
Ann Oper Res (2020) 284:487–499
https://doi.org/10.1007/s10479-018-2856-5

S.I . : DECOMPOSITION METHODS FOR HARD OPTIMIZATION PROBLEMS

A branch-and-cut algorithm for the maximum covering
cycle problem

Eduardo Álvarez-Miranda1 · Markus Sinnl2

Published online: 11 April 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In many applications, such as telecommunications and routing, we seek for cost-
effective infrastructure or operating layouts so that many nodes (e.g., customers) of a support
network (typically modeled by a graph) are covered by, or at least are easily reachable from,
such a layout. In this paper,we study themaximumcovering cycle problem. In this problemwe
are given a non-complete graph, and the goal is to find a cycle, such that the number of nodes
which are either on the cycle or are adjacent to the cycle is maximized. We design a branch-
and-cut framework for solving the problem. The framework contains valid inequalities, lifted
inequalities and a primal heuristic. In a computational study, we compare our framework to
previous work available for this problem. The results reveal that our approach significantly
outperforms the previous approach. In particular, all available instances from the literature
could be solved to optimality with our approach, most of them within a few seconds.

Keywords Covering problems · Branch-and-cut · Optimal cycle problems · Domination
problems

1 Introduction

Covering and domination problems in graphs have attracted the interest of researchers since
at least the 1970s. In such type of problems we are concerned with finding a subset of the
nodes S of an input graph, such that a certain set of nodes are covered or dominated, i.e., either
by belonging to S or by being adjacent to S. There exist many different versions of such prob-
lems, depending on topological constraints on S (e.g., it may need to form a tree or cycle), the

B Eduardo Álvarez-Miranda
ealvarez@utalca.cl

Markus Sinnl
markus.sinnl@univie.ac.at

1 Department of Industrial Engineering, Universidad de Talca, Curicó, Chile

2 Department for Statistics and Operations Research, University of Vienna, Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-018-2856-5&domain=pdf

488 Ann Oper Res (2020) 284:487–499

A

B C

D E

F GH

I

(a)

C

A

B

D E

F GH

I

(b)

Fig. 1 An exemplary instance and a feasible solution for the MCCP. The nodes covered in the solution are
black, and the cycle constituting the solution is given by the black edges. a Instance of the MCCP. b Solution
of the MCCP

nodes that are required to be covered, the objective function and, eventually, additional side
constraints.While historically the focus has been on theoretical properties (see, e.g., Colbourn
and Stewart (1991), Haynes et al. (1998), Kratochv et al. (1998)), recently, computational
studies as well as the applications associated to these problems (ranging from telecommu-
nication network design to facility location) have also been addressed (see, e.g., Aazami
(2010), Bley et al. (2017), Jeong (2017)).

In this paperwe look at themaximum covering cycle problem (MCCP), whichwas recently
introduced by Grosso et al. (2016). The problems is defined as follows. Let G = (V, E) be
an undirected graph and C ⊆ V be a cycle in G. The cycle C is said to cover a node v ∈ V ,
if either v is on the cycle C or it is adjacent to it. The goal of the MCCP is to find a cycle
in G, which covers the maximum number of nodes. Let C be the set of all cycles of G and
f (V ′) = {v ∈ V |v ∈ V ′ ∨ ∃{v, v′} ∈ E : v′ ∈ V ′}. The problem, which was shown to be
NP-hard in general graphs, can be formally stated as

max | f (C)|
s.t., C ∈ C.

Note that the problem is trivial in complete graphs, as any single node covers all other
nodes. It is also trivial if the graph is a star, as the center node of the star covers all nodes.
Moreover, if the graph contains a Hamiltonian cycle, this Hamiltonian cycle is (one) optimal
solution. Figure 1 shows an instance of the problem and a feasible solution.

To solve the MCCP, the authors of Grosso et al. (2016) propose a cutting plane approach
based on Integer Linear Programming (ILP), which we briefly sketch in the following. Let
binary variable ui ∈ {0, 1} be a binary variable so that ui = 1 iff node i ∈ V is covered by the
cycle, and letwi ∈ {0, 1} be a binary variable so thatwi = 1, iff node i ∈ V is on the cycle. Let
A be the set of arcs obtained by bi-directing the edges E , i.e., A = {(i, j), (j, i) : {i, j} ∈ E}.
Thus, let xi j ∈ {0, 1} be a binary variable, so that xi j = 1 iff arc (i, j) is on the cycle. The
following formulation for the MCCP follows classic modeling techniques from, e.g., the
asymmetric traveling salesman problem (ATSP, see, e.g., Balas (1989)), and the generalized
TSP (see, e.g., Fischetti et al. (1997));

max
∑

i∈V
ui (1)

s.t. xi j + x ji ≤ 1 ∀{i, j} ∈ E (2)

123

Ann Oper Res (2020) 284:487–499 489

wi +
∑

j :{i, j}∈E
w j ≥ ui ∀i ∈ V (3)

∑

(i, j)∈A

xi j = wi ∀i ∈ V (4)

∑

(j,i)∈A

x ji = wi ∀i ∈ V (5)

∑

i∈S

∑

j∈V \S
xi j +

∑

j∈S

∑

j∈V \S
xi j ≥ 2(wk + wl − 1)

∀S ⊂ V, k ∈ S, l ∈ V \ S : 2 ≤ |S| ≤ |V | − 2 (6)

ui , wi ∈ {0, 1}, ∀i ∈ V and xi j ∈ {0, 1}, ∀(i, j) ∈ A (7)

Constraints (2) ensure that, for each edge, only one of the arc-variables xi j and x ji is taken.
Constraints (3) make sure that either node i or at least one of its adjacent nodes is in the
cycle, if i is chosen as covered. Constraints (4) and (5) ensure that every node on the cycle
has exactly one ingoing and outgoing arc, respectively. Constraints (6) are cut constraints.
These constraints are of exponential size. Finally, constraints (7) provide the variables nature.
In the approach proposed in Grosso et al. (2016), the authors remove the subtour or cycle
elimination constraints (6) to obtain a compact formulation. Integer solutions to this relaxed
formulation give a set of disjoint cycles. Hence, their algorithm works by iteratively solv-
ing the relaxed formulation (to integer optimality). The cycle giving the largest coverage is
stored as incumbent solution, and the constraints forbidding the cycles found in the previous
iterations are added. The algorithm terminates when the objective of the relaxed formulation
(with the added cycle elimination constraints) is larger then the objective of the incumbent.
Note that this proves optimality of the incumbent and that the algorithm is finite. The authors
enhance their approach by heuristically creating additional cycles, for which the correspond-
ing cycle elimination constraints are also added.
Contribution and PaperOutline In this paper, we develop a solution framework for theMCCP
based on ILP. The framework is based on an exponential-sized ILP formulation, which is
solved by means of a branch-and-cut scheme. A computational study on instances from
the literature and additional instances is carried out in order to assess the efficiency of our
approach. The study shows that our algorithm outperforms the approach by Grosso et al.
(2016). Moreover, most of the instances can be solved within a few seconds.

In the remainder of this section, we discuss related work. In Sect. 2 we present our
ILP model along with additional valid inequalities. Section 3 contains the description of
our algorithmic framework, including separation algorithms and a primal heuristic. The
computational results are discussed in Sect. 4. Finally, concluding remarks are presented in
Sect. 5.
Related Work As already mentioned in the introduction, connected covering and domination
problems have been studied for a long time. Depending on the application, authors seek for
different covering (resp. dominating) topologies and coverage (resp. domination) protocols.

Complementary, there are of course many problems in literature which are concerned
with finding cycles in a graph, being the travelling salesman problem (TSP) the most famous
of them (see, e.g., Dantzig et al. (1954), Hoffman et al. (2013)). In the TSP, we look for a
minimum cost Hamiltonian cycle through all the nodes in the graph. A variant of the TSP,
with covering aspects, is the covering salesman problem (CSP), in which the goal is to find
a minimum cost cycle (a tour), such that every node in the graph is within a certain distance
from the cycle. The problem has been introduced by Current and Schilling (1989), where

123

490 Ann Oper Res (2020) 284:487–499

a heuristic is presented. An approximation algorithm for the geometric version of the CSP
is presented in Arkin and Hassin (1994), and multi-objective variants of the problem are
considered in Current and Schilling (1994). Furthermore, generalized versions of the CSP
have been proposed, for instance, in Golden et al. (2012), Ozbaygin et al. (2016) and Shaelaie
et al. (2014). In Gendreau et al. (1997), the covering tour problem (CTP) is presented. In the
CTP, we are concerned with finding a minimum cost tour, which must go through a given
subset of nodes, while the remaining nodes may or may not be on the tour. A bi-objective
variant of the CTP is studied by Jozefowiez et al. (2007).

We note that TSP-like problems are usually defined on a complete graph. The MCCP is
of course trivial on such graphs, as any single node already covers all the nodes. From the
algorithmic point-of-view, our approach also shares similarities with ILP approaches for the
connected dominating set problem (see, e.g., Gendron et al. (2014)), the Steiner tree problem
(see, e.g., Fischetti et al. (2017), Koch and Martin (1998)), or the connected facility location
problem (see, e.g., Gollowitzer and Ljubić (2011), Leitner et al. (2017)).

2 ILP-Model and Valid Inequalities

Our approach is based on a slightly different ILP formulation compared to the one proposed
in Grosso et al. (2016). In our formulation, we do not bi-direct the edges and, instead, work
on the original graph. We redefine binary variables xi j ∈ {0, 1}, so that xi j = 1 iff edge
{i, j} ∈ E is in the cycle. Additionally, let yi ∈ {0, 1} be binary variables such that yi = 1,
if node i is on the cycle; and let zi ∈ {0, 1} be binary variables so that zi = 1, if node i is not
on the cycle, but covered by the cycle (i.e., it is covered by being adjacent to a node on the
cycle). Finally, for S ⊂ V , let δ(S) = {{i, j} ∈ E : i ∈ S, j ∈ V \ S}. Considering all these
elements, our formulation reads as follows:

max
∑

i∈V
(yi + zi) (OBJ)

s.t. yi + zi ≤ 1, ∀i ∈ V (YZ)
∑

j :{i, j}∈E
y j ≥ zi , ∀i ∈ V (COV)

∑

{i, j}∈E
xi j = 2yi , ∀i ∈ V (DEG)

∑

e∈δ(S)

xe ≥ 2(yk + yl − 1)

∀S ⊂ V, k ∈ S, l ∈ V \ S : 2 ≤ |S| ≤ |V | − 2. (SEC)

The objective function (OBJ) is the sum of nodes directly on the cycle, and the additional
nodes covered by the cycle. Constraints (YZ) ensure, that a node cannot be both on the cycle,
and covered by adjacency to the cycle. Constraints (COV) ensure that if a node i is selected to
be covered by adjacency to the cycle, at least one adjacent node of i is in the cycle. Constraints
(DEG) ensure that every node on the cycle has two adjacent edges. The subtour-elimination
constraints are encoded by (SEC); since there is an exponential number of them, we separate
them on-the-fly. The separation procedure is described in Sect. 3.1.

123

Ann Oper Res (2020) 284:487–499 491

The following so-called logic inequalities (see, e.g., Fischetti et al. (1997), Fischetti et al.
(1999)) are valid for our formulation;

xi j ≤ yi , ∀{i, j} ∈ E, i ∈ V . (LOG)

Moreover, the cut constraints (SEC) can be lifted in some cases, as detailed by the following
proposition. For V ′ ⊂ V , let K (V ′) = {v ∈ V |v ∈ V ′ ∪ v : ∃{v, v′} ∈ E : v′ ∈ V ′}, i.e., the
set V ′ and all nodes adjacent to it.

Proposition 1 Let S ⊂ V, k ∈ S, l ∈ V \ S : 2 ≤ |S| ≤ |V | − 2. Suppose, K (k) ⊆ S. Then
the following inequalities are valid

∑

e∈δ(S)

xe ≥ 2(yk + zk + yl − 1). (L-SEC)

Proof Due to constraints (YZ) only one of yk and zk can be one in a feasible solution. If yk
is one, the inequalities reduce to inequalities (SEC). If zm = 1 for one m ∈ K , we must have
ym = 1, due to (COV). As m ∈ S, any feasible solution must fulfill (SEC) defined by m, k
and S, from which follows the validity of (L-SEC). �

Let L = {v ∈ V |{l, v} ∈ E}. If L ⊆ V \ S, using the same arguments, (L-SEC) can
be further lifted by additionally adding zl to the term in the parenthesis on right-hand-side.
Moreover, if a feasible solution to the problem is available, an additional lifting is possible
as shown in the following proposition.

Proposition 2 Let S ⊂ V, k ∈ S, l ∈ V \ S : 2 ≤ |S| ≤ |V | − 2. Let Z̄ be the objective
value of a feasible solution. If |Z̄ | > |K (V \ S)|, then there exists one optimal solution which
satisfies

∑

e∈δ(S)

xe ≥ 2yl . (L2-SEC)

Proof Due to |Z̄ | > |K (V \ S)|, the optimal solution cannot be a cycle on the nodes in V \ S
(plus nodes adjacent to this cycle). Thus, at least one node in Smust be in an optimal solution.

�
If |Z̄ | > |K (S)|, a similar lifting is possible. If both |Z̄ | > |K (V \ S)| and |Z̄ | > |K (S)|,

the right-hand-side in (L2-SEC) can be lifted to two; this means that a solution with objective
value of at least Z̄ cannot be a cycle contained only in S or V \ S, but must contain nodes
from both S and V \ S. Finally, if it holds that |Z̄ | > |K (V \ S)| and |Z̄ | > |K (S)|, then
inequalities (L2-SEC) can also be lifted by using the arguments of (L-SEC) for node l; in
this case, the term 2zl can be added to the right-hand-side.

3 Algorithmic Framework

In this section, we give implementation details of our algorithmic framework. Namely, we
give details of the separation procedure for inequalities (SEC) (and its lifted versions), and
also the primal heuristic. In contrast to TSP-like problems, where inequalities (LOG) are
usually separated by enumeration, we add them directly at the initialization, as the instances
we are dealingwith are sparse (while TSP-like problems normally consider complete graphs).

123

492 Ann Oper Res (2020) 284:487–499

3.1 Separation Algorithms

Let (x∗, y∗, z∗) be the solution of the LP-relaxation at a branch-and-bound node. Depending
on whether this solution is fractional or integer, different separation strategies are employed.
Separation of (SEC) for integer solutions. If the solution (x∗, y∗, z∗) is integer, it forms a
set of disjoint cycles, say C1, . . . ,Cn . For each cycle Ci , we add an inequality (SEC) with
S = Ci . As node k, we randomly chose a node in Ci ; as node l, we randomly chose a node
in Ci+1 (C0, if i = n).
Separation of (SEC) for fractional solutions. Inequalities (SEC) can be separated in polyno-
mial time, O(|V |4), by maximum flow-computations (see, e.g., Fischetti et al. (1997)). As
this turned out to be too time-consuming in preliminary computations, we used a heuristic
separation instead. In particular, we used the heuristic from Gendreau et al. (1997): construct
a maximum spanning tree on G (with edge weights given by the x∗ values) using a greedy
algorithm (in our implementation, we used Kruskal’s algorithm Kruskal (1956)). Whenever
an edge e gets added to the partial tree during the algorithm, let S be the set where e gets
added to. We take S as candidate for a violated inequality (SEC). As node k, we randomly
chose a node in S among all nodes with maximum y∗ value in S, and for l, we randomly
chose a node in V \ S among all nodes with maximum y∗ value in V \ S. We do the separa-
tion throughout the branch-and-bound tree, and tried different settings for separation in our
computational experiments (e.g., only separate for integer solutions of the LP-relaxation, or
also for fractional solutions), for more details, see Sect. 4.
Separation of (L-SEC) and (L2-SEC).We do not separate (L-SEC) and (L2-SEC) explicitly,
but whenever we detect a violated inequality (SEC), we check if a lifting is possible. This
can be simply done by checking if any v ∈ S or v ∈ V \ S fulfills the condition for (L-SEC),
and if S or V \ S fulfills the condition for (L2-SEC).

3.2 Primal Heuristic

In order to find high-quality solutions during the branch-and-cut, we implemented a primal
heuristic, which is driven by the values of the LP-relaxation in the branch-and-bound nodes.
The heuristic works on the support graphG∗ induced by the LP-solution (x∗, y∗, z∗), i.e., the
graph induced by E∗ = {{i, j} ∈ E |x∗

i j > 0}. Using x∗ as weights, we compute a maximum
spanning forest onG∗ usingKruskal’s algorithm.Whenever adding an edge during the course
of the algorithm, would induce a cycle C , we check if C gives an improved primal solution;
if yes, we take C as new incumbent.

In addition to the above primal heuristic, whenever we encounter an infeasible integer
solution (which forms a disjoint set of cycles) during the branch-and-bound, we check if any
cycle in this solution gives an improved primal solution. If such solution exists, we store it
and we attempt adding it as incumbent the next time the CPLEX ILP-solver enters to the
corresponding heuristic callback.

4 Computational Results

We implemented our framework in C++ and used CPLEX 12.7 for the branch-and-cut. All
CPLEX parameters were left at their default values. The source-code is made available online
at https://msinnl.github.io/pages/instancescodes.html. The experiments were done on aXeon
CPU with 2.5 GHz using a single-thread. For each run, we used a timelimit of 600 seconds

123

https://msinnl.github.io/pages/instancescodes.html

Ann Oper Res (2020) 284:487–499 493

and a memorylimit of 3GB. The study in Grosso et al. (2016) used the same timelimit, but
unfortunately does not mention the specifications of the computer.

As benchmark instances, we used the instances from Grosso et al. (2016) and also con-
sidered additional instances. We obtained the instances from the authors of Grosso et al.
(2016) and made them available online at https://msinnl.github.io/pages/instancescodes.
html. Details of the instance sets are given next:

– Coloring: These are graph coloring instances from http://mat.gsia.cmu.edu/COLOR/
instances.html. In Grosso et al. (2016), instances DSJ* and flat* were not used, thus
this set has 57 instances.

– Scale-Free: These are instances generated in Grosso et al. (2016) based on scale-free
graphs with up to 1000 nodes. According to the computational experience of Grosso et al.
(2016), these instances turned out to be the most difficult ones. Note that for this set, we
obtained 400 instances from the authors of Grosso et al. (2016), while in their paper, the
set only has 336 instances (according to the authors, some instances of this set resulted
in memory problems when using their solution approach, and thus were not reported in
their final results).

– Random: These are randomly generated instances from Grosso et al. (2016). The graphs
have up to 500 nodes and edge density (defined as 2|E |

|V |(|V |−1)) up to 10%. The set contains
987 instances.

– Benchmark/Random-HC-DLV: These are instances containing a Hamiltonian cycle
from http://wwwinfo.deis.unical.it/npdatalog/experiments/hamiltoniancycle.htm. Since
they contain a Hamiltonian cycle, the value of the optimal solution is |V | for all of
these instances, and the Hamiltonian cycle is an optimal solution (there can also be other
optimal solutions). These instances were used in Grosso et al. (2016).

– Structured-3col-DLV: These are graph 3-coloring instances from http://wwwinfo.
deis.unical.it/npdatalog/experiments/3-coloring.htm. As well as in Grosso et al. (2016),
we consider three instances from there, the largest one being comprised by 900 nodes.

– ES250/500FST: As the results below will reveal, our approach can solve all instances
fromGrosso et al. (2016) within a few seconds. Thus, in order to push our approach to the
limit, we looked at many different graph instances sets available online. In preliminary
tests, the set ES250/500FST of SteinLIB Koch et al. (2001), a library of Steiner tree
instances, available at http://steinlib.zib.de/showset.php?ES250FST and http://steinlib.
zib.de/showset.php?ES500FST, proved to be the most challenging of sets containing
graphs with a reasonable size (i.e., large enough for yielding difficult ILP problems, but
for which solving the linear relaxation is still not burdensome). This set contains 30
instances.

4.1 Effects of the Framework Ingredients

To study the effects of the proposed enhancements in our framework, we tested the following
settings:

– b: Basic setting, where we do not use the primal heuristic and only separate (SEC) for
integer solutions.

– bh: b, but with the primal heuristic.
– bhf: Using the primal heuristic and separation of (SEC) also for fractional solution, but

no lifting of (SEC).
– bhfl: bhf, where we also lift inequalities (SEC).

123

https://msinnl.github.io/pages/instancescodes.html
https://msinnl.github.io/pages/instancescodes.html
http://mat.gsia.cmu.edu/COLOR/instances.html
http://mat.gsia.cmu.edu/COLOR/instances.html
http://wwwinfo.deis.unical.it/npdatalog/experiments/hamiltoniancycle.htm
http://wwwinfo.deis.unical.it/npdatalog/experiments/3-coloring.htm
http://wwwinfo.deis.unical.it/npdatalog/experiments/3-coloring.htm
http://steinlib.zib.de/showset.php?ES250FST
http://steinlib.zib.de/showset.php?ES500FST
http://steinlib.zib.de/showset.php?ES500FST

494 Ann Oper Res (2020) 284:487–499

Fig. 2 Runtime for different settings

Fig. 3 Optimality gap after 600s for different settings

In Fig. 2, we show a performance profile plot of the runtime to optimality for all instances
and all settings. Likewise, in Fig. 3, we show the performance profile of the optimality gap,
which is calculated as 100 · (zDB − z∗)/z∗, where zDB is the dual bound and z∗ is the best
solution found.

From Fig. 2 we see that all settings except b manage to solve about 97% of the instances
within ten seconds. In general, for most of the instances, there is not much difference in
the runtime to optimality between the different settings, i.e., our branch-and-cut approach is
already very effective in its most basic version. However, setting bhfl manages to solve a
few more instances to optimality within the timelimit. Regarding the instances which cannot
be solved within the given timelimit (they are all of the set ES250/500FST, as we will
describe in the next section), we can see, from Fig. 3, more pronounced differences between
the settings. Every additional ingredient added in our framework improves the performance.
Therefore, we conclude that setting bhfl, which contains all enhancements, is the most
effective one for the considered problem. Therefore, all the results reported in the remainder
of the section are obtained with this setting.

4.2 Detailed Results

In Table 1 we give an overview of the results attained for each instance set. Column t[s] gives
the runtime in seconds, g[%] gives the optimality gap, #BBn gives the number of branch-
and-bound nodes, #(SEC) gives the number of separated cut constraints, while columns
#(L-SEC) and #(L2-SEC) report how often each of the corresponding lifting was successful.

123

Ann Oper Res (2020) 284:487–499 495

Table 1 Overview of results by instance class

Set t [s] g (%) #BBn #(SEC) #(L-SEC) #(L2-SEC)

Coloring 0.64 0.00 0.23 68.61 64.79 29.58

Benchmark/Random-HC-DLV 0.02 0.00 0.00 1.84 0.37 0.84

Structured-3col-DLV 18.94 0.00 15.67 1869.00 2166.67 1067.67

Scale-Free 0.21 0.00 0.04 20.47 21.05 9.56

Random 0.55 0.00 0.01 3.99 0.89 1.59

ES250/500FST 496.82 8.23 4207.00 19763.77 15104.67 23624.10

The table contains the mean values over all instances of a class

Note that for one cut constraints constraint, both lifting strategies could be applied (both
(L-SEC) and (L2-SEC) can be applied twice; for S and V \ S). The entries associated to
each row in the table are averages over the corresponding whole instance set. From the
results, we see that all instances from Grosso et al. (2016) could be solved to optimality.
In Grosso et al. (2016), only 53 out of 57 instances of Coloring, two out of three from
Structured-3col-DLV, 978 out of 987 from Random and 294 out of 336 instances
from Scale-Free could be solved to optimality. The runtime and also the number of
branch-and-bound nodes for all instance classes except ES250/500FST is very small. In
particular, all instances from sets Benchmark/Random-HC-DLV and were solved in the
rootnode, and also for Coloring,Scale-Free,Randomthe average runtime and number
of branch-and-bound nodes is under one.

In Table 2 we give a detailed overview on the results on the instances from set
ES250/500FST, which is the only class where our algorithm did not find the optimal
solution for all instances within the timelimit (these cases are indicated by TL in column
t[s]). We manage to solve eight out of 30 instances of this set for optimality. For all except
five instances, the gap is under ten percent. In particular, for most of the instances, the gap is
under one percent.

5 Conclusion

In many applications, such as telecommunications and routing, we are concerned in finding
layouts so that many nodes (e.g., customers) of the underlying graph are covered. In this
paper, we study the maximum covering cycle problem (MCCP), which has been recently
introduced by Grosso et al. (2016). In the MCCP we are given a (non-complete) graph, and
the goal is to find a cycle such that the number of nodes which are either on the cycle or
adjacent to this cycle is maximized. We design and implement a branch-and-cut framework
for the problem. The framework contains valid inequalities, lifted inequalities and a primal
heuristic. In a computational study, we compare our framework to the approach by Grosso
et al. (2016). The results reveal that our approach significantly outperforms the previous
approach. In particular, all instances from the literature could be solved to optimality with
our approach, most of them within a second.

Regarding further work, the formulation can be easily extended to accommodate for
a weighted coverage. Likewise, the coverage protocol can be extended to more general
concepts. However, the primal heuristic may need non-trivial adaptations to satisfactory
work in such cases, and additional valid inequalities could potentially be derived. It could

123

496 Ann Oper Res (2020) 284:487–499

Ta
bl
e
2

D
et
ai
le
d
re
su
lts

fo
r
in
st
an
ce

se
t
E
S
2
5
0
/
5
0
0
F
S
T

N
am

e
N
od

es
E
dg

es
t[
s]

U
B

L
B

g
[%

]
#B

B
n

#(
SE

C
)

#(
L
-S
E
C
)

#(
L
2-
SE

C
)

es
25

0f
st
01

62
3

87
6

T
L

54
4

54
3

0.
18

16
19

4
72

70
43

42
98

00

es
25

0f
st
02

54
2

71
9

T
L

47
6

47
3

0.
63

16
31

5
16

78
4

69
74

25
96

8

es
25

0f
st
03

54
3

72
7

T
L

31
0

18
2

70
.1
9

49
40

25
46

4
38

71
0

10
41

2

es
25

0f
st
04

60
4

84
2

81
.6
6

57
7

57
7

0.
00

10
00

12
59

8
71

77
17

57
5

es
25

0f
st
05

59
6

83
2

T
L

52
6

52
2

0.
77

18
46

2
76

50
44

63
10

47
3

es
25

0f
st
06

59
6

82
4

37
8.
03

49
3

49
3

0.
00

11
16

9
13

99
3

75
98

19
71

7

es
25

0f
st
07

58
5

79
9

T
L

55
0

54
8

0.
36

62
14

22
92

4
81

23
36

95
2

es
25

0f
st
08

65
7

94
7

T
L

63
7

63
0

1.
11

46
84

23
77

1
12

18
6

34
62

2

es
25

0f
st
09

57
0

77
0

T
L

53
4

53
0

0.
75

22
17

3
10

57
4

36
26

17
13

5

es
25

0f
st
10

66
2

95
1

7.
03

55
8

55
8

0.
00

37
39

17
48

47
29

06

es
25

0f
st
11

66
1

95
2

T
L

52
2

25
2

10
7.
14

16
25

33
7

41
37

9
80

50

es
25

0f
st
12

61
9

87
2

T
L

56
0

55
8

0.
36

66
07

16
36

6
67

52
25

53
1

es
25

0f
st
13

68
4

99
3

63
.2
4

58
9

58
9

0.
00

10
60

75
01

47
29

98
86

es
25

0f
st
14

71
0

10
46

T
L

63
3

63
1

0.
32

32
60

20
74

9
13

04
0

27
67

8

es
25

0f
st
15

71
3

10
53

24
.7
5

64
0

64
0

0.
00

32
1

60
16

49
12

67
78

es
50

0f
st
01

12
50

17
63

T
L

11
44

11
03

3.
72

16
82

24
77

2
21

64
4

26
72

7

es
50

0f
st
02

14
08

20
56

T
L

13
47

13
02

3.
46

90
2

21
83

7
17

41
3

25
20

5

es
50

0f
st
03

13
37

19
33

T
L

12
64

11
04

14
.4
9

66
7

32
61

3
35

75
3

28
25

6

es
50

0f
st
04

12
96

18
79

T
L

12
47

11
58

7.
69

47
1

35
57

1
21

09
5

49
19

3

123

Ann Oper Res (2020) 284:487–499 497

Ta
bl
e
2

co
nt
in
ue
d

N
am

e
N
od

es
E
dg

es
t[
s]

U
B

L
B

g
[%

]
#B

B
n

#(
SE

C
)

#(
L
-S
E
C
)

#(
L
2-
SE

C
)

es
50

0f
st
05

11
72

16
27

T
L

10
88

10
58

2.
84

13
88

30
12

5
18

74
3

40
05

5

es
50

0f
st
06

13
35

19
32

T
L

12
86

12
52

2.
72

26
1

24
73

2
20

28
6

27
89

7

es
50

0f
st
07

12
14

17
00

T
L

11
33

10
93

3.
66

17
30

22
93

6
16

46
3

28
47

6

es
50

0f
st
08

13
49

19
72

T
L

13
13

12
89

1.
86

90
9

25
31

1
18

44
1

31
52

6

es
50

0f
st
09

12
94

18
53

T
L

11
75

10
41

12
.8
7

42
0

34
48

1
22

79
2

44
90

3

es
50

0f
st
10

12
03

16
79

97
.0
4

10
50

10
50

0.
00

64
4

91
79

66
70

11
15

5

es
50

0f
st
11

12
74

18
08

T
L

11
87

11
79

0.
68

13
60

29
71

8
16

29
5

42
19

7

es
50

0f
st
12

13
22

19
18

T
L

12
89

11
68

10
.3
6

59
9

21
90

8
24

01
7

19
14

9

es
50

0f
st
13

12
73

18
14

T
L

12
10

12
02

0.
67

22
06

24
30

0
15

85
1

31
81

4

es
50

0f
st
14

14
77

22
04

13
2.
70

14
36

14
36

0.
00

0
10

94
8

10
72

9
10

44
6

es
50

0f
st
15

13
34

19
27

51
1.
88

12
63

12
63

0.
00

51
9

23
56

8
18

09
0

28
24

1

123

498 Ann Oper Res (2020) 284:487–499

also be interesting to investigate, if there are certain graphs, where the proposed formulation
gives a complete description. Developing preprocessing tests to reduce the instance size
could be useful. Furthermore, in a real-life setting, it is likely that both the set of nodes
and links are subject to uncertainty; therefore, the study of a stochastic or robust version of
the problem could be a worthwhile topic for research. For large-scale instances, solving the
Integer Linear Programming formulation can become a bottleneck, thus the use of Lagrangian
relaxation instead of Linear Programming may prove fruitful to quickly find reasonable dual
bounds. The design of (meta)-heuristic approaches to tackle even larger instances could also
be interesting for further work.

Acknowledgements E. Álvarez-Miranda acknowledges the support of the Chilean Council of Scientific and
Technological Research, CONICYT, through the FONDECYT Grant N.1180670 and through the Complex
Engineering Systems Institute (ICM-FIC:P-05-004-F, CONICYT:FB0816). The research of M. Sinnl was
supported by the Austrian Research Fund (FWF, Project P 26755-N19).

References

Aazami, A. (2010). Domination in graphs with bounded propagation: Algorithms, formulations and hardness
results. Journal of combinatorial optimization, 19(4), 429–456.

Arkin, E., & Hassin, R. (1994). Approximation algorithms for the geometric covering salesman problem.
Discrete Applied Mathematics, 55(3), 197–218.

Balas, E. (1989). The asymmetric assignment problem and some new facets of the traveling salesman polytope
on a directed graph. SIAM Journal on Discrete Mathematics, 2(4), 425–451.

Bley, A., Ljubić, I., & Maurer, O. (2017). A node-based ilp formulation for the node-weighted dominating
steiner problem. Networks, 69(1), 33–51.

Colbourn, C., & Stewart, L. (1991). Permutation graphs: Connected domination and Steiner trees. In S.
Hedetniemi (Ed.), Topics on Domination (Vol. 48, pp. 179–189)., Annals of Discrete Mathematics New
York: Elsevier.

Current, J., & Schilling, D. (1989). The covering salesman problem. Transportation Science, 23(3), 208–213.
Current, J., & Schilling, D. (1994). The median tour and maximal covering tour problems: Formulations and

heuristics. European Journal of Operational Research, 73(1), 114–126.
Dantzig,G., Fulkerson, R.,& Johnson, S. (1954). Solution of a large-scale traveling-salesman problem. Journal

of the Operations Research Society of America, 2(4), 393–410.
Fischetti, M., Salazar-González, J.-J., & Toth, P. (1997). A branch-and-cut algorithm for the symmetric gen-

eralized traveling salesman problem. Operations Research, 45(3), 378–394.
Fischetti, M., Salazar-González, J., & Toth, P. (1999). Solving the orienteering problem through branch-and-

cut. INFORMS Journal on Computing, 10, 133–148.
Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., et al. (2017). Thinning out

steiner trees: A node-based model for uniform edge costs. Mathematical Programming Computation,
9(2), 203–229.

Gendreau, M., Laporte, G., & Semet, F. (1997). The covering tour problem. Operations Research, 45(4),
568–576.

Gendron, B., Lucena, A., da Cunha, A., & Simonetti, L. (2014). Benders decomposition, branch-and-cut, and
hybrid algorithms for theminimumconnected dominating set problem. INFORMSJournal onComputing,
26(4), 645–657.

Golden, B., Naji-Azimi, Z., Raghavan, S., Salari, M., & Toth, P. (2012). The generalized covering salesman
problem. INFORMS Journal on Computing, 24(4), 534–553.

Gollowitzer, S., & Ljubić, I. (2011). Mip models for connected facility location: A theoretical and computa-
tional study. Computers & Operations Research, 38(2), 435–449.

Grosso, A., Salassa, F., & Vancroonenburg, W. (2016). Searching for a cycle with maximum coverage in
undirected graphs. Optimization Letters, 10(7), 1493–1504.

Haynes, T., Hedetniemi, S., & Slater, P. (1998). Fundamentals of domination in graphs (1st ed.)., Pure and
applied mathematics Boca Raton: CRC Press.

Hoffman, K., Padberg, M., & Rinaldi, G. (2013). Traveling salesman problem. Encyclopedia of operations
research and management science (pp. 1573–1578). Berlin: Springer.

123

Ann Oper Res (2020) 284:487–499 499

Jeong, I. (2017). An optimal approach for a set covering version of the refueling-station location problem and
its application to a diffusion model. International Journal of Sustainable Transportation, 11(2), 86–97.

Jozefowiez,N., Semet, F.,&Talbi, E. (2007). The bi-objective covering tour problem.Computers&Operations
research, 34(7), 1929–1942.

Koch, T., &Martin, A. (1998). Solving steiner tree problems in graphs to optimality.Networks, 32(3), 207–232.
Koch, T., Martin, A., & Voß, S. (2001). SteinLib: An updated library on Steiner tree problems in graphs.

Steiner trees in industry, 11, 285–326.
Kratochv, J., Proskurowski, A., & Telle, J. (1998). Complexity of graph covering problems. Nordic Journal

of Computing, 5, 173–195.
Kruskal, J. (1956).On the shortest spanning subtree of a graph and the traveling salesman problem.Proceedings

of the American Mathematical Society, 7(1), 48–50.
Leitner, M., Ljubić, I., Salazar-González, J.-J., & Sinnl, M. (2017). An algorithmic framework for the exact

solution of tree-star problems. European Journal of Operational Research, 261(1), 54–66.
Ozbaygin, G., Yaman, H., & Karasan, O. (2016). Time constrained maximal covering salesman problem with

weighted demands and partial coverage. Computers & Operations Research, 76, 226–237.
Shaelaie, M., Salari, M., & Naji-Azimi, Z. (2014). The generalized covering traveling salesman problem.

Applied Soft Computing, 24, 867–878.

123

	A branch-and-cut algorithm for the maximum covering cycle problem
	Abstract
	1 Introduction
	2 ILP-Model and Valid Inequalities
	3 Algorithmic Framework
	3.1 Separation Algorithms
	3.2 Primal Heuristic

	4 Computational Results
	4.1 Effects of the Framework Ingredients
	4.2 Detailed Results

	5 Conclusion
	Acknowledgements
	References

