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Abstract Mitigating the disastrous effects of natural disasters by performing preparation
activities is one of the main purposes of relief organizations. However, the high degree of
uncertainty associated with disasters impedes the work of aid agencies considerably. In this
regard, two-stage stochastic programs are often used in the relevant literature to support
decision making in these situations. An accelerated L-shaped method is proposed in this
work, which solves realistic large-scale two-stage stochastic problems within a reasonable
time-frame, allowing relief organizations to react to short-term forecasts, as e.g. available in
case of hurricanes or floods. In particular, computation times needed for solving the resulting
sub-problems via a specialized interior-point method are significantly reduced by exploiting
the specific structure of second-stage constraints. To show the superiority of this approach
with respect to solution times, a realistic large-scale case study is developed for America’s
hurricane-prone south-east coast. The accelerated L-shapedmethod outperforms the standard
L-shaped method significantly whereas a commercial solver failed to solve the case study
within an acceptable time-frame.

Keywords L-shaped method · Stochastic Benders decomposition · Interior-point methods ·
Two-stage stochastic programming · Disaster management

1 Introduction

Disasters represent a serious problem for affected communities not only because of their
destructive force but also because of their unpredictable nature. To be able to support decision
makers like relief organizations, two-stage stochastic programs are often proposed in the
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disaster management related literature (Grass and Fischer 2016). This modeling approach is
popular since decisions made before an uncertain event like a disaster, so-called first-stage
decisions, can be improved in terms of, e.g., demand satisfaction by taking possible future
developments and interim second-stage decisions into account. For instance, humanitarian
organizations often have to purchase and store relief items, e.g.water ormedicine, even before
a disaster strikes. These first-stage decisions have to be made before information concerning
demand as well as with respect to the actual network conditions becomes available. In the
aftermath of a disaster, decisions regarding, e.g., the distribution of previously stored relief
items to affected or injured people have to be made which belong to the second stage.
Note that roads could become impassable and storage decisions have to take such possible
circumstances into account in advance.

In order to make the application of the two-stage stochastic models valuable for humani-
tarian organizations, efficient solution methods are required. However, the relevant literature
focuses more on model presentation than on proposing suitable solution algorithms. This
constitutes a major obstacle to the use of two-stage stochastic programs in practice. Espe-
cially solution times of commercial solvers like CPLEX or Gurobi are much too long for
realistic large-scale problems (Zheng et al. 2013; Pay and Song 2017).

A practical example where computation time is crucial is the forecast of hurricanes. In
general, hurricanes can be predicted three to five days in advance. Based on these forecasts
aid agencies often use existing buildings like hospitals and gyms as temporary warehouses
or shelters. However, weather conditions can change the path and strength of a hurricane
within few hours as it happened in 2005. Hurricane Wilma strengthened from the lowest
category 1 (113 km/h) to the highest 5 (295 km/h) just within 24 h. To ensure fast response
also in such cases, efficient solution methods are essential. Therefore, the aim of this paper
is to propose an algorithm which solves a whole class of two-stage stochastic programs in
disaster management within a reasonable time-frame and with a desired accuracy level. A
representative of this class is the model proposed by Rawls and Turnquist (2010) for locating
and pre-positioning relief items in preparation for a disaster. Such two-stage programs are
commonly solved by the L-Shaped method (Slyke and Wets 1969) which is also known as
the stochastic Benders decomposition. Since realistic problems are constantly increasing in
size and complexity, decomposition methods are becoming increasingly popular as shown
in the recent survey of Rahmaniani et al. (2017). The main idea of decomposition methods
is to split up the original problem into smaller sub-problems which are easier to solve. In
case of the L-shaped method, the two-stage structure is exploited by separating first and
second stage. For the two-stage stochastic programs considered here, the resulting second-
stage problems are often very large, requiring an efficient solution algorithm themselves. To
solve these sub-problems efficiently, a specialized interior-point method (SIPM) is proposed
in this work which exploits the specific structure of second-stage constraints in a new way
leading to significant computational time savings.

Interior-point methods are often preferred to solve sub-problems within the L-shaped
method in parallel, i.e. simultaneously, see e.g. Nielsen and Zenios (1997) and Fragnière
et al. (2000). As the number of iterations remains nearly unaffected by an increased prob-
lem size, interior-point methods are particularly suitable for very large linear sub-problems
(Gondzio and Sarkissian 2003). In addition, computations within interior-point methods can
be executed in parallel, accelerating the solution process further. For instance, De Silva and
Abramson (1998) show that their parallel interior-point method outperforms the simplex
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algorithm despite of its better warm-starting capabilities.1 Interior-point methods are also
applied by Naoum-Sawaya and Elhedhli (2013) where Benders decomposition is embedded
in a Branch-and-Bound algorithm for the multicommodity capacitated fixed charge network
design problem and the capacitated facility location problem. The latter is also investigated
in Castro et al. (2016) for multiple periods. The approach proposed by these authors is related
to the solution method presented in this paper. However, the problem considered there is not
a two-stage stochastic program and hence, does not posses the specific structure of second-
stage constraints which is discussed in this work.

In the humanitarian literature examples or case studies of only moderate size are usually
chosen to ensure the solvability of the proposed model by means of commercial solvers or to
evaluate the quality of the applied heuristic. In addition, the lack of adequate data impedes the
design of genuine examples. However, large scale problems of pre-positioning relief items
become more and more relevant for practical applications and more realistic examples have
to be considered to validate methodological developments in realistic settings.

Therefore, a large-scale case study on pre-positioning relief items in the Gulf of Mex-
ico area is developed in this work. Decisions have to be made concerning the location of
facilities and the storage quantities of relief items prior to the beginning of the American hur-
ricane season. The case study is based on the one presented by Rawls and Turnquist (2010)
which is extended in different ways to make it more realistic. For instance, information from
various sources like the National Oceanic and Atmospheric Administration (NOAA) and
the International Federation of Red Cross and Red Crescent Societies (IFRC) is integrated.
The resulting large-scale case study is solved by the accelerated L-shaped method showing
significant advantages compared to commercial solvers and heuristics.

The main contribution of this work is to develop the specialized interior-point method
(SIMP)which exploits the specific structure of second-stage constraints inherent in two-stage
stochastic programs. Using this algorithm to solve the sub-problems within the standard L-
shapedmethod leads to its accelerated version. Numerical tests show that the newly proposed
accelerated L-shaped method can provide fast and near-optimal solutions to realistic large-
scale problems. Obtaining solutions fast is especially useful for humanitarian organizations
as they have to react as quickly as possible to fast-approaching disasters.

This paper is organized as follows: The two-stage stochastic model for pre-positioning
relief items (Rawls and Turnquist 2010) is described in Sect. 2 and used as a reference model
for two-stage stochastic programs in disaster management. After highlighting the important
second-stage constraint structure of the model, the accelerated L-shaped method is proposed
in Sect. 3. For this purpose, the classical L-shaped method is described first in Sect. 3.1. The
specialized interior-point method (SIPM) is introduced in Sect. 3.2, leading to the accelerated
L-shapedmethod. This algorithm is then applied to solve the large-scale case study, presented
in Sect. 4.1. The numerical results discussed in Sect. 4.2 illustrate the benefits of the newly
proposed solution method. Finally, conclusions and future research directions are given.

1 Warm-starting is to use the solution to the previous problem as a starting point for the next problem.
Especially simplex algorithms benefit from such warm-start points and can find the next solution after only
few iterations. However, developing efficient warm-start strategies for interior-point methods is an active
research area nowadays, see e.g. Cay et al. (2017).
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2 A two-stage stochastic program for pre-positioning relief items

Pre-positioning relief items especially nearby disaster-prone areas can be decisive in mitigat-
ing negative impacts of catastrophic events (Turkeš et al. 2017). In addition, storing first-aid
items in advance may lead to purchase cost savings.

One of the most influential models in this regard is the one proposed by Rawls and
Turnquist in 2010. In addition, it is a classical two-stage stochastic program and therefore
used as the reference model in the following. In this model, location and storage decisions
are made on the first stage, i.e. prior to a disaster. In the aftermath of a disaster, second-stage
decisions are made concerning, e.g. the distribution of these items to areas where they are
needed. The network considered in this model contains nodes to represent potential locations
where storage facilities can be opened and demand for aid supplies can arise. In case of a
disaster, pre-positioned items canbe transported to thesewho are in needon roads, represented
as arcs in the respective network. Demand as well as possible damages to storage facilities
and roads depend on the location and the magnitude of a disaster which is not known a
priori. Such uncertainties are modeled by defining appropriate scenarios with corresponding
probabilities of occurrence.

In order to make the description of the newly proposed solution method more self-
contained, the model and its notation are given below (Rawls and Turnquist 2010).
Sets:

I: set of demand nodes
K: set of relief items
L: set of facility size categories
N: set of nodes, I ⊆ N
R: set of arcs in the network
S: set of possible scenarios

Scenario-independent parameters:

bk : space requirement per unit for relief item k ∈ K
ck(i, j): costs for transporting one unit of relief item k ∈ K on link (i, j) ∈ R
Fl : costs for opening facility of size l ∈ L
hk : penalty cost per unit for unused relief item k ∈ K, e.g. holding or spoilage costs
Ml : capacity of a facility of size l ∈ L
pk : penalty cost per unit for unsatisfied demand of relief item k ∈ K
qk : acquisition cost per unit for relief item k ∈ K
uk : required transport capacity per unit of relief item k ∈ K

Scenario-dependent parameters:

Ps : probability of scenario s ∈ S
ρk s
i : proportion of relief item k ∈ K at node i ∈ I in scenario s ∈ S which is still usable

Us
(i, j): maximal available arc capacity of link (i, j) ∈ R in scenario s ∈ S

vk si : forecasted demand for relief item k ∈ K at node i ∈ I in scenario s ∈ S

Scenario-independent decision variables (first stage):

rki : pre-positioned quantity of relief item k ∈ K at node i ∈ I
yi l : is 1, if facility of size l ∈ L is opened at node i ∈ I; 0 otherwise

Scenario-dependent decision variables (second stage):

wk s
i : unsatisfied demand for relief item k ∈ K at node i ∈ I in scenario s ∈ S
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xk s(i, j): quantity of relief item k ∈ K transported from i to j in scenario s ∈ S

zk si : unused quantity of relief item k ∈ K at node i ∈ I in scenario s ∈ S

The model formulation is as follows:

min
∑

i∈I

∑

l∈L
Fl yi l +

∑

k∈K

∑

i∈I
qkrki

+
∑

s∈S
Ps

⎡

⎣
∑

(i, j)∈R

∑

k∈K
ck(i, j)x

k s
(i, j) +

∑

i∈I

∑

k∈K
(hk zk si + pkwk s

i )

⎤

⎦
(1)

s.t.
∑

l∈L
yi l ≤ 1, ∀i ∈ I (2)

∑

k∈K
bkrki ≤

∑

l∈L
Ml yi l , ∀i ∈ I (3)

∑

k∈K
uk xk s(i, j) ≤ Us

(i, j), ∀(i, j) ∈ R, s ∈ S (4)

∑

j �=i∈N
xk s( j, i) + ρk s

i r ki − zk si =
∑

j �=i∈N
xk s(i, j) + vk si − wk s

i , ∀i ∈ N, k ∈ K, s ∈ S (5)

yi l ∈ {0, 1}, ∀i ∈ I, l ∈ L, (6)

rki ≥ 0, ∀i ∈ I, k ∈ K, xk s(i, j) ≥ 0, ∀(i, j) ∈ R, k ∈ K, s ∈ S, (7)

zk si , wk s
i ≥ 0, ∀i ∈ I, k ∈ K, s ∈ S (8)

The objective (1) is to minimize costs which are divided into first- and second-stage costs.
Opening facilities (yil ) and pre-positioning relief items (rki ) causes costs on the first stage, i.e.
before the disaster occurs. Second-stage costs contain transportation costs ck(i, j) and penalties

for unused items hk and unsatisfied demand pk , respectively. These costs are weighted by
the probability of occurrence Ps for each scenario. Although these second-stage costs are
not incurred de facto,2 they are useful for supporting decisions on the first stage. Neglecting
possible future developments of disasters when decidingwhere and howmuch to pre-position
in advance (first stage), can have devastating consequences in terms of demand satisfaction
later on. Therefore, possible second-stage actions are taken into account already before the
catastrophe. In the aftermath of a disaster, actual demand and network conditions become
known such that an updated distribution plan can be used in practice to supply affected
people.

The first constraint group (2) ensures that not more than one facility is opened at
node i ∈ I . An open facility has a specific capacity Ml , according to the chosen size,
which cannot be exceeded by the pre-positioned amount of relief items, see (3). Both
constraint groups (2) and (3) belong to the first stage and are therefore scenario inde-
pendent. However, facility and pre-positioning decisions directly influence second-stage
decisions concerning, e.g. transport quantities. According to (4), it is not allowed to trans-
port more items along an arc than the available arc capacity Us

(i, j). In case of road
destructions, where Us

(i, j) = 0 in (4) for a specific scenario, delivering relief items is
impossible. The possibility of such road network conditions and the related risk has to

2 Note that it is very unlikely that a scenario will occur exactly as predefined. Moreover, penalty costs for
unsatisfied demand are only fictitious and used to minimize unmet demand.
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be considered when location decisions are made. Moreover, facilities can be damaged or
even destroyed such that the amount of usable items ρk

i r
k
i can be reduced significantly

after a disaster. This has a direct implication for the amount of unsatisfied demand wks
i

in (5). These flow conservation constraints balance, as usual, the incoming and outgo-
ing flows. In particular, demand vksi at node i is satisfied either by pre-positioned and
undamaged items ρk

i r
k
i or by delivered quantities xks( j,i). In case of a surplus, relief items

remain unused, i.e. zksi > 0. Constraints (5) are also referred to as linking constraints
since the second stage is linked to the first stage through the use of first-stage variables
rki .

As stated above, this model can be seen as a representative for two-stage stochastic
programs in disaster management, especially in preparation for a disaster. For a unified
presentation of the model and the corresponding solution method, a more general notation3

of (1)–(8) is used in the following:

min aTχ +
∑

s∈S
Ps f

T γs (9)

s.t. Gχ ≤ d (10)

Tsχ + Wγs = ts, ∀s ∈ S (11)

χ ≥ 0, (12)

γs ≥ 0, ∀s ∈ S. (13)

For the Rawls and Turnquist (2010) model first-stage vectors and matrix are denoted
by a ∈ R

|I |(|K |+|L|), χ = (y, r) ∈ {0, 1}|I ||L| × R
|K ||I |
+ , d ∈ R

2|I | and G ∈
R
2|I |×|I |(|K |+|L|), respectively. Constraints (11) and (13) belong to the second stage with

f, γs ∈ R
|R||K |+2|N ||K |+|R|
+ , right hand side vector ts ∈ R

|R|+|N ||K | and so-called tech-
nology matrix Ts ∈ R

|R|+|N ||K |×|I |(|K |+|L|) for each scenario s. The most important
matrix with regard to the design of an efficient solution method is the recourse matrix
W ∈ R

|R|+|N ||K |×|R||K |+2|N ||K |+|R|. If W is independent of s, as it is the case here,
the two-stage program is said to have f i xed recourse. For the underlying problem (1)–
(8), the recourse is even complete, meaning that any first-stage decision χ leads to a
feasible second-stage decision γs . This is due to the presence of variables wks

i and zksi
in (5). For instance, even if no facilities are opened and no relief items are stored, the
corresponding second-stage solution is still feasible. In this case, demand remains com-
pletely unsatisfied such that the total costs in (9) contain only penalty costs for unsatisfied
demand.

In order to get a better idea of the respective matrix structures, a small example is given
below:

Example:

For |S| = 3, |N | = |I | = 3, |K | = 2 and |L| = 2, the first-stage vector χ and matrix G in
(10) look as follows:

3 The reader is referred to Birge and Louveaux (2011) for a thorough description of two-stage stochastic
programs in general.
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χ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11
y21
y31
y12
y22
y32
r11
r12
r13
r21
r22
r23

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,G =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1
1 1

1 1
−M1 −M2 b1 b2

−M1 −M2 b1 b2
−M1 −M2 b1 b2

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The first three rows in G belong to constraints (2) and the last three rows to (3).
In case of the Rawls’ and Turnquist’s model, the second-stage decision vector γs for each

scenario s is:

γs = (
x1 s
(1,1) x

2 s
(1,1) g(1,1) x

1 s
(1,2) x

2 s
(1,2) g(1,2) ··· x2 s

(3,3) g(3,3) z11 z12 z13 z21 z22 z23 w1
1 w1

2 w1
3 w2

1 w2
2 w2

3

)
,

where slack variables g(1,1), . . . , g|R| for each arc (i, j) ∈ R are added to γs to convert
inequality constraints (4) into equalities. The technology matrix Ts contains only entries ρks

i
which are connected to the first-stage pre-positioning variables rki in χ :

Ts =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

0
ρ1s
1

. . .

ρ2s
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Aswill be shown later, the formulation of the recourse matrixW is decisive for an efficient
solution algorithm in terms of fast computation times. The specific form is:

W =

⎛

⎜⎜⎜⎜⎜⎝

u
u

. . .

u
H1 H2 · · · H|R| Q

⎞

⎟⎟⎟⎟⎟⎠
, (14)

with u = [u1 · · · uK 1] ∈ R
1×(|K |+1) and Q =

⎡

⎢⎣
−1 1

. . .
. . .

−1 1

⎤

⎥⎦ ∈ R
|N ||K |×2|N ||K |.

The recourse matrix W is a special lower block triangular matrix, where all entries are zero
except on the main diagonal and the last block row. This structure is favorable for the solution
method as will be shown in the next section.

Note that 1 in u corresponds to the slack variables g(1,1), . . . , g|R| as described above.
The last block row of W belongs to the flow conservation constraints (5) and contains

block matrices Hi ∈ R
|N ||K |×(|K |+1), i = 1, . . . , |R| such that H = [H1 H2 · · · H|R|] ∈

R
|N ||K |×|R|(|K |+1). For the example given above, H is as follows:
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H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 1
1 −1 −1 1

1 1 −1 −1
−1 −1 1 1
1 −1 −1 1

1 1 −1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For instance, the first row in H indicates if relief items of type 1 are supplied to node 1 or
transported away from node 1, i.e. −x1 s(1,2) − x1 s(1,3) + x1 s(2,1) + x1 s(3,1).

3 The accelerated L-shaped method

3.1 The L-shaped method

The two-stage structure in (9)–(13) is perfectly suited to split up the original problem into
smaller sub-problems as it is done by the L-shaped method. Roughly speaking the idea is to
solve the first- and second-stage problems separately and then to connect them through a set of
optimality cuts; see Birge and Louveaux (2011) for a detailed description. The corresponding
pseudo-code is given in Fig. 1.

In the initialization step ι = 0, the so-called master problem containing only first-stage
constraints (10) and (12) is solved without taking

∑
s∈S Ps f T γs in (9) into account. The

corresponding first-stage solution χ0 is included as an input parameter into each of the S
sub-problems in (16), see Fig. 1.

The dual of (16) is

max(ts − Tsχ
ι)Tπs s.t. WTπs ≤ f,

where πs is the vector of dual variables and is also referred to as the vector of simplex mul-
tipliers for each scenario s.4 Using slack variables zs , an equality constrained maximization
sub-problem is obtained:

max(ts − Tsχ
ι)Tπs s.t. WTπs + zs = f zs ≥ 0. (17)

For a given first-stage solution χ0 and the vector of simplex multipliers π0
s , the objective

function value of the second-stage sub-problem ϑ0 = ∑
s∈S Ps(ts −Tsχ0)Tπ0

s is determined
in the second step of the algorithm. If ϑ0 exceeds the current θ0, the counter of iterations ι

is increased by one and a first optimality cut

θ ≥
∑

s∈S
Ps(ts − Tsχ)Tπ0

s

is inserted to the master problem, see Step 3 in Fig. 1.
For ι = 1, the master problem in Step 1 of the algorithm is solved resulting in an updated
first-stage solution χι. Afterwards, χι is used for solving the sub-problems, leading to an
additional optimality cut (15).5 Note that χ in (15) again is a vector of decision variables

4 Note that simplex multipliers are also known as shadow prices which are available, e.g. in the final tableau
of the simplex algorithm (Diwekar 2008, p. 23). However, the dual sub-problem will be important for the
primal–dual interior-point method described in the next section.
5 For two-stage stochastic models where no complete recourse is given, so-called feasibility cuts have to be
included to the master problem in addition to the optimality cuts (Birge and Louveaux 2011, Ch 5).
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Fig. 1 The L-shaped method [based on Birge and Louveaux (2011, Ch. 5)]

whereas πκ
s are the simplex multipliers found in previous iterations κ = 0, . . . , ι−1. As long

as the solution is not optimal, i.e. θ ι < ϑι for the current χι, this process has to be repeated.
The main challenge is the efficient solution of the master problem in Step 1 and of the sub-
problems in Step 2 of the L-shaped method. Often, integer or binary decision variables occur
only on the first stage in the relevant literature, e.g. decisions concerning locations as in Rawls
and Turnquist (2010), such that second-stage sub-problems are ’simple’ LP problems. How-
ever, these sub-problems can be very large in comparison to themaster problem. For instance,
assuming the entire American southeast coast with its 900 counties has to be prepared for the
upcoming hurricane season, i.e. |N | = |I | = 900, such that the network contains potentially
810,000 shortest paths between each pair of nodes. While the actual network will likely be
sparser, |R| = 810,000 arcs may exist in the worst case. If the number of items and possible
facility sizes are set to |K | = |L| = 3, the master problem contains |I |(|K | + |L|) = 5400
decision variables (of which 2700 are binary) and 2|I | = 1800 constraints. In contrast, each
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Fig. 2 The accelerated L-shaped method

sub-problemhas |R||K |+2|N ||K |+|R| = 3,245,400 variables and |R|+|N ||K | = 812,700
constraints. Note that the respective sub-problem has to be solved S times, i.e. for each sce-
nario, such that solving these problems efficiently is crucial for the overall performance of
the L-shaped method. Usually, the linear sub-problems are solved via the simplex algorithm
(Rahmaniani et al. 2017). However, as the problem size increases the computational effort of
such exact methods becomes prohibitive. Therefore, here an iterative algorithm, namely the
specialized interior-point method SIPM, is applied for solving the sub-problems as shown
in the flow diagram of the accelerated L-shaped procedure in Fig. 2. In contrast, the master
problem is solved via a commercial solver like CPLEX or Gurobi. The motivation behind
this approach is that the master problem is of moderate size, e.g. 5400 variables as in the
example above, and therefore does not present a significant hurdle for today’s optimization
software.

Note that the only difference between the standard L-shaped method and its accelerated
counterpart in Fig. 2 is the use of SIPM for the sub-problems.

3.2 A primal–dual interior-point method

In the following, it will be shown how the specific structure of W in (14) is exploited to
improve a primal–dual interior-point method for solving sub-problems (16) and (17).6

Especially for large scale problems, interior-point methods often outperform the simplex
algorithm (Ferris et al. 2007, p. 212). Instead of evaluating vertices of the feasible region
until the optimal solution is found, interior-point methods reach the optimal vertex from the
interior. As a result, the algorithm can be terminated when the solution is close enough to
the boundary, resulting in an approximate solution. This is particularly beneficial for the
L-shaped method, since exactness is not required for the construction of valid optimality cuts
(15) (Rahmaniani et al. 2017).

6 The approach is presented for one sub-problem such that the subscript s is omitted for now.
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From the theory of linear programming it is well-known that a solution of a linear problem
as presented in (16) is optimal if the following conditions are satisfied (Ferris et al. 2007, p.
108):

WTπ + z = f (18)

Wγ = t̃ (19)

Γ Ze = 0 (20)

γ, z ≥ 0 (21)

with t̃ = t − Tχι, e = (1, . . . , 1)T , Z = diag(z1, . . . , zn) and Γ = diag(γ1, . . . , γn).
Equation (19) states the primal and (18) the dual feasibility. Note that (20) represents the
standard complementarity conditions, i.e. at optimum either γ j or z j has to be zero (for
j = 1, . . . , n). In this case the primal–dual solution vector is (γ ∗, π∗, z∗) if γ ∗ is the solu-
tion of the primal problem (16) and (π∗, z∗) the solution of the dual problem (17). The main
idea of interior-pointmethods is to perturb the complementarity condition (20) by introducing
the barrier parameter μ > 0:

Γ Ze ≥ μe. (22)

During the solution process μ is successively reduced such that the optimal solution
is approached from the interior of the feasible set. In each iteration of interior-point
methods, the system (18)–(21) has to be solved, where (20) is replaced by (22).
Due to the nonlinearity of (22) the Newton method7 is applied to find the direction
(	γ,	π,	z):

⎡

⎣
0 WT I
W 0 0
Z 0 Γ

⎤

⎦

⎡

⎣
	γ

	π

	z

⎤

⎦ =
⎡

⎣
f − WTπ − z

t̃ − Wγ

−Γ Ze + μe

⎤

⎦ , (23)

where I is an identity matrix of appropriate size. The right hand side of (23) represents the
residuals of the corresponding constraints in (18), (19) and (22), respectively. In Fig. 3,
the pseudo code of a general primal–dual interior-point method is given (Ferris et al.
2007).

After choosing an interior starting point (γ 0, π0, z0), i.e. γ 0, z0 are strictly positive, the
search direction has to be determined in which the next step is taken. However, the new
solution should not be outside the feasible region. This is ensured through a suitable choice
of the step length parameter α, see Step 2 in Fig. 3.8 If a predefined tolerance level is not
reached in the last step of the algorithm (Step 3), the barrier parameter μk is reduced and a
new search direction is calculated.9

7 See Ferris et al. (2007) for a general description of the Newton method for interior-point algorithms.
8 An approach for setting the step length α can be found in Ferris et al. (2007).
9 A detailed description of the algorithm and how to reduce μk , can be found in Ferris et al. (2007) or Wright
(1997).
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Fig. 3 A primal–dual interior-point method

3.3 Determining the search direction

Themost expensive stepwithin interior-pointmethods is the determination of search direction
(	γ k,	πk,	zk) by solving (23) in each iteration k. Now, the idea is to exploit the specific
structure of the recoursematrixW in (14) in order to reduce the size of system (23). This leads
to the specialized interior-point method (SIPM). To simplify the presentation, the iteration
counter k is omitted for now.
Eliminating 	z from (23) by setting

	z = Γ −1(μe − Γ Ze − Z	γ ), (24)

leads to the so called reduced KKT-system:
[−D WT

W 0

]

︸ ︷︷ ︸
S

[	γ

	π

]
=

[
rhsd
rhsp

]
, (25)

with S ∈ R
(2|R||K |+5|N ||K |+3|R|)×(2|R||K |+5|N ||K |+3|R|) for the Rawls and Turnquist (2010)

model, the diagonal matrix D

D = Γ −1Z =

⎡

⎢⎢⎢⎢⎣

z1
γ1

. . . 0

...
. . .

...

0 · · · zn
γn

⎤

⎥⎥⎥⎥⎦
,

with n = |R||K | + 2|N ||K | + |R| and right hand sides
rhsd = f − WTπ − μΓ −1e

rhsp = t̃ − Wγ.
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One can even further reduce the KKT-system in (25) by eliminating 	γ :

	γ = −D−1(rhsd − WT	π), (26)

such that

W (−D−1(rhsd − WT	π)) = rhsp,

and therefore the system of normal equations has to be solved:

WD−1WT	π = rhs, (27)

with rhs = rhsp +WD−1rhsd . Solving (27) instead of (25) has disadvantages, e.g. if dense
columns exist inW as it is often the case in practice.10 However, due to the specific structure
of W in (14), the so-called Schur complement W D−1WT of matrix S in (25) is a block
arrowhead matrix:

WD−1WT =

⎡

⎢⎢⎢⎣

u
. . .

u
H1 · · · H|R| Q

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

D−1
1

. . .

D−1
|R|

D−1
Q

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

uT HT
1

. . .
...

uT HT|R|
QT

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎣

uD−1
1 uT uD−1

1 HT
1

. . .
...

uD−1
|R|uT uD−1

|R|HT|R|
H1D

−1
1 uT · · · H|R|D−1

|R|uT
∑

r∈R Hr D−1
r HT

r + QD−1
Q QT

⎤

⎥⎥⎥⎥⎦
, (28)

where only entries occur on the diagonal, in the last block row and last block column. The
pattern of the arrowhead matrix allows the definition of block matrices in the following way:

WD−1WT =
[
A CT

C B

]
∈ R

|R|+|N ||K |×|R|+|N ||K |, (29)

with diagonal matrix A:

A =
⎡

⎢⎣
uD−1

1 uT

. . .

uD−1
|R|uT

⎤

⎥⎦ ∈ R
|R|×|R|,

C =
[
H1D

−1
1 uT · · · H|R|D−1

|R|uT
]

∈ R
|N ||K |×|R|,

and

B =
[∑

r∈R Hr D−1
r HT

r + QD−1
Q QT

]
∈ R

|N ||K |×|N ||K |.

Then the system of normal equations (27) can be rewritten as
[
A CT

C B

] [	π1

	π2

]
=

[
rhs1
rhs2

]
, (30)

where 	π and the right-hand side rhs in (27) are partitioned accordingly.

10 In such cases the matrix WD−1WT is often dense leading to an increased effort when computing its
inverse.
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Finally, eliminating 	π1 from (30)

	π1 = A−1(rhs1 − CT	π2), (31)

leads to the equation:

S̃	π2 = rhs2 − CA−1rhs1, (32)

where S̃ = (B−CA−1CT ) ∈ R
|N ||K |×|N ||K | represents the Schur complement ofWD−1WT

in (29).As the recoursematrixW has full row rank,WD−1WT and thus its Schur complement
S̃ is positive definite. After obtaining 	π2, one can determine the complete search direction
(	γ,	π,	z) just by back-solving the remaining Eqs. (31), (26) and (24). Note that these
equations just require the inverses of diagonalmatrices A, D andΓ which are computationally
inexpensive. Now, the actual task is to solve (32) efficiently. However, this is not problematic
since the major matrix size has been reduced significantly from 2|R||K |+5|N ||K |+3|R|×
2|R||K | + 5|N ||K | + 3|R| in (25) to |N ||K | × |N ||K | in (32). In addition, one can exploit
the symmetry and positive definiteness of S̃ by using the Cholesky factorization (Golub and
Van Loan 2013, p. 163). In this way, S̃ is factorized such that

S̃ = L · LT ,

where L is a lower triangular matrix.
Now, Eq. (32) can be solved through simple forward- and backward-substitutions:

Ly = rhs2 − CA−1rhs1

LT	π2 = y.

Here, the product |N ||K | (locations multiplied by the number of relief items) and therefore
the size of S̃ will not be very large in practical applications. Castro (2000) propose a similar
solution approach for multi-commodity network problems where WD−1WT is also a block
arrowhead matrix. However, W does not represent a recourse matrix in his application. In
addition, the resulting Schur complement S̃ can reach a high degree of density and depends
on the number of arcs which is very large in the multi-commodity network problem con-
sidered by Castro (2000). Therefore, the author suggests an iterative algorithm, namely the
preconditioned conjugate gradient method, instead of Cholesky factorization.

The accelerated L-shaped procedure described in Fig. 2 can be applied to a whole class
of two-stage stochastic programs as they are often proposed in disaster management. It is
required that the underlying problem fulfills the required conditions for using the standard
L-shaped method, i.e. the recourse should be fixed and integer variables occur only on the
first stage. This is often the case for models proposed in humanitarian literature where, e.g.
location decisions are made on the first stage (binary variables) and transport decisions on
the second stage (continuous variables).

The second requirement for applying the acceleratedL-shapedmethod is that the size of the
master problem is relatively small. As indicated in Fig. 2, a commercial solver can be used in
this case. Indeed, master problems in the humanitarian context are often of manageable size.
For instance, first-stage decisions concerning relief locations are most frequently proposed
in disaster management (Grass and Fischer 2016). As natural disasters hit usually a specific
region with limited coverage, the corresponding locational master problem is therefore of
moderate size.

Finally, the block triangular structure of the recourse matrix W in (14) is essential for
the applicability of the specialized interior-point method. Various ordering techniques can
be found in the literature which can reorder a matrix according to a block triangular form
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similar to (14). For instance, the reordering approach of Hu et al. (2000) can be applied to any
sparse matrix independent of, e.g. symmetry. In this sense, the accelerated L-shaped method
can be used to any two-stage stochastic programs fulfilling these conditions even beyond the
humanitarian setting.

4 Realistic large-scale case study

In this section a realistic case study is designed to test the efficiency of the solution method
proposed in the previous section. For reasons of comparability, this case study is based on the
one used in Rawls and Turnquist (2010) considering the hurricane prone Gulf and Atlantic
coast, but it is supplemented by more realistic data. For this case study solely hurricanes, i.e.
storms with wind speeds of at least 119 km/h, are considered which can be classified into
five categories depending on their wind speed, see Table 1.

4.1 Input data

In total, 900 counties at the American southeast coast have been hit by storms or hurricanes in
the past. These counties are grouped to 90 nodes where each node represents the geographical
center of the respective neighborhood, see Fig. 4. Hence, the number of nodes in the network,

Table 1 Hurricane categories Category Wind speed

1 119–153 km/h 74–95 mi/h

2 154–177 km/h 96–109 mi/h

3 178–208 km/h 110–129 mi/h

4 209–251 km/h 130–155 mi/h

5 >252 km/h >155 mi/h

Fig. 4 Network containing 90 nodes at the Gulf and Atlantic coast
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Table 2 Opening costs and
storage capacities (Rawls and
Turnquist 2010)

Size category l Fixed costs Fl (in $) Capacity Ml (in ft3)

1 Small 19,600 36,400

2 Medium 188,400 408,200

3 Large 300,000 780,000

Table 3 Relief items

Item k Unit Purchase price qk

(in $/unit)
Weight uk

(in kg/unit)
Space bk

(in ft3/unit)

1 Water One liter 0.68 1.13 0.093

2 MRE One package 3.36 0.76 0.1029

3 Tent One piece 310 55 9.9499

4 Medical set One box 770 45 6.3566

5 FAK One box 870 10.5 2.2434

i.e. |I | = |N |, has been increased from 30 to 90 in contrast to the case study of Rawls and
Turnquist (2010). This allows a more detailed analysis since the area covered by each node
and the distances between them are reduced. In this way, more precise estimations of affected
people and the differentiation between areas which are actually hit by a hurricane and those
which are close but less affected, are possible.

4.1.1 Storage facilities

Three different sizes of facilities can be opened with the following costs and capacities which
are taken from Rawls and Turnquist (2010) for comparability reasons, see Table 2.

4.1.2 Specifications of relief items

For this case study five common types of relief items are considered with specifications
given in Table 3. Water, MREs (meals-ready-to-eat) and tents belong to basic equipment of
evacuated persons. Medical sets contain essential medicines for preventing epidemics and
treating chronically ill persons whereas first aid kits (FAK) are used for injured people. The
specific purchase costs qk , the consumption share per unit of transport capacity uk and space
requirement bk are based on the South Carolina Emergency Operations Plan (SCEMD 2007)
as well as the items catalogue of IFRC (2016).

Based on MSF (2016), costs for transportation c(i, j) are set to $0.50 per kg and increase
linearly with the respective distance.11 Relief items can be transported only in case of undam-
aged arcs, i.e. where arc capacity is large enough. Here, Us

(i, j) = 100,000 kg should be
sufficient and is used for hurricane category 1–3 and for all arcs (i, j). Major hurricanes 4
and 5 cause complete destruction in specific scenarios s such that Us

(i, j) = 0 for particular

arcs (i, j). According to Rawls and Turnquist (2010), penalty costs for unused items hk are
one quarter of the purchase costs qk and for unsatisfied demand, pk = 10 · qk .

11 Distances are determined by the ArcGIS software.
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Fig. 5 Counties hit by hurricanes from 1900 to 2014

4.1.3 Scenario generation

In order to determine realistic scenarios, the database International Best Track Archive for
Climate Stewardship (IBTrACS) of the National Centers for Environmental Information is
used, where all storms have been registered since 1900. In this time-frame, the landfall of 203
hurricanes can be identified with a diameter of 161 km on average (URI/GSO 2016). Hence,
counties are assumed to be affected if they are located within 80.5 km of a hurricane path.
Figure 5 shows areas which were hit by hurricanes of different categories from 1900 to 2014.
Especially three regionswere hit by hurricanes of the highest category (dark violet areas). One
can deduce that these areas were also affected by weaker hurricanes and are therefore under
particular threat. In contrast, counties far away from the coast were hit by weaker hurricanes
(light pink areas) or by storms which are not classified as hurricanes (green areas).

The database IBTrACS provides information concerning locations, frequencies and
strengths of hurricanes of the last 115 years. Hurricanes with similar characteristics, e.g.
category and path, are clustered together allowing the definition of 118 scenarios. These
scenarios differ in terms of hurricane location, demand for relief items and the destruction
level of storage facilities and roads. In contrast, only 15 historical hurricanes are used for the
case study proposed by Rawls and Turnquist (2010).

It is assumed that each of the 203 hurricanes which made landfall between 1900 and
2014 had the same probability to occur. As each scenario consists of several hurricanes these
probabilities are summed up leading to the corresponding probability of scenario Ps .

4.1.4 Demand

Since demand can be influenced by several factors, like hurricane category, additional floods
or the degree of injuries, determining demand is a challenging task. It is assumed that the
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Table 4 Percentage of population to be supplied depending on the damage potential of hurricanes
(NOAA/AOML 2016)

Category Wind speed (km/h) Damage potential Percentage of affected population

1 119–153 1 0.1

2 154–177 10 1

3 178–208 50 5

4 209–251 250 25

5 >252 500 50

Table 5 Coverage of relief items and required amounts per person

No. k Unit Coverage pp (1 day) Required items pp (2 days)

1 Water One liter 1/3 6

2 MRE One package 1/2 4

3 Tent One piece 5 1/5

4 Medical set One box 1000 1/1000

5 FAK One box 5 1/5

damage potential of a hurricane, as defined in Table 4, influences the actual demand for each
scenario. For instance, 50% of the population in affected counties have to be supplied with
pre-positioned relief items in case of a category-5-hurricane.

In addition, aid items should last for two days such that relief organizations have time to
determine demand more exactly and can order additional supply. Following the emergency
plan of South Carolina, e.g. three liters of water and two meals (MREs) per day and person
are required (SCEMD 2007), i.e. one liter of water covers one-third and one meal covers
one-half of the recommended daily amount, see Table 5. Hence, six liter of water and 4
MREs for each person have to be pre-positioned for the entire period of two days, as stated
in the last column of Table 5.

The resulting case study has a problem size of 4,885,920 decision variables, of which 270
are binary, and over one million constraints (1,009,080). In contrast, a problem with 147,060
(90 binary) variables and 7608 constraints is studied and solved in Rawls and Turnquist
(2010).

4.2 Computational results

4.2.1 Implementation details

All numerical experiments in this section were carried out on a Dell Latitude E7470 laptop
with a dual 2.60 GHz Intel Core i7 processor and 8 GB of memory.

The commercial optimization solver Gurobi 7.0.0 was used to solve the original problem
(1)–(8) directly. In addition, the standard and the accelerated L-shaped method, introduced
in the previous section, were implemented in MATLAB 2016b. Note that the algorithm in
Fig. 1 is a basic version of the L-shaped method and many acceleration techniques exist
in the literature (Rahmaniani et al. 2017). For instance, the one-tree approach allows the
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implementation of a single search tree where solving the master problem to optimality in
each iteration can be avoided (Naoum-Sawaya and Elhedhli 2013). In addition, advanced cut
generation techniques, as proposed by, e.g. Saharidis and Ierapetritou (2013) and Sherali and
Lunday (2013), can reduce the number of L-shaped iterations. However, the focus of this
work is to highlight the superior behavior of SIPM concerning solution times for the sub-
problems. As a result, and as will be shown in the following, the L-shaped method can be
accelerated significantly. The advantage of the method proposed in Fig. 2 is that acceleration
techniques like the one-tree approach and cut improvements can be applied in addition to
SIPM. Such further developments of the L-shaped method seem very promising and are left
for future research.

The only difference between the algorithm presented in Fig. 1 and the implementation in
MATLAB is that amulti-cut approach (Birge andLouveaux 2011, 199) is used. In the classical
version of the L-shaped method, a single optimality cut (15) is generated by summing up the
multipliers πκ

s over all scenarios, potentially loosing valuable information. In the multi-cut
approach one cut per scenario s is added to the master problem such that θ is replaced by θs :

min aTχ +
∑

s∈S
θs .

Hence, optimality cuts (15) are changed to

θs ≥ Ps(ts − Tsχ)Tπκ
s ∀κ = 0, . . . , ι − 1; ∀s ∈ S.

In thisway, several optimality cuts are added to themaster problem in every iteration, decreas-
ing the required number of iterations, but also leading to an increased size of the master
problem. As stated by Birge and Louveaux (2011), the multi-cut approach is recommended
if the number of scenarios does not significantly exceed the number of first-stage constraints,
as it is the case here.

According to Fig. 2, the Gurobi interface was used to solve the master problem in
every iteration whereas each sub-problem was solved by either MATLAB’s built-in function
linprog12 (leading to the standard L-shaped method) or by SIPM introduced in Sect. 3.2
(leading to the accelerated L-shaped method). In the latter case a standard primal–dual path-
following interior-point method was implemented in MATLAB (Ferris et al. 2007, Ch 8.3)
but where the search direction was determined by the procedure described in the previous
section. Solving (32) by the Cholesky factorization is the key issue within SIPM. For this
purpose MATLAB’s built-in function chol was used to decompose matrix S̃ into matrices
of lower and upper triangular form.

Both interior-point methods, i.e. linprog and SIPM, were terminated if the sum of
relative residuals and the optimality gap

‖t̃ − Wγ k‖
max(1, ‖t̃‖) + ‖ f − WTπk − zk‖

max (1, ‖ f ‖) +
∣∣ f T γ k − t̃ Tπk

∣∣

max (1,
∣∣ f T γ k

∣∣)
,

was smaller than 1e−06.13

In the following these solution approaches are compared for the realistic large-scale case
study.

12 The built-in function linprog uses a predictor-corrector primal–dual interior-point method by default.
13 Such termination criteria are common for interior-point methods (Wright 1997, p. 226).
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Table 6 Comparison of computational results

Gurobi L-shaped Accelerated L-shaped

Overall time 233,637 s (64.9 h) 7541 s (2.09 h) 3968 s (1.1 h)

Rel. opt. gap 0.004 0.009 0.008

No iterations 28 27

4.2.2 Solution times for realistic large-scale case study

First, Gurobi 7.0.0 was used to solve the original model (1)–(8), requiring almost 65 h (see
column ’Gurobi’ in Table 6).14 A time-frame of almost three days is unacceptable especially
when new short-term forecasts become available and disaster preparation has to take place in
a rather short time-frame. Hence, the standard L-shaped method, i.e. where linprog was
used for the solution of the sub-problems, was analyzed (see column ’L-Shaped’ in Table 6).
According to Table 6 this approach led to a significant time reduction with an overall solution
time of 7541 seconds (about 2 h). Applying the accelerated version of the L-shaped method
resulted in further time savings. The solution time of 3968 s (about 1 h) was nearly twice as
fast as the standard L-shaped method.

Numerical tests showed that after the relative optimality gap upper bound−lower bound
upper bound fell

below 0.008 it remained almost unchanged in the following L-shaped iterations.15 Such a
tailing-off effect is a well-known drawback of Benders decomposition methods and several
techniques are presented in the literature to overcome this unfavorable behavior (Rahmaniani
et al. 2017). However, most of these approaches are problem-dependent and require adjust-
ments for each problem formulation. As already mentioned, the main purpose of this work is
to show the efficiency of the specialized interior-point method with respect to computation
times and therefore no further acceleration techniques for the L-shaped method were used.

The good performance of the accelerated L-shaped method indicated in Table 6 is due to
SIPM. As shown in Table 7, SIPM required on average 0.98 seconds for one sub-problem,
i.e. for one scenario. Hence, 115.6 seconds (1.9 min) were needed on average to solve 118
scenarios in each iteration of the accelerated L-shaped method. Almost 80% of the overall
time (3121 s of 3968 s) accounted for solving the sub-problems whereas the master problem
is computationally inexpensive. In contrast, MATLAB’s built-in function linprog solved
each of these 118 sub-problems in 2 seconds on average, i.e. double as much time as the new
approach. As a result the standard L-shaped method in Table 6 needed twice the time of its
accelerated counterpart.16

Although a MATLAB implementation is not competitive compared with codes written in
C/C++, it is intuitively easier to understand. Due to MATLAB’s user-friendly interface the
acceleratedL-shapedmethod is transparent and can be readily verified.Comparinglinprog

14 By default, Gurobi solves the MIP root node via the dual simplex method and run the barrier and simplex
method on multiple threads concurrently for LP problems (Gurobi Optimization 2017).
15 For comparison reasons Gurobi was terminated if the relative optimality gap fell below 0.009. However,
the relative optimality gap jumped from 0.173 to 0.004 in the last iteration of Gurobi.
16 As mentioned above, column ’L-Shaped’ in Table 6 refers to the method where MATLAB’s linprog and
’Accelerated L-Shaped’where SIPM is used for solving the sub-problems. Since computation times for solving
themaster problem in each iteration are independent of the sub-problems and insignificant in comparison to the
solution times of the sub-problems, the overall time for the L-shaped method consists mainly of computation
times for the sub-problems. Therefore, solution times given in Table 7 have a major influence on the overall
solution times of the L-shaped method as given in Table 6.
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Table 7 Comparison of LP solvers for sub-problems

SIPM (s) linprog (s) Dual simplex (s) Barrier (s)

Average time (per sub-problem) 0.98 2 1.63 0.93

Total time (per L-shaped iteration) 115.6 236 192.3 109.7

with the specialized interior-point method is reasonable as both approaches are implemented
in MATLAB with the exception that the calculation of the search direction within linprog
is coded in FORTRAN.

However, additional tests were carried out where Gurobi was used to solve the sub-
problems. With Gurobi a solution time of 1.49 s per sub-problem was achieved on average
when the dual simplex was chosen (see ’Dual Simplex’ in Table 7). Using Gurobi’s barrier
method instead led to an average time of 0.93 s for each sub-problem. It can be concluded that
if a more sophisticated programming language like Fortran or C++ was used, SIPM could
outperform Gurobi further. It should be mentioned that calculation times could be reduced
even more if the sub-problems were solved in parallel.

4.2.3 Location results for realistic large-scale case study

In this section the results for the specific planning problem are to be presented. Location
decisions as determined by the proposed solution method are shown in Fig. 6, where the
heuristically found solution of Rawls and Turnquist (2010) is added for comparison.

It is obvious that the solution structures concerning the location of facilities differ signif-
icantly. This is mainly due to the way in which scenarios have been defined, namely which
areas have been identified as particularly vulnerable. In case of Rawls and Turnquist, two
large-sized facilities are opened in areas which were hit by major hurricanes in the past and
are therefore under particular threat. One can deduce that these facilities, and relief items
stored there, are likely to be destroyed in a future hurricane setting. In this case items have to
be supplied from the facility located at Memphis (blue triangle in the North). However, some
serious injuries have to be treated with medicine within the first 4 h which cannot be guar-
anteed in this case. Even if some items are not time-critical, sufficient quantities may be not
available due to the small size of this facility. In contrast, the solution of the large-scale case
study suggests to locate much more small-sized facilities along the coast and the northern
border. The latter can be used as backup storages if coastal facilities are destroyed.

It becomes clear that scenarios which only insufficiently reflect reality can have far-
reaching implications with regard to the results and hence to the performance of humanitarian
operations. When planning is based on more realistic scenario definitions, as in the proposed
case study, storage facilities are located rather away from vulnerable areas, but still close
enough to provide first aid. The results can then be used as decision support by humanitarian
organizations
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Fig. 6 Facility locations as suggested by Rawls and Turnquist (2010) (top) and solution for the large-scale
case study found by newly proposed method (bottom)

4.2.4 Additional tests

In order to verify the competitiveness of the accelerated L-shaped method additional tests
were carried out. In particular, three case studies have been designed with problem sizes
shown in Table 8.

The small-scale case study has the same size and data as the one proposed by Rawls and
Turnquist (2010). Missing parameter values like distances and arc capacities were completed
in the same way as described in Sect. 4.1.

Table 8 Problem size of a
small-, medium- and large-scale
case study

Number of Case study
Small Medium Large

Nodes 30 90 90

Types of relief items 3 3 5

Facility size categories 3 3 3

Scenarios 51 80 118

Constraints 7608 669, 780 1, 009, 080

Decision variables 147, 150 1, 988, 010 4, 886, 190

123



Ann Oper Res (2020) 284:557–582 579

Table 9 Comparison of computational results

Case study Gurobi L-shaped Accelerated L-shaped

Small

Overall time 7.8 s 244.5 s (4.1 min) 221.3 s (3.7 min)

Rel. opt. gap 0.0001 0.0002 0.0005

No iterations 29 29

Medium

Overall time 3462 s (57.7 min) 1348 s (22.5 min) 631 s (10.5 min)

Rel. opt. gap 0.02 0.06 0.05

No iterations 16 16

Large

Overall time 191,851 s (53.29 h) 5486 s (1.52 h) 2939 s (49 min)

Rel. opt. gap 0.003 0.006 0.006

No iterations 24 23

The medium-scale case study is about half the size of the realistic case study with almost
700,000 constraints and two million decision variables.

Finally, the large-scale case study is the same size as the realistic case study but some
scenario-dependent parameters were randomly altered. The purpose of this case study is to
analyze the performance of the accelerated L-shaped method, and especially of SIPM, in the
case of data changes.

According to Table 9 the L-shaped method cannot be recommended for small-sized prob-
lems as both versions were much slower than Gurobi, requiring several minutes instead of
only seconds. The reason for the poor performance of the L-shaped method is that the master
problem has to be solved in each iteration. Overall this is more time-consuming than solv-
ing the original problem directly. However, as the problem size increases the computational
benefits of the L-shaped method become apparent.

As can be seen in Table 9, Gurobi needed almost 1 h to solve the medium-scale problem
whereas the standard L-shaped method could reduce the overall solution time to about 22
min. The accelerated L-shaped method even halved this time again to about 10 min. Note
that both versions of the L-shaped method were terminated after 16 iterations to avoid the
tailing-off effect. As mentioned before the relative optimality gap showed little change in
the following iterations. For reasons of comparability Gurobi was terminated after reaching
a relative optimality gap of 0.06. However, as for the realistic case study, an actual gap of
0.02 was achieved.

For the large-scale problem, similar performance results as in Table 6 can be obtained.
Moreover, the solution times are similar to the large-scale case study, i.e. almost 1 h for
the accelerated method and 2 h for the standard method. Hence, changes in the data do not
seem to have a big influence on the performance. In particular, both versions of the L-shaped
method were much faster than Gurobi again reducing solution times significantly. Again this
is mainly due to the use of SIPM for solving the sub-problems.

In Table 10 different solution approaches for sub-problems are compared.
The table reveals that SIPM is twice as fast as linprog independent of the problem size

and input data. In addition, SIPM outperforms Gurobi’s dual simplex for the medium- and
large-scale problem. Although written in MATLAB the specialized interior-point method
can even compete with the barrier method of Gurobi. Based on these observations it can be
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Table 10 Comparison of LP solvers for sub-problems

Case study SIPM (s) linprog (s) Dual simplex (s) Barrier (s)

Small

Average time (per sub-problem) 0.04 0.07 0.04 0.12

Total time (per L-shaped iteration) 2.04 3.57 2.04 6.12

Medium

Average time (per sub-problem) 0.4 0.7 0.7 0.36

Total time (per L-shaped iteration) 32 56 56 28.8

Large

Average time (per sub-problem) 0.87 1.58 1.55 0.88

Total time (per L-shaped iteration) 103 186 183 104

recommended to implement SIPM into, e.g. CPLEX’s Benders decomposition to achieve
solutions even faster.

As illustrated by the case study, more realistic problems are harder to solve even with
state-of-the-art solvers. Here it was shown that exploiting the two-stage structure via the
L-shaped method and making use of the special structure of the recourse matrix W in (14)
leads to significant time savings. Of course, solution times may be not crucial for strategic
location decisions. However, in practice most relief organizations use public buildings like
gyms or town halls as provisional warehouses or shelters for evacuees and do not establish
new buildings. Therefore, decisions where to store relief items are oftenmade on a short-term
basis and as soon as, e.g. a hurricane forecast is available. Hence, fast solution methods are
essential to ensure responsiveness.

5 Conclusion and future research directions

Due to their unpredictable and devastating nature, disasters represent a serious threat for
those who are affected. One of the main activities to mitigate human suffering is to take
appropriate precautions like storing relief items at selected locations before a disaster occurs.
Such decisions have to be made under a high degree of uncertainty and two-stage stochastic
programming is a preferred approach in this regard. Especially the model proposed by Rawls
and Turnquist (2010) is seen as a benchmark in the relevant literature and therefore used here
as a representative for two-stage stochastic programs in disaster management. Obtaining
solutions of these programs fast, especially in case of short-term forecasts, can be decisive in
terms of rapid aid response and live-savings. Unfortunately, commercial solvers may be too
memory- and time-consuming for realistic large-scale problems. As a remedy, heuristics are
often suggested which have, however, several disadvantages. First, optimality of the resulting
solution usually is not guaranteed and the optimality gap is often not measurable. Second,
heuristics are usually problem-dependent such that relief organizations need the necessary
know-how to use and adjust these heuristics for their applications.

Therefore, the L-shaped method is suggested in this paper which is an exact method but
can be terminated when the desired accuracy level is achieved. In order to accelerate the
standard L-shaped algorithm, the specialized interior-point method SIPM is used to solve the
sub-problems efficiently by exploiting the specific structure of the second-stage constraints.
In this way, the most expensive step within interior-point methods, namely the determination
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of search directions, is facilitated. To illustrate the advantages of this approach, a realistic
large-scale case study for the hurricane-prone American south-east coast was designed. Time
for solving this problem was reduced significantly in comparison to the Gurobi solver and to
the standard L-shaped method. Additional tests confirmed the competitiveness of the newly
proposed SIPM against Gurobi’s simplex and barrier method.

An important advantage of the accelerated L-shaped method is that it can be applied to a
whole class of two-stage stochastic programs often proposed in the humanitarian literature. In
order to extend this class of two-stage stochastic models even more, further developments are
needed. For instance, difficult or large-scale master problems can be solved by constructing
a single search tree as it is done by, e.g. the Branch-and-Benders-cut algorithm (Naoum-
Sawaya and Elhedhli 2013) instead of repeatedly solving the master problem to optimality.
Moreover, it would be useful to analyze what kind of cut-generation and branching strategies
are particularly suitable for two-stage stochastic programs in disastermanagement. Extending
the accelerated L-shapedmethod by both approaches represents a valuable research direction.
In addition, future research should focus further onparallelized computations of sub-problems
to generate several optimality cuts at the same time.

In conclusion, as solution methods which solve the underlying problem within a rea-
sonable time-frame allow the humanitarian organization to react especially to short-term
forecasts leading to less supply surplus, reduced costs, higher demand satisfaction and there-
fore reduced numbers of casualties, they are particularity useful for aid organizations. The
L-shaped method and its modifications offer interesting future research opportunities in this
regard.
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