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Abstract We review the Generalized Almost Stochastic Dominance definition in Tsetlin
et al. (Oper Res 63(2):363–377, 2015).We follow the classic concept of stochastic dominance
in minimizing specific assumptions about decision makers’ risk attitudes as highlighted
by Levy (Manag Sci 38(4):555–593, 1992). We refine the definition of almost stochastic
dominance by Leshno and Levy (Manag Sci 48(8):1074–1085, 2002) to secure economic
intuition. We then present our definitions of almost stochastic dominance with an extension
to the higher degrees. Our definition satisfies both expected utility maximization property
and hierarchy property while minimizing assumption and securing economic intuition.

Keywords Stochastic dominance · Almost stochastic dominance · Expected utility
maximization property · Hierarchy property

1 Introduction

Stochastic Dominance (SD) is one of the major rules for decision-making under uncertainty
(Hadar and Russell 1969; Rothschild and Stiglitz 1970; Hanoch and Levy 1970; Levy 1990).
SD rules refer to various partial orders on the space of distribution functions of random
variables. SD stems from paradoxes that are sometimes revealed by the commonly employed
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mean–variance (MV) rule by Markowitz (1977). SD prevails over the MV rule, especially
in the cases in which there is a clear-cut preference between two risky assets, as the MV
rule fails to rank the two alternative prospects under consideration. See Levy (2016) for the
updated survey.

In practice, SD is restrictive in conditions and thus limited in its function of making deci-
sions. A small violation area in the cumulative distribution function (CDF) may cause SD to
fail, as well as other criteria to reveal the preference. Alternatively, Leshno and Levy (2002)
establish the Almost Stochastic Dominance (ASD) criterion to reveal choices that probably
conform with “most” decision makers with an increasing and concave utility function. The
ASD rules suggest eliminating some pathological preferences. This seminal work receives
noticeable academic attention as the ongoing discussions of its redefinition and property
indicate. The crucial theoretical articles and application literatures at least include Bali et al.
(2009), Levy et al. (2010), Levy (2012), Tzeng et al. (2013), and Guo et al. (2013). Their
respective versions of ASD reach a consensus on the Almost First-Degree Stochastic Dom-
inance (AFSD), but not necessarily in the Almost Second-Degree Stochastic Dominance
(ASSD).

ASD is recognized for both its expected utility maximization property (EUMP) and hier-
archy property (HP), as summarized by Guo et al. (2013). EUMP refers to the property that
ASD shows the equivalent ranking as that by expected utility maximization with the defined
utility function. HP refers to the property that AFSD implies ASSD. However, the major
previous ASD versions do not necessarily possess these two crucial properties. Specifically,
Tzeng et al. (2013) point out that Leshno and Levy (2002) does not possess EUMP. Levy
(1998, 2016) well study HP. However, Guo et al. (2013) point out that the ASD in Tzeng et al.
(2013) does not possess HP. Guo et al. (2016) extend ASD definition in Tzeng et al. (2013) to
discuss both risk seeker and risk averter. Accordingly, their ASD definition does not possess
HP either. In short, those previous studies do not provide us satisfactory outcome.

Tsetlin et al. (2015) join the efforts to propose a generalized form of ASD, especially
for the 2nd degree case which previous literatures debate most. The authors claim their
definition for Generalized Almost Second-Degree Stochastic Dominance (GASSD) satisfies
both HP and EUMP. In terms of HP, the authors first define the utility class which it is
contained in the utility class of the 1st degree case under their selected conditions. In terms
of EUMP, the authors further propose the theorem which is based on the 1st and 2nd degree
of differentiation of the utility function. However, we notice that two major shortcomings
that limits the application of their definition and lacks economic intuition. Accordingly, we
minimize the specific assumptions about decision makers’ risk attitudes and address those
issues from the two perspectives in Sect. 3: defining utility function before CDF and the
implementation. We show that the ASSD definition should avoid the two shortcomings. We
need to provide the outcome intuitive and attain feasible implementation for its possible
application. However, Tsetlin et al. (2015) admit that their version can only be investigated
numerically. Their outcomes need additional relaxation of the conditions or assumption on
probability shifts for SD relations to have a behavioral interpretation.We thus find it necessary
to reexamine and redefine ASD.

We follow the classic concept of stochastic dominance inminimizing specific assumptions
about decision makers’ risk attitudes as highlighted by Levy (1992). Meanwhile, we need to
secure the SD properties of EUMP and HP.We then propose and verify our ASD redefinition.
We notice that our version avoid the two shortcomings in Tsetlin et al. (2015). We further
reexamine the counterexamples in Tzeng et al. (2013) and Guo et al. (2013), which show the
pitfalls of Leshno and Levy (2002) and Tzeng et al. (2013), respectively. In essence, these
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two counterexamples are not valid under our ASD redefinition. It accordingly validates that
our version prevails.

We contribute to revise theGeneralizedAlmost StochasticDominance definition in Tsetlin
et al. (2015) in threemajor aspects. First, weminimize the specific assumption about decision
makers’ risk attitudes (Levy 1992), and satisfy both HP and EUMP properties (Guo et al.
2013). Second, contrary to their treatment, we define utility function before CDF and the
implementation to avoid the possible shortcomings. Third, our definition can provide the
economic intuition and attain feasible implementation for its possible application, while
Tsetlin et al. (2015) cannot.

The remaining part of the paper is structured as follows. Section 2 discusses the ASD
definition byLeshno andLevy (2002) andTzeng et al. (2013). Section 3 discusses theGASSD
in Tsetlin et al. (2015). Section 4 presents our ASD redefinition. Section 5 reexamines the
counterexamples under our ASD definition. Section 6 concludes.

2 Discussion ASD on Leshno and Levy (2002) and Tzeng et al. (2013)

We focus our discussion on the versions of ASD definition by Leshno and Levy (2002) and
Tzeng et al. (2013). The former initiates the topic of ASD definition and the latter presents
a counterexample to the version by the former.

We first briefly review the ASD definitions by Leshno and Levy (2002). The authors
denote F and G as the two CDFs of X and Y, respectively. Denoted by U1 the set of all
non-decreasing differentiable utility function (u ∈ U1(z) if u′ ≥ 0) and by U2 the set of all
non-decreasing and concave function, which is twice differentiable (u ∈ U2(z) if u′ ≥ 0 and
u′′ ≤ 0). The authors impose restrictions on the utility functions, and the subsets of U1 and
U2 are defined as follows. For every 0 < ε < 0.5,

U∗
1 (ε) �

{
u ∈ U1 : u

′(z) ≤ inf [u′(z)]
[
1

ε
− 1

]
∀z ∈ [

z, z
]}

(P1)

and

U∗
2 (ε) �

{
u ∈ U2 : −u′′(z) ≤ inf

[−u′′(z)
] [

1

ε
− 1

]
∀z ∈ [

z, z
]}

. (P2)

Both refer to the respective minimums of the degrees of the non-decreasingness and
concavity, respectively.

The ASD definitions are specified as follows. For every 0 < ε < 0.5,

1. AFSD. F dominates G by ε-Almost FSD if and only if∫
S1
[F(z) − G(z)] dz ≤ ε‖F − G‖, (1)

2. ASSD. F dominates G by ε-Almost SSD if and only if∫
S2
[F(z) − G(z)] dt ≤ ε‖F − G‖ and EF (X) ≥ EG (Y ) , (2)

where S1 (F ,G) � {
z ∈ [

z, z
]
: G(z) < F(z)

}
, (3)

S2 (F ,G) � {z ∈ S1 (F ,G) :
∫ z

z
G (t) dt <

∫ z

z
F (t) dt , (4)

and ‖F − G‖� ∫ z
z |F(z) − G(z)| dz.
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The authors allege the following theorem for ASD:

1. AFSD. F dominatesG by ε-Almost FSD if and only if for all u inU∗
1 (ε), EF (u) ≥ EG (u).

2. ASSD. F dominatesG by ε-Almost SSD if and only if for all u inU∗
2 (ε), EF (u) ≥ EG (u).

Tzeng et al. (2013) present a counterexample and claim that pitfall of the ASSD definition
by Leshno and Levy (2002) is that for all u in U∗

2 (ε), the relation EF (u) ≥ EG (u) does not
hold. That is, the definition by Leshno and Levy (2002) does not possess EUMP.

Further, Tzeng et al. (2013) treat AFSD as unchanged and revisit the ASSD definition by
Leshno and Levy (2002). The authors propose a redefinition of ASD and claim its extension
to Almost Nth-Degree Stochastic Dominance. First, the authors define the set of Ŝ2 (the
violation area of SSD) as Ŝ2 (F , G) � {z ∈ [

z, z
]
: G(2)(z) < F (2)(z)}, where F (2)(z) �∫ z

z F (t) dt and G(2)(z) � ∫ z
z G (t) dt . The superscript of F and G denote the nth integration

of their respective CDFs. It is noteworthy that S2 (F , G) ⊂ Ŝ2 (F , G) because Ŝ2 is not
necessarily included in S1 as defined in (3). Further, the authors follow the restrictions on
the utility function by Leshno and Levy (2002). The authors claim that they provide the
correct, necessary, and sufficient condition and define ASSD as follows. For 0 < ε < 0.5, F
dominates G by ε-Almost SSD if and only if∫

Ŝ2

[
F (2)(z) − G(2)(z)

]
dx ≤ ε‖F (2) − G(2)‖ and EF (X) ≥ EG (Y ) , (5)

where ‖F (2) − G(2)‖� ∫ z
z |F (2)(z) − G(2)(z)|dz.

The authors thus define the theorem for ASSD as follows. For all u in U∗
2 (ε), EF (u) ≥

EG (u) if and only if
∫
Ŝ2

[
F (2)(z) − G(2)(z)

]
dx ≤ ε‖F (2) − G(2)‖ and EF (X) ≥ EG (Y ).

That is, ASSD is defined in terms of both area difference and expected utility inequality.
However, Guo et al. (2013) present a counterexample and claim that the pitfall of the

ASSD definition by Tzeng et al. (2013) is that AFSD is not a sufficient condition for ASSD.
That is, the definition by Tzeng et al. (2013) does not possess HP.

In brief, the ASD definitions by Leshno and Levy (2002) and Tzeng et al. (2013) have their
respective pitfalls. Neither version has both crucial properties, EUMP and HP, respectively.

3 Discussion on the GASSD in Tsetlin et al. (2015)

Tsetlin et al. (2015) first define the utility class for GASSD:

U2

(
ε∗
1 , ε

∗
2

) �
{
u

∣∣u(1) > 0, u(2) < 0 and sup
[
(−1)k+1 u(k)(z)

]

≤ inf
[
(−1)k+1u(k)(z)

](
1

ε∗
k

− 1

)
, k � 1, 2

}
(6)

Thus, GASSD does satisfy the hierarchy property becauseU 2

(
ε∗
1 , ε∗

2

) ⊂ U1

(
ε∗
1

)
, where

U1

(
ε∗
1

)
is the utility class for AFSD defined in all previous literatures on ASD.

The authors claim that they provide the correct, necessary, and sufficient condition. U 2
includes the 1st and the 2nd degrees of differentiation of utility function. They defineGASSD
as follows. For 0 ≤ ε∗

k ≤ 0.5, k � 1, 2, F dominates G by
(
ε∗
1 , ε∗

2

)
-GASSD if and only if

EF (u) ≥ EG (u) , for all u ∈ U2

(
ε∗
1 , ε

∗
2

)
(7)
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The authors thus define the following theorem for GASSD as follows. For 0 ≤ ε∗
k ≤ 0.5,

k � 1, 2, F dominates G by
(
ε∗
1 , ε∗

2

)
-GASSD if and only if F (2) (z) − G(2) (z) ≤ 0 and

maxC

{
1(

1 − 2ε∗
2

) |C | + ε∗
2

(
z − z

)
[(
1 − 2ε∗

2

) ∫
C
(F (2)(z) − G(2)(z)) dz + ε∗

2

∫
S
(F (2)(z) − G(2)(z)) dz

]}

≤ ε∗
1

1 − 2ε∗
1

[
G(2) (z) − F (2) (z)

]
, where C ⊂ [

z, z
]
and |C | �

∫
C
dz. (8)

The condition F (2) (z) − G(2) (z) ≤ 0 in (8) is equivalent to the EF (X) ≥ EG (Y ) in (5).
In addition, if ε∗

2 � 0, Tsetlin et al. (2015) express (ε∗
1 , 0)-GASSD as follows: F dominates

G by (ε∗
1 , 0)-GASSD if and only if

F (2) (z) − G(2) (z) ≤ 0 and maxz∈[z,z][F (2)(z) − G(2) (z)] ≤ ε∗
1

1 − 2ε∗
1

[
G(2) (z) − F (2) (z)

]
.

(9)

However, their definition of GASSD have two major issues. First, they do not define
GASSD based on distributions and violation areas that can provide economic intuitions.
Stochastic dominance theory should be defined based on distribution, not on utility as shown
in their study. In practice, utility function is not necessarily known or observable a priori.
If we define based on an arbitrary utility function, the outcome of stochastic dominance
analysis most likely lacks economic intuition. Furthermore, Guo et al. (2013) highlight both
HP and EUMP as essential properties of SD. However, Tzeng et al. (2013) does not satisfy
HP. The ASSD utility class in their article [k � 2 in (6)] is identical to equation P2 in this
paper. Tsetlin et al. (2015) requires both equations of P1 and P2 [that is, k � 1, 2 in (6)]
to satisfy both HP and EUMP. However, we follow Leshno and Levy (2002) to define ASD
based on violation areas which provides economic intuition. The derived utility class can
both minimize the assumption. Specifically, our utility class takes only equation P1 [k � 1
in (6)] and u(2) < 0 (a component of P2) to satisfy both HP and EUMP or treats equation
P2 as redundant. In essence, our version minimizes the sufficient assumptions to secure both
HP and EUMP and provides economic intuition.

Second, Theorem 2 in Tsetlin et al. (2015) exists a potential drawback of
(
ε∗
1 , ε∗

2

)
-GASSD

for many situations. The authors admit that it is not feasible (or not practical) to obtain
analytical results. Consequently, their GASSD can only be investigated numerically. This
drawback limits their definition’s application or implementation.

Based on our discussion on those twomajor issues,weminimize the sufficient assumptions
and redefine ASSD. We will also show and prove our definition to avoid those shortcomings.

4 New definition of ASD

We choose not to follow Leshno and Levy (2002), Tzeng et al. (2013), and Levy (2016).
Alternatively, we propose to define the various degrees of ASD in terms of violation ratio
and U∗, in contrast with the framework in Tsetlin et al. (2015). We proceed to present our
redefinition, lemma, and proposition of ASD in terms of AFSD and ASSD.

4.1 AFSD

Consider two alternative investments, X and Y with cumulative distribution functions F(z)
and G(z), respectively. Define the range of possible outcomes by S:
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S � {z : z < z < z}.
F Almost FSD dominates G means that F(z) < G(z) for most of the range S, except for

a relatively small segment that violates the dominance. Define the violation range of AFSD
by S1:

S1 � {z ∈ [
z, z

]
: F(z) > G(z)}

Further, we define the ratio between the area of the AFSD violation area and the total area
of difference between the two cumulative distributions by 21:

ε1 �
∫
S1
[F(z) − G(z)] dz∫

S1
[F(z) − G(z)] dz +

∫
S̄1
[G(z) − F(z)] dz

�
∫
S1
[F(z) − G(z)] dz∫

S |F(z) − G(z)| dz (10)

Definition 1 For 0 < ε < 0.5, F ε-Almost FSD dominates G if and only if ε1 ≤ ε. The
smaller ε1, the stronger the AFSD. When ε1 � 0, no violation area exists, the Almost FSD
reduces to the standard FSD criterion.

Proposition 1 F �AFSD G ⇒ c. That is, if F ε-Almost FSD dominates G, then EF (X) >

EG (Y ) .

See “Appendix A” for the proof. Proposition 1 states a sufficient but not necessary con-
dition for F �AFSD G. It requires that the S set for the specific order to be equal to zero
to be a sufficient and necessary condition. For example, S1 /∈ ∅, then EF (X) > EG (Y ) ⇒
F �AFSD G. Similarly, it requires S2 /∈ ∅ to attain F �ASSD G.

We define Û∗
1 (ε) as the set of utility functions, given by:

Û∗
1 (ε) �

{
u ∈ U1 : u

′(z) ≤ inf
{
u′(z)

} [
1

ε
− 1

]
∀z ∈ S

}
. (11)

Theorem 1 F 21-Almost FSD dominates G if and only if EF [u (X)] ≥ EG [u (Y )] for all
u ∈ Û∗

1 (ε).

Proof See “Appendix B”.

4.2 ASSD

Consider two alternative investments,X andY with cumulative distribution functionsF(z) and
G(z), respectively. Define the Almost SSD dominance of F over G means that

∫ z
z F (t) dt <∫ z

z G (t) dt for most of the range S, except for a relatively small segment that violates the
dominance. Define the area over which SSD is violated by S2:

S2 � {
z ∈ S1: F

(2)(z) > G(2)(z)
}
,

where F (2)(z) � ∫ z
z F (t) dt and G(2)(z) � ∫ z

z G (t) dt .
Define the ratio between the area of SSD violation area and the total area between the

cumulative distributions by ε2:

ε2 �
∫
S2
[F(z) − G(z)] dz∫

S2
[F(z) − G(z)] dz +

∫
S̄2
[G(z) − F(z)] dz


�
∫
S2
[F(z) − G(z)] dz∫

S |F(z) − G(z)| dz (12)

We differentiate the difference area into two parts over S2 and S̄2, while Leshno and Levy
(2002) and Levy (2016) treat the integration of the whole area as one term, as indicated by
(2). We expect our differentiation treatment can accurately depict the violation area because
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S2 handles F > G with (F −G) term, and S̄2 covers both F > G and G > F with (G − F)
term. Our treatment prevails, especially for the area over S̄2. This is because the cases of
F > G and G > F occur and the integration over S̄2 may be offset and become smaller.
The offset of individual integration parts usually occurs in the left parts. Consequently, the
denominator in (12) will be smaller than that treated by the direct absolute value arrangement
by Leshno and Levy (2002) and Levy (2016). Tsetlin et al. (2015) admit that the necessary
and sufficient conditions for

(
ε∗
1 , 0

)
-GASSD is not the same as the integral condition that is

used for ASSD by Levy (2016). The outcomes in Leshno and Levy (2002) and Levy (2016)
are thus not consistent with that in Tsetlin et al. (2015).We had better seek a better alternative
and redefine ASSD. In addition, based on the calculated ε values for AFSD and ASSD, we
can further determine the relation between AFSD and ASSD. The inequality sign in (12)
indicates our ASSD definition is different from that in Leshno and Levy (2002) and Levy
(2016).

Definition 2 For 0 < ε < 0.5, F ε-Almost SSD dominates G if and only if ε2 ≤ ε. The
smaller ε2, the stronger the ASSD. When ε2 � 0, no violation area exists, the Almost SSD
reduces to the standard SSD criterion.

We notice that our definition of violation ratio is closely connected to the version in Tsetlin
et al. (2015). Specifically,

ε2 �
∫
S2
[F(z) − G(z)] dz∫

S2
[F(z) − G(z)] dz +

∫
S̄2
[G(z) − F(z)] dz

�
∫
S2
[F(z) − G(z)] dz∫

S [G(z) − F(z)] dz + 2
∫
S2
[F(z) − G(z)] dz

�
∫
S2
[F(z) − G(z)] dz

G(2) (z) − F(2) (z) + 2
∫
S2
[F(z) − G(z)] dz

≤ ε

Then, ∫
S2
[F(z) − G(z)] dz ≤ ε

1 − 2ε

[
G(2) (z) − F(2) (z̄)

]
,

where
∫
S2
[F(z) − G(z)] dz ≥ maxz∈[z, z̄][F(2)(z) − G(2)(z)] is the violation area of SSD in

the definition of ASSD. Therefore, our definition of violation ratio and Definition 2 implies
the second condition in (9) [Eq. (2) in Tsetlin et al. 2015]. However, the second condition
in (9) does not imply our violation ratio as defined in (12) and Definition 2 unless two more
conditions are imposed: 0 < ε < 0.5 and the max term in (9) should be positive. That is, our
structure of the violation ratio definition is different from that in Tsetlin et al. (2015). Most
of the difference essentially lies in that our version cannot contain those do not violate SSD
definition and make ASSD definition meaningful.

Proposition 2 F �ASSD G ⇒ EF (X) > EG (Y ). If F ε-Almost SSD dominates G, then
EF (X) > EG (Y ) .

Proof See “Appendix C”.

Both Leshno and Levy (2002) and Tzeng et al. (2013) require EF (X) ≥ EG (Y ) as the
definition, as indicated by (2) and (5). Alternatively, we treat this condition as a proposition
or theorem.
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Define Û∗
2 (ε) is the set of utility functions, given by:

Û∗
2 (ε) �

{
u ∈ U2 : u

′(z) ≤ inf
[
u′(z)

] [
1

ε
− 1

]
∀z ∈ S

}
. (13)

Our definition requires the 1st degree differentiation of the utility function and ε2. In
contrast, Leshno and Levy (2002) rely on a single ε value, as indicated by (2).

Theorem 2 F is said to -Almost SSD dominates G if and only if EF [u (X)] ≥ EG [u (Y )]
for all u ∈ Û∗

2 (ε).

Proof See “Appendix D”.

Proposition 3 AFSD =⇒ ASSD. That is, F ε-Almost FSD dominates G, then F ε-Almost
SSD dominates G.

Proof See “Appendix E”.

Our proposed redefinition of ASD differentiates the ε values for AFSD and ASSD. This
framework also helps calibrate and connect the relationship between AFSD and ASSD.

4.3 Almost Nth-degree stochastic dominance

We extend our ASD redefinition to a higher order in this section. Consider two alternative
investments, X and Y , with CDFs F(z) and G(z), respectively. Define the area over which
Nth-Degree SD is violated by SN:

SN �
{
z ∈ SN−1:F

(N )(z) > G(N )(z)
}
,

where F (N )(z) � ∫ z
z F (N−1) (t) dt and G(N )(z) � ∫ z

z G(N−1)dt .
Define the ratio between the area of Nth-Degree SD violation and the total area between

the cumulative distributions by εN :

εN �
∫
SN

[F(z) − G(z)] dz∫
SN

[F(z) − G(z)] dz +
∫
S̄N

[G(z) − F(z)] dz

�

∫
SN

[F(z) − G(z)] dz∫
S |F(z) − G(z)| dz (14)

Definition 3 For 0 < ε < 0.5, F ε-Almost Nth- Degree SD dominates G if and only if
εN ≤ ε. The smaller εN , the stronger the ANSD. When εN � 0, no violation area exists,
Almost SD reduces to the standard Nth- Degree SD criterion.

Proposition 4 F �ANSD G ⇒ EF (X) > EG (Y ). If F ε-Almost Nth- Degree SD dominates
G, then EF (X) > EG (Y ) .

Proof The proof is similar to the proof for Proposition 2.

Define UN � {
u : (−1)n+1 u(n) ≥ 0, n � 1, 2, . . . , N

}
, where u(n) denotes the nth

degree derivative of the utility function u. In addition, define Û∗
N (ε) is the set of utility

functions, given by:

Û∗
N (ε) �

{
u ∈ UN : u′(z) ≤ inf

[
u′(z)

] [
1

ε
− 1

]
∀z ∈ S

}
. (15)

We present Lemma 1 as the prerequisite to prove Theorem 3.
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Fig. 1 The Payoff CDFs of F and G as defined in (16) and (17)

Lemma 1 If u ∈ UN and z ∈ S̄N , thenwe have
∫
S̄N

u′(z) [G(z) − F(z)] dz ≥ 0, f or N �
1, 2, . . .

Proof See “Appendix F”.

Theorem 3 F ε-Almost Nth-Degree SD dominates G if and only if EF [u (X)] ≥ EC [u (Y )]
for all u ∈ Û∗

N (ε).

Proof See “Appendix G”.

Proposition 5 Almost Nth-Degree SD =⇒ Almost N+1th-Degree SD. That is, F ε-Almost
NSD dominates G, then F ε-Almost (N+1) SD dominates G.

Proof The proof is similar to the proof for Proposition 3.

In terms of implementation, all the ε values in our definition are based on direct integration
of violation and non-violation areas. Further numerical analysis can be avoided in our version
but required in Tsetlin et al. (2015).

5 Reexamining the counterexamples under our redefinition of ASD

We reexamine two counterexamples in this section: the counterexample in Tzeng et al. (2013)
to theASDdefinition in Leshno and Levy (2002) and the counterexample byGuo et al. (2013)
to the definition in Tzeng et al. (2013).

First, we outline the counterexample in Tzeng et al. (2013) to the version in Leshno and
Levy (2002) as follows.

Let x ∈ [0, 5] . Assume the two payoff distributions are (Fig. 1)

F(z) �
⎧⎨
⎩
0, if 0 ≤ z < 2,
3
4 , if 2 ≤ z < 5,
1, if z � 5,

(16)

G(z) �
⎧⎨
⎩
0, if 0 ≤ z < 1
1
4 , if 1 ≤ z < 3
1, if 3 ≤ z ≤ 5

(17)

We follow (3)–(4) and define S1 � {z:F(z) > G(z)} � {z : z ∈ [2, 3]} and S2 �{
z ∈ S1:

∫ z
0 F (t) dt >

∫ z
0 G (t) dt

} � {z : z ∈ [5/2, 3]}. If we follow (2) as defined in Leshno

and Levy (2002), the value 1/4
|1/4|+|−1/4|+|−1/4|+|1/2| � 1

5 ≤ ε < 0.5 satisfies ASSD condition.
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1

1/2

2/31/3 1

F

G

-1/6

1/3

Fig. 2 The Payoff CDFs of F and G as defined in (18) and (19)

Their absolute value treatment inflates the denominator and deliberately decreases the ratio.
Accordingly, it helps ASSD to hold.

Tzeng et al. (2013) further define a utility function whose marginal utility satisfies the
following conditions:

u′(z) �
⎧⎨
⎩

21
2 − z, if 0 ≤ z ≤ 5

2 ,
18 − 4z, if 5

2 ≤ z ≤ 4,
6 − z, if 4 ≤ z ≤ 5.

The authors show that the defined utility function lies in U∗
2 (ε) as defined in (13), but

EF [u (X)] < EG [u (Y )]. This violates the theorem for ASSD in Leshno and Levy (2002).
Furthermore, we follow our ASD redefinition and reexamine the counterexample in Tzeng

et al. (2013). Actually, the defined utility function does not lie in the utility set Û∗
2 (ε) even

though ε2 � 1/4
1/4+1/4+(−1/4)+1/2 � 1/3 ≤ ε < 0.5 satisfies our ASSD condition. That is, the

sup
[
u′(z)

]
occurs when z � 0 and 21

2 � sup
[
u′(z)

]
> u′(z) > in f

[
u′(z)

] [
1
ε2

− 1
]

� 1∗2.
Yet, we expect the former to be less than or equal to the latter, as indicated in (13). Thus,
the utility used in Tzeng et al. (2013) does not lie in the utility set Û∗

2 (ε), as defined in
(13). Accordingly, we do not need to further discuss the relation between EF [u (X)] and
EG [u (X)] . Since we cannot compare EF [u (X)] and EG [u (X)], this specific counterex-
ample is valid to Leshno and Levy (2002), but not applicable to our Theorem 2.

Next, Guo et al. (2013) do not propose theirASD redefinition but present a counterexample
to the version in Tzeng et al. (2013). We outline the counterexample in Guo et al. (2013) as
follows. Assume the two payoff distributions are defined and depicted (Fig. 2) as:

F(z) �
{ 1

2 i f 0 ≤ z < 1,
1 i f z � 1,

(18)

G(z) �
{
0 i f 0 ≤ z < 1/3
1 i f 1/3 ≤ z ≤ 1

(19)

S1 � {z:F(z) > G(z)} �
{
z : z ∈

[
0,

1

3

]}

Guo et al. (2013) show that their counterexample satisfies AFSD but not the ASSD def-
inition in Tzeng et al. (2013). That is, the version in Tzeng et al. (2013) does not possess
HP.

Alternatively, we follow our ASD redefinition and calculate the respective εi (∀i � 1,
2) values for AFSD and ASSD. ε1 value indicates that F ε-Almost FSD dominates G for

ε1 � 1
6

1
6 +

1
3

� 1
3 ≤ ε < 0.5. ε2 value also shows the positive outcome since ε2 � 1

6
1
6 +

1
3

�
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1
3 ≤ ε1 ≤ ε < 0.5; that is, F ε-Almost SSD dominates G. Thus, AFSD implies ASSD and
HP holds. We confirm that HP holds in the counterexample in Guo et al. (2013) if we follow
our ASD definition. That is, our version of the ASD definition does not violate HP.

In short, our ASD definition possesses both HP and EUMP.

6 Conclusion

Almost Stochastic Dominance has considerable room for application, but the previous stud-
ies do not reach a generally accepted definition, especially on the second-degree case. We
contribute with our version of ASD, which can even be extended to Nth-Degree case.

We review the GASSD definition in Tsetlin et al. (2015) and address its shortcomings
in two aspects: defining utility function before CDF and the implementation. We also show
that our version contributes to avoid the two shortcomings and secure economic intuition.
Further, we follow our ASSD definition that minimizes the assumption and reexamine the
respective counterexamples in Tzeng et al. (2013) and Guo et al. (2013). The former to the
ASD definition in Leshno and Levy (2002) is valid, but this version does not apply to our
ASD theorem. The latter in Guo et al. (2013) possesses HP under our ASD redefinition.
These investigations prove that our ASD redefinition prevails.

Appendix A: Proof to Proposition 1

1.

ε1 �
∫
S1
[F(z) − G(z)] dz∫

S |F(z) − G(z)| dz �
∫
S1
[F(z) − G(z)] dz∫

S1
[F(z) − G(z)] dz +

∫
S̄1
[G(z) − F(z)] dz

�
∫
S1
[F(z) − G(z)] dz∫

S1
[F(z) − G(z)] dz +

∫
S̄1
[G(z) − F(z)] dz +

∫
S1
[G(z) − F(z)] dz − ∫

S1
[G(z) − F(z)] dz

�
∫
S1

[F(z) − G(z)] dz∫
S [G(z) − F(z)] dz + 2

∫
S1

[F(z) − G(z)] dz
� VA1

EF − EG + 2VA1
,

where VA1 denotes the FSD violation area and EF and EG denote EF (X) and EG (Y),
respectively.
For S1 
� ∅, VA1 > 0, if EF (X) ≤ EG (Y ), then ε1 ≥ 0.5. Therefore, if F ε-Almost
FSD dominates G, then EF (X) > EG (Y ).

2. If you add the condition, S1 /∈ ∅, then EF (X) > EG (Y ) ⇒ F �AFSD G.
For S1 /∈ ∅, VA1 > 0, if EF > EG, then 21 ≤ ε < 0.5, F ε-Almost FSD dominates G.

Appendix B: Proof to Theorem 1

1. “Only if” part: We show that if

ε1 ≤ ε (B1)

then EF [u (X)] ≥ EG [u (Y)] for all u ∈ Û∗
1 (ε). By integration by parts, we have
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EF [u (X)] �
∫ z̄

z
u(z)dF(z) � [u(z)F(z)]z̄z −

∫ z̄

z
u′(z)F(z)dz � u (x̄) −

∫ z̄

z
u′(z)F(z)dz.

and

(B2)

EF [u (X)] − EG [u (Y)] �
∫ z̄

z
u′(z) [G(z) − F(z)] dz

�
∫
S1
u′(z) [G(z) − F(z)] dz

+
∫
S̄1
u′(z) [G(z) − F(z)] dz,

where over S2, F(z) > G(z) and S̄1 is the compliment of S1 in
[
x, x̄

]
. If u ∈ U1, then

the first integral part is non-positive,
∫
S1
u′(z) [G(z) − F(z)] dz ≤ 0 and we could have

FSD of F over G under S̄1, that is G(z) − F(z) > 0 for all z ∈ S̄1. Note that as u ∈ U1

(u′ > 0) the integral over S̄1 is nonnegative,
∫
S̄1
u′(z) [G(z) − F(z)] dz ≥ 0. Denote that

inf
[
u′ (x)

] � θ and sup
[
u′ (x)

] � θ̄ . Thus we have

EF [u (X)] − EG [u (Y)] ≥ θ̄

∫
S1
[G(z) − F(z)] dz + θ

∫
S̄1
[G(z) − F(z)] dz

� − (
θ̄ + θ

) ∫
S1
[F(z) − G(z)] dz + θ

{∫
S1
[F(z) − G(z)] dz +

∫
S̄1
[G(z) − F(z)] dz

}
c

(B3)

Since ∈ Û∗
1 (ε), by definition, we have θ̄ ≤ θ (1/ε − 1); i.e., ε ≤ θ/

(
θ̄ + θ

)
. By (B1), we

have

ε1 �
∫
S1
[F(z) − G(z)] dz∫

S1
[F(z) − G(z)] dz +

∫
S̄1
[G(z) − F(z)] dz

≤ ε ≤ θ(
θ̄ + θ

) (B4)

By (B3) and (B4), we prove that EF [u (X)] − EG [u (Y )] ≥ 0 for all u ∈ U∗
1 (ε).

2. “If” part: We show that if

ε1 > ε (B5)

then there exist a u ∈ Û∗
1 (ε) such EF [u (X)] − EG [u (Y )] < 0.

It is obvious that u ∈ Û∗
1 (ε), ε � θ/

(
θ̄ + θ

)
. With no loss of generality, we assume that

S1 is an interval and denote S1 � [a, b], and S̄1 � [a, b] (the complement of [a, b] in
[
z, z̄

]
.

Define

u(z) �
⎧⎨
⎩

θ z if z ≤ z ≤ a
θ̄ (z − a) + θa if a ≤ z ≤ b
θ (z − b) + θ̄b + θa if b ≤ z ≤ z̄

.

We have

EF [u (X)] − EG [u (Y )] �
∫
S1
u′(z) [G(z) − F(z)] dz +

∫
S̄1
u′(z) [G(z) − F(z)] dz

� θ̄

∫
S1
[G(z) − F(z)] dz + θ

∫
S̄1
[G(z) − F(z)] dz

� − (
θ̄ + θ

) ∫
S1
[F(z) − G(z)] dz + θ

{∫
S1
[F(z) − G(z)] dz +

∫
S̄1
[G(z) − F(z)] dz

}
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We assume that

ε1 �
∫
S1
[F(z) − G(z)] dz∫

S1
[F(z) − G(z)] dz +

∫
S̄1
[G(z) − F(z)] dz

> ε >
θ(

θ̄ + θ
) ,

thus we have EF [u (X)]−EG [u (Y )] < 0. This completes the proof of the if part of Theorem
1.

Appendix C: Proof to Proposition 2

1.
ε2 �

∫
S2

[F(z) − G(z)] dz∫
S2

[F(z) − G(z)] dz +
∫
S̄2

[G(z) − F(z)] dz

�
∫
S2

[F(z) − G(z)] dz∫
S2

[F(z) − G(z)] dz +
∫
S̄2

[G(z) − F(z)] dz +
∫
S2

[G(z) − F(z)] dz − ∫
S2

[G(z) − F(z)] dz

�
∫
S2

[F(z) − G(z)] dz∫
S [G(z) − F(z)] dz + 2

∫
S2

[F(z) − G(z)] dz
� VA2

EF − EG + 2VA2
,

where VA2 denotes the SSD violation area and EF and EG denote EF (X) and EG (Y),
respectively.
For S2 
� ∅, VA2 > 0, if EF (X) < EG (Y ), then ε2 >0.5. Therefore, if F ε-Almost SSD
dominates G, then EF (X) > EG (Y ).

2. If you have additional condition, S2 /∈ ∅, then EF (X) > EG (Y ) ⇒ F �ASSD G.
For S2 /∈ ∅, VA2 > 0, if EF > EG, then ε2 ≤ ε <0.5, F ε-Almost SSD dominates G.

Appendix D: Proof to Theorem 2

1. “Only if” part: We show that if

ε2 ≤ ε (D1)

then EF [u (X)] ≥ EG [u (Y )] for all u ∈ Û∗
2 (ε). By integration by parts, we have

EF [u (X)] �
∫ z̄

z
u(z)dF(z) � [u(z)F(z)]z̄z −

∫ z̄

z
u′(z)F(z)dz � u (z) −

∫ z̄

z
u′(z)F(z)dz.

and

(D2)

EF [u (X )] − EG [u (Y )] �
∫ z̄

z
u′(z) [G(z) − F(z)] dz

�
∫
S2
u′(z) [G(z) − F(z)] dz

+
∫
S̄2
u′(z) [G(z) − F(z)] dz,

where over S2, F(z) > G(z) and S̄2 is the compliment of S2 in
[
z, z̄

]
. If u ∈ U2, then the

first integral part is non-positive,
∫
S2
u′(z) [G(z) − F(z)] dz ≤ 0 and we could have SSD

of F over G under S̄2, that is
∫ z
z [G (t) − F (t)] dt > 0 for all z ∈ S̄2. Note that as u ∈ U2
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(u′is decreasing) the integral over S̄2 is nonnegative,
∫
S̄2
u′(z) [G(z) − F(z)] dz ≥ 0.

Denote that inf
[
u′ (x)

] � θ and sup
[
u′ (x)

] � θ̄ . Thus, we have

EF [u (X)] − EG [u (Y )] ≥ θ̄

∫
S2
[G(z) − F(z)] dz + θ

∫
S̄2
[G(z) − F(z)] dz

� − (
θ̄ + θ

) ∫
S2
[F(z) − G(z)] dz + θ

{∫
S2
[F(z) − G(z)] dz +

∫
S̄2
[G(z) − F(z)] dz

}

(D3)

Since u ∈ U∗
2 (ε), by definition, we have θ̄ ≤ θ (1/ε − 1); i.e., ε ≤ θ/

(
θ̄ + θ

)
. By (D1),

we have

ε2 �
∫
S2
[F(z) − G(z)] dz∫

S2
[F(z) − G(z)] dz +

∫
S̄2
[G(z) − F(z)] dz

≤ ε ≤ θ(
θ̄ + θ

) (D4)

By (D3) and (D4), we prove that EF [u (X)] − EG [u (Y)] ≥ 0 for all u ∈ Û∗
2 (ε).

The integration specified in Appendix D occurs over both S̄2 and S2, but the dispute lies
on the integration over S̄2; that is,

∫
S̄2
u′(z) [G(z) − F(z)] dz. Take Fig. 1 for example,

S̄2 includes A, B, and D. Thus, the integration from the origin should be positive. That
is, when z1 ∈ S̄2, we do not have F (z1) ≤ G (z1), but F (2) (z1) > G(2) (z1).

2. “If” part: We show that if

ε2 > ε (D5)

then there exist a u ∈ Û∗
2 (ε) such EF [u (X)] − EG [u (Y)] < 0.

It is obvious that u ∈ Û∗
2 (ε), ε � θ/

(
θ̄ + θ

)
. With no loss of generality, we assume that

S2 is an interval and denote S2 � [a, b], and S̄2 � [a, b] (the complement of [a, b] in[
z, z̄

]
. Define

u(z) �
⎧⎨
⎩

θ z if z ≤ z ≤ a
θ̄ (z − a) + θa if a ≤ z ≤ b
θ (z − b) + θ̄b + θa if b ≤ z ≤ z

.

We have

EF [u (X)] − EG [u (Y )] �
∫
S2
u′(z) [G(z) − F(z)] dz +

∫
S̄2
u′(z) [G(z) − F(z)] dz

� θ̄

∫
S2
[G(z) − F(z)] dz + θ

∫
S̄2
[G(z) − F(z)] dz

� − (
θ̄ + θ

) ∫
S2
[F(z) − G(z)] dz + θ

{∫
S2
[F(z) − G(z)] dz +

∫
S̄2
[G(z) − F(z)] dz

}

We assume that

ε2 �
∫
S2
[F(z) − G(z)] dz∫

S2
[F(z) − G(z)] dz +

∫
S̄2
[G(z) − F(z)] dz

> ε >
θ(

θ̄ + θ
) ,

We thus have EF [u (X)] − EG [u (Y )] < 0. This completes the proof of the if part of
Theorem 2.
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Appendix E: Proof to Proposition 3

S̄2 � S̄1 + (S1 − S2)

ε1 �
∫
S1

[F(z) − G(z)] dz∫
S |F(z) − G(z)| dz �

∫
S1

[F(z) − G(z)] dz∫
S1

[F(z) − G(z)] dz +
∫
S̄1
[G(z) − F(z)] dz

ε2 �
∫
S2

[F(z) − G(z)] dz∫
S2

[F(z) − G(z)] dz +
∫
S̄2

[G(z) − F(z)] dz

�
∫
S2

[F(z) − G(z)] dz∫
S2

[F(z) − G(z)] dz +
∫
S̄1
[G(z) − F(z)] dz +

{∫
S1

[G(z) − F(z)] dz − ∫
S2

[G(z) − F(z)] dz
}

Define a=
∫
S1
[F(z) − G(z)] dz>0, b=

∫
S̄1
[G(z)−F(z)] dz>0, c=

∫
S2
[F(z)−G(z)] dz >

0 S2 ⊂ S1, this means a ≥ c.
Then, ε1 � a

a+(b−a)+a and ε2 � c
c+(b−a)+c .

If ε1 < ε < 0.5 and a ≥ c, then b > a and ε2 ≤ ε1 < ε < 0.5. Thus, ASSD holds.

Appendix F: Proof to Lemma 1

When n=1,

G(z) − F(z) > 0 for all z ∈ S̄1.

If u′(z) ≥ 0, then
∫
S̄1
u′(z) [G(z) − F(z)] dz ≥ 0.

Thus, as u ∈ U1 the integral over S̄1 is nonnegative.
When n=2,

G(2)(z) − F (2)(z) �
∫ z

z
[G (t) − F (t)] dt > 0 for all z ∈ S̄2.

If u′(z) ≥ 0 and u′′(z) ≤ 0 (this means u′(z) is non-increasing), then∫
S̄2
u′(z) [G(z) − F(z)] dz ≥ 0.

Therefore, as u ∈ U2 the integral over S̄2 is nonnegative.
When n=3,∫

S̄3
u′(z) [G(z) − F(z)] dz � u′ (z)

[
G(2) (z) − F (2) (z)

]
+

∫
S̄3

− [
u′′(z)

] [
G(2)(z) − F (2)(z)

]
dz

G(3)(z) − F (3)(z) �
∫ z

z

[
G(2) (t) − F (2) (t)

]
dt > 0 for all z ∈ S̄3.

If u′′(z) ≤ 0 and u′′′(z) ≥ 0 (this means −u′′(z) is non-increasing), then∫
S̄3

− [
u′′(z)

] [
G(2)(z) − F (2)(z)

]
dz ≥ 0.

Since u′ (z̄)
[
G(2) (z) − F (2) (z)

]
> 0 and

∫
S̄3

− [
u′′(z)

] [
G(2)(z) − F (2)(z)

]
dz ≥ 0, thus∫

S̄3
u′(z) [G(z) − F(z)] dz ≥ 0

Therefore, as u ∈ U3 the integral over S̄3 is nonnegative.
When n=N > 3,∫
S̄N

u′(z) [G(z) − F(z)] dz � u′ (z̄)
[
G(2) (z̄) − F(2) (z̄)

]
+

∫
S̄N

− [
u′′(z)

] [
G(2)(z) − F (2)(z)

]
dz

� u′ (z)
[
G(2) (z) − F (2) (z)

]
+

[−u′′ (z)
] [

G(3) (z) − F (3) (z)
]
+

∫
S̄N

u′′(z)
[
G(3)(z) − F (3)(z)

]
dz

� · · ·
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�
N−1∑
n�2

(−1)n u(n−1) (z)
[
G(n) (z) − F (n) (z)

]
+

∫
S̄N

(−1)N
[
u(N−1)(z)

] [
G(N−1)(z) − F (N−1)(z)

]
dz

G(N )(z) − F (N )(z) � ∫ z
z

[
G(N−1) (t) − F (N−1) (t)

]
dt > 0 for all z ∈ S̄N .

If (−1)N−1 u(N−1)(z) ≤ 0 and (−1)N−1 uN (z) ≥ 0 (this means (−1)N u(N−1)(z) is
non-increasing), then

∫
S̄N

(−1)N
[
u(N−1)(z)

] [
G(N−1)(z) − F (N−1)(z)

]
dz ≥ 0.

Since
∑N−1

n�2 (−1)n u(n−1) (z)
[
G(n) (z) − F (n) (z)

]
> 0 and

∫
S̄N

(−1)N
[
u(N−1)(z)

]
[
G(N−1)(z) − F (N−1)(z)

]
dz ≥ 0, thus

∫
S̄N

u′(z) [G(z) − F(z)] dz ≥ 0

Therefore, as u ∈ UN the integral over S̄N is nonnegative.

Appendix G: Proof to Theorem 3

1. “Only if” part: We show that if

εN ≤ ε (G1)

then EF [u (X)] ≥ EG [u (Y )] for all u ∈ U∗
N (ε). By integration by parts, we have

EF [u (X)] �
∫ z̄

z
u(z)dF(z) � [u(z)F(z)]z̄z −

∫ z̄

z
u′(z)F(z)dz � u (z) −

∫ z̄

z
u′(z)F(z)dz.

and

(G2)

EF [u (X )] − EG [u (Y )] �
∫ z̄

z
u′(z) [G(z) − F(z)] dz

�
∫
SN

u′(z) [G(z) − F(z)] dz

+
∫
S̄N

u′(z) [G(z) − F(z)] dz,

where over SN,F(z) > G(z) and S̄N is the compliment of SN in
[
z, z̄

]
. If u ∈ UN, then

the first integral part is non-positive,
∫
SN

u′(z) [G(z) − F(z)] dz ≤ 0 and we could have

Nth-Degree SD of F over G under S̄N , that is G(N )(z) − F (N )(z) > 0 for all z ∈ S̄N . In
addition, Lemma 1 specifies if z ∈ S̄N and (−1)n u(n−1) ≥ 0, n � 2, 3, . . . , N, then the
second part integral is also non-negative,

∫
S̄N

u′(z) [G(z) − F(z)] dz ≥ 0. Denote that

inf
[
u′(z)

] � θ and sup[u′(z)] � θ̄ . Thus we have

EF [u (X)] − EG [u (Y )] ≥ θ̄

∫
SN

[G(z) − F(z)] dz + θ

∫
S̄N

[G(z) − F(z)] dz

� − (
θ̄ + θ

) ∫
SN

[F(z) − G(z)] dz + θ

{∫
SN

[F(z) − G(z)] dz +
∫
S̄N

[G(z) − F(z)] dz

}

(G3)

Since u ∈ U∗
N(ε), by definition, we have θ̄ ≤ θ (1/ε − 1); i.e., ε ≤ θ/

(
θ̄ + θ

)
. By (G1),

we have

εN �
∫
SN

[F(z) − G(z)] dz∫
SN

[F(z) − G(z)] dz +
∫
S̄N

[G(z) − F(z)] dz
≤ ε ≤ θ(

θ̄ + θ
) (G4)

By (G3) and (G4), we prove that EF [u (X)] − EG [u (Y )] ≥ 0 for all u ∈ U∗
N (ε).
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2. “If” part: We show that if

εN > ε (G5)

then there exist a u ∈ U∗
N (ε) such EF [u (X)] − EG [u (Y )] < 0.

It is obvious that u ∈ U∗
N(ε), ε � θ/

(
θ̄ + θ

)
. With no loss of generality, we assume that

SN is an interval and denote SN � [a, b], and S̄N � [a, b] (the complement of [a, b] in[
z, z̄

]
. Define

u(z) �
⎧⎨
⎩

θ z if z ≤ z ≤ a
θ̄ (z − a) + θa if a ≤ z ≤ b
θ (z − b) + θ̄b + θa if b ≤ z ≤ z̄

.

We have

EF [u (X)] − EG [u (Y )] �
∫
SN

u′(z) [G(z) − F(z)] dz +
∫
S̄N

u′(z) [G(z) − F(z)] dz

� θ̄

∫
SN

[G(z) − F(z)] dz + θ

∫
S̄N

[G(z) − F(z)] dz

� − (
θ̄ + θ

) ∫
SN

[F(z) − G(z)] dz + θ

{∫
SN

[F(z) − G(z)] dz +
∫
S̄N

[G(z) − F(z)] dz

}

We assume that

εN �
∫
SN

[F(z) − G(z)] dz∫
SN

[F(z) − G(z)] dz +
∫
S̄N

[G(z) − F(z)] dz
> ε >

θ(
θ̄ + θ

) ,
We thus have EF [u (X)] − EG [u (Y )] < 0. This completes the proof of the if part of
Theorem 3.
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