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Abstract In this paper, we suggest a two-player differential game model of transboundary
pollution that accounts for time-dependent environmental absorption efficiency, which allows
the biosphere to switch from a carbon sink to a source. We investigate the impact of negative
externalities resulting from a transboundary pollution non-cooperative game wherein coun-
tries are dynamically involved. Based on a linear-quadratic specification for the instantaneous
revenue function, we assess differences related to both transient path and steady state between
cooperative solution, open-loop and Markov perfect Nash equilibria (MPNE). Regarding the
methodological contribution of the paper, we suggest a particular structure of the conjec-
tured value function to solve MPNE problems with multiplicative interaction between state
variables in one state equation, so that third-order terms that arise in the Hamilton–Jacobi—
Bellman equation aremade negligible. Using a collocation procedure, we confirm the validity
of the particular structure of the conjectured value function. The results suggest unexpected
contrasts in terms of pollution control and environmental absorption efficiency management:
(i) in the long run, an open-loop Nash equilibrium (OLNE) allows equivalent emissions to the
social optimum but requires greater restoration efforts; (ii) although anMPNE is likely to end
up with lower emissions and greater restoration efforts than an OLNE, it has a much greater
chance of falling in the emergency area; (iii) the absence of cooperation and or precommit-
ment becomes more costly as the initial absorption efficiency decreases; (iv) more heavily
discounted MPNE strategies are less robust than OLNE to prevent irreversible switching of
the biosphere from a carbon sink to a source.
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1 Introduction

Because natural CO2 sinks absorb 55% of all anthropogenic carbon emissions, they represent
“a huge subsidy to the global economy worth half a trillion US$ annually” (Canadell et al.
2007). However, the efficiency of natural sinks at absorbing CO2 has decreased by 5% in the
last 50 years, and this pattern is expected to continue (Canadell et al. 2007). One illustration
of this trend is provided by the oceanic carbon sink, the decreased efficiency of which is
believed to have caused a decline of up to 30% in the efficiency of the Southern Ocean sink
over the last 20 years (Le Quéré et al. 2007). As consequences of this trend, greenhouse
warming and the associated release of soil carbon favor a transition of the biosphere from
a carbon sink to a source of pollution in the long run (Cox et al. 2000; Cramer et al. 2001;
Joos et al. 2001; Lenton et al. 2006; Piao et al. 2008). According to Joos et al. (2001), “in the
most extreme cases, the terrestrial biosphere becomes a source of carbon during the second
half of the century.”

In the absence of a transnational institution that can impose an environmental policy, and
due to the lack of enforceable global coordination, it is likely that decentralized decision-
making processes at the national level related to polluting emissionswill aggravate the decline
in the efficiency of carbon sinks.

With rare exceptions, the problem of declining environmental absorption efficiency has
been disregarded in dynamic game models of transboundary pollution, which are typi-
cally based on the assumption of a linear environmental absorption function (e.g., Li 2014;
Benchekroun andMartín-Herrán 2016; Fünfgelt and Schulze 2016; Huang et al. 2016). More
recently, a nonlinear absorption function has been proposed to account for declining envi-
ronmental absorption efficiency (Mäler et al. 2003; Kossioris et al. 2008). This formulation,
which combines the linear negative influence of the pollution stock with nonlinear posi-
tive feedback related to the release of past accumulated pollution, involves multiple steady
state equilibria with different stability properties. Although this change in perspective allows
more accurate handling of potentially irreversible environmental degradation, it relies on the
assumption of an instantaneous change in the absorption efficiency that precludes investing
in a restoration effort whose impact is, indeed, not instantaneous.

Economic study of these issues is of prime importance because, just like emissions reduc-
tion, restoration of carbon sinks’ efficiency is also a public good. With two superimposed
free-rider problems, the failure of reduction policy might also impede restoration policy.

In this paper, we suggest a two-player differential game model of transboundary pol-
lution that accounts for time-dependent environmental absorption efficiency, which allows
switching of the biosphere from a carbon sink to a source, and the ability to invest in the
restoration of environmental absorption efficiency. In this setup, we investigate the impact
of negative externalities resulting from the transboundary pollution control non-cooperative
game wherein countries are dynamically involved. To do so, we assess differences related to
both transient and steady states between cooperative and non-cooperative pollution control
and environmental absorption efficiency management.

To date, the theoretical debate on transboundary pollution control has led to the emergence
of twomain streams (cf. Jørgensen et al. 2010; Long 2010; Benchekroun andLong 2011). The
first stream recommends that polluters commit to a predetermined plan of action over time
whenever environmental absorption efficiency is linear (van der Ploeg and de Zeeuw 1991,
1992) or non-linear (Mäler et al. 2003; Kossioris et al. 2008). The second stream of literature
prescribes that, in the context of linear environmental absorption efficiency, polluters use
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softly discounted, non-linear strategies to make decisions contingent on the current pollution
level over time (Dockner and Long 1993).1

In practice, only voluntary “contributions” to global emissions reduction, rather than com-
mitments, were agreed to by the countries attending the successive International Conferences
on the Climate since the implementation of the Kyoto Protocol in 2005. A recent conference,
which took place inWarsaw in November 2013, illustrated how difficult it is to reach a global,
enforceable agreement on emissions reduction. It is therefore important to analyze whether
the absence of commitment at an international level on pollution control is likely to aggravate
the decline in the efficiency of carbon sinks.

In this perspective, we compare the outcomes related to an open-loop Nash equilibrium
(OLNE), which reflects the situation where polluters commit to a predetermined plan of
action, and a Markov perfect Nash equilibrium (MPNE), which corresponds to the case
where polluters make decisions contingent on the current state of the biosphere (Dockner
et al. 2000; Long 2010). To characterize an MPNE solution near its steady state, we use both
a carefully designed local quadratic approximation, and, to get a comparison, a numerical
approximation based on the collocation method for PDEs (Judd 1998; Doraszelski 2003).
Setting the cooperative solution as a benchmark, we identify which decision rule, OLNE or
MPNE, better prevents the durable or transient switching of the biosphere from a pollution
sink to a source, if any. The results show that the players’ transient behavior has a critical
impact on the resulting steady state in terms of pollution stock and environmental absorption
efficiency. More importantly, unexpected contrasts are found between the cooperative and
non-cooperative steady states.

The paper proceeds as follows. Section 2 develops the differential game model and its
properties. In Sects. 3 and 4, we derive the cooperative and open-loopNash equilibria, respec-
tively. In Sect. 5, we study the Markov perfect Nash equilibrium for a locally quadratic value
function and evaluate its accuracy. In Sect. 6, we compare the results. Section 7 concludes
the paper.

2 Model formulation

We extend the non-linear quadratic model in El Ouardighi et al. (2014) to a differential game
of transboundary pollution. In the setup of a two-player gamewhere players are, e.g., nations,
we interpret the biosphere as the place of interaction between pollution and environmental
absorption efficiency. The pollution stock is supposed to increase with anthropogenic emis-
sions and to depreciate at an environmental absorption efficiency rate. The pollution stock
has a destructive impact on absorption efficiency, which in turn increases the pollution stock.
In contrast with the existing literature, we model environmental absorption efficiency as a
state variable, which allows for negative absorption efficiency that would stimulate pollution
even in the absence of anthropogenic emissions. This is in line with scientific evidence that
the biosphere may switch from a carbon sink to a source (e.g., Cox et al. 2000; Canadell
et al. 2007). To counteract such a switch, we consider two policy instruments: anthropogenic
emissions and efforts to restore environmental absorption efficiency.

The rate of change of the pollution stock over time is written as:

Ṗ(t) �
∑

i
ei (t) − A(t)P(t) P(0) � P0 > 0 (1)

1 This prescription, which results in multiple equilibria, is confirmed by Rowat (2006), moderated by Rubio
and Casino (2002) and opposed by Wirl (2007).
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where P(t) ≥ 0 denotes the pollution stock at time t , ei (t) ≥ 0, i � 1, 2, player i’s current
emissions, and A(t) environmental absorption efficiency.2

Further, the rate of change of environmental absorption efficiency over time is:

Ȧ(t) �
∑

i
wi (t) − γ P(t) A(0) � A0 ≥ 0 (2)

wi (t) ≥ 0 being player i’s effort to restore environmental absorption efficiency, i � 1, 2, and
γ > 0 the marginal destructive impact of pollution on the evolution of absorption efficiency.
The efforts to restore environmental absorption efficiencymay include reforestation (UNFCC
2008), and geo-engineering technologies (such as iron fertilization, biochar), which aim at
accelerating natural processes of carbon removal (Vaughan and Lenton 2011).

The formulation in (1)–(2) includes the pollution accumulation model with linear absorp-
tion efficiency as a special case if environmental absorption efficiency is totally insensitive
to the destructive impact of the pollution stock, γ � 0, and there is no restoration effort of
environmental absorption efficiency,w(t) � 0, ∀ t .3 The formulation in (1)–(2) also extends
the pollution accumulation model with zero absorption efficiency if environmental absorp-
tion efficiency is zero over the whole planning horizon, A(t) � 0, ∀ t (El Ouardighi et al.
2015b).

Assuming that there is no anthropogenic intervention (which corresponds to the pre-
industrial era), over an infinite horizon, i.e., ei (t) � wi (t) � 0, ∀ t ≥ 0, i � 1, 2, the
properties of the system (1)–(2) can be described in the phase diagram below. The system
admits infinite steady states on the isocline Ȧ � 0. The eigenvalues associated with such
system are −A∞ and 0, which means that the positive horizontal axis is a sink, and the
negative horizontal axis is a source.

Based on the steady state (A∞, P∞) � (0, 0), the phase diagram can be divided into three
regions:

• A sustainability area, where the initial environmental absorption capacity acts as a sink
for any pollution stock starting on the right side of the (dashed) saddle path.

• An emergency area, where any path starting on the left side of the (dashed) saddle path
and the right side of the Ṗ � 0 isocline, though declining, tends to exhaust the pollution
sink.

• An irreversible area (the so-called Soylent green scenario), on the left side of the Ṗ � 0
isocline, where the environment becomes a source of formerly stored pollution (Fig. 1).

The phase diagram shows that a large initial pollution stock combined with sufficiently
low initial environmental absorption efficiency is a sufficient condition for switching from a
pollution sink to a source.

2 By an application of Gronwall’s lemma to the differential inequality Ṗ(t) ≥ −A(t)P(t) which is implied
by (1), one obtains, indeed, P(t) ≥ 0, ∀t..
3 For more details, see El Ouardighi et al. (2014).
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Regarding the objective functions, we assume that each player seeks to maximize its
intertemporal utility, Ui . In this regard, we make the following assumptions. First, each
player’s instantaneous revenue is a concave function of its own current rate of emissions,
ei (t)

(
ai − ei (t)

/
2
)
, where 2ai > 0 is an upper bound for emissions, i � 1, 2. This choice

comes from the fact that the quadratic revenue function has been often used in dynamic
game models with a linear absorption function (Rubio and Casino 2002; Wirl 2007).4 The
instantaneous social cost incurred by each player due to the pollution stock is a quadratic
function, ci P(t)2

/
2, where ci > 0 is a pollution cost coefficient, i � 1, 2 (Rubio and

Casino 2002;Wirl 2007; Boucekkine et al. 2013). Finally, each player incurs an instantaneous
increasing convex cost of effort to restore environmental absorption efficiency, fiwi (t)2

/
2,

where fi > 0 is a restoration cost coefficient, i � 1, 2 (El Ouardighi et al. 2014; El Ouardighi
et al. 2015a).

Letting ri > 0 denote player i’s discounting rate, and assuming an infinite planning
horizon, player i’s objective criterion is written as:

Max
ei (.),wi (.)

Ui �
+∞∫

0

e−ri t
[
ei (t)

(
ai − ei (t)

/
2
)− ci P(t)

2/2 − fiwi (t)
2/2

]
dt (3)

subject to (1)–(2), ei (t) ≥ 0 and wi (t) ≥ 0, ∀ t , i � 1, 2. In the remainder of the paper, we
set fi � 1, i � 1, 2, without loss of generality. Further, invoking the symmetry assumption,
which is standard in the literature on pollution control (e.g., Jørgensen et al. 2010; Long
2010), we use: ai ≡ a, ci ≡ c, and ri ≡ r , i � 1, 2.

3 Cooperative solution

Cooperative solution strategies require that the players align their respective interests and
maximize the overall utility over the planning horizon, that is:

U �
+∞∫

0

e−r t
[∑

i
ei (t)

(
a − ei (t)

/
2
)− cP(t)2 −

∑
i
wi (t)

2/2
]
dt (4)

Accordingly, the current-value Hamiltonian is written as:

H �
∑

i
ei
(
a − ei

/
2
)− cP2 −

∑
i
w2
i

/
2 + η1

(∑
i
ei − AP

)
+ η2

(∑
i
wi − γ P

)

(5)

where η j ≡ η j (t) are (current value) costate variables, j � 1, 2.
Assuming an interior solution and applying Pontryagin’s principle in the discounted case,

the necessary conditions for cooperative solution are:

Hei � a − ei + η1 � 0 ⇒ ei � a + η1 (6)

Hwi � −wi + η2 � 0 ⇒ wi � η2 (7)

i � 1, 2, where the evolution of the costate variables is given by:

η̇1 � 2cP + (r + A) η1 + γ η2 (8)

4 Unlike most game studies with nonlinear absorption function, our study does not use a logarithmic revenue
function (Mäler et al. 2003; Kossioris et al. 2008; Dockner andWagener 2014). Note that a logarithmic function
provides quite similar results to those obtained with our quadratic function.

123



658 Ann Oper Res (2020) 287:653–681

η̇2 � rη2 + η1P (9)

Equations (8) and (9) confirm that the players’ equilibrium strategies are symmetric.
Using (6)–(7) in (1)–(2), we obtain:

Ṗ � 2 (a + η1) − AP (10)

Ȧ � 2η2 − γ P (11)

Let us assume a steady state to study optimal control at this state. Assuming that Ṗ �
Ȧ � 0 gives

∑
i ei � AP and

∑
i wi � γ P . Differentiating these equations with respect

to time and accounting for Ṗ � Ȧ � 0 yields steady efforts ėi � ẇi � 0 i � 1, 2.
Differentiating (6)–(7) over any time interval and accounting for ėi � ẇi � 0, i � 1, 2, the
costate variables are time invariant. This implies that if the pollution stock and the absorption
efficiency are both steady, then the related costate variables are also steady, and each player
performs time-invariant efforts.

Proposition 1 There exists a non-trivial cooperative steady state that is unique, given by:

[P∞ A∞ ei∞ wi∞]T �
[

r2γ + h

2
(
4c + γ 2

)
2 (2a − rγ )

(
4c + γ 2

)

r2γ + h

2a − rγ

2

γ
(
r2γ + h

)

4
(
4c + γ 2

)
]T

(12)

where h ≡
√
r4γ 2 + 4rγ (2a − rγ )

(
4c + γ 2

)
> 0, i � 1, 2.

Proof See "Appendix A1".

The cooperative solution allows for a feasible steady state emissions rate compatible with
the preservation of a strictly positive environmental absorption rate if a > rγ

/
2. In (12),

we observe that a lower discounting rate should result in a higher steady state emissions rate
ei∞ and environmental absorption efficiency A∞ as well as lower pollution stock P∞ and
restoration efforts wi∞. Note that there exists a trivial steady state solution characterized
by zero emissions, pollution stock and restoration efforts and negative absorption efficiency,

i.e.,
[
P

′
∞ A

′
∞ e

′
i∞ w

′
i∞
]T � [0 − r 0 0]T . This solution is different from the irre-

versible solution found in Tahvonen and Withagen (1996), which implies ‘high’ pollution
concentration that can be optimal. In our model, this second steady state is unstable and
therefore cannot be optimal.

Corollary 1 At the steady state, the instantaneous cooperative utility is:

u∞ � 4a2 − r2γ 2

8
−
(
r2γ + h

)2

16
(
4c + γ 2

) (13)

Proof See "Appendix A2".

The expression in (13) characterizes the utility of future generations in the cooperative
case. It can be shown that ∂u∞

/
∂r < 0, which implies that a larger discounting rate results

in a lower utility of future generations under cooperation. Similarly, as ∂u∞
/

∂γ < 0,
more vulnerable environmental absorption efficiency negatively affects the utility of future
generations.

Proposition 2 The cooperative steady state is a saddle-point and the optimal path to the
steady state is either monotonic or oscillatory.

Proof See "Appendix A3".
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That is, the saddle-path can either converge monotonically or oscillate toward the steady
state. This result is consistent with previous findings where a clockwise spiraling path can go
through the Soylent Green area, with negative environmental absorption efficiency during a
finite time interval (El Ouardighi et al. 2014; El Ouardighi et al. 2015a).

Lemma 1 The saddle paths of the control and state variables near the cooperative steady
state are:

ei (t) � a + η1∞ + B1e
χ1t + B2e

χ3t (14)

wi (t) � wi∞ + B3e
χ1t + B4e

χ3t (15)

P(t) � P∞ + B5e
χ1t + B6e

χ3t (16)

A(t) � A∞ + B7e
χ1t + B8e

χ3t (17)

where B1, . . . , B8 are constants of integration and χ1, χ3 are eigenvalues with negative real
part.

Proof See "Appendix A4".

Equations (14)–(17) are useful to characterize the transient paths for the control and state
variables in the cooperative solution.

4 Open-loop Nash equilibrium

An analysis of the OLNE strategy, which can be justified whenever the players are capable of
precommitting themselves to announced time paths, offers valuable insights into the impact
of negative externalities resulting from the transboundary non-cooperative game of pollution
control and environmental absorption efficiency management. In addition, open-loop strate-
gies provide a useful benchmark for subsequent assessment of the strategic effects related to
Markovian strategies (Fudenberg and Levine 1988).

Using the objective function in (3), the current-value Hamiltonian of player i is written
as:

Hi � ei
(
a − ei

/
2
)− cP2/2 − w2

i

/
2 + λi1 (e1 + e2 − AP) + λi2 (w1 + w2 − γ P) (18)

where λi j ≡ λi j (t) are player i’s (current value) costate variables, i � 1, 2, j � 1, 2.
Assuming an interior solution and applying Pontryagin’s principle in the discounted case,

player i’s necessary conditions for OLNE are:

Hi
ei � a − ei + λi1 � 0 ⇒ eoni � a + λi1 (19)

Hi
wi

� −wi + λi2 � 0 ⇒ won
i � λi2 (20)

i � 1, 2, where the superscript “on” stands for open-loop Nash equilibrium.
The evolution of the costate variables is given by:

λ̇i1 � cP + (r + A) λi1 + γ λi2 (21)

λ̇i2 � rλi2 + λi1P (22)

In the present case, the costate variables of both players coincide; that is, λi1 ≡ λ1 and
λi2 ≡ λ2, i � 1, 2, and Eqs. (21) and (22) confirm that the players’ equilibrium strategies
are symmetric. Therefore, we are left with only two costate equations.
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Using (21)–(22), (1)–(2) we obtain:

Ṗ � 2 (a + λi1) − AP (23)

Ȧ � 2λ2 − γ P (24)

Note that here also, if the pollution stock and the absorption efficiency are both steady,
then each player performs time-invariant control efforts.

Proposition 3 There exists a non-trivial OLNE steady state that is unique, given by:

[
Pon∞ Aon∞ eoni∞ won

i∞
]T �

[
r2γ + k

2
(
2c + γ 2

)
2 (2a − rγ )

(
2c + γ 2

)

r2γ + k

2a − rγ

2

γ
(
r2γ + k

)

4
(
2c + γ 2

)
]T

(25)

where k ≡
√
r4γ 2 + 4rγ (2a − rγ )

(
2c + γ 2

)
> 0, i � 1, 2.

Proof See "Appendix A5".

Therefore, precommitment strategies also allow a feasible steady state emissions rate
compatible with the preservation of a strictly positive environmental absorption rate under
the feasibility condition a > rγ

/
2. In (25), a lower discounting rate also increases the

steady state emissions rate eoni∞ and environmental absorption efficiency Aon∞ , and lowers the
pollution stock Pon∞ and restoration efforts won

i∞. Here also, there exists a trivial steady state

solution such that
[
P

′on∞ A
′on∞ e

′on
i∞ w

′on
i∞
]T � [0 − r 0 0]T , which is diverging and

therefore not optimal.

Corollary 2 At the steady state, player i’s OLNE instantaneous utility is:

uoni∞ � 4a2 − r2γ 2

8
−
(
4c + γ 2

) (
r2γ + k

)2

32
(
2c + γ 2

)2 (26)

Proof See "Appendix A6".

The expression in (26) represents the utility of future generations from the perspective of
player i in the OLNE case. It has the same properties as in the cooperative case regarding the
influence of the discounting rate, r , and the marginal impact of pollution on the evolution of
absorption efficiency, γ .

Proposition 4 The OLNE steady state has the saddle-point property and the optimal path
to the steady state is either monotonic or oscillatory.

Proof See "Appendix A7".

As in the cooperative setting, the saddle-path can either converge monotonically or follow
an oscillatory trajectory toward the steady state.

Lemma 2 The saddle paths of the control and state variables near the OLNE steady state
are:

eoni (t) � a + λ1∞ + D1e
ξ1t + D2e

ξ3t (27)

won
i (t) � won

i∞ + D3e
ξ1t + D4e

ξ3t (28)
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Pon(t) � Pon∞ + D5e
ξ1t + D6e

ξ3t (29)

Aon(t) � Aon∞ + D7e
ξ1t + D8e

ξ3t (30)

where D1, . . . , D8 are constants of integration and ξ1, ξ3 are eigenvalues with negative real
part.

Proof See "Appendix A8".

Equations (27)–(30) enable the computation of transient paths for the control and state
variables in an OLNE.

5 Markov perfect Nash equilibrium

TheMPNE has the desirable property of subgame perfectness because current actions depend
on the current state vector and time, and not only on time, as OLNE does. However, the non-
linear quadratic structure of the game makes the search for an analytical solution of MPNE
more difficult than for usual linear quadratic models. The main reason for this is that the
two state variables interact multiplicatively in one state equation, which involves intricate
third-order terms in the resolution process. Thus, the design of an approximation for the
MPNE requires particular attention.

Using the objective function in (3), the Hamilton–Jacobi–Bellman (HJB) equations are:

rV i � Max
ei ,wi

[
ei
(
a − ei

/
2
)− cP2/2 − w2

i

/
2 + V i

P (e1 + e2 − AP) + V i
A (w1 + w2 − γ P)

]

(31)

where V i (A, P) is player i’s value function, i � 1, 2.
Player i’s necessary conditions for Markov perfect Nash equilibrium in the case of an

interior solution are written as:

emp
i � a + V i

P (A, P) (32)

w
mp
i � V i

A (A, P) (33)

After substituting the necessary conditions of optimality into theHJBequations,weobtain:

rV i �
(
a + V i

P

)2/
2 − cP2/2 +

(
V i
A

)2/
2 + V i

P

(
V j
P − AP

)
+ V i

A

(
V j
A − γ P

)
+ aV i

P

(34)

i, j � 1, 2, i 	� j . Invoking the symmetry assumption, we write: V i � V , V i
P � VP and

V i
A � VA, i � 1, 2, which leads us to rewrite (34) as follows:

rV i � a2
/
2 +
(
3VP

/
2 + 2a

)
VP + 3 (VA)2

/
2 − cP2/2 − γ VAP − VP AP (35)

In linear-quadratic transboundary pollution models, a quadratic approximation of the
value function for the evaluation of the MPNE is usually considered (see, e.g., Long 2010,
Section 1.2.4). In the context of our non-linear quadratic model, assuming a local quadratic
approximation of the form, with real parameters α1, .., α6, that is:

V � α1 + α2A + α3P + α4A
2 + α5P

2 + α6AP

may however not be relevant because it would lead to inclusion of two third-order terms,
respectively proportional to A2P and AP2, in the approximation of the HJB Eq. (35), that
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are likely non-negligible near the steady state. So, some care is needed to design the local
quadratic approximation, to make such third-order terms locally negligible.

Assumption 1 We consider for the value function a local quadratic approximation with real
parameters α1, .., α6, that is:

(36)

V � α1 + α2
(
A − Amp∞

)
+ α3

(
P − Pmp∞

)
+ α4

(
A − Amp∞

)2

+ α5
(
P − Pmp∞

)2
+ α6

(
A − Amp∞

) (
P − Pmp∞

)

where Amp∞ and Pmp∞ are the steady state values (to be determined) of A and P for the MPNE.
We assume that the parameters of the problem are such that the steady state values of all the
state and control variables are positive. Note that the steady state utility, or social welfare of
future generations, is approximated by rα1.

By substituting the expression in (36) and its respective partial derivatives in

(35), two third-order terms, respectively proportional to
(
A − Amp∞

)2 (
P − Pmp∞

)
and

(
A − Amp∞

) (
P − Pmp∞

)2
, appear in the approximation of the HJB equation, that are clearly

negligible near the steady state and can therefore be neglected. Though this is sufficient to
ensure the accuracy of our local quadratic approximation in (36), additional justifications
based on a numerical procedure are provided hereafter; they compare this local approxima-
tion with the one obtained by a different procedure.

Proposition 5 Under Assumption 1, the MPNE strategies near the steady state are given by:

emp � a + α3 + 2α5
(
P − Pmp∞

)
+ α6

(
A − Amp∞

)
(37)

wmp � α2 + 2α4
(
A − Amp∞

)
+ α6

(
P − Pmp∞

)
(38)

and the MPNE steady state is given by:

[
Pmp∞ , Amp∞ , emp∞ , w

mp∞
]T � [2α2/γ, γ (a + α3) /α2, a + α3, α2

]T (39)

Proof See "Appendix A9".

From (38) and (39), we note that both emissions and restoration effort MPNE strategies
are locally linear. However, α2 > 0 and −a < α3 < 0 are required for a feasible steady state
solution. The steady state solution involved by (39), if any, should be globally asymptoti-
cally stable for the linearized dynamical system presented in the proof of Proposition 5 (see
"Appendix A9"). The Jacobian matrix associated with the MPNE controlled system is:

Jmp �
[
4α5 − Amp∞ 2α6 − Pmp∞
2α6 − γ 4α4

]
(40)

Using (39), we get the trace and determinant of the Jacobian matrix, that is, respectively:

Tr
(
Jmp) � 4 (α4 + α5) − γ (a + α3)

α2
,
∣∣Jmp

∣∣

� 2

{
2α4

[
4α5 − γ (a + α3)

α2

]
− (2α6 − γ )

(
α6 − α2

γ

)}
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Table 1 Coefficient values of the quadratic approximation of the value function for the higher equilibrium

α1 α2 α3 α4 α5 α6

−2.321435 ·
10−5

7.200114 ·10−4 −3.151574 ·
10−3

−1.602299 ·
10−3

−2.798305 ·
10−2

1.093377 ·10−2

The global asymptotic stability property imposes that Tr (Jmp) < 0 and |Jmp| > 0, and
that both the eigenvalues ψ1,2 of the Jacobian matrix, that is:

ψ1,2 � γ
[
4α2 (α4 + α5) − γ (a + α3)

]±
√

γ 2
[
4α2 (α4 − α5) + γ (a + α3)

]2 + 8γα2
2 (2α6 − γ ) (γ α6 − α2)

2γα2

have negative real parts.
Because our feedback solution is approximated around a small neighborhood of the steady

state, convergence to the actual solution, if it exists, should be quite satisfactory. To confirm the
accuracy of the quadraticmodel adopted inAssumption 1, we also use an alternative approach
based on the collocation method for PDEs (e.g., Judd 1998; Doraszelski 2003; Dawid et al.
2015; Jaakkola 2015) to compute the MPNE strategies numerically (see "Appendix A10").
For the following constellation of parameters, that is:

r � 0.075, γ � 0.05, a � 0.006, c � 0.035,

we used the approach described in "Appendix A9" and identified twoMPNE strategies, each
of them resulting into a globally asymptotically stable steady state for the associated linearized
system. We selected the most profitable Nash equilibrium strategy according to the objective
criterion in (3). The selected MPNE is a more profitable (higher) equilibrium because it is
characterized by greater environmental absorption efficiency and lower pollution stock at the
steady state than the less profitable (lower) MPNE. Note that, in practice, convergence to the
higher equilibrium is not granted, as the lower equilibrium may well arise as a poverty-trap
(e.g., Azariadis and Stachurski 2005) if the players are unable to coordinate. Therefore, a
coordination device on the higher equilibrium is needed to escape from the poverty-trap and
therefore allow for an increase in welfare to both players. The coefficient values of the local
quadratic approximation of the value function for the higher equilibrium are given in Table 1.

The corresponding steady state is given by:
(
Pmp∞ , Amp∞ , emp∞ , w

mp∞
)

� (2.880045 · 10−2, 1.978042 · 10−1, 2.848426 · 10−3, 7.200114 · 10−4)

along with the corresponding negative eigenvalues:

(ψ1, ψ2) � (−3.103781 · 10−1,−5.767552 · 10−3)

By numerically comparing the local quadratic approximation of the value function on a
neighborhood of the steady state solution with its local approximation obtained using the
collocation method on the same neighborhood (see "Appendix A10") with Matlab, a very
small difference between the two approximations is obtained, as shown in Fig. 2.

Figure 3 compares the two approximations in terms of the relative error of the quadratic
approximation with respect to the one obtained by the collocation method. Such a relative
error is defined as the absolute value of their difference, divided by the average on the
neighborhood of the absolute value of the approximation obtained by the collocation method
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Fig. 2 Compared approximations of the value functionwith local quadratic conjecture and collocationmethod.
a Local quadratic conjecture b collocation method

Fig. 3 Relative error of the local quadratic approximation of the value function with respect to the local
approximation obtained with the collocation method

(the average of the absolute value is introduced to avoid an infinite relative error in case of
zero crossings of the approximation). As one can see from the figure, a negligible relative
error is obtained, which suggests that the initial conjectured quadratic approximation was
so good that only a negligible update was performed by the collocation method to reach the
default tolerance.5

For the local quadratic approximation, Fig. 4 shows the Bellman residual error, defined
as:

rV − [a2/2 + (3VP/2 + 2a) VP + 3 (VA)2 /2 − cP2/2 − γ VAP − VP AP
]

and provides a measure of the quality of the approximation, as it expresses the pointwise
violation of theHJBEq. (35). The figure shows a very small Bellman residual error.Moreover,
for the local quadratic approximation, when it is computed in (Amp∞ , Pmp∞ ), the absolute value
of the ratio between the Bellman residual error and the left-hand side of the HJB Eq. (35) is
3.4766 · 10−7. Similar results hold for the approximation by the collocation method.

Finally, for the same choice of the problem parameters, we compare the value α1 assumed
in (Amp∞ , Pmp∞ ) by the local quadratic approximation of the value function,with the expression:

[
emp∞

(
a − emp∞ /2

)− c
(
Pmp∞

)2
/2 − (wmp∞

)2
/2
]/

r

that is obtained by replacing in (3) the resulting approximation of the steady state solution
for the MPNE: the two values so obtained (−2.321435 ·10−5 and −2.321434 ·10−5, respec-

5 The result depends partly on the neighborhood size. For larger sizes, a larger relative error is usually obtained.
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Fig. 4 Bellman residual error for the local quadratic approximation of the value function

tively) are practically coincident. The results obtained clearly support the validity of the local
quadratic approximation in Assumption 1.6

6 Comparative analysis

In this section, we determine the main differences between the cooperative, OLNE and
approximated MPNE strategies in terms of steady state and transient path. To do so, we use
both analytical and numerical results.

Based on our analytical results for the cooperative and OLNE cases, we first set some
important comparisons.

Proposition 6 It holds that:

eoni∞ � ei∞ (41)

Pon∞ > P∞ (42)

won
i∞ > wi∞ (43)

Aon∞ < A∞ (44)
∑

i
uoni∞ < u∞ (45)

Proof See "Appendix A10".

That is, the steady state global emissions in the cooperative and the OLNE settings are
equal. The same conclusion can be obtained with a logarithmic revenue function of current
rate of emissions, that is, ai lnei (t), ai > 0, i � 1, 2, and with a linear pollution cost, that
is, cP(t), which makes it a robust result in that it is driven neither by the functional form of
revenue function nor by that of pollution costs. Actually, this result is due to the particular
transition equations assumed, which allow switching of the biosphere from a carbon sink to
a source, and the ability to invest in the restoration of environmental absorption efficiency.
The main implication of (41) is that the OLNE steady state imposes no sacrifice on future

6 Figures 2, 3 and 4, as the final check of the validity of the local quadratic approximation, refer to a specific
choice of the parameter values inside the ranges considered in Table 1, for which it was possible to find a
solution of the non-linear system in **Proposition 7 that also satisfies the feasibility requirements provided
in **Appendix A9. However, the robustness of our approach was also confirmed by the results obtained for
other choices of the parameter values inside such ranges, for which a feasible solution was obtained.
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Table 2 Base case and range values

Parameter r γ a c

Base case 0.05 0.05 0.006 0.01

Range [0.05, 0.1] [0.05, 0.1] [0.001, 0.006] [0.01, 0.06]

generations in terms of emissions compared with the cooperative steady state. This result
departs from other transboundary pollution game models in which environmental absorption
efficiency is represented as an instantaneous function of the pollution stock in that these
models suggest that the steady state emissions in the cooperative setting should be lower
than in an OLNE.

On the other hand, the result in (42) states that the steady state pollution is lower in the
cooperative solution than in the OLNE. Intuitively, the difference between the two outcomes
results from the fact that the players in the OLNE game do not take into account the social
cost of a marginal increment in the pollution stock as in the cooperative game, but only their
private marginal user cost. The result in (43) indicates that, compared with the cooperative
solution, an OLNE leads each player to over-invest in environmental absorption efficiency.
Note that the dominance of the OLNE investment in absorption efficiency over the coopera-
tive investment effort refers to the steady state, which by definition is an asymptotic outcome
where player i’s investment is needed only to make up for the destructive impact of the pollu-
tion stock on environmental absorption efficiency. Relatedly, in (44), steady state absorption
efficiency is greater in the cooperative case than in the OLNE case. The intuition behind this
result is that over-investment in absorption efficiency involved by the OLNE solution at the
steady state compared to the cooperative solution does not suffice to negate the impact of the
excess emissions during the transient path. This point will be checked on a numerical basis
below. At the steady state, cooperative and OLNE emissions are equivalent, which implies
equivalent revenues. However, the non-cooperative steady state involves not only a greater
cost of pollution than the cooperative setting but also a greater cost of investment effort in
environmental absorption efficiency. Therefore, future generations are better off if the players
decide to cooperate rather than to precommit, as shown in (45).

Similar analytical comparisons involving the MPNE case are unavailable. To compare
the cooperative, OLNE and MPNE solutions on a numerical basis, we select the base case
parameter values in Table 2.

The base case in Table 2 reflects a favorable configurationwhich is characterized in relative
terms by players’ patience (i.e., low discounting rate, r ), strong environmental resilience (i.e.,
low destructive impact of pollution on absorption efficiency, γ ), high marginal incentive for
emissions (i.e., high upper bound on emissions, 2a) and low marginal pollution cost (i.e.,
low pollution cost function coefficient, c). The numerical solutions of the cooperative, OLNE
and MPNE cases were computed with Maple 18.0.

To assess the sensitivity of the steady states, a broad range of values were used for all
parameters (Table 2). In the MPNE case, the solutions were calculated for 10,000 combi-
nations of the parameters with 10 values for each parameter r , γ , a, c. Among the 10,000
trials, 141 combinations of parameters gave rise to a single locally asymptotically stable
solution and 162 combinations resulted in two locally asymptotically stable solutions. In the
remaining 9697 combinations of parameters, no MPNE stable solution could be found.

We proceed in four steps. We start by identifying the stable steady states respectively
associated with the cooperative, OLNE andMPNE solutions in the base case. Then we assess
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Fig. 5 Comparison between
cooperative, OLNE and MPNE
steady states
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the sensitivity of these steady states to the various parameters in terms of comparative statics,
whenever possible. We also represent the phase diagram in the state space, and the transient
paths of the emissions rate and restoration effort for each case. Finally, we characterize the
nature of convergence to the steady state as a function of the magnitude of the discounting
rate for each case.

To compare the transient behaviors associated with the cooperative, OLNE and MPNE
solutions, we assumed in all the subsequent cases a large initial pollution stock, i.e., signif-
icantly larger than the maximum corresponding stable steady state value resulting from the
three solutions (P0 � 0.1). In contrast, to assess the sensitivity of the transient paths to the
magnitude of the initial absorption efficiency, we used two initial values, one being greater
than themaximum stable steady state value among the three solutions, that is, A0 � 0.45, and
the other being lower than the minimum stable steady state value among the three solutions,
that is, A0 � 0.15.

We are primarily interested in stable interior solutions. As for the cooperative and OLNE
solutions, the system of 8 non-linear equations derived for the MPNE gave rise to a single
Nash equilibrium with globally asymptotically stable steady state. In the cooperative, OLNE
and MPNE cases, the respective stability conditions were all satisfied. That is, the saddle-
point property was fulfilledwith two positive and two negative eigenvalues with no imaginary
part in the cooperative case, (χ1, χ3) � (−0.427,−0.004), and in the OLNE case, (ξ1, ξ3) �
(−0.305,−0.008). In the MPNE case, the global asymptotic stability criterion was granted
with two negative eigenvalues with no imaginary part, (ψ1, ψ2) � (−0.01,−0.235).

The main results are illustrated in Fig. 5. A unique (non-trivial) steady state is observed in
each case, that is, B (i.e., intersection of the isoclines Ṗ � 0 and Ȧ � 0) for the cooperative
solution with (A∞, P∞) � (0.3776, 0.025), Bon (i.e., Ṗon � 0 and Ȧon � 0) for the OLNE
with

(
Aon∞, Pon∞

) � (0.2684, 0.035), and Bmp (i.e., Ṗmp � 0 and Ȧmp � 0) for the MPNE
with

(
Amp∞ , Pmp∞

) � (0.1883, 0.0439).
For the chosen constellation of parameters, the phase diagram for the MPNE (Fig. 6)

confirms that all paths starting from a reasonable neighborhood around the steady state,
Bmp , converge to the steady state. From (slightly) negative initial absorption efficiency,
the convergence to the steady state is also granted with initially increasing then decreasing
pollution stock. This pattern is driven by the fact that emissions reduction, though useful, is
insufficient under negative absorption efficiency and only heavy restoration efforts can turn
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Fig. 6 Phase diagram in the state space (A, P) for Markov perfect Nash equilibrium
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Fig. 7 Sensitivity analysis for cooperative, OLNE and MPNE stable steady states. a Control variables b state
variables

the biosphere to pollution sink. Therefore, the pollution stock can never decrease before a
strengthening of the absorption efficiency. A similar requirement is observed in a cooperative
solution with clockwise oscillatory convergence to the steady state (e.g., El Ouardighi et al.
2015a).

In Fig. 5, we obtain Pmp∞ > Pon∞ > P∞. This result is consistent with other differential
gamemodels that represent environmental absorption efficiency as an instantaneous function
of the pollution stock because ourmodel shows that the steady state pollution stock is lower in
an OLNE than in a MPNE. Moreover, we also get Amp∞ < Aon∞ < A∞, so that the absorption
efficiency in an MPNE is substantially lower than in an OLNE in spite of lower emissions
and greater restoration efforts at the steady state. Therefore, the MPNE strategy leads to a
stable steady state, which is more likely to be located in the emergency area, whereas the
cooperative and OLNE strategies result in a steady state that has a better chance of falling
into the sustainability area.

The figures below describe the sensitivity of the steady state to the parameters’ values for
the control variables (Fig. 7a) and the state variables (Fig. 7b) in the three equilibria.
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In the cooperative, OLNE and MPNE cases, a lower discounting rate, r , moves the steady
state further toward the sustainability area (7b). This suggests that players’ patience enhances
the long run efficiency of the biosphere as a pollution sink because it leads to the substitution
of lower emissions during the transient path for increased emissions at the steady state.
Correlatively, the restoration effort should be reduced at the steady state (7a). A greater
pollution cost coefficient, c, also moves the steady state further toward the sustainability area
in the cooperative, OLNE and MPNE cases (7b). Though it reduces the restoration effort at
the steady state, it does not affect the emissions in the cooperative and OLNE cases, which
suggests that emissions are actually reduced during the transient path only. Regarding the
influence of an increase in the destructive impact of pollution on absorption efficiency, γ , it
results in lower emissions and greater restoration efforts at the steady state in all equilibria
(7a). A move of the steady state toward the emergency area is observed in all equilibria, with
reduced absorption efficiency and an increased pollution stock (7b). Finally, an increase in
the revenue function coefficient, a, leads to a complementary increase in the cooperative,
OLNE and MPNE steady state pollution stock and absorption efficiency (7a), which results
in both greater emissions and restoration efforts (7b).

In Fig. 8, the phase plane in the state space is depicted for the cooperative and non-
cooperative solutions. In the case of (relatively) high initial absorption efficiency, i.e., A0 �
0.45, the cooperative, OLNE and MPNE strategies consist in decreasing the absorption
efficiency slightly and the pollution stock dramatically in a finite time, and then decreasing
the absorption efficiency significantly and increasing the pollution stock slightly until the
corresponding steady state is reached, that is, B for the cooperative solution, Bon for the
OLNE, and Bmp for the MPNE. In the case of (relatively) low initial absorption efficiency,
i.e., A0 � 0.15, the cooperative, OLNE and MPNE strategies also consist in substantially
decreasing the pollution stock first, and then in increasing the absorption efficiency while
converging to the steady state. Overall, the cooperative, OLNE and MPNE transient paths
are quite similar and differ only in their steady state respective values. Whatever the initially
(positive) efficiency of pollution sinks, it is optimal in all cases to reduce the pollution stock
substantially before strengthening the biosphere as a pollution sink. However, although a
contingent strategy preserves the long run absorption efficiency somewhat, OLNE is more
effective than an MPNE in managing pollution sinks’ efficiency.

The patterns in Fig. 8 are explained by the time paths of emissions rate and restoration
effort shown in Fig. 9, where time is expressed as a logarithmic function along the X-axis.
We first observe that in all equilibria, the greater the initial absorption efficiency, the greater
the emissions rate and the lower the restoration effort.

In the case of (relatively) high initial absorption efficiency, i.e., A0 � 0.45, the OLNE
strategy exhibits greater emissions and initially lower and then greater restoration efforts than
the cooperative strategy. In contrast, the MPNE strategy shows initially greater then lower
emissions, and initially lower then greater restoration efforts than the cooperative strategy.
The non-cooperative equilibria under high initial absorption efficiency are consistent with the
tragedy of the commons in that they reflect both excessive emissions and underinvestment in
absorption efficiency over themost economically influential part of the planning horizon, i.e.,
the time interval during which the discounted instantaneous profits are still strictly positive.

In the case of (relatively) low initial absorption efficiency, i.e., A0 � 0.15, the opti-
mal policy in all equilibria consists of initially small and increasing emissions in gradual
stages and initially positive and decreasing restoration efforts. The first jump in emissions
occurs quickly, immediately after the dramatic decrease in the pollution stock. Along the
time path, cooperative emissions are lower than OLNE emissions over a wide time inter-
val, until the steady state where the emissions are the same in the cooperative solution and
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Fig. 8 Phase plane in the state space for the cooperative, open-loop and Markov perfect Nash cases from low
and high absorption efficiency

Fig. 9 Transient paths of emissions rate and restoration effort for the cooperative, OLNE and MPNE cases
from low and high absorption efficiency. a Emissions rate b restoration effort

OLNE (eon∞ � e∞ � 0.0047). Lower transient emissions in the cooperative case require
less restoration efforts than in an OLNE during the transient path and in the steady state
(w∞ � 0.0006<won∞ � 0.0008). In an MPNE, emissions alternate between greater and
smaller values than in the cooperative solution until the steady state (emp∞ � 0.0041) is
reached. Restoration efforts are always greater than in the cooperative solution until the
steady state (wmp∞ � 0.001) is attained. The emissions in an MPNE are lower and restoration
efforts alternate between greater and smaller values than in the OLNE until the steady state.

Because transient emissions in an OLNE are greater than in a cooperative solution as a
result of greater transient restoration efforts, the OLNE strategy under low initial absorp-
tion efficiency is consistent with the assumption of a voracity effect in that it transiently
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Fig. 10 Overall utility for the
cooperative, OLNE and MPNE
cases from low and high initial
absorption efficiency

promotes both excessive emissions and overinvestment in absorption efficiency over the
planning horizon (Benchekroun and Chaudhuri 2014). By comparison, an MPNE promotes
lumpier substitutability between the two policy instruments than anOLNEdoes. At the steady
state, the magnitude of emissions in an MPNE is limited by low absorption efficiency.

Figure 10 reports the overall utility associated with the cooperative, OLNE and MPNE
cases under (relatively) high and low initial absorption efficiency, respectively.

In the context of high initial absorption efficiency, the players’ joint overall utility is
positive for all cases. Note that the overall utility under cooperation and the joint overall
utility under non-cooperative equilibrium with commitment are almost similar. That is, the
welfare cost for players with OLNE strategies that are not able to cooperate is limited. In
comparison, the welfare cost for MPNE strategies regarding cooperation or commitment is
greater. Under low initial absorption efficiency, the players’ overall utility is positive only
for cooperation, while it is zero for OLNE and negative for MPNE. This decline in joint
overall utility of non-cooperative strategies might be seen as a confirmation of the presence
of a voracity effect. Here, the welfare cost for non-cooperative players that are unable to
cooperate, and the welfare cost for players with MPNE strategies that are unable to commit
are both significantly greater than previously. In terms of elasticity of the overall joint utility
with respect to the initial absorption efficiency, denoted byψ and defined as the percentage of
decrease of the overall utility divided by the percentage of decrease of the initial absorption
efficiency, we get ψU / A0 � 0.876 in the cooperative case, ψon∑

i Ui
/
A0

� 1.49 in the OLNE

case andψ
mp∑

i V
i
/
A0

� 2.399 in theMPNEcase. These results imply that contingent strategies

are more vulnerable in terms of social welfare to a decrease in initial absorption efficiency
than commitment strategies are, which in turn are more affected than cooperative strategies
are. That is, the absence of cooperation or commitment becomes more costly as the initial
absorption efficiency of pollution sinks tends to exhaustion. This result explains why nations
have been urged in recent years to commit to pollution control at an international level (Stern
2006; IPCC 2007; Stern 2015).

Finally, the steady state utility, or social welfare of future generations, is positive in the
cooperative, OLNE andMPNE cases and its ranking is consistent with that reported in Fig. 10
from high initial absorption efficiency. The welfare cost of future generations is limited
for OLNE strategies regarding cooperative strategy and significant for MPNE strategies
regarding cooperation or commitment. In all cases, the decrease in initial absorption efficiency
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Table 3 Threshold of impact of the discounting rate on the nature of convergence to the steady state

Discounting rate 0.1 0.15 0.2 0.25

Cooperative solution Monotonic Monotonic Monotonic Diverging

OLNE Monotonic Monotonic Monotonic Diverging

MPNE Monotonic Diverging Diverging Diverging

ismore costly to current generations than to future ones because the future generations neither
benefit from the revenues nor incur the costs related to the transient path toward the steady
state.

Table 3 provides insights into the nature of convergence to the steady state depending on
the discounting rate value for the set of lower bound values. The value of the discounting rate
above, with which the path to the steady state becomes diverging in the case of the MPNE,
is relatively low (r � 0.15). In comparison with this threshold, the value of the discounting
rate above, with which the saddle-path to the steady state becomes diverging, is greater both
in cooperative solution and OLNE (i.e., r � 0.24). As a result, more heavily discounted
MPNE strategies are less robust to a definitive switching of pollution sinks to a source, while
such switching would not occur in an OLNE. This implies that relatively impatient players
should not opt for contingent strategies because they are more likely to make the evolution
of the biosphere irreversibly uncontrollable. It is noteworthy that the threshold value of the
discounting rate from which cooperative and OLNE paths are diverging is still monotonic,
which departs from Tahvonen and Withagen (1996), who argue that an optimal path leading
to irreversible pollution is typically non-monotonic.

Figure 11 confirms the irreversible impact of a higher discounting rate (r � 0.15) on
the MPNE trajectory. Along the MPNE diverging path, which is also monotonic, restora-
tion efforts are initially low and convexly increasing, but less rapidly than emissions. This
pattern suggests that MPNE strategies where transient emissions and restoration efforts act
as complements rather than substitutes are likely to result in a definitive switching of pol-
lution sinks to a source. In comparison, although both cooperative and OLNE paths remain
monotonic, they are more likely to end up in the emergency area. This result confirms that
although commitment and cooperative strategies are more robust than MPNE strategies to a
definitive switching of pollution sinks to a source, they are nevertheless vulnerable to players’
impatience, which directly affects future generations’ social welfare.

7 Conclusion

In this paper, we suggest a non-linear quadratic differential game model of pollution control
with a time-dependent environmental absorption efficiency that allows the biosphere to switch
from a carbon sink to a source.

Using a cooperative solution as a benchmark, we showed that the fact that the players do
not properly internalize the social cost of the pollution stock in the non-cooperative cases
incites them to excessively substitute their transient path for steady state utility. This leads
them to a disproportionate use of strategic substitutability between polluting emissions and
restoration of environmental absorption efficiency during the transient path, which reduces
the efficiency of carbon sinks and increases the pollution stock at the steady state. In both
cooperative and non-cooperative steady states, the magnitude of emissions increases with
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Fig. 11 Phase plane in the state
space for the cooperative, OLNE
and MPNE cases from low
absorption efficiency and higher
discounting rate

absorption efficiency, while restoration efforts increase with the pollution stock, and vice
versa.

Wewere then able to identifywhich decision rule, open-loop orMarkov perfect Nash strat-
egy, best prevents the biosphere from switching from a pollution sink to a source. Although
it fails to reach the same environmental absorption efficiency as a cooperative solution, an
OLNE imposes limited economic sacrifice at the steady state notably because it allows equiv-
alent polluting emissions to the social optimum. This result justifies the optimistic tone of
the call by some authors for rapid action against climate change (Stern 2015). However, an
OLNE requires a greater restoration effort at the steady state than a cooperative solution does
to partly compensate for the excessive emissions released during the transient path.

If the biosphere is still an efficient pollution sink, it is optimal in all cases to reach the steady
state both by an overshooting emissions trajectory and an undershooting restoration efforts
trajectory. If the efficiency of the biosphere as a pollution sink is already low, it is optimal
to set initially low emissions and high restoration efforts, and then to increase emissions
gradually as absorption efficiency increases, and decrease restoration efforts as the pollution
stock declines. Our results suggest that the absence of cooperation and/or precommitment
becomes more costly as the initial efficiency of pollution sinks tends to exhaustion. Also, a
decrease in initial efficiency of pollution sinks is more costly to current generations than to
future ones in both cooperative and non-cooperative strategies.

When both players are sufficiently patient, an MPNE and an OLNE do not differ much in
terms of transient path and steady state. In this context, both strategies can prevent pollution
sinks from turning into a source during the transient path and the steady state, including in
the case where the absorption efficiency is low. However, although an MPNE may generate
lower emissions and greater restoration efforts than an OLNE in the case of low absorption
efficiency, it has a much greater chance of falling into the emergency area. In contrast, when
both players are relatively impatient, MPNE strategies are less robust than OLNE strategies
at preventing irreversible switching of the biosphere from a carbon sink to a source. Although
more heavily discountedOLNE strategies can prevent pollution sinks from transiently turning
into a source, these strategies are more likely to end up in the emergency area.

Regarding the methodological contribution of the paper, we suggest a particular structure
of the conjectured value function to solve MPNE problems with multiplicative interaction
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between state variables in one state equation, so that third-order terms that arise in the
Hamilton–Jacobi-Bellman equation are made negligible. Using a collocation procedure, we
confirm the validity of the particular structure of the conjectured value function.

Overall, our results provide an update in the debate on pollution control in that they suggest
that the absence of commitment at an international level on pollution control can preserve both
current and future generations from experiencing switching of carbon sinks to a source only
if the players remain sufficiently patient. More importantly, regardless of whether polluters
commit to a plan of action or make contingent decisions, our study emphasizes the need for
environmental policies where efforts to restore environmental absorption efficiency are an
essential policy instrument.

The scope of our model could be extended to the case where the marginal destructive
impact of the pollution stock on the evolution of absorption efficiency can be reduced by
an effort to improve environmental resilience. Another possible extension of the model pre-
sented here could assume that the impact of restoration efforts on the evolution of absorption
efficiency depends concavely on the level of absorption efficiency. These assumptions would
require multiplicative separability between control and state variables, which would allow
the emergence of a Skiba threshold (Grass et al. 2008) with multiple steady states and lead to
the determination of history-dependent policies. Other future directions of research include
an analysis of the Pareto optimality of the obtained equilibria and an extension of the model
to the case of taxation rules.
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Appendix

A1. To determine the (non-trivial) cooperative steady state, we solve the canonical system
(8)–(11) in the state-costate space. Using (6) and (7) leads to the system’s steady state in
(12), i � 1, 2. Note that since:

lim
t 
→+∞ e−r tη1(t)P(t) � lim

t 
→+∞
[−rγ

(
r2γ + h

)
e−r t/4

(
4c + γ 2)] � 0

lim
t 
→+∞ e−r tη2(t)A(t) � lim

t 
→+∞
[
γ (2a − rγ ) e−r t/2

] � 0

the cooperative steady-state solution satisfies the limiting transversality conditions. �
A2. Plugging the expressions of ei∞, P∞ and wi∞ from (12) in the integrand of (4) and

simplifying gives (13). �
A3. Writing the variables in the order P, A, η1, η2, the Jacobian matrix associated with

the canonical system (8)–(11) is:

J �

⎡

⎢⎢⎣

−A −P 2 0
−γ 0 0 2
2c η1 r + A γ

η1 0 P r

⎤

⎥⎥⎦
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The determinant of the Jacobian matrix is:

|J | � (4c + γ 2) P2∞ + rγ A∞P∞ � (r2γ + h
)2/

4
(
4c + γ 2) + rγ (2a − rγ )

Using Dockner’s formula (Dockner 1985), the sum of the principal minors of J of order
2 minus the squared discount rate, denoted by K , is:

K � −A∞ (r + A∞) − 4c − 2γ P∞

� −
[
2 (2a − rγ )

(
4c + γ 2

)
+ r
(
r2γ + h

)]2
(
r2γ + h

)2 − γ h + 4c
(
4c + γ 2 − r2

)
(
4c + γ 2

)

Because |J | > 0 and K < 0, the cooperative steady state is a saddle-point. We compute:

Ω � K 2 − 4 |J | � A∞ (r + A∞) [A∞ (r + A∞) + 8c] + 4γ A2∞P∞ + 16c (c + γ P∞) − 16cP2∞

The sign of Ω can be either negative or positive. In the first case, the steady state is
a saddle-focus with transient oscillations. Otherwise, it is a saddle-node and the optimal
solution monotonically converges to the steady state. �

A4. The linear approximation of the system (8)–(11) around its steady state is:

η̇1 � 2cP + η1 (r + A∞) + η1∞ (A − A∞) + γ η2

η̇2 � rη2 + η1∞P + P∞ (η1 − η1∞)

Ṗ � 2 (a + η1) − P∞ (A − A∞) − A∞P

Ȧ � 2η2 − γ P

The four eigenvalues associated with the Jacobian matrix of the canonical system are:

3
1χ

4
2 � r

2
±
√
r2

4
− K

2
± 1

2

√
K 2 − 4 |J |

� r

2
±

√√√√√ (r + A∞)2 + A2∞
4

+ γ P∞ +
8ac

r2γ 2 ±
√√√√
(
A2∞ +

8ac

r2γ 2

)(
γ P∞ +

8ac

r2γ 2

)
+

[
(r + A∞)2 A∞

4
+

8ac

rγ 2

]
A∞ − 4cP2∞

where A∞ and P∞ are given in (12). As expected, two eigenvalues, χ1 and χ3, have negative
real part and two have positive real part, χ2 and χ4. Choosing the roots with negative real
part for convergence, the time paths of the costate and state variables are written as:

η1(t) � η1∞ + B1e
χ1t + B2e

χ3t

η2(t) � η2∞ + B3e
χ1t + B4e

χ3t

P(t) � P∞ + B5e
χ1t + B6e

χ3t

A(t) � A∞ + B7e
χ1t + B8e

χ3t

These equations involve 10 unknowns (B1, . . . , B8,η1(0), η2(0)) that can be solved with
the 10 following equations, which are drawn from the above expressions and the linearized
versions of (8)–(11):

η1 (0) � η1∞ + B1 + B2

η2 (0) � η2∞ + B3 + B4

P0 � P∞ + B5 + B6

A0 � A∞ + B7 + B8

123



676 Ann Oper Res (2020) 287:653–681

η̇1 (0) � 2cP0 + η1 (0) (r + A∞) + η1∞ (A0 − A∞) + γ η2 (0) � B1χ1 + B2χ3

η̇2 (0) � rη2 (0) + η1∞ (P0 − P∞) + η1 (0) P∞ � B3χ1 + B4χ3

Ṗ (0) � 2 (a + η1 (0)) − P∞ (A0 − A∞) − A∞P0 � B5χ1 + B6χ3

Ȧ (0) � 2η2 (0) − γ P0 � B7χ1 + B8χ3

2 (B3χ1 + B4χ3) − γ (B5χ1 + B6χ3) � B7χ
2
1 + B8χ

2
3

2 (B1χ1 + B2χ3) − A∞ (B5χ1 + B6χ3) − P∞ (B7χ1 + B8χ3) � B5χ
2
1 + B6χ

2
3

This system of equations can be solved numerically to determine real-valued solutions.
Finally, using (6)–(7) yields (14)–(17). �

A5. To compute the (non-trivial) OLNE steady state, we solve the system in the state-
costate space (21)–(24). Using (19) and (20) leads us to derive the steady state in (25),
i � 1, 2. Note that since:

lim
t 
→+∞ e−r tλ1(t)P(t) � lim

t 
→+∞
[−rγ

(
r2γ + k

)
e−r t/4

(
2c + γ 2)] � 0

lim
t 
→+∞ e−r tλ2(t)A(t) � lim

t 
→+∞
[
γ (2a − rγ ) e−r t/2

] � 0

the OLNE steady-state solution satisfies the limiting transversality conditions. �
A6. Plugging the expressions of eoni∞, Pon∞ and won

i∞ from (25) in the integrand of (3) and
simplifying gives (26). �

A7. Writing the variables in the order P, A, λ1, λ2, the Jacobian matrix associated with
the canonical system (21)–(24) is:

Jon �

⎡

⎢⎢⎣

−A −P 2 0
−γ 0 0 2
c λ1 r + A γ

λ1 0 P r

⎤

⎥⎥⎦

The determinant of Jon is:

∣∣Jon
∣∣ � (2c + γ 2) Pon2∞ + rγ Aon∞Pon∞ �

(
r2γ + k

)2

4
(
2c + γ 2

) + rγ (2a − rγ )

Further, the sum of the principal minors of Jon of order 2 minus the squared discount rate
is:

Kon � −Aon∞
(
r + Aon∞

)− 2c − 2γ Pon∞

� −2 (2a − rγ )
(
2c + γ 2

)

r2γ + k

[
r +

2 (2a − rγ )
(
2c + γ 2

)

r2γ + k

]
− γ

(
r2γ + k

)
(
2c + γ 2

) − 2c

which is strictly negative. Hence, the OLNE steady state is a saddle-point.

We now compute:Ωon � (Kon)2 − 4 |Jon | � Aon2∞
[(
r + Aon∞

)2 + 4γ Pon∞
]

+

16ac
r2γ 2

[
Aon∞
(
r + Aon∞

)
+ 4ac

r2γ 2

]
+ 8c

(
4a
r2γ

− Pon∞
)
Pon∞ where Aon∞ and Pon∞ are given in (25).

The sign of this expression, which is unclear, determines whether the saddle path converges
monotonically or oscillates towards the steady state. �

A8. The linear approximation of system (21)–(24) around its steady state is:

λ̇1 � cP + λ1 (r + A∞) + λ1∞ (A − A∞) + γ λ2

λ̇2 � rλ2 + λ1∞P + P∞ (λ1 − λ1∞)
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Ṗ � 2 (a + λ1) − P∞ (A − A∞) − A∞P

Ȧ � 2λ2 − γ P

The eigenvalues associated with the Jacobian of the non-cooperative canonical system
are:

3
1ξ

4
2 � r

/
2±

√[(
r + Aon∞

)2 +
(
Aon∞
)2]/ 4 + γ Pon∞ + 4ac

/
r2γ 2 ±

√[
Aon∞

(
r + Aon∞

)/
2 + 2ac

/
r2γ 2 + γ Pon∞

]2 − (2c + γ 2
) (

Pon∞
)2 − 4a

where Aon∞ and Pon∞ are given in (25). Choosing roots with negative real part,
ξ1 and ξ3, and using similar methods as in the cooperative case leads us to find D1, . . . , D8,
and λ1(0), λ2(0). �

A9. Assuming a second order Taylor-polynomial approximation of the value function
centered on

(
Amp∞ , Pmp∞

)
, i.e.,

V � α1 + α2
(
A − Amp∞

)
+ α3

(
P − Pmp∞

)
+ α4

(
A − Amp∞

)2

+ α5
(
P − Pmp∞

)2
+ α6

(
A − Amp∞

) (
P − Pmp∞

)

we obtain constant second order derivatives for V . We assume that its unknown coefficients
α1, .., α6 and the problem parameters are such that the steady state is positive. Plugging (37)
and (38) in (1)–(2), respectively, gives the MPNE controlled system, that is:

Ṗ � 2
[
a + α3 + 2α5

(
P − Pmp∞

)
+ α6

(
A − Amp∞

)]− AP

Ȧ � 2
[
α2 + 2α4

(
A − Amp∞

)
+ α6

(
P − Pmp∞

)]− γ P

The resulting approximation of the HJB Eq. (35) is:

r
[
α1 + α2

(
A − Amp∞

)
+ α3

(
P − Pmp∞

)
+ α4

(
A − Amp∞

)2
+ α5

(
P − Pmp∞

)2
+ α6

(
A − Amp∞

) (
P − Pmp∞

)]

� [α3 + 2α5
(
P − Pmp∞

)
+ α6

(
A − Amp∞

)] { 3
2

[
α3 + 2α5

(
P − Pmp∞

)
+ α6

(
A − Amp∞

)]− AP + 2a

}

+
[
α2 + 2α4

(
A − Amp∞

)
+ α6

(
P − Pmp∞

)] {
3
[
α2 + 2α4

(
A − Amp∞

)
+ α6

(
P − Pmp∞

)]/
2 − γ P

}

− cP2/ 2 + a2
/
2

Rearranging its terms, this can be expressed as a third-order polynomial in
(
A − Amp∞

)
and(

P − Pmp∞
)
. Then, the unknown parameters of the approximation of the value function are

found by setting to 0 the coefficients, up to the second order, of such a third-order polynomial
(its third-order terms are locally negligible, by construction). To do so, one solves the system:

rα1 − 3α2
2/2 − α3 (3α3/2 + 2a) − a2/2 + γα2P

mp∞ + α3A
mp∞ Pmp∞ + c

(
Pmp∞

)2
/2 � 0

α2 (γ − 3α6) + rα3 − 2α5 (3α3 + 2a) + α3A
mp∞ + (c + γα6) P

mp∞ + 2α5A
mp∞ Pmp∞ � 0

c
/
2 + α5

(
r − 6α5 + 2Amp∞

)
+ α6

(
γ − 3α6

/
2
) � 0

α2 (r − 6α4) − α6 (3α3 + 2a) + (α3 + 2γα4) P
mp∞ + α6A

mp∞ Pmp∞ � 0

α3 + 2γα4 − 6α6 (α4 + α5) + α6
(
r + Amp∞

)
+ 2α5P

mp∞ � 0

α4 (r − 6α4) − α6
(
3α6/2 − Pmp∞

) � 0
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We have 6 equations in 8 unknowns α1, . . . , α6, A
mp∞ , Pmp∞ . To get two other equations,

we use (37)–(38), imposing a steady state solution for the MPNE:

2 (a + α3) − Amp∞ Pmp∞ � 0

2α2 − γ Pmp∞ � 0

Finally, we obtain a non-linear system of 8 equations in 8 unknowns, which in general
might be solved numerically, but not analytically.When it can be solved, its solution provides:

[
Pmp∞ , Amp∞ , emp∞ , w

mp∞
]T � [2α2/γ, γ (a + α3) /α2, a + α3, α2

]T

Clearly, the necessary conditions for the positivity of the steady state values and the pos-
itivity of each player’s instantaneous revenue are α2 > 0 and α3 > −a. In general, the
non-linear system above may admit multiple solutions (or even no solutions at all). To solve
the system, we use the Matlab function fsolve, using default options, and starting with a
random initialization of the 8 unknowns, initially chosen as realizations of independent and
uniformly distributed random variables on the interval [0, 10]. To check whether a numeri-
cally found solution of the non-linear system above is likely also a steady state solution for
the MPNE, we perform the following additional checks:

(1) Positivity of the state and control variables, and positivity of each player’s instantaneous
revenue: α2 > 0 and −a < α3 < 0;

(2) Global asymptotical stability for the linearized dynamical system: the eigenvalues of
the Jacobian matrix (40) should have negative real parts;

(3) Comparison between the value of α1 assumed in
(
Amp∞ , Pmp∞

)
by the local

quadratic approximation of the value function, and the one obtained by
replacing the resulting steady state values in (3), the latter being equal

to
[
emp∞

(
a − emp∞ /2

)− c
(
Pmp∞

)2
/2 − (wmp∞

)2
/2
]
/r : in the case where

Pmp∞ , Amp∞ , emp∞ , w
mp∞ is really an approximation of a steady state solution for the

MPNE, and the local quadratic approximation is a good approximation of the value
function, then the two values should be approximately the same. In practice, we check
whether the relative error of the first expression with respect to the second one is smaller
than 0.01.

In the case where multiple solutions are obtained that satisfy the requirements (1),
(2), and (3) above, one can choose the one associated with the largest value of[
emp∞

(
a − emp∞ /2

)− c
(
Pmp∞

)2
/2 − (wmp∞

)2
/2
]/

r . �
A10. To performan additional check for the validity of the local quadratic approximation of

the value function, we also exploit an alternativemethod to approximate theHJB equation and
thenwe checkwhether the twoobtained approximations are similar.As the alternative approx-
imation method,7 we use the collocation method for PDEs, applied to the HJB Eq. (35), on a
small neighborhood of the steady state solution determined by the local quadratic approxima-
tion (in our implementation, we chose the box

[
0.75Amp∞ , 1.25Amp∞

]× [0.75Pmp∞ , 1.25Pmp∞
]

as such a neighborhood). The collocation method approximates locally on that neighborhood

7 In an initial phase, we also tested the application of the method of successive approximations, using a
discrete-time version of the HJB Eq. (39), and following a procedure similar to the one proposed in (Cacace
et al. 2013) for another dynamic game model. However, that approach demonstrated to be much slower than
the collocation method, and suffered from boundary effects, due to the need to discretize and bound all the
state and control variables. A similar finding about such boundary effects was reported in (Cacace et al. 2013).
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the unknown value function as a high-order polynomial in
(
A − Amp∞

)
and

(
P − Pmp∞

)
, with

unknown coefficients. These are determined by imposing that the HJB Eq. (35) holds exactly
on a finite number of fixed points (“collocation points”) inside the neighborhood (or equiv-
alently, that its Bellman residual error is 0 on such points). The number of these points is
equal to the number of unknown coefficients of the high-order polynomial. In this way, to
find the values of the coefficients, one is reduced to solving a non-linear system (due to the
non-linearity of the HJB equation), where each equation is associated with one collocation
point. For the implementation of the collocation method, we follow the procedure proposed
in (Doraszelski 2003), that is:

– We construct a polynomial approximation of order K � 12, using a tensor-product basis
of univariate Chebyshev polynomials. This choice of the approximation order is guided
by the need to find a suitable trade-off between the accuracy of the approximation, and the
computational effort needed to find it (as in the cited reference, the number of coefficients
in the expansion is (K + 1)2);

– Likewise in Doraszelski (2003), we employ a two-dimensional expanded Chebyshev array
(as defined in Judd 1998) to define the (K + 1)2 collocation points.

To initialize the collocation method, at first we fit the initial local quadratic approxima-
tion of the value function by a linear combination of the same basis functions used by the
collocation method itself (in practice, we apply the collocation method itself to this function
approximation problem, instead of to the PDE). Then, we apply the collocation method to
the PDE, starting from the resulting vector of coefficients. Finally, to check for the validity of
the resulting high-order polynomial approximation and for the validity of the original local
quadratic approximation, we compute, for both approximations, the Bellman residual error
on a larger uniform grid of N 2 points in the same neighborhood (with N � 30), which are
different from the collocation points, checking whether this error is small. We also evaluate,
on each grid point, the relative error of the quadratic approximation with respect to the high-
order polynomial approximation obtained using the collocation method. The results of all
these comparisons are reported in Sect. 5, for a specific choice of the problem parameters.
We conclude by mentioning that, in contrast with Doraszelski (2003), it is not necessary to
check a posteriori whether the partial derivatives of the approximation of the value function
obtained by the collocation method are good approximations of the corresponding partial
derivatives of the value function, which are needed to express the optimal controls [see the
expressions (37) and (38)]. Indeed, in the case where the local quadratic approximation and
the one found by the collocation method are similar, we can use the partial derivatives of the
local quadratic approximation itself. In any case, it is worth mentioning that the numerical
results have shown good agreement between the approximations of the partial derivatives
obtained by the two methods, as one can infer from Fig. 2 in Sect. 5. �

A11. The results in (41)–(45) follow from the respective comparisons of (12) and (25). �
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