕ2
0− = x > 0,

(2.9)

whereα > 0measures the effect of an increase in the capital stock on the output of production,
and Xx,ϕ1,ϕ2

t− := limε↓0 Xx,ϕ1,ϕ2
t−ε for any t ≥ 0.

In (2.9) ξk represents the lump-sum increase of the output of production made by the firm
at time τ1,k . Moreover, ηk is the impact on production of the regulatory constraints imposed
by the government at time τ2,k . If both the agents are willing to intervene on the output of
production at the same time, it is reasonable to allow the government to have the priority: the
infinite product

∏
l≥1 1{τ1,k �=τ2,l } in (2.9) takes care of that. In the rest of this paper we write

6 Restrictions on the output of production can be achieved by the government in different ways. The interested
reader may refer to the classical book by Pigou (1983).
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Xx,ϕ1,ϕ2 to stress the dependence of the output of production on its initial level, and on the
policies ϕ1 and ϕ2 adopted by the two agents.

Remark 2.4 Following the microfoundation of Remark 2.2, suppose that at a certain time
τ1,k the firm increases the capital stock by an amount ξk , while the government does not
intervene. Then we have by (2.8) that

Xτk = α̂(1−ρ)γ K
ργ

1−(1−ρ)γ λ
τk = α̂(1−ρ)γ

(
Kτk− + ξk

) ργ
1−(1−ρ)γ λ

.

Taking γ > 1, for ρ = 1−γ λ
γ−γ λ

∈ (0, 1) and λ such that γ λ ∈ (0, 1), we find

Xτk = Xτk− + α̂(1−ρ)γ ξk,

that is consistent with (2.9) if we set α := α̂(1−ρ)γ .

The firm’s total expected profits arising from production, net of present costs, are

J1(x, ϕ1, ϕ2) := Ex

⎡
⎣

∞∫

0

e−r1tπ(Xϕ1,ϕ2
t )dt −

∑
k≥1

e−r1τ1,k g1(ξk)1{τ1,k<∞}

⎤
⎦ , (2.10)

where r1 > 0 is the subjective discount factor of the firm.
Furthermore, the government’s total expected costs arising from the emissions of pollu-

tants is

J2(x, ϕ1, ϕ2) := Ex

⎡
⎣

∞∫

0

e−r2tC(βXϕ1,ϕ2
t )dt +

∑
k≥1

e−r2τ2,k g2(ηk)1{τ2,k<∞}

⎤
⎦ , (2.11)

for some r2 > 0 and β > 0. The constant β is the proportional factor between the rate of
emissions and the output of production, while r2 characterizes the time preferences of the
government.

Remark 2.5 We notice that the choice of a constant β > 0 in (2.11), and of a constant α > 0
in (2.9) is just to simplify exposition. Indeed, the results of this paper do hold even if we
allow for suitable state dependent β(·) or α(·).

The firm and the government pick their policies within the following admissible class.

Definition 2.6 For any initial level of the production x > 0, we say that the policies
ϕ1 := (τ1,1, . . . , τ1,n, . . . ; ξ1, . . . , ξn, . . . ) and ϕ2 := (τ2,1, . . . , τ2,n, . . . ; η1, . . . , ηn, . . . )

are admissible, and we write (ϕ1, ϕ2) ∈ S(x), if the following hold true:

(i) There exists a unique strong solution to (2.9) with right-continuous sample paths such
that Xx,ϕ1,ϕ2

t ≥ 0 P-a.s. for all t ≥ 0.
(ii) The functionals (2.10) and (2.11) are finite; that is,

(a) Ex

[ ∫ ∞

0
e−r1tπ(Xϕ1,ϕ2

t )dt +
∫ ∞

0
e−r2tC(βXϕ1,ϕ2

t )dt

]
< ∞,

(b) Ex

[∑
k≥1

e−r1τ1,k g1(ξk)1{τ1,k<∞} +
∑
k≥1

e−r2τ2,k g2(ηk)1{τ2,k<∞}
]

< ∞.

(iii) If τi,k = τi,k+1 for some i = 1, 2 and k ≥ 1, then τi,k = τi,k+1 = ∞ Px -a.s.
(iv) One has lim

k→∞ τi,k = +∞ Px -a.s. for i = 1, 2.
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Notice that requirements (iii) and (iv) prevent each agent to act twice at the same time,
and to accumulate her interventions. In order to ensure that S(x) �= ∅, we now make the
following standing assumption.

Assumption 2.7 The total expected profits and costs associated to non-intervention policies

are such that Ex

[ ∫ ∞

0
e−r1tπ(Xt )dt +

∫ ∞

0
e−r2tC(βXt )dt

]
< ∞.

Indeed, under Assumption 2.7, it follows that the policies associated with no interventions,
i.e. τi,k = ∞ Px -a.s., for any i = 1, 2 and k ≥ 1, belong to S(x).

Remark 2.8 Notice that in the benchmark cases in which the uncontrolled output of produc-
tion is such that dXt = μXtdt + σ XtdWt , i.e. Xt = x exp{(μ − 1

2σ
2)t + σWt }, μ ∈ R,

σ > 0, and π(x) = xa , a ∈ (0, 1), and C(x) = xb, b > 1, one has that Assumption 2.7 is

satisfied by taking r1 >

[
μa − σ 2a

2 (1 − a)

]+
and r2 >

[
μb + σ 2b

2 (b − 1)

]+
.

Given the policy adopted by the other agent, the firm aims atmaximizing its profit, whereas
the government at minimizing the social costs of pollution. Hence, for any x > 0, the two
agents aim at finding (ϕ∗

1 , ϕ
∗
2 ) ∈ S(x) such that

{
J1(x, ϕ∗

1 , ϕ
∗
2 ) ≥ J1(x, ϕ1, ϕ

∗
2 ), ∀ϕ1 such that (ϕ1, ϕ

∗
2 ) ∈ S(x),

J2(x, ϕ∗
1 , ϕ

∗
2 ) ≤ J2(x, ϕ∗

1 , ϕ2), ∀ϕ2 such that (ϕ∗
1 , ϕ2) ∈ S(x).

P (2.12)

Definition 2.9 Let x > 0. If (ϕ∗
1 , ϕ

∗
2 ) ∈ S(x) satisfying P exist, we call them equilibrium

policies, and we define the equilibrium values as

V1(x) := J1(x, ϕ
∗
1 , ϕ

∗
2 ) and V2(x) := J2(x, ϕ

∗
1 , ϕ

∗
2 ).

3 Solving the strategic pollution control problem

In this section, we first construct a pair of admissible candidate equilibrium policies. Then,
under suitable requirements, we show that these policies indeed solve problem P .

3.1 Construction of a candidate solution

We conjecture that a solution (ϕ∗
1 , ϕ

∗
2 ) solvingP exists and is characterized by three intervals

of the real line. These are the so-called joint inaction region, where both agents do not
intervene on the production process, and the action regions of the firm and of the government,
where the two agents independently intervene on the output of production. More precisely,
we conjecture the following.

(i) The firm increases its production instantaneously by exerting an impulse whenever the
output of production is such that Xt ≤ b11, for some b11 > 0 to be found, and shifts the
process upwards to b12, where b

1
2 > b11. We therefore define the candidate firm’s action

region as A1 := (0, b11].
(ii) The government introduces regulatory constraints whenever the level of production,

hence of emissions, is too large, i.e. Xt ≥ b22, for some b22 to be determined, and induces
a shift of the process downwards to some b21, where b

2
2 > b21 > b11. Hence, the candidate

government’s action region is given by A2 := [b22,∞).
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In the rest of this paper, we will denote by Ii := R+\Ai the inaction region of agent i .
Notice that the previous conjecture assumes that the constant barriers bij , i, j = 1, 2, of the
government (resp. the firm) are decided ex-ante and do not dynamically react to the policy
followed by the firm (resp. government). Therefore, they trigger precommitted policies of
the two agents.

Following the previous conjecture, for any x > 0 given and fixed we set ϕ̃1 :=
(τ̃

ϕ̃1,ϕ2
1,1 , . . . , τ̃

ϕ̃1,ϕ2
1,n , . . . ; ξ̃1, . . . , ξ̃n, . . . ) and ϕ̃2 := (τ̃

ϕ1,ϕ̃2
2,1 , . . . , τ̃

ϕ1,ϕ̃2
2,n , . . . ; η̃1, . . . , η̃n,

. . . ), where we have introduced:

(a) the sequence of the firm’s intervention times {τ̃ ϕ̃1,ϕ2
1,k }k≥1 such that τ̃

ϕ̃1,ϕ2
1,k := inf{t >

τ̃
ϕ̃1,ϕ2
1,k−1 : Xx,ϕ̃1,ϕ2

t ≤ b11} for all ϕ2 such that (ϕ̃1, ϕ2) ∈ S(x), and with τ̃
ϕ̃1,ϕ2
1,0 := 0 P-a.s.;

(b) the sequence of the government’s intervention times {τ̃ ϕ1,ϕ̃2
2,k }k≥1 such that τ̃

ϕ1,ϕ̃2
2,k :=

inf{t > τ̃
ϕ1,ϕ̃2
2,k−1 : Xx,ϕ1,ϕ̃2

t ≥ b22} for all ϕ1 such that (ϕ1, ϕ̃2) ∈ S(x), and with τ̃
ϕ1,ϕ̃2
2,0 :=

0 P-a.s.;
(c) the sequence of interventions of the firm ξ̃k := 1

α
(b12 − Xx,ϕ̃1,ϕ2

τ̃
ϕ̃1,ϕ2
1,k −

) for all k ≥ 1 and ϕ2

such that (ϕ̃1, ϕ2) ∈ S(x);
(d) the sequence of impulses applied by the government η̃k := Xx,ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k −

− b21 for all k ≥ 1

and ϕ1 such that (ϕ1, ϕ̃2) ∈ S(x).

By the definition of τ̃
ϕ̃1,ϕ2
1,k and τ̃

ϕ1,ϕ̃2
2,k one has that the sequence of impulses ξ̃k and η̃k are

constant-sized (apart the initial impulses, that depend on the initial state x). In particular,
ξ̃k := (b12 − b11)/α and η̃k := b22 − b21 for all k ≥ 2, and ξ̃1 := (b12 − x ∧ b11)/α and
η̃1 := x ∨ b22 − b21.

Notice that the policies (ϕ̃1, ϕ̃2) just described exist because the constant trigger values
bij , i, j = 1, 2, of agent i = 1, 2 do not depend on the policy employed by agent j �= i .
That is, independently of the action of agent j , agent i will always force the process X to
stay in her inaction region Ii . A rigorous formalization of (ϕ̃1, ϕ̃2) can be obtained by the
arguments employed in Definition 2.2 of Aïd et al. (2018). We now show that the policies
(ϕ̃1, ϕ̃2) previously defined are in fact admissible.

Lemma 3.1 Recall Definition 2.6. Then for any x > 0 the policies (ϕ̃1, ϕ̃2) ∈ S(x).

Proof Let x > 0 be given and fixed. Existence of a unique strong solution to (2.9) with
right-continuous paths can be obtained by arguing as in Lemma 2.3 of Aïd et al. (2018).
Also, Xx,ϕ̃1,ϕ̃2

t ∈ [b11, b22] ⊂ [0,∞) P-a.s. for all t > 0. Hence, Condition (i) of Definition
2.6 is satisfied.

The fact that Xx,ϕ̃1,ϕ̃2
t ∈ [b11, b22] P-a.s. for all t > 0 and the continuity of π and C in

particular imply that (i i)−(a) of Definition 2.6 is fulfilled. As for (i i)−(b) note that ξ̃k ≤
b12/α Px -a.s. for all k ∈ N, and that η̃k ≤ max(b22 − b21, x − b21) Px -a.s. for all k ∈ N. Hence
there exists a positive constant � (possibly depending on x) such that g1(ξ̃k) + g2(η̃k) ≤ �

Px -a.s. for all k ∈ N. In order to prove that (i i)−(b) of Definition 2.6 holds true, it thus
suffices to show that for any i = 1, 2 one has

Ex

⎡
⎣∑

k≥1

e−ri τ̃
ϕ̃1,ϕ̃2
i,k

⎤
⎦ < ∞.

To accomplish that one can adapt to our setting arguments from the proof of Proposition
4.7 in Aïd et al. (2018). We provide these arguments here for the sake of completeness.
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Without loss of generality we consider the case i = 1, since the treatment of the case i = 2 is

analogous. Defining τ̃ := inf{t > 0 : Xb12,ϕ̃1,ϕ̃2
t ≤ b11}, and exploiting the time-homogeneity

of the production process X and the independence of the Brownian increments, we can write
for any k ≥ 1

Ex

[
e−r1 τ̃

ϕ̃1,ϕ̃2
1,k

]
= Ex

[
e−r1 τ̃

ϕ̃1,ϕ̃2
1,k−1

]
E

[
e−r1 τ̃

]
.

By iterating the previous argument one findsEx
[
e−r1 τ̃

ϕ̃1,ϕ̃2
1,k

] = Ex
[
e−r1 τ̃

ϕ̃1,ϕ̃2
1,1

](
E

[
e−r1 τ̃

])k−1.
Then summing over k on both sides of the previous equation and applying Fubini-Tonelli’s
theorem, we obtain

Ex

⎡
⎣∑

k≥1

e−r1 τ̃
ϕ̃1,ϕ̃2
1,k

⎤
⎦ = Ex

[
e−r1 τ̃

ϕ̃1,ϕ̃2
1,1

]∑
k≥0

(
E

[
e−r1 τ̃

])k

,

and the series on the right-hand-side above converges as E[e−r1 τ̃ ] < 1.
Finally, because b11 < b22 by assumption, and b12, b

2
1 ∈ (b11, b

2
2), condition (i i i) and (iv)

of Definition 2.6 are satisfied. ��

The expected payoffs associated to the admissible policies (ϕ̃1, ϕ̃2) are defined as

v1(x) := J1(x, ϕ̃1, ϕ̃2) and v2(x) := J2(x, ϕ̃1, ϕ̃2), x > 0.

Moreover, thanks to Assumption 2.7, the performance criteria associated with no interven-
tions are finite and given by

G1(x) := Ex

[ ∫ ∞

0
e−r1sπ(Xs)ds

]
and G2(x) := Ex

[ ∫ ∞

0
e−r2sC(βXs)ds

]
. (3.1)

For frequent future use, we define the infinitesimal generator LX of the uncontrolled
diffusion Xx by (LXu

)
(x) := 1

2
σ 2(x)u′′(x) + μ(x)u′(x), x > 0,

for any u ∈ C2((0,∞)). Then, for fixed r > 0, under Assumption 2.1 there always exist
two linearly independent, strictly positive solutions to the ordinary differential equation
LXu = ru satisfying a set of boundary conditions based on the boundary behaviour of Xx

(see, e.g., pp. 18–19 of Borodin and Salminen 2002). These functions span the set of solutions
of LXu = ru, and are uniquely defined up to multiplication if one of them is required to be
strictly increasing and the other one to be strictly decreasing.We denote the strictly increasing
solution by ψr and the strictly decreasing one by φr . From now on we set ψi := ψri and
φi := φri for i = 1, 2.

Remark 3.2 The functions G1 and G2 are the expected cumulative present value of the flows
π(Xx

t ) and C(βXx
t ), respectively. It is well known that Gi , i = 1, 2, can be represented in

terms of the fundamental solutions ψi and φi , i = 1, 2. We refer the reader to equation (3.3)
in Alvarez (2004), among others.

For any i = 1, 2 we introduce the strictly decreasing and positive function Fi such that
Fi (x) := φi (x)/ψi (x). Also, for given bij , i, j = 1, 2, such that 0 < b11 < b12 < b22 and

b11 < b21 < b22, we set
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Ai (x) := ψi (x)

ψi (b11)

[
Fi (b22) − Fi (x)

Fi (b22) − Fi (b11)

]
, Bi (x) := ψi (x)

ψi (b22)

[
Fi (x) − Fi (b11)

Fi (b22) − Fi (b11)

]
i = 1, 2.

(3.2)
We define wi as the restriction of vi on I1 ∩ I2, i.e. wi := vi |I1∩I2 . The next result

provides a representation of vi (x) = Ji (x, ϕ̃1, ϕ̃2), i = 1, 2.

Proposition 3.3 Recall (3.2), let x > 0, and bij , i, j = 1, 2, such that 0 < b11 < b12 < b22
and b11 < b21 < b22 . Then, the performance criteria v1(x) and v2(x) associated to the policies
(ϕ̃1, ϕ̃2) ∈ S(x) can be represented as

v1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1(b12) − K1 − κ1
α

(b12 − x), x ≤ b11,[
w1(b12) − K1 − κ1

α
(b12 − b11) − G1(b11)

]
A1(x)

+ [
w1(b21) − G1(b22)

]
B1(x) + G1(x), x ∈ (b11, b

2
2),

w1(b21), x ≥ b22,

(3.3)

and

v2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w2(b12), x ≤ b11[
w2(b21) + K2 + κ2(b22 − b21) − G2(b22)

]
B2(x)

+ [
w2(b12) − G2(b11)

]
A2(x) + G2(x), x ∈ (b11, b

2
2),

w2(b21) + K2 + κ2(x − b21), x ≥ b22.

(3.4)

Moreover, under the requirement(
1 − Ai

(
b12

))(
1 − Bi

(
b21

)) − Bi
(
b12

)
Ai

(
b21

) �= 0, i = 1, 2, (3.5)

one has

w1(b
1
2) =

[
1 − A1(b

1
2) − B1(b12)A1(b21)

1 − B1(b21)

]−1[G1(b21)B1(b12)

1 − B1(b21)
+ G1(b

1
2) (3.6)

−
(
K1 + κ1(b

1
2 − b11) + G1(b

1
1)

)(
A1(b21)B1(b12)

1 − B1(b21)
+ A1(b

1
2)

)

−G1(b
2
2)

(
B1(b21)B1(b12)

1 − B1(b21)
+ B1(b

1
2)

)]
,

w1(b
2
1) = [

1 − B1(b
2
1)

]−1[(
w1(b

1
2) − K1 − κ1(b

1
2 − b11) − G1(b

1
1)

)
A1(b

2
1) (3.7)

−G1(b
2
2)B(b21) + G1(b

2
1)

]
,

and

w2(b
1
2) =

[(
1 − A2(b12)

)(
1 − B2(b21)

)
B2(b12)

− A2(b
2
1)

]−1

(3.8)

×
[
G2(b12)

(
1 − B2(b21)

)
B2(b12)

+ G2(b
2
1) + K2 + κ2(b

2
2 − b21) − G2(b

2
2)

−G2(b
1
1)

(
A2(b

1
2)
1 − B2(b21)

B2(b12)
+ A2(b

2
1)

)]
,

w2(b
2
1) = [

1 − B2(b
2
1)

]−1[(
K2 + κ2(b

2
2 − b21) − G2(b

2
2)

)
B2(b

2
1) (3.9)

+ (
w2(b

1
2) − G2(b

1
1)

)
A2(b

2
1) + G2(b

2
1)

]
.
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Proof We consider only the case i = 1 since the arguments are symmetric for i = 2. Let
x > 0 be given and fixed, and define τ1 := inf{t ≥ 0 : Xx

t ≤ b11} and τ2 := inf{t ≥ 0 :
Xx
t ≥ b22}. According to the policies (ϕ̃1, ϕ̃2), the stopping time τ1 ∧ τ2 is the first time at

which either the firm or the government intervenes. Then, noticing that X is uncontrolled up
to time τ1 ∧ τ2, the payoff of the firm associated to (ϕ̃1, ϕ̃2) satisfies the functional relation

v1(x) = Ex

⎡
⎣

τ1∧τ2∫

0

e−r1tπ(Xt )dt + e−r1τ11{τ1<τ2}
(
v1(b

1
2) − K1 − κ1

α
(b12 − X ϕ̃1,ϕ̃2

τ1
)
)

+ e−r1τ21{τ1>τ2}v1(b21)

⎤
⎦ . (3.10)

Recall that wi denotes the restriction of vi on I1 ∩ I2. Then, taking x ∈ (b11, b
2
2) = I1 ∩ I2

in (3.10), noticing that b12 and b
2
1 belong to I1 ∩ I2 and recalling (3.1), by the strong Markov

property we can write

w1(x) = (
w1(b

1
2) − K1 − κ1

α
(b12 − b11) − G1(b

1
1)

)
Ex

[
e−r1τ11{τ1<τ2}

]

+ (
w1(b

2
1) − G1(b

2
2)

)
Ex

[
e−r1τ21{τ1>τ2}

] + G1(x).

By using now the formulas for the Laplace transforms of hitting times of a linear diffusion
(see, e.g., Dayanik and Karatzas 2003, eq. (4.3)), we find (cf. (3.2))

Ex
[
e−r1τ11{τ1<τ2}

] = A1(x), Ex
[
e−r1τ21{τ1>τ2}

] = B1(x),

so thatw1(x) = (
w1(b12)−K1− κ1

α
(b12 −b11)−G1(b11)

)
A1(x)+

(
w1(b21)−G1(b22)

)
B1(x)+

G1(x), for all x ∈ (b11, b
2
2).

Taking x ≤ b11 in (3.10) we obtain τ1 = 0 and then v1(x) = w1(b12) − K1 − κ1
α

(b12 − x),
while picking x ≥ b22 we have τ2 = 0 and thus v1(x) = w1(b21). Therefore we can write

v1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1(b12) − K1 − κ1
α

(b12 − x), x ≤ b11,[
w1(b12) − K1 − κ1

α
(b12 − b11) − G1(b11)

]
A1(x)

+[
w1(b21) − G1(b22)

]
B1(x) + G1(x), x ∈ (b11, b

2
2),

w1(b21), x ≥ b22.

(3.11)

Let (3.5) hold. Recalling again that b12, b
2
1 ∈ (b11, b

2
2) by construction, and taking first

x = b12 and then x = b21 in (3.11), we obtain a linear system of two equations for the two
unknowns w1(b12) and w1(b21). Once solved, this system yields

w1(b
1
2) =

[
1 − A1(b

1
2) − B1(b12)A1(b21)

1 − B1(b21)

]−1[G1(b21)B1(b12)

1 − B1(b21)
+ G1(b

1
2)

−
(
K1 + κ1(b

1
2 − b11) + G1(b

1
1)

)(
A1(b21)B1(b12)

1 − B1(b21)
+ A1(b

1
2)

)

−G1(b
2
2)

(
B1(b21)B1(b12)

1 − B1(b21)
+ B1(b

1
2)

)]
,

and

w1(b
2
1) = [

1 − B1(b
2
1)

]−1[(
w1(b

1
2) − K1 − κ1(b

1
2 − b11) − G1(b

1
1)

)
A1(b

2
1)

−G1(b
2
2)B(b21) + G1(b

2
1)

]
.
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Notice that the denominators in the definition of w1(b12) are nonzero. Indeed, B1(b21) �= 1
since τ2 > 0 P-a.s. for x = b21 < b22, and (1 − A1(b12))(1 − B1(b21)) − B1(b12)A1(b21) �= 0
by (3.5).

The proof is then completed. ��
It is easy to see from (3.3) and (3.4) that vi , i = 1, 2, is by construction a continuous

function on (0,∞). In order to obtain the four boundaries bij , i, j = 1, 2, we first assume

that each agent picks her own action boundary bii , i = 1, 2, such that vi is also continuously
differentiable there. This gives

v′
1(b

1
1 +) = κ1

α
, (3.12)

v′
2(b

2
2 −) = κ2, (3.13)

where we have set v′
i (· ± ) := limε↓0 v′

i ( · ± ε).
The two Eqs. (3.12) and (3.13) may be interpreted as the so-called smooth-fit equations,

well known optimality conditions in the literature on singular/impulse control and optimal
stopping (see, e.g., Fleming and Soner 2005; Peskir and Shiryaev 2006). Furthermore, we
assume that at each intervention the firm and the government shift the process X to the points
that give rise to the maximal net profits and minimal total costs, respectively. This means that
b12, b

2
1 ∈ (b11, b

2
2) are selected such that

b12 = arg supy≥b11

{
v1(y) − κ1

α
(y − x) − K1

}
, x ≤ b11,

and
b21 = arg inf y≤b22

{
v2(y) + κ2(x − y) + K2

}
, x ≥ b22.

Consequently,

v′
1(b

1
2) = κ1

α
, (3.14)

v′
2(b

2
1) = κ2. (3.15)

The four Eqs. (3.12)–(3.15) can be used in order to obtain the four unknownsb11, b
1
2, b

2
1, b

2
2,

whenever a solution to such a highly nonlinear system exists.

3.2 The verification theorem

Here we prove a verification theorem providing a set of sufficient conditions under which
the solution to (3.12)–(3.15) (if it exists) characterizes an equilibrium; that is, (ϕ̃1, ϕ̃2) =
(ϕ∗

1 , ϕ
∗
2 ), and v1 ≡ V1, v2 ≡ V2 (cf. Definition 2.9). For its proof the following assumption

is needed.

Assumption 3.4 (i) There exists x̂1 > 0 such that the function θ1 : R+ �→ Rwith θ1(x) :=
π(x) + κ1

α
(μ(x) − r1x) attains a local maximum at x̂1 and is increasing on (0, x̂1);

(ii) There exists x̂2 > 0 such that the function θ2 : R+ �→ R with θ2(x) := C(βx) +
κ2(μ(x) − r2x) attains a local minimum at x̂2 and is increasing on (x̂2,∞).

Remark 3.5 It is worth noticing that Assumption 3.4 is verified by the benchmark cases
μ(x) = μx , μ ∈ R, π(x) = xa , a ∈ (0, 1), and C(x) = xb, b > 1, with x̂1 = [

κ1
aα

(r1 −
μ)

] 1
a−1 , x̂2 = [

κ2
bβb (r2 − μ)

] 1
b−1 (whenever r1 ∧ r2 > μ).
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Theorem 3.6 (Verification theorem) Let Assumption 3.4 hold. Let bij , i, j = 1, 2, be a

solution of (3.12)–(3.15) such that 0 < b11 < b12 < b22 , b
1
1 < b21 < b22 and satisfying (3.5),

recall v1, v2 as in (3.3) and (3.4), and suppose that

v′
1(x) ≥ κ1

α
, for all x ∈ (b11, b

1
2], (3.16)

v′
1(x) < κ1

α
, for all x ∈ (b12, b

2
2], (3.17)

v′
2(x) < κ2, for all x ∈ (b11, b

2
1), (3.18)

v′
2(x) ≥ κ2, for all x ∈ [b21, b22), (3.19)

and

b11 ≤ x̂1, (3.20)

π(b11) + c1
α

μ(b11) − r1v1(b
1
1) ≤ 0, (3.21)

b22 ≥ x̂2, (3.22)

C(βb22) + κ2μ(b22) − r2v2(b
2
2) ≥ 0. (3.23)

Then, for x > 0, the policies (ϕ̃1, ϕ̃2) ∈ S(x) such that⎧⎨
⎩

τ̃
ϕ̃1,ϕ̃2
i,k = inf{t > τ̃i,k−1 : X ϕ̃1,ϕ̃2

t /∈ Ii }, k ≥ 1, Px − a.s.,

τ
ϕ̃1,ϕ̃2
i,0 = 0, Px − a.s.,

(3.24)

for i = 1, 2, and

ξ̃k = 1

α

(
b12 − X ϕ̃1,ϕ̃2

τ̃
ϕ̃1,ϕ̃2
1,k −

)
, η̃k = X ϕ̃1,ϕ̃2

τ̃
ϕ̃1,ϕ̃2
2,k −

− b21, k ≥ 1, Px − a.s., (3.25)

form an equilibrium, and v1 and v2 are the corresponding equilibrium values; that is,

v1 = V1, v2 = V2 on (0,∞).

Proof The proof is organized in two steps.
Step 1 Here we discuss the regularity properties of the function vi , i = 1, 2, constructed

in Proposition 3.3. Note that by (3.3) and (3.4) one can directly check that vi ∈ C((0,∞))

for i = 1, 2. Moreover, by (3.12) and (3.13) one has v1 ∈ C1((0, b22)), v2 ∈ C1((b11,∞))

and it can be checked by direct calculations that v′′
1 ∈ L∞

loc((0, b
2
2)) and v′′

2 ∈ L∞
loc((b

1
1,∞)).

Also, for any x ∈ (b11, b
2
2) we have from (3.3) and (3.4) that

(LXv1 − r1v1
)
(x) + π(x) = 0

and
(LXv2 − r2v2

)
(x) + C(βx) = 0.

Because θ1 is increasing on (0, x̂1) (cf. Assumption 3.4), and b11 ≤ x̂1 by assumption, we
obtain from (3.3) that for any x < b11 one has

(LXv1 − r1v1
)
(x) + π(x) = θ1(x) − r1

(
v1(b

1
2) − K1 − κ1

α
b12

)
(3.26)

≤ θ1(b
1
1) − r1

(
v1(b

1
2) − K1 − κ1

α
b12

) = π(b11) + κ1

α
μ(b11) − r1v1(b

1
1) ≤ 0,

where we have used that v1(b12) = v1(b11) + K1 + κ1
α

(b12 − b11), (3.20) and (3.21).
Similarly, one can check that

(LXv2−r2v2
)
(x)+C(βx) ≥ 0 for all x > b22 due to (3.22),

(3.23), and the fact that θ2 is increasing on (x̂2,∞) (cf. Assumption 3.4).
Step 2 Given x > 0 we now prove that (ϕ̃1, ϕ̃2) ∈ S(x) are equilibrium policies; that is,

v1(x) ≥ J1(x, ϕ1, ϕ̃2), ∀ϕ1 s.t. (ϕ1, ϕ̃2) ∈ S(x),
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v2(x) ≤ J2(x, ϕ̃1, ϕ2), ∀ϕ2 s.t. (ϕ̃1, ϕ2) ∈ S(x),

with equalities when we pick ϕ1 = ϕ̃1 and ϕ2 = ϕ̃2. Without loss of generality we consider
i = 1, since the arguments for i = 2 are analogous.

Let ϕ1 = (τ1,1, . . . , τ1,n, . . . ; ξ1, . . . , ξn, . . . ) be such that (ϕ1, ϕ̃2) ∈ S(x), and for

N > 0 set τR,N := τR ∧ N , where τR := inf{s > 0 : Xx,ϕ1,ϕ̃2
s /∈ (−R, R)}, with the usual

convention inf ∅ = ∞. Since Xx,ϕ1,ϕ̃2
t ≤ b22 P-a.s. for all t > 0, by the regularity of v1

discussed in Step 1we can apply the generalized Itô’s formula for semimartingales (see, e.g.,
Øksendal and Sulem 2006, Theorems 2.1 and 6.2), so to obtain

v1(x) = Ex

[
−

τR,N∫

0

e−r1t (LXv1 − r1v1)(X
ϕ1,ϕ̃2
t )dt + e−r1τR,N v1(X

ϕ1,ϕ̃2
τR,N

)

−
∑

k: τ1,k<τR,N

e−r1τ1,k
(
v1(X

ϕ1,ϕ̃2
τ1,k

) − v1(X
ϕ1,ϕ̃2
τ1,k− )

)

−
∑

k: τ̃ ϕ1,ϕ̃2
2,k <τR,N

e−r1 τ̃
ϕ1,ϕ̃2
2,k

(
v1(X

ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k

) − v1(X
ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k −

)
)]

. (3.27)

By using again that Xx,ϕ1,ϕ̃2
t ≤ b22 for all t > 0 P-a.s., and since (LXv1 − r1v1)(x) ≤ −π(x)

for a.e. x < b22 due to (3.26), we obtain from (3.27) that

v1(x) ≥ Ex

⎡
⎣

τR,N∫

0

e−r1tπ(Xϕ1,ϕ̃2
t )dt −

∑
k: τ1,k<τR,N

e−r1τ1,k
(
v1(X

ϕ1,ϕ̃2
τ1,k

) − v1(X
ϕ1,ϕ̃2
τ1,k− )

)

−
∑

k: τ̃ ϕ1,ϕ̃2
2,k <τR,N

e−r1 τ̃
ϕ1,ϕ̃2
2,k

(
v1

(
Xϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k

)
− v1

(
Xϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k −

))
+ e−r1τR,N v1(X

ϕ1,ϕ̃2
τR,N

)

⎤
⎥⎦.

(3.28)

In order to take care of the two sums in the expectation above, we define the nonlocal
operator (M1v1

)
(x) := sup

ξ≥0

{
v1(x + αξ) − g1(ξ)

}
,

and we notice that ξ̃k of (3.25) is such that ξ̃k = arg supξ≥0
{
v1(x + αξ) − g1(ξ)

}
, for all

k ∈ N, due to (3.16) and (3.17). Hence

(M1v1
)
(x) =

{
v1(b12) − K1 − κ1

α
(b12 − x), if x ≤ b12,

v1(x) − K1, if x > b12.
(3.29)

One can easily see from (3.3) and (3.29) that v1(x) ≥ (M1v1
)
(x) for all x ∈ (0, b11] ∪

(b12,∞), with equality for x ≤ b11. Then, noticing that x �→ v1(x)−
(M1v1

)
(x) is increasing

for any x ∈ (b11, b
1
2] by (3.16) and (3.29), we conclude that v1(x) ≥ (M1v1

)
(x) for all x > 0.

Therefore
v1

(
Xx,ϕ1,ϕ̃2

τ1,k−
)

≥ (M1v1
)(

Xx,ϕ1,ϕ̃2
τ1,k−

)
≥ v1

(
Xx,ϕ1,ϕ̃2

τ1,k

)
− g1(ξk), (3.30)
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for anyFτ1,k -measurable ξk ≥ 0. Moreover, because Xx,ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k −

≥ b22 P-a.s. and Xx,ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k

= b21

P-a.s., we find by (3.3) that

v1

(
Xx,ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k −

)
= v1

(
Xx,ϕ1,ϕ̃2

τ̃
ϕ1,ϕ̃2
2,k

)
, (3.31)

upon noticing that v1(b21) = w1(b21) since b21 ∈ (b11, b
2
2). It thus follows from (3.30) and

(3.31) that

v1(x) ≥ Ex

⎡
⎣

τR,N∫

0

e−r1tπ(Xx,ϕ1,ϕ̃2
t )dt −

∑
k:τ1,k<τR,N

e−r1τ1,k g1(ξk) + e−r1τR,N v1(X
x,ϕ1,ϕ̃2
τR,N

)

⎤
⎦ .

(3.32)
But now, v is continuous and Xx,ϕ1,ϕ̃2

t ∈ [0, b22] P-a.s. by admissibility of (ϕ1, ϕ̃2). Hence,

we can write e−r1τR,N v1(X
x,ϕ1,ϕ̃2
τR,N ) ≥ −e−r1τR,N |v1(Xx,ϕ1,ϕ̃2

τR,N )| ≥ −e−r1τR,N maxx∈[0,b22]|v1(x)|, and from (3.32) we have

v1(x) ≥ Ex

⎡
⎣

τR,N∫

0

e−r1tπ(Xx,ϕ1,ϕ̃2
t )dt −

∑
k:τ1,k<τR,N

e−r1τ1,k g1(ξk) − e−r1τR,N max
x∈[0,b22]

|v1(x)|
⎤
⎦.

(3.33)
By using the dominated convergence theorem for the last term in (3.33) and the monotone
convergence theorem for the integral and the series in (3.33), we let first R → ∞ and then
N → ∞, and we find

v1(x) ≥ J1(x, ϕ1, ϕ̃2).

Finally, by construction we also have v1(x) = J1(x, ϕ̃1, ϕ̃2).

Because arguments analogous to the ones employed for v1 yield v2(x) ≤ J2(x, ϕ̃1, ϕ2)

for all ϕ2 such that (ϕ̃1, ϕ2) ∈ S(x), and v2(x) = J2(x, ϕ̃1, ϕ̃2), we conclude that (ϕ̃1, ϕ̃2)

are equilibrium policies and (v1, v2) are the corresponding equilibrium values. ��
Remark 3.7 As a byproduct of Theorem 3.6 we have that, if (3.16)–(3.23) are fulfilled, then
v1 and v2 satisfy in the a.e. sense the system of QVIs

max{(Lv1 − r1v1
)
(x) + π(x), M1v1(x) − v1(x)} = 0, for a.e. x < b22, (3.34)

min{(Lv2 − r2v2
)
(x) + C(βx), M2v2(x) − v2(x)} = 0, for a.e. x > b11,

v1(x) ≥ M1v1(x), ∀x > 0,

v2(x) ≤ M2v2(x), ∀x > 0,

v1(x) = v1
(
b21

)
, ∀x ≥ b22,

v2(x) = v2
(
b12

)
, ∀x ≤ b11.

A system analogous to (3.34) has been introduced in the context of nonzero-sum stochastic
differential games with impulse controls in Aïd et al. (2018).

4 A numerical example and comparative statics

Verification Theorem 3.6 involves the highly nonlinear system of four algebraic equations
(3.12)–(3.15) for the four boundaries. We have solved this system numerically in a specific
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Table 1 Parameters’ values for
the numerical example

μ σ r1 r2 α β K1 κ1 K2 κ2 a b

0.02 0.20 0.10 0.10 1 1 0.5 0.8 0.6 0.3 0.5 2

Fig. 1 Value functions in the strategic and non-strategic setting. a Equilibrium value V1 in (b11, b
2
2). b Equi-

librium value V2 in (b11, b
2
2). c Value function of the firm in the inaction region for a non-strategic model. d

Value function of the government in the inaction region for a non-strategic model

setting by usingMATLAB. In particular, for the numerical example we have assumed that the
uncontrolled output of production evolves as a geometric Brownian motion, i.e. μ(x) = μx
and σ(x) = σ x for some μ ∈ R and σ > 0. Moreover, we have taken an operating profit
function of Cobb-Douglas type π(x) = xa , a ∈ (0, 1), and a social disutility function of the
form C(x) = xb, b > 1.
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Fig. 2 Derivatives of the equilibrium values. a Derivative of V1, b Derivative of V2. (Color figure online)

Fig. 3 Dependency of the equilibrium on the volatility σ . a The optimal action boundaries b11 (black), b12
(blue), b21 (red), b

2
2 (green). bOptimal size of interventions: firm (blue) and government (black). (Color figure

online)

Among the possible parameters’ values satisfying Assumption 2.7, we pick for example
those provided in Table 1, and we notice that for such a choice the performance criteria
associated with no interventions (cf. (3.1)) are given by

G1(x) = 1

r1 − μ
2 + σ 2

8

√
x = 1000

95

√
x, and G2(x) = 1

r2 − 2μ − σ 2 x
2 = 50x2. (4.1)

Also, by an application of the Newton method in MATLAB, we find that the numerical
solution to (3.12)–(3.15) is given by

b11 = 0.1558984470, b12 = 0.3825673799,

b21 = 0.2359455020, b22 = 0.5746537199,

123



Ann Oper Res (2019) 275:297–319 315

Fig. 4 Dependency of the equilibrium on the drift μ. a The optimal action boundaries b11 (black), b12 (blue),

b21 (red), b
2
2 (green). bOptimal size of interventions: firm (blue) and government (black). (Color figure online)

where we have evaluated wi (b12) and wi (b21), i = 1, 2, by (3.6)–(3.9). One also finds (cf.
(3.20)–(3.23))

x̂1 = [
2κ1(r1 − μ)

]−2 = 61.03515625 > b11, π(b11) + c1
α

μ(b11) − r1v1(b
1
1) = −0.0727643376 ≤ 0,

x̂2 = κ2(r2−μ)
2 = 0.012 < b22, C(βb22) + κ2μ(b22) − r2v2(b

2
2) = 0.1390988361 ≥ 0.

The plots of the equilibrium values and of their derivatives in the joint inaction region (b11, b
2
2)

are provided in Figs. 1a, b and 2a, b, respectively. In Fig. 1c, d one observes the drawings of
the value functions that the firm and the government would have in a non-strategic setting
(i.e. if the two agents optimize their own performance criterion in absence of the other agent).

Comparing Fig. 1a, b with Fig. 1c, d, one can notice that the value functions that the two
agents would have in a non-strategic setting are monotone with respect to the state variable.
On the contrary, the equilibrium values V1 and V2 are not monotone functions, and this is
clearly a consequence of the strategic interaction between the two agents. From Fig. 2a, b
one can also check that conditions (3.16)–(3.19) are satisfied.

We now discuss the dependency of our equilibrium policies with respect to the model
parameters. The following plots are obtained with MATLAB through an application of the
Newton method initialized at the parameters’ values specified in Table 1 above.

Figure 3a displays the behavior of the optimal action boundaries b11 and b22 when the
volatility σ varies in the range [0.19, 0.22]. Furthermore, Fig. 3b shows how the optimal size
of interventions, b12 − b11 and b22 − b21, changes with σ . One can observe that the optimal
action threshold of the government increases with σ , whereas the firm’s action threshold
decreases. This behavior is well-known in the real options literature [see the seminal paper
by McDonald and Siegel (1986)]: when uncertainty increases, the agent is more reluctant
to act and her inaction region becomes larger. Furthermore, Fig. 3b reveals that the strength
of interventions of the firm and of the government increases with increasing volatility. The
higher are the fluctuations of the production/pollution process, the more the agents are afraid
of a quicker need of a new costly intervention. Hence both the agents increase the size of
their impulses in order to postpone their next action.

We now take σ = 0.2, and we let μ vary in the interval [0.01, 0.025]. Figure 4a leads
us to the following conclusion: as the drift μ increases, the firm’s action region becomes
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Fig. 5 Dependency of the equilibrium on the firm’s fixed cost K1. aThe optimal action boundaries b11 (black),

b12 (blue), b21 (red), b22 (green). b Optimal size of interventions: firm (blue) and government (black). (Color
figure online)

Fig. 6 Dependency of the equilibrium on the firm’s variable cost κ1. a The optimal action boundaries b11
(black), b12 (blue), b21 (red), b22 (green). b Optimal size of interventions: firm (blue) and government (black).
(Color figure online)

smaller. That is, a higher trend of the output of production decreases the firm’s willingness
to intervene. We can also observe from Fig. 4a that the government’s threshold decreases
with μ: since the output of production, and therefore the rate of emissions, increases faster,
the government tries to dam the increasing social cost by introducing more severe regulatory
constraints. Figure 4b shows that the higher the trend of the output of production is, the
lower is the size of interventions b12 − b11, i.e. the lower the willingness of the firm to pay
for additional capacity. Also, one can observe that the government’s size of interventions
decrease with increasing μ. We believe that this effect is due to the strategic interactions
between the two agents, and it might be justified as follows. The higher μ is, the smaller
is the length of the joint inaction region (see Fig. 4a). Hence, the government reduces the
size of interventions when μ increases so to likely reduce the firm’s incentive to inter-
vene.
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Finally, we analyze the dependency of the action thresholds and of the equilibrium
impulses’ size with respect to the cost components K1 and κ1 (see Figs. 5, 6). Similar
behaviors are also observed with respect to K2 and κ2. Higher fixed costs lead to decreasing
action boundaries, see Fig. 5a, and therefore to a larger inaction region of the firm. As a con-
sequence, the government exploits the firm’s reluctance to invest when fixed costs are larger
and confines the production process below a lower level. A particular comment is deserved
by Fig. 5b where we observe that the sizes of interventions of both agents are decreasing
with respect to K1. This behavior might be explained once more as an effect of the strategic
interaction between the two agents. When K1 increases, the firm reduces the size of its inter-
ventions in order to likely avoid a possible further action by the government, and, in turn,
a further costly capacity expansion. As a result of the reduction of the joint inaction region
(see Fig. 5a), the government also diminishes its size of interventions so to try to prevent the
firm from undertaking a further capacity expansion. A similar rationale might also explain
the behavior of the equilibrium thresholds and equilibrium impulses’ sizes with respect to
the variable costs κ1.

5 Conclusions

In this paper a government and a firm, representative of the productive sector of a country,
are the two players of a stochastic nonzero-sum game of impulse control. The firm faces both
proportional and fixed costs to expand its stochastically fluctuating production with the aim
of maximizing its expected profits. The government introduces regulatory constraints with
the aim of reducing the level of emissions of pollutants and of minimizing the related total
expected costs. Assuming that the emissions’ level is proportional to the output of production,
by issuing environmental policies the government effectively forces the firm to decrease its
production.

We have conjectured that an equilibrium in this strategic problem is characterized by
four constant trigger values, to be endogenously determined. We have then provided a set
of sufficient conditions under which these candidate equilibrium policies do indeed form an
equilibrium. Finally, we have studied numerically the case in which the (uncontrolled) output
of production evolves as a geometric Brownian motion, and the firm’s operating profit and
the government’s running cost function are of power type. Within such a setting, a study of
the dependency of the equilibrium policies and values on the model parameters have yielded
interesting new behaviors that we have explained as a result of the strategic interaction
between the firm and the government.

There are many directions in which it would be interesting to extend the present study.
As an example, one might consider a two-dimensional formulation of our game in which the
state variables are given by the production capacity of the firm and the level of pollution. The
firm faces a costly capacity expansion and maximizes its net expected profits. The output of
production, however, increases the emissions, which in turn contribute to the accumulation of
a pollution stock. The government aims at reducing the level of the pollution stock by issuing
costly environmental policies. This would lead to a daunting two-dimensional stochastic
game with impulse controls for which a sophisticated theoretical and numerical analysis
might be needed.
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