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Abstract In this paper, we introduce a general framework for vector space decompositions
that decompose the set partitioning problem into a reduced problem, defined in the vector
subspace generated by the columns corresponding to nonzero variables in the current integer
solution, and a complementary problem, defined in the complementary vector subspace.
We show that the integral simplex using decomposition algorithm (ISUD) developed in
Zaghrouti et al. (Oper Res 62:435–449, 2014. https://doi.org/10.1287/opre.2013.1247) uses
a particular decomposition, in which integrality is handled mainly in the complementary
problem, to find a sequence of integer solutions with decreasing objective values leading to
an optimal solution.We introduce a newalgorithmusing a newdynamic decompositionwhere
integrality is handled only in the reduced problem, and the complementary problem is only
used to provide descent directions, needed to update the decomposition. The new algorithm
improves, at each iteration, the current integer solution by solving a reduced problem very
small compared the original problem, that we define by zooming around the descent direction
(provided by the complementary problem). This zooming algorithm is superior than ISUD
on set partitioning instances from the transportation industry. It rapidly reaches optimal or
near-optimal solutions for all instances including those considered very difficult for both
ISUD and CPLEX.
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1 Introduction

Consider the set partitioning problem (SPP) denoted by P:

min cx

(P) Ax = e

x j binary, j ∈ {1, . . . , n},
where A is an m × n matrix with binary entries, c is an arbitrary vector of dimension n,
and e = (1, . . . , 1) is a vector of dimension dictated by the context. We assume that P is
feasible and A is of full rank. When we relax the binary constraints (we replace them by the
constraints x j ≥ 0), we obtain the continuous relaxation. We denote its feasible region by
L P . It is clear that L P is bounded and consequently a polytope.

1.1 Literature review

The SPP has been widely studied in the last four decades, mainly because of its many appli-
cations in industry. A partial list of these applications includes truck deliveries (Balinski
and Quandt 1964; Cullen et al. 1981), vehicle routing (Desrochers et al. 1992), bus driver
scheduling (Desrochers and Soumis 1989), airline crew scheduling (Hoffman and Padberg
1993; Gamache et al. 1999; Barnhart et al. 1998; Gopalakrishnan and Johnson 2005), and
simultaneous locomotive and car assignment (Cordeau et al. 2001). Several companies pro-
vide commercial optimizers to these problems using this mathematical model or one of its
variants.

The literature on the SPP is abundant (see for instance Balas and Padberg 1976 (survey),
Christofides and Paixao 1993; Iqbal Ali 1998). As is the case for generic integer linear
programs, there are threemain classes of algorithms for SPPs (Letchford andLodi 2002): dual
fractional, dual integral, and primal methods. Dual fractional algorithmsmaintain optimality
and linear constraint feasibility (i.e., constraints Ax = e) at every iteration, and they stop
when integrality is achieved. They are typically standard cutting plane procedures such as
Gomory’s algorithm (Gomory 1958). The classical branch-and-bound scheme is also based
on a dual fractional approach, in particular for the determination of lower bounds. SPP is
usually solved, especially when columns cannot be all enumerated efficiently, by branch and
price (and cut) (Barnhart et al. 1998; Lubbecke and Desrosiers 2005) where each node of
the branch-and-bound tree is solved by column generation. The classical approach uses the
simplex algorithm, often resorting to perturbation methods to escape the degeneracy inherent
to this problem, or an interior point method (such as the CPLEX barrier approach) to solve
the linear relaxation of P to find a lower bound. These algorithms often provide solutions
that are very fractional, i.e., infeasible from the integrality point of view. This dual (or dual
fractional as it is called in Letchford and Lodi 2002) approach strives to improve the lower
bound using branching methods or cuts until a good integer solution is found. This approach
is effective for small problems and remains attractive for problems of a moderate size. For
large problems, a very fractional solution leads to a large branch-and-bound tree, and we
must often stop the solution process without finding a good integer solution. On the other
hand, dual integral methods, not much practical, maintain integrality and optimality, and
they terminate when the primal linear constraints are satisfied. An example is the algorithm
developed by Gomory (1963).

Finally, primal algorithms maintain feasibility (and integrality) throughout the process,
and they stop when optimality is reached. Several authors have investigated ways to find
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a nonincreasing sequence of basic integer solutions leading to an optimal solution. The
existence of such a sequence was proved in Balas and Padberg (1972, 1975). The proof
relies on the quasi-integrality of SPPs, i.e., every edge of the convex hull of P is also an edge
of L P . The proposed algorithms (Haus et al. 2001; Rönnberg and Torbjörn 2009; Thompson
2002) explore by enumeration the tree of adjacent degenerate bases associated with a given
extreme point to find a basis permitting a nondegenerate pivot that improves the solution.
These highly combinatorial methods are not effective for large problems, mainly because
of the severe degeneracy. The number of adjacent degenerate bases associated with a given
extreme point can be very huge.

Zaghrouti et al. (2014) introduce an efficient algorithm, the integral simplex using decom-
position (ISUD), that can find the terms of the sequence without suffering from degeneracy.
ISUD is a primal approach that moves from an integer solution to an adjacent one until
optimality is reached. ISUD decomposes the original problem into a reduced problem (RP)
and a complementary problem (CP) that are easier to solve. We solve RP to find an improved
integer solution in the vector subspace generated by columns of the current integer solu-
tion, i.e., columns corresponding to nondegenerate variables (that value 1). Note that a pivot
on a negative-reduced-cost variable in this vector subspace decreases the objective value
and more importantly the integrality is preserved in a straightforward manner as proved in
Zaghrouti et al. (2014). ISUD solves then CP to find an integer descent direction, i.e., leading
to an improved adjacent integer solution, in the complementary vector subspace. Integrality
is handled in both RP and CP but mainly in CP, which finds integer directions. Once the
direction has been identified by CP, RP uses it to update the current integer solution and
ISUD iterates until an optimal solution is reached. Such quick local improvement of inte-
ger solutions to large problems is highly desirable in practice. ISUD is more efficient than
the conventional dual (fractional) approach on pure SPPs with some special structure, even
though the conventional approach has been much improved since its introduction 40 years
ago.

However, ISUD presents some limitations related to the facts that: (1) integrality is han-
dled in CP where branching in not easy due to the structure of CP; (2) ISUD assumes that
the polytope is quasi-integral which is restrictive (set partitioning); (3) ISUD moves to the
next adjacent solution necessarily; this can increase the number of iterations. Details on the
limitations of ISUD are discussed in Sect. 3.

1.2 Main contributions

To continue profiting from the advantages of such primal approach and remedy to its limita-
tions, we introduce in Sect. 2 a new and general framework for vector space decompositions,
simply called here RP–CP decompositions. We also provide theoretical foundations of this
framework in this section. All the theoretical results discussed here are new. We particularly
show that the proposed RP–CP decomposition dresses a continuum between two extremes:
On one side, the paper (Zaghrouti et al. 2014) has the drawback that we have to move to
only adjacent solutions (the step is rather small). On the other side, in Balas and Padberg
(1975), we cannot decompose the problem, i.e., we have to deal with the whole problem
in one shot which is unpractical because of the size and severe degeneracy. The tradeoff is
actually in between these two extremes.We briefly present ISUD and discuss its strengths and
weaknesses in Sect. 3 and effectively show that it uses a particular RP–CP decomposition.

We introduce in Sect. 4 a new exact algorithm, called zooming algorithm, using a dynamic
RP–CP decomposition where, in contrast to ISUD, integrality is handled only in RP, and CP
is only used to provide descent directions to update the decomposition. When CP finds a
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fractional descent direction, i.e., leading to a fractional solution, instead of using cuts (Rosat
et al. 2014b, 2017) or branching (Zaghrouti et al. 2014) to find an integer direction, we use
this descent direction to indicate an area of potential improvement that is likely to contain
an improved integer solution. The new algorithm then constructs a very small RP as a MIP
by zooming around the descent direction. The RPs solved are ten times smaller than the
original problem and very easy to solve. The zooming algorithm is globally primal (it moves
through a decreasing sequence of integer solutions to the optimal solution of P) but locally
dual fractional, i.e., when necessary it solves a small (local) MIP using the dual fractional
approach. This allows to solve large industrial SPPs within an exact primal paradigm. We
also provide some new theoretical insights to explain why the algorithm is efficient.

Numerical results in Sect. 5 show that this new algorithm reaches all the time optimal
or near optimal solutions on some very hard (to both ISUD and CPLEX) vehicle and crew
scheduling problems without increasing the solution time. In Sect. 6, we discuss possible
extensions of the approach.

2 RP–CP decomposition

We present in this section the RP–CP decomposition as a general framework. We discuss its
basics and the descent directions that shape it. We end up this section with a characterization
of an optimal decomposition leading to an optimal solution.

2.1 Decomposition basics

Let Q be an index subset of linearly independent columns of A, containing at least indices
of columns corresponding to positive variables in a given solution to P. We partition the
columns of A into two groups, those that are compatible with Q and those that are not, using
the following definition:

Definition 2.1 A column (and its corresponding variable) or a convex combination of
columns is said to be compatible with Q if it can be written as a linear combination of
columns indexed in Q. Otherwise, it is said incompatible.

The index set of compatible columns is denoted CQ and the index set of incompatible
columns is denoted IQ. Clearly Q ⊆ CQ and |Q| ≤ m. Q is said to be nondegenerate if it is
restricted to columns corresponding to positive variables (in a given solution); otherwise it

is said degenerate. Let AQ =
(

A1
Q

A2
Q

)
be a submatrix of A composed of columns indexed

in Q where A1
Q is, without loss of generality, composed of the first |Q| linearly independent

rows. A2
Q is of course composed of dependent rows. Similarily, ACQ =

(
A1
CQ

A2
CQ

)
(resp.

AIQ =
(

A1
IQ

A2
IQ

)
) is a submatrix of A composed of columns indexed in CQ (resp. IQ)

where A1
CQ and A1

IQ are also composed of the same first |Q| rows as in A1
Q which means

that the matrix A can be decomposed as follows: A =
(

A1
CQ A1

IQ
A2
CQ A2

IQ

)
.
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When we consider only compatible columns CQ and therefore the first |Q| rows, we obtain
the R PQ, which can be formulated as

(R PQ) min
xCQ

cCQ · xCQ (2.1)

s.t. A1
CQxCQ = e (2.2)

x j binary, j ∈ CQ (2.3)

where cCQ is the subvector of the compatible variables costs and xCQ is the subvector of
compatible variables. R PQ is therefore an SPP restricted to the compatible variables and the
first |Q| rows. R PQ is equivalent to RP because the other constraints are dependent. Observe
that its columns are inR|Q| (a reduced dimension). It is important to stress the fact that each
solution to R PQ can be completed by zeros to form a solution to P.

The CP (containing the incompatible variables) is formulated as follows:

(C PQ) zC P
Q = min

v,λ

∑
j∈IQ

c jv j −
∑
l∈Q

c�λ� (2.4)

s.t.
∑
j∈IQ

v j A j −
∑
l∈Q

λ� A� = 0 (2.5)

e · v+u = 1 (2.6)

v ≥ 0, u ≥ 0, λ ∈ R
|Q|. (2.7)

The positive v j variables indicate entering variables and the positive λ� variables indicate
exiting variables. We look for a group of entering variables that will replace the exiting
variables. Of course, the cost difference (2.4) between the entering and exiting variables (the
reduced cost) must be negative for a minimization problem in order to improve the objective
value. In other words, we look, by imposing constraints (2.5), for a convex combination,
with a negative reduced cost, of incompatible columns A j (of the constraint matrix A) that is
compatible with Q according to Definition 2.1, i.e., that is a linear combination of columns
A� indexed inQ. Without constraint (2.6), the feasible domain of C PQ is an unbounded cone
and the solution is unbounded. With this constraint, the problem is bounded and provides a
normalized improvingdirection. It is therefore called anormalization constraint. Toguarantee
feasibility, we add an artificial variable u that costs 0 and only contributes to the normalization
constraint (by 1); this way, C PQ is feasible and zC P

Q ≤ 0. The contraints (2.7) define the
feasible domain for the variables.Observe that the integrality constraints are kept in RP only.

Since the variables λ�, linked to variables v j via constraints 2.5, are associated with
linearly independent columns A�, l ∈ Q, they can be substituted by the variables v j , j ∈ IQ.
Actually, we have λ = (A1

Q)−1A1
IQv. After the substitution, the CP can be rewritten in the

following equivalent form:

(C PQ) zC P
Q = min

v
c̃ · v (2.8)

s.t. M AIQv = 0 (2.9)

Constraints (2.6)–(2.7) (2.10)

where v ∈ R
|IQ|, c̃ =

(
c�
IQ − c�

Q
(

A1
Q

)−1
A1
IQ

)
is the vector of reduced costs with respect

to the constraints of the RP and M =
(

A2
Q

(
A1
Q

)−1
,−Im−|Q|

)
is a projection matrix, called

the compatibility matrix, on the complementary vector subspace. cIQ is the subvector of
incompatible variables costs and Im−|Q| is the identity matrix of dimension m − |Q|. With
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the normalization constraint, the dimension of the columns of the CP is m − |Q| + 1, i.e., the
dimension of the complementary vector subspace + 1.

We can classify incompatible columns according to their incompatibility degree. The
incompatibility degree can be mathematically defined as “the distance” from column A j

to the vector subspace generated by the columns indexed by Q. Of course, if A j is in this
vector subspace, i.e., it is a linear combination of columns indexed by Q; this distance will
be 0, indicating that the column is compatible. If the distance (incompatibility degree) is
positive, the column is incompatible. The incompatibility degree plays a crucial role in the
partial pricing strategy of Sect. 4.2. In this paper, we compute the incompatibility degree of
a column A j as the number of nonzeros of M A j . A column A j and its associated variable
x j are said to be k-incompatible with respect to Q if its degree of incompatibility is equal to
k. Compatible columns and variables are called 0-incompatible.

If we relax the binary constraints (2.3), we obtain the improved primal simplex decom-
position introduced in El Hallaoui et al. (2011). In that paper, the authors proved that if Q
is nondegenerate; a pivot on any negative-reduced-cost compatible variable or a sequence
of pivots on the set of the entering variables (i.e., v j > 0) improves (strictly) the current
solution of L P iff zC P

Q < 0.

2.2 Improving directions

Let x be the current integer solution to P and sC PQ = (v, λ, u) an optimal solution to C PQ.
We have shown in Rosat et al. (2017) that dC PQ = (v,−λ, 0), defined from sC PQ and
completed by |CQ \ Q| zeros (corresponding to compatible variables that are absent from
C PQ) to have the same dimension as x , is a descent direction if u = 0 of course, meaning
that zC P

Q < 0. We have shown also in Rosat et al. (2017) that there exists ρ > 0 such that
d = ρdC PQ is an extremal descent direction, in a sense that x ′ = x + d is an extreme point
of L P . In other words, we can always build extremal directions from the optimal solutions
to CP.

Definition 2.2 sC PQ and its associated descent direction d are said to be disjoint if the
columns {A j |v j > 0, j ∈ IQ} are pairwise row-disjoint.
Definition 2.3 sC PQ and its associated descent direction d are said to be integer if x + d is
an improved integer solution and fractional otherwise.

The following proposition provides a general characterization of the integrality of descent
directions. Let Qint = { j : x j = 1} ⊂ Q be the set of indices of columns of the current
integer solution.

Proposition 2.4 dC PQ is integer ⇐⇒
1. {A j |v j > 0, j ∈ IQ} ∪ {A�|λ� < 0, l ∈ Q} is a set of pairwise row-disjoint columns.
2. {l|λ� > 0, l ∈ Q} ⊂ Qint .
3. {l|λ� < 0, l ∈ Q} ⊂ Q \ Qint .

Proof First ( �⇒ ), if the direction found by C PQ is integer, this means that there exists a
ρ > 0 such that x ′ = x + d is an integer solution, with d = ρδ and δ = dC PQ . For each j ,

we have δ j = x ′
j −x j

ρ
. As x and x ′ are 0–1 vectors, we have:

• x ′
j = x j ⇐⇒ δ j = 0

• x ′
j = 1, x j = 0 ⇐⇒ δ j = 1

ρ
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• x ′
j = 0, x j = 1 ⇐⇒ δ j = −1

ρ

We have
∑

j∈IQ v j A j −∑
l∈Q λ� A� = 0. So, we have δ j = v j for j ∈ IQ and δ� = −λ�

for l ∈ Q. We are interested in nonzero components (support) of δ. Remark that λ� > 0 (δ j =
−λ� = −1

ρ
) is equivalent to x j = 1 and x ′

j = 0 which means that {l|λ� > 0, l ∈ Q} ⊂ Qint .

Observe also that λ� < 0 (δ j = −λ� = 1
ρ
) is equivalent to x j = 0 and x ′

j = 1. That means
that {l|λ� < 0, l ∈ Q} ⊂ Q \ Qint . We can rewrite (2.5) as∑

j : j∈IQ,v j >0

A j +
∑

l:λ�<0

A� =
∑

l:λ�>0

A�

From above, we can conclude that {A j |v j > 0, j ∈ IQ} ∪ {A�|λ� < 0, l ∈ Q} is a set of
pairwise row-disjoint columns.

Second, to prove the left implication (⇐�), we know that:∑
j | j∈IQ,v j >0

v j A j −
∑

l|λ�<0

λ� A� =
∑

l|λ�>0

λ� A�

Observe that both the columns of the right and left sides are pairwise row-disjoint and
consequently they are linearly independent. We can show that there exists a certain positive
ρ such that v j = 1

ρ
, λ� = −1

ρ
when λ� < 0 and λ� = 1

ρ
when λ� > 0 is a unique solution

(involving columns A j corresponding nonzero variables v j and λ�) to the linear system just
above. So, the solution x ′ obtained by replacing in x the columns of the right side by the
columns of the left side is an improved integer solution because the columns are disjoint and
the cost difference between the two solutions is negative. �

The proposition 2.4 is a new theoretical result that generalizes: (1) the result of Zaghrouti
et al. (2014) showing that if the solution to the CP, when Q is nondegenerate (i.e., Q = Qint ),
is disjoint then we obtain an integer descent direction, and (2) the result of Balas and Padberg
(1975) working with sets Q containing all degenerate basic variables (containing indices
of all basic variables including degenerate ones). This proposition is interesting because it
shows that the proposed RP–CP decomposition dresses a continuum between two extremes:
Zaghrouti et al. (2014) on one side, with the drawback that we have to move to only adjacent
solutions (the step is rather small) and Balas and Padberg (1975) in the other side, where
we cannot decompose the problem, i.e., we have to deal with the whole problem in one shot
which is unpractical because of the size and severe degeneracy. The tradeoff is actually in
between these two extremes. This proposition means that unlike ISUD, a disjoint dC PQ does
not guarantee that x ′ is integer in the general case where Q is degenerate. This proposition is
also interesting because it characterizes integral directions and proposes a possible way (not
implemented yet) of strengthening the CP formulation as noticed just below:

Remark 2.5 Observe also that:

• The formulation (2.8)–(2.10) of C PQ can be strengthened by imposing that λ� ≥ 0, l ∈
Qint and λ� ≤ 0, l ∈ Q \ Qint where λ = (A1

Q)−1A1
IQv.

• The strenghtened formulation is still bounded and the improved solution x ′ is not neces-
sarily adjacent to x .

2.3 Optimality characterization

The following proposition proves the existence of an optimal RP–CP decomposition, in the
sense that instead of solving the original problem, we may solve smaller problems (the RP
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and CP) and obtain an optimal solution to the original problem. This theoretically motivates
further our research and provides in some sense a mathematical foundation for the proposed
approach.

Proposition 2.6 There exists an optimal decomposition RP–CP such that an optimal solution
to R PQ is also optimal to P and zC P

Q , the objective value of C PQ, is nonnegative.

Proof Consider in Q all columns of the optimal solution and in RP all columns that are
involved in fractional descent directions. It is sufficient (at least theoretically) to add a finite
number of facets to the RP to cut the fractional solutions. Obviously, the CP cannot find, after
adding these cuts, a descent direction, so zC P

Q ≥ 0. We would like to outline that adding the
cuts in the same way as in Rosat et al. (2014b) (see specifically Propositions 6–8) does not
change anything to CP. �

This decomposition allows handling the integrality constraints in the RP instead of han-
dling them, as ISUD does, in the CP. In the worst case, the RP may coincide with the original
problem. In practice, large SPPs are generally highly degenerate, and the RP is significantly
smaller than the original problem as a result of this inherent degeneracy.

Below, we present two propositions that help proving the exactness of the proposed
approach and assessing the solution quality. To prove these propositions, we need the follow-
ing lemma. We suppose that R PQ and C PQ are solved to optimality. Let π be the vector of
dual values associatedwith constraints 2.5 and y the dual value associatedwith constraint 2.6.

Lemma 2.7 Let c̄ j = c j − π� A j be the reduced cost of variable x j . We have c̄ j ≥ zC P
Q ,

j ∈ {1, . . . , n} and c̄ j = zC P
Q for variables such that v j > 0.

Proof The dual to C PQ, denoted DC PQ, is

(DC PQ) zDC P
Q = max

π,y
y (2.11)

s.t. c� − π� A� = 0 l ∈ Q (2.12)

c j − π� A j ≥ y j ∈ IQ (2.13)

y ∈ R, π ∈ R
m . (2.14)

So, zC P
Q = zDC P

Q and represents the maximum value of y (the minimum reduced cost). �
The next proposition is a new result that generalizes the special cases proved in Zaghrouti

et al. (2014) where Q = Qint and in El Hallaoui et al. (2011) where integrality constraints
(2.3) are not considered.

Proposition 2.8 If the optimal solution to R PQ is not optimal to P, then zC P
Q < 0.

Proof The idea of the proof is simple. Suppose that zC P
Q ≥ 0 and R PQ is solved to optimality

by adding facets like in the proof of Proposition 2.6. By Lemma 2.7, all variables will have
nonnegative reduced costs. That means that the actual solution is optimal to P, which is a
contradiction. �

The following proposition provides a lower bound on the optimal objective value of P
using the RP–CP decomposition. Such a lower bound can be found by solving the linear
relaxation of the problem, but this can be computationally more expensive. We instead find
a good lower bound using the information provided by the RP and CP.
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Proposition 2.9 Let z̄ be the current optimal objective value of R PQ and z� the value of an
optimal solution to P. We have z̄ + m · zC P

Q ≤ z� ≤ z̄.

Proof By Lemma 2.7, the reduced costs are lower bounded by zC P
Q . The best improvement

from entering a variable into the basis with a full step (not larger than 1) is zC P
Q , and the

maximum number of nonzero variables in an optimal basis of P is m. Thus, the objective
value cannot be improved by more than m · zC P

Q . �
We can easily build an example where this bound is reached. Consider m columns having

their reduced cost equal to zC P
Q and forming an identity matrix. These columns can simulta-

neously enter the basis, and the objective value will be z̄ +m · zC P
Q . We notice that in practice

we generally know a priori the maximum number of columns of the solution (drivers, pilots)
that is 10–20 times less than the number of constraintsm. This tightens the bound. This bound
can be used as an indicator of the quality of the integer solution of cost z̄. This is particularly
useful for stopping the solving process when the current solution quality becomes acceptable.
A similar bound has been shown good in Bouarab et al. (2017) for a different context (context
of column generation for solving the LP). Observe that if zC P

Q = 0, then z̄ = z� because
z̄ ≤ z� ≤ z̄. The lower bound varies with Q. The idea is to find a tradeoff for Q between two
extremes Qint and {1, . . . , m} such that the lower bound provided by Proposition 2.9 is good
enough to use as a criterion to stop the solution process and R PQ is easy to solve.

3 Integral simplex using decomposition (ISUD)

Suppose that we have an integer basic solution to P with p positive variables. ISUD uses a
praticular RP–CP decomposition where (1) Q is nondegenerate, i.e., Q = Qint , and (2) we
add integrality constraints to the CP: its solution must be integer according to Definition 2.3.
We thus obtain what we refer to as C P I

Q, a CP with disjoint column requirement; C PQ is its
relaxation.

ISUD starts by solving R PQ. We can solve R PQ with any commercial MIP solver, but a
simpler approach is as follows. Observe that pivoting on any negative-reduced-cost compat-
ible variable improves the objective value of P and thus yields an integer descent direction
because R PQ is nondegenerate. If we cannot improve the solution of R PQ with compatible
variables, ISUD solves C P I

Q to get a group of (more than one) entering variables yielding
an integer descent direction. The ISUD algorithm can be stated as follows:

Step 1: Find a good initial heuristic solution x0 and set x = x0.
Step 2: Get an integer descent direction d either by pivoting on a negative-reduced-cost
compatible variable of R PQ or by solving C P I

Q.
Step 3: If no descent direction is found then stop: the current solution is optimal. Other-
wise, set x = x + d , update Q, and go to Step 2.

The key ISUD findings are the following:

• From an integer solution, a pivot on a negative-reduced-cost compatible variable of R PQ
produces an improved integer solution (in Step 2).

• The sequence of pivots of R PQ on entering variables identified by C P I
Q provides an

improved integer solution. This result is a corollary of Proposition 2.4.
• The R PQ and C P I

Q improvements are sufficient to achieve optimality in Step 3.
• C PQ produces disjoint solutions 50–80% of the time, without any branching. The nor-

malization constraint (2.6) plays an important role in the efficiency of ISUD: it favors
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integrality and helps C P I
Q to find disjoint solutions with relatively few columns. In fact,

ISUD focuses on making a series of easy improvements without intensive combinatorial
searching, which is generally caused by a difficult branch and bound.

• Optimal solutions have been obtained for crew assignment problems with up to 570,000
variables, usually in minutes.

ISUD is a promising approach but it has some limitations. First, if C PQ fails to find
an integer direction, its structure cannnot easily be exploited (by commercial solvers) for
branching or cutting purposes, because of the normalization constraint. C P I

Q needs a sophis-
ticated specialized branching scheme (see Zaghrouti et al. 2014, Subsection 3.3 for more
details). The tests in Zaghrouti et al. (2014) use a heuristic implementation of the branching
scheme: a deep branching only where the branch called “0-branch” sets all variables with
v j > 0 in the fractional descent direction to 0 and tries to find a completely different descent
direction that is integer. There is no guarantee that this implementation will find an optimal
integer solution. In fact, ISUD finishes far from the optimal solution up to 40% of the time on
difficult instances. Second, the improvement per iteration in the objective value of the RP is
rather small because wemove from one extreme point to an adjacent one. Third, ISUD cannot
directly handle additional linear (non-SPP) constraints because the quasi-integrality property
may be lost in the presence of such constraints. There is clearly room for improvement to
ISUD. We present in the following section a new algorithm better than ISUD.

4 Zooming around an improving direction

In this section, we present an exact zooming approach using amore flexible RP–CP decompo-
sition to resolve the issues raised above about ISUD. Since the optimal RP–CP decomposition
is not known a priori, we propose an iterative algorithm to find it in a primal paradigm, i.e.,
while finding a nonincreasing sequence of integer solutions. We start with an initial decom-
position that we iteratively update to better approximate an optimal decomposition. The
mechanics of the zooming algorithm are discussed in detail in the next two subsections.

4.1 Zooming algorithm

The zooming pseudocode is provided below. We follow by presenting its main steps and
giving some insights that explain why this algorithm is efficient.
Step 1: Find a good heuristic initial solution x0 and set x = x0, Q = Qint , d = 0.
Step 2: Find a better integer solution around d:

• Increase Q : set Q = Q ∪ { j : d j > 0}.
• Construct and solve R PQ.
• Update x and Q: if x is improved, set Q = Qint .

Step 3: Get a descent direction d:

• Solve C PQ to get a descent direction d .
• If no descent direction can be found or |zC P

Q | is small enough then stop: the current
solution is optimal or near optimal.

• Otherwise, go to Step 2.

In Step 1, we need an initial integer solution x0 to start up the algorithm; it can be found
by a heuristic technique. The initial solution may contain artificial variables to be feasible. In
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some cases, for example when reoptimizing after a perturbation (such as some flight cancel-
lation), the initial solution could simply be the currently implemented solution. Generally, the
reoptimized solution deviates slightly from the initial one, which is interestingly preferred
in practice. This avoids errors and additional managerial costs. This initial solution is used
to define the initial RP–CP decomposition.

In Step 2, we increase Q by the incompatible variables having positive d j value. We
populate R PQ with variables (columns) that are compatible with the new Q and we solve
it using the partial pricing strategy described in Sect. 4.2. R PQ is of small size and good
properties as discussed below and can be solved efficiently by any MIP solver. We can easily
show the next proposition:

Proposition 4.1 By increasing Q in Step 2, the current solution x remains an integer solution
to R PQ. Furthermore, x+d is a basic feasible solution (extreme point) to the linear relaxation
of R PQ.

Proof The proof is quite simple. By increasing Q, we ensure that variables with positive
values x j and d j are still compatible with the new Q. So, they will be present in R PQ. �

We can use x + d to provide the MIP solver of R PQ with an initial feasible basis, thus
avoiding a phase I in the simplex algorithm. So, the solution of C PQ is useful even if d is
fractional. Also, x can serve as an upper bound. The MIP solver may use x to eliminate some
useless branches (R PQ has smaller gap as discussed in Sect. 4.2) or to find an improved
integer solution using heuristics.

Because x and x +d are solutions to the linear relaxation of R PQ, we can say that R PQ is
actually a neighborhood around the improving direction d heading from x to x + d . Observe
that at least an improved integer solution is adjacent to x since SPP is quasi-integral, if x
is of course not optimal. Hence, such a neighborhood is likely to encompass an improved
integer solution.We emphasize that x +d is adjacent to x since d is minimal (See El Hallaoui
et al. 2011). Consequently, the variables of the C PQ solution cover a small portion of the
constraints. We therefore do not increase Q too much and R PQ remains tractable. We thus
zoom around an off-center neighborhood in the direction of lower-cost solutions as illustrated
in Fig. 1.

If d is integer, we do not need a MIP solver. We can easily update the current integer
solution x by replacing it by x + d . In any case, whenever we obtain a better integer solution
we reduce R PQ by decreasing Q: we redefine it according to this better integer solution
implying fewer disjoint columns. We thus avoid increasing indefinitely the size of the RP.

In Step 3, we solve C PQ to get a descent direction d . The direction d is used to guide the
search in Step 2 to an area of potential improvement. The direction d is obtained as explained
in Sect. 2: d j = ρv j for j ∈ IQ, d j = −ρλ j for j ∈ Q, and d j = 0 otherwise. The constant
ρ is computed such that x + d is an extreme point of L P . If zC P

Q ≥ 0 the current solution
is optimal and obviously an optimal decomposition is reached. If |zC P

Q | ≤ ε
m , the current

solution is close to optimality according to Proposition 2.9. ε is a predetermined threshold.
The CP is easy to solve using the partial pricing strategy discussed in the next subsection.
The next proposition discusses the convergence of the algorithm.

Proposition 4.2 The zooming algorithm provides an optimal solution to P in a finite number
of iterations.

Proof The objective value decreases, which means that the solution changes, if R PQ
improves the current integer solution in Step 2 either by updating it using an integer direction
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Fig. 1 Zooming around an improving direction

d or by solving the R PQ using aMIP solver. If it is fractional, we increaseQ. In this case, the
number of rows of R PQ is increased by at least one. As long as the current integer solution
is not optimal to P, C PQ will find a descent direction as claimed by Proposition 2.8. Note
that while we do not improve the current integer solution and C PQ succeeds in generating
descent directions, we increase Q. In the worst case, the R PQ will coincide with the original
problem after at most m iterations, where m is the number of constraints. The number of
iterations can be upper bounded by m times the number of different solutions of P which is
itself bounded by 2n . �
4.2 Partial pricing strategy

We propose solving R PQ and C PQ through a sequence of phases by performing a partial
pricing based on the incompatibility degree. This latter is used to define the phase number
as follows:

Definition 4.3 R PQ and C PQ are said to be in phase k when only the variables that are
q-incompatible with q ≤ k are priced out; k is called the phase number.

We use a predetermined sequence of phases with increasing numbers to accelerate the
solution of R PQ in Step 2 and C PQ in Step 3. This generalizes the multiphase strategy
introduced in El Hallaoui et al. (2010). Each phase corresponds to a different level of partial
pricing. If R PQ or C PQ fails in phase k, we go to the subsequent phase. To ensure the
exactness of the algorithm, we end with a phase where all the variables (resp. compatible
variables) are priced out for C PQ (resp. R PQ). The advantages of the multiphase strategy
are discussed below and confirmed by the experiments reported in Sect. 5. In the remainder
of this paper, we use the following definition of the gap:

Definition 4.4 For a given problem, the current (integrality) gap refers to the gap between
the current integer solution and its LP solution.
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Proposition 4.5 We have:

a. The current gap of R PQ in phase k is smaller than the current gap of the original problem.
b. The current gap of R PQ increases with the phase number.

Proof a. It is easy to see that R PQ is a restriction of P. Therefore, the current gap of R PQ
is smaller than the current gap of P.

b. By Definition 4.3, all the k-incompatible columns are present in R PQ in phase k + 1.
Therefore, R PQ in phase k is a restriction of R PQ in phase k + 1, and it follows that the
current gap of R PQ increases with the phase number.

�
This proposition suggests starting with lower phases and increasing the phase number as

necessary, because it is much easier to solve the R PQ using an MIP solver when the gap is
small. This is consistent with this primal approach that locally improves the current integer
solution.

We have shown in Bouarab et al. (2017) (See Proposition 4.8) that the number of nonzeros
of the C PQ constraint matrix in phase k is less than (k + 1) × qk , where qk is the number of
columns present inC PQ in this phase. The number of nonzeros of the R PQ constraint matrix
in phase k is also small. The density of C PQ and R PQ depends much more on the phase
number and on how we increase Q than on the density of the original problem. Recall that
the number of rows in R PQ is |Q| because columns indexed by Q are linearly independent
and we remove dependent rows from R PQ, thus reducing its dimension.

This shows that R PQ and C PQ are easy to solve, especially in the lower phases. In
practice we reach optimality after four or five phases (on average) for many vehicle and
crew scheduling problems. The number of nonzeros per column would generally not exceed
4-5 in practice (instead of 40 for some instances of the original problem). For instance, an
R PQ in a lower phase with a low density is relatively easy to solve by commercial solvers
such as CPLEX. We can use the branching and cutting of such commercial solvers locally
and effectively on SPPs that are thirty times or more smaller than the original problem.
Commercial solvers are known to be efficient on small to moderate SPPs; they can quickly
improve the objective value, if not optimal yet.

5 Experimentation

The goal of our tests is to compare the performance of the zooming algorithm (ZOOM) with
that of ISUD. We did our tests on a 2.7Ghz i7-2620M Linux machine. The solver is CPLEX
12.4; it is used to solve the RP as an MIP and the CP as an LP.

5.1 Instances

We use the same instances that were used to test ISUD (Zaghrouti et al. 2014) against
CPLEX. The instances are in three categories: small (800rows × 8900 columns), medium
(1200 × 139,000), or large (1600 × 570,000). Small (aircrew scheduling) instances are
the largest, in terms of the number of constraints, and the most “difficult” in the OR Library
test bed. Medium and large (driver and bus scheduling) instances are difficult. The related
problem and parameters are exactly the same described in Haase et al. Haase et al. (2003).
In total, we have 90 instances, 30 instances in each category.

Their accompanying initial solutions were produced using a perturbation process as
explained in Zaghrouti et al. (2014). The instance difficulty increases as the so-called
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Table 1 CPLEX: average results

Time Init. Best int. LP value LP time Int. opt

Small 7 316,528.0 56,137 55,535.4 0.4 56,137

Medium 600 4,066,595.2 3,648,462 2, 450,953.7 6.5 2,451,145

Large 3600 5,475,541.0 5,287,448 3,301,655.5 46 3,302,462

unperturbed ratio decreases. The authors developed in Zaghrouti et al. (2014) a simulation
technique to obtain a feasible initial solution with a certain level of good primal information
similar to the initial solutions generally available in practice for crew scheduling problems.
We measure the primal information by the percentage of consecutive pairs of tasks in the
initial solution that remain grouped in the optimal solution. In vehicle and crew scheduling
problems, many tasks that are consecutive in the vehicle routes are also consecutive in the
crew schedules. We observe the same property when we reoptimize a planned solution after
perturbation, for example, after some flight cancellation.

Given an SPP instance with a known optimal integer solution, the perturbation process
produces a new instance with the same optimal integer solution and an initial integer solu-
tion that is a certain distance from the optimal one. It does this by randomly cutting and
recombining the schedules (columns) of the known solution.

The perturbation process particularly simulates the perturbed planned solutions (flight
cancellation for instance) and consists of randomly selecting two of the columns in the
(planned) solution and replacing them with two different columns covering the same tasks.
It chooses two tasks belonging to two different columns in the solution and connects them
to create a new column. This process is repeated until the number of unchanged columns is
below a certain percentage of the total number of columns in the solution. This parameter is set
to 50, 35, and 20% for low, moderate, and severe perturbation. The newly generated columns
are added to the problem and given a cost equal to the maximum cost of all the columns in
the problem. The perturbed columns are often selected for supplementary perturbations, and
the result can be far from the initial solution. Note that the optimal solution columns are
not removed from the problem. This method can obtain many instances (with many starting
solutions) from an initial problem; more details can be found in Zaghrouti et al. (2014). The
instances and their accompanying initial solutions are available for the OR community.

5.2 Numerical results and some implementation tips

The medium and large sets of instances are difficult to solve by CPLEX. Rosat et al. (2014a)
mentioned in that, within a time limit of 10h, CPLEX could not find a feasible solution for
the original problems of both sets. We present in Table 1 average results for the most recent
version of CPLEX for which we provided initial integer solutions (Init.) that are exactly the
same as the ones ISUD and ZOOM start from. Each entry in this table is an average of 30
instances. CPLEX is able to solve small instances to optimality in 7 s in average. These times
are comparable to those of ZOOM. We set a time limit for the medium instances to 600 and
to 3600s for large instances. These time limits are at least 3 times far from the ZOOM times.
The best integer solutions (Best int.) found by CPLEX are very far from the optimal solutions
(Int. opt). Note that, for these reasons, we do not compare with CPLEX in the tables that
follow.
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Table 2 ZOOM versus ISUD
(nonzeros)

Instances size Orig. Pb. RP (MIP)

NZs NZs/Col. NZs NZs/Col.

Small 74,000 8 720 3

Medium 2,732,000 21 22,830 12

Large 10,942,000 19 314,232 11

The average size of the RPs solved asMIPs in Step 2 of ZOOM is small: Table 2 compares
the average numbers (over 30 instances) of nonzero elements (total (NZs) and per column
(NZs/col.)) of the original problem (Orig. Pb.) and the RPs (MIP) for the small, medium, and
large instances. We would like to outline the fact that when we construct the RP is Step 2, we
do not remove all redundant rows. We remove only rows that are identical in the same way
of the paper (El Hallaoui et al. 2010) because this type of redundant rows is easy to identify.
The number of nonzeros in the RP (MIP) is reduced by huge factors varying from 30 to more
than 100 on average. The density is also reduced by a factor of 2. Therefore, we do not use
the multiphase strategy when solving the RP in Step 2 of ZOOM; it is used only for CP.

Recall that the distance of a column to a given solution is its incompatibility degree, as
explained in Sect. 2. We consider first the columns that are not too far from the best solution
found and we increase this distance as needed. More precisely, we start by phase 1 when we
solve C PQ in Step 3 of ZOOM. As long as we do not find a descent direction, we increase
by 1 the phase number, i.e., we go to the next phase and solve C PQ again. The maximum
phase number (maximum degree of incompatibility), used for the multiphase strategy, is set
to 8. This value is reached in only one instance. We use the same stopping criteria (the best)
for ISUD as in Zaghrouti et al. (2014). We would like to mention that the results of ISUD
are improved because the version of CPLEX has changed from 12.0 used in Zaghrouti et al.
(2014) to 12.4 here.

The first set of tables (Tables 3, 4, and 5 ) show from left to right: the unperturbed ratio
for the instance (Orig. Col. %), the identifier for the instance (Instance #), the distance of the
initial solution from the optimal one as a percentage of the optimal objective value (Instance
Err. %), the distance to optimality of the solution found beside the total computational time
in seconds (Objective Err. % beside Objective Time) for both ISUD and ZOOM, the total
number of MIPs built and solved by ZOOM (Num), the number of MIPs that improved the
current integer solution (Num+), the average number of rows in MIPs (Rows), the average
number of columns in MIPs (Cols), the average number of nonzero elements in MIPs (NZs),
and the average computational time in seconds for MIPs (Time).

The error percentages (Err.%)may be greater than 100 because they compare the objective
value of a solution to the optimal objective value [(solution value − optimal value)/optimal
value)×100]. TheMIP values (rows, columns, NZs, and time) are average values aggregated
over all the MIPs solved by ZOOM. When no MIP is called, no information is available.

The second set of tables (Tables 6, 7, and 8 ) compare the CPs for ISUD and ZOOM. The
first two columns show the unperturbed ratio (Orig. Col. %) and the identifier for the instance
(Instance #). Then, for both ISUD and ZOOM, the rest of columns show: the highest phase
in which an integer solution is found (Phase), the total number of solutions, i.e., directions,
found by CP (Total) that is also the number of iterations, the number of disjoint solutions
(Disj.), the maximum size of the disjoint solutions (Max.) and the average size of the disjoint
solutions (Avg.).
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In both sets of tables, we have included average lines in bold to compare the average
behavior of the two algorithms.

The results show that ZOOM outperforms ISUD in terms of solution quality, and it is gen-
erally slightly faster. Interestingly, ZOOM obtains solutions that are very close to optimality
or optimal in all cases. We observe that ZOOM has the smallest error ratio average (almost
0% in average and a pic of 0.8% for ZOOM against 7.28% in average and a pic of 200% for
ISUD). ZOOM is better than ISUD for all instances except for some small instances where
ISUD is slightly and insignificantly better.

When we solve RP in Step 2 of ZOOM, we consider all columns that are compatible
with Q, including those that are in phases higher than the actual phase of CP. To reach these
columns, ISUD (its CP) has to go to similar high phases which complicates its execution:
too much time for solving CP (too many columns to consider) and the directions found
by CP are too much fractional because as we observed non-integrality increases with the
incompatibility degree, i.e., with the phase number. In a highly fractional direction, the
number of variables (v j ) taking nonzero values is huge actually. Consequently, ISUD stops
with a poor solution due to its deep branching (setting to 0 these variables) as explained in
Sect. 3. This is avoided in ZOOM.

Approximately 52% of the MIPs improve the current solution for difficult instances (see
the sets with the unperturbed ratio equal to 20% in Tables 3, 4 and 5). When the MIP does not
improve the current solution, we use this information as an indicator to increase the phase
number and often we find an integer direction the next iteration. For some easy instances
for which CP does not encounter a fractional solution, ZOOM does not build any MIPs and
consequently it behaves the same way as ISUD.

ZOOM is in average slightly faster than ISUD, about 5% faster in average on difficult
instances because ISUD is faster in some cases when it stops prematurely with a poor solution
quality on 35% of the small and medium instances that are difficult (i.e., set with unperturbed
ratio equal to 20%). Solving the MIPs is fast as expected (see discussion of Sect. 4): less than
3s, on average, for the small and medium instances and around 9s for the large instances.
The number of columns considered is 20–30 times less than the total number of columns.

The results in Tables 6, 7, and 8 show that ZOOM explores less phase numbers than ISUD
because some useful columns in higher phases are considered earlier in RP as mentioned
above. Also, ZOOM solves fewer CPs and consequently does few iterations (8% less than
ISUD on difficult instances). This can be explained by the fact that ZOOM uses also RP
as an MIP to improve the current solution, interestingly by longer steps (ZOOM explores,
in contrast to ISUD, some non adjacent solutions). For the same reason, the maximum and
average sizes of the CP solutions are also smaller in ZOOM.

The lower bounds given by Proposition 2.9 are very good. For the most difficult (with
regard to the phase we obtain the best solution, i.e., phase 8) instance (#87), zC P

Q = 0 when
we consider only columns with incompatibility degree not larger that 8 and zC P

Q = −7 when
we consider all columns. The cost of the (optimal) solution found is 3,302,462. From all
above, we clearly see that the numerical results confirm the theoretical results presented in
Sects. 2 and 4.

6 Possible extensions

The zooming approach is globally a primal exact approach. At each iteration, it improves the
current integer solution by zooming around an improving fractional direction. In practice, it
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Table 6 ZOOM CP versus ISUD CP (small instances)

Orig. Col. % # ISUD ZOOM

CP solutions CP solutions

Phase Total Disj. Max. Avg. Phase Total Disj. Max. Avg.

50 1 4 35 29 6 2.4 4 33 29 6 2.4

2 3 38 31 7 2.4 3 36 31 7 2.4

3 4 33 27 4 2.4 4 31 27 4 2.4

4 5 56 39 8 2.9 3 42 36 7 2.7

5 4 33 27 4 2.4 4 31 27 4 2.4

6 4 33 27 5 2.6 4 31 27 5 2.6

7 4 38 32 5 2.2 4 36 32 5 2.2

8 4 41 33 9 2.9 4 36 31 9 2.8

9 5 32 26 7 2.5 4 30 25 6 2.5

10 4 36 31 10 2.5 4 34 31 10 2.5

4.1 37.5 30.2 6.5 2.52 3.8 34 29.6 6.3 2.49

35 11 5 42 33 7 3 4 35 31 11 3

12 6 39 29 19 3.4 4 40 34 8 3

13 3 37 31 7 2.6 3 35 31 7 2.6

14 5 35 27 17 3.1 4 34 29 6 2.6

15 4 37 32 5 2.8 4 35 32 5 2.8

16 5 50 39 8 2.8 4 39 33 7 2.6

17 5 43 36 10 3.5 5 45 37 7 3.5

18 3 46 39 5 2.3 3 44 39 5 2.3

19 4 46 37 10 3.1 4 42 38 10 3.1

20 5 40 30 7 2.7 6 22 20 3 2.2

4.5 41.5 33.3 9.5 2.93 4.1 37.1 32.4 6.9 2.77

20 21 5 44 40 15 3.3 5 42 40 15 3.3

22 5 53 44 8 3.1 5 46 41 8 3.2

23 5 44 23 18 4.3 5 31 26 14 4.5

24 4 48 43 13 3.3 4 46 43 13 3.3

25 5 52 43 13 3.6 5 52 42 9 3.2

26 5 42 33 12 3.4 4 36 32 12 3.4

27 4 47 40 8 2.8 4 43 39 8 2.8

28 6 51 40 8 3.2 5 45 40 7 3

29 4 63 51 14 3.3 4 47 41 14 3.4

30 4 43 31 11 3.5 5 47 34 17 3.8

4.7 48.7 38.8 12 3.38 4.6 43.5 37.8 11.7 3.39

Averages (for the ten entries above) are in bold

improves on the ISUD algorithm (Zaghrouti et al. 2014). Possible extensions of this work
include:

• Considering non-SPP constraints: non-SPP constraints are added to many SPPs to model
various regulations. For example, in aircrew scheduling theremay be a constraint limiting
the number of flying hours per base. These constraints represent less than 10% of the
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Table 7 ZOOM CP versus ISUD CP (medium instances)

Orig. Col. % # ISUD ZOOM

CP solutions CP solutions

Phase Total Disj. Max. Avg. Phase Total Disj. Max. Avg.

50 31 4 15 14 3 2.1 4 15 14 3 2.1

32 5 17 16 3 2.1 5 17 16 3 2.1

33 5 16 15 3 2.2 5 16 15 3 2.2

34 5 15 14 4 2.4 5 15 14 4 2.4

35 6 15 12 6 2.4 6 15 12 3 2.2

36 5 16 15 3 2.1 5 16 15 3 2.1

37 6 18 16 3 2.1 6 18 16 3 2.1

38 6 18 16 3 2.1 6 18 16 3 2.1

39 7 19 15 5 2.3 7 18 15 5 2.3

40 4 15 14 3 2.1 4 15 14 3 2.1

5.3 16.4 14.7 3.6 2.19 5.3 16.3 14.7 3.3 2.17

35 41 0 6 24 21 4 2.3 6 23 20 3 2.2

42 5 18 17 4 2.3 5 18 17 4 2.3

43 6 19 15 3 2.3 6 20 15 3 2.3

44 7 22 17 3 2.2 7 20 16 3 2.2

45 7 23 19 5 2.5 6 21 15 5 2.5

46 6 22 20 6 2.3 6 22 20 6 2.3

47 7 24 20 4 2.4 6 20 17 4 2.4

48 6 16 14 8 2.7 6 16 14 8 2.7

49 6 22 19 5 2.3 6 20 17 5 2.4

50 6 22 20 3 2.2 6 22 20 3 2.2

6.2 21.2 18.2 4.5 2.35 6 20.2 17.1 4.4 2.35

20 51 8 22 17 8 3.2 7 16 13 5 2.5

52 6 26 24 4 2.6 6 26 24 4 2.6

53 5 25 24 5 2.5 5 25 24 5 2.5

54 6 25 23 5 2.7 6 25 23 5 2.7

55 6 16 15 4 2.5 6 17 15 4 2.5

56 6 9 8 3 2.1 6 10 8 3 2.1

57 8 27 21 5 2.6 7 23 20 5 2.5

58 6 21 18 4 2.6 7 23 19 4 2.5

59 6 23 21 5 2.6 6 23 21 5 2.6

60 6 16 15 5 2.4 6 17 15 5 2.4

6.3 21.0 18.6 4.8 2.58 6.2 20.5 18.2 4.5 2.49

Averages (for the ten entries above) are in bold

total number of constraints, and the problem becomes an SPP with side constraints. The
zooming algorithm can easily handle these additional constraints by putting them in the
RP. Other options could be studied.

• Accelerating the solution process by obtaining several orthogonal descent directions,
good in practice for large problems, by successively solving appropriate CPs. To do
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Table 8 ZOOM CP versus ISUD CP (large instances)

Orig. Col. % # ISUD ZOOM

CP solutions CP solutions

Phase Total Disj. Max. Avg. Phase Total Disj. Max. Avg.

50 61 6 18 18 4 2.4 6 18 18 4 2.4

62 6 19 19 4 2.2 6 19 19 4 2.2

63 5 17 17 4 2.2 5 17 17 4 2.2

64 8 23 16 3 2.1 5 16 15 2 2

65 7 16 16 4 2.5 7 16 16 4 2.5

66 5 19 19 3 2.1 5 19 19 3 2.1

67 7 16 13 4 2.3 7 14 13 4 2.3

68 6 17 17 4 2.2 6 17 17 4 2.2

69 6 16 16 4 2.4 6 16 16 4 2.4

70 7 19 19 3 2.2 7 19 19 3 2.2

6.3 18 17.1 3.7 2.25 6 17.1 16.9 3.6 2.24

35% 71 6 25 25 3 2.2 6 25 25 3 2.2

72 6 23 23 5 2.5 6 23 23 5 2.5

73 6 24 24 5 2.3 6 24 24 5 2.3

74 7 26 26 5 2.3 7 26 26 5 2.4

75 6 23 21 5 2.3 6 22 21 5 2.3

76 7 24 24 5 2.4 7 24 24 5 2.4

77 5 18 17 5 2.5 5 18 17 5 2.5

78 5 24 24 5 2.3 7 26 26 5 2.3

79 8 27 25 4 2.6 7 24 23 4 2.6

80 6 23 22 7 2.5 6 23 22 7 2.6

6.2 23.7 23.1 4.9 2.39 6.3 23.5 23.1 4.9 2.4

20% 81 7 27 27 7 3.4 7 27 27 7 3.4

82 8 24 22 13 3.7 7 19 18 6 3

83 7 31 30 7 2.5 7 31 30 7 2.5

84 8 23 21 13 3.4 7 18 17 4 2.4

85 8 30 27 8 3.3 7 26 25 8 3.2

86 6 32 32 6 2.6 6 32 32 6 2.6

87 9 25 21 22 3.8 8 20 18 22 3.7

88 7 31 31 8 3.2 7 31 31 8 3.2

89 8 21 19 10 3.6 7 17 16 6 2.9

90 7 34 33 4 2.6 6 32 31 4 2.6

7.5 27.8 26.3 9.8 3.21 6.9 25.3 24.5 7.8 2.96

Averages (for the ten entries above) are in bold

this, we solve the CP, remove the variables with positive values in the solution and
the constraints that they cover, and start again. This gives a multidirectional zoom on a
targeted neighborhood around the improving directions. The number of directions should
be customizable and adjusted experimentally; in this paperwe consider just one direction.

123



670 Ann Oper Res (2020) 284:645–671

• Obtaining good improving directions by adjusting the coefficients of the normalization
constraint or by cutting bad directions: Rosat et al. developed the concepts of penalizing
and cutting fractional directions in Rosat et al. (2014a, b). These concepts could be
adapted for the zooming approach.

• Adapt the ZOOM algorithm for other kind of SPP problems. The actual partial pricing
based on the incompatibility degree is designed for routing or scheduling problems. A
more smarter partial pricing strategy should be ideally a function of the reduced cost, the
incompatibility degree, the number of nonzeros (nonzero elements), and other relevant
attributes of the problem.

• Integrating with column generation: in practice, large SPPs are often solved by column
generation. We could explore how to use this column generation technique in the vector
space decomposition framework.
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