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Abstract Using transportation mode and flow dependent cost structures on the classical
p-hub median problems affects the shape of its linear cost function. While there is a vast
literature about the classical problem, the studies with cost structures different than linear
functions are rare. In this study, several cost structures such as all unit discount model,
modified all unit discount model, car load discount model and container cost structures,
which are especially useful in freight transportation, are considered. It is shown that some
easy classical problems become NP-hard when the linearity of the cost functions is lost.

Keywords p-Hub median problem · Non-linear objective function · Complexity ·
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1 Introduction

In the real life flow of people, commodities, information, energy, etc. between many orig-
in–destination (O–D) pairs may be observed. Amany-to-many distribution system deals with
transportations between many origins and many destinations. In such a distribution system,
transportation through indirect paths based on consolidation of flows on common links can
often be preferred to direct transports because of economies of scale. The beginning node
of such a common link on a network acts as a consolidation center of flows and the ending
node of the link acts as a dissemination center of flows. Center nodes are called “hub” and
non-hub nodes are called “spoke”.

Let G =(N , E) be a connected graph where N ={1, 2,…, n} is the set of nodes, E is
the set of edges, and P be the set of p hubs. The p-hub median problem (p-HMP) is to find
P ⊆ N and paths of the flows between the O–D pairs such that the total transportation cost

B Hüseyin Güden
huseyin.guden@emu.edu.tr

1 Industrial Engineering Department, Eastern Mediterranean University, Famagusta, North Cyprus via
Mersin 10, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-018-2824-0&domain=pdf
http://orcid.org/0000-0001-6520-4715


230 Ann Oper Res (2021) 298:229–247

4

5

9

1

2

6

3

7

8

Fig. 1 A solution of a 3-SHMP with 9 nodes

is minimized subject to the constraints: (i) 1 or 2 of hubs operates between any O–D pair, (ii)
the flows between hubs are direct and (iii) flow between any O–D pair uses a single path.

If all flows from and to a spoke are restricted to be sent and received through a single hub
the problem is then called the single-allocation p-hub median problem (p-SHMP). If there is
no such a restriction the problem is then called the multiple-allocation p-hubmedian problem
(p-MHMP).

If the locations of the hubs are given, the remaining part of the problem is called as the
allocation problem. According to the allocation type, the problems are called as the multiple-
allocation p-hub allocation problem (p-MHAP) and the single-allocation p-hub allocation
problem (p-SHAP).

Figure 1 shows a solution of a 3-SHMP with 9 nodes. In this solution, nodes 3, 7 and 8
are selected as the hubs. The others are spokes. Nodes 1, 2 and 6 are assigned to hub 3, node
4 is assigned to hub 7, and nodes 5 and 9 are assigned to hub 8. As an example, the flow from
node 1 to node 9 follows the path 1→ 3→8→ 9.

The total transportation cost consists of the cost occurred between spokes and hubs, and
between hubs. LetQij be the amount of the total flow from node i to node j andCij(Qij) be the
total transportation cost of this flow. Most studies in the literature assume Cij(Qij) as a linear
function ofQij, i.e.,Cij(Qij)=cij*Qij where cij is unit transportation cost fromnode i to node j.
Discount factor α (0≤α ≤1) is used on the inter-hub links in order to incorporate economies
of scale into the models. If node k and nodem are hubs then Ckm(Qkm)=α*ckm*Qkm. Let wij

be the amount of flow from node i to node j.
The mathematical model of the (classical) p-MHMP is given below (Campbell 1992).

min TC �
∑

i∈N

∑

k∈N

∑

m∈N

∑

j∈N−{i}
wi j (cik + α · ckm + cmj )xikmj (1)

s.t.
∑

k∈N

∑

m∈N
xikmj � 1 ∀i, j ∈ N |i �� j (2)

xikmj ≤ ykk ∀i, j, k,m ∈ N |i �� j (3)

xikmj ≤ ymm ∀i, j, k,m ∈ N |i �� j (4)
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∑

k∈N
ykk � p (5)

xikmj ≥ 0 ∀i, j, k,m ∈ N |i �� j (6)

ykk ∈ {0, 1} ∀k ∈ N (7)

In this model, decision variable xikmj is the fraction of the flow from node i to node j that
follows the path i → k → m → j. ykk is 1 if node k is selected as a hub and 0 otherwise.
Objective function (1) is the minimization of the total transportation cost which is a linear
function of the transportation amounts. Constraint (2) ensures that all the flows between all
O–D pairs are transported. Constraints (3) and (4) guarantee that flow between any O–D pair
can be sent or received via only the nodes selected as hub. Constraint (6) ensures that p nodes
are selected as hub.

The mathematical model of the (classical) p-SHMP is given below (Skorin-Kapov et al.
1996).

Min (1)

s.t.

(5) − (7)
∑

m∈N
xikmj � yik ∀i, j, k ∈ N |i �� j (8)

∑

k∈N
xikmj � y jm ∀i, j,m ∈ N |i �� j (9)

∑

k∈N
yik � 1 ∀i ∈ N (10)

yik ≤ ykk ∀i, k ∈ N (11)

In this model, the new decision variable yik is a binary variable which is 1 if node i is
allocated to hub k and 0 otherwise. The other decision variables are the same with the ones
in the previous model. Constraints (8) and (9) ensure that each node sends and receives all
of its flows using the hub that it is allocated to. Constraint (10) guarantees that each node is
allocated to a single hub. Constraint (11) allows any node to be allocated to a node if it is
selected as a hub.

Note that even if xikmj variables are not defined as binary variables in these models, in the
optimal solutions they are 0 or 1 valued. This property is not guaranteed by these models if
some non-linear cost structures are used. i.e., Constraint (iii) in the problem definition can be
violated if these models are used with some non-linear cost structures. Some part of the flow
from an origin to a destination may follow a path and some other parts of it may follow some
other paths. Moreover, when the origin or the destination of a flow is a hub constraint (ii) in
the problem definition can be violated by the first model if some non-linear cost functions
are used. In a solution of that model, a hub node may send or receive its own flow via some
other hubs as if itself is a spoke. Let’s assume k, m, t and j as four nodes in N , and k, m
and t are selected as hub in a solution. Let’s consider the flow wkj. Normally, according to
constraint (ii) in the problem definition, wkj may follow a path like k → m → j (in this case
xkkmj must be 1). But if a non-linear cost structure is used it may follow a path like k → t
→ m → j (in this case xktmj will be 1) in the optimal solution of the first model. In this path
node k and node m are hubs but the transportation between them is not direct. The reason
behind such a strange solution may be the effort of increasing the total flow sent from hub
t to hub m in order to obtain a higher cost discount there. In the second model constraint

123



232 Ann Oper Res (2021) 298:229–247

(11) cuts such solutions. These risks related with the use of the above models are not valid
for the problems with linear cost functions of the flow amounts [objective function (1) in the
models]. Mathematical models of the (general cost) p-MHMP and (general cost) p-SHMP
are developed considering these mentioned matters and they are presented below.

The mathematical model of the (general cost) p-MHMP is given below.

min TC �
∑

i∈N

∑

k∈N
Cik

⎛

⎝
∑

m∈N

∑

j∈N−{i}
wi j xikmj

⎞

⎠ +
∑

k∈N

∑

m∈N
Ckm

⎛

⎝
∑

i∈N

∑

j∈N−{i}
wi j xikmj

⎞

⎠

+
∑

m∈N

∑

j∈N
Cmj

⎛

⎝
∑

i∈N−{ j}

∑

k∈N
wi j xikmj

⎞

⎠ (12)

s.t.

(2) , (5) , (7) , (11)

xikmj ≤ yik ∀i, k,m, j ∈ N |i �� j (13)

xikmj ≤ y jm ∀i, k,m, j ∈ N |i �� j (14)

ykm ≤ 1 − ykk ∀k,m ∈ N |k �� m (15)

xikmj ∈ {0, 1} ∀i, k,m, j ∈ N |i �� j (16)

In this model, objective function (12) is the minimization of the total transportation cost
which is a general function of the transportation amounts. Constraints (13) and (14) ensure
that each node sends and receives its flows using the hubs that it is allocated to. Constraint
(15) guarantees that if a node is selected as a hub then it sends and receives all of its flows via
itself. Constraint (16) prevents fractional transportations of flows via different paths between
the O–D pairs.

In the above model of (Skorin-Kapov et al. 1996), replacing objective function (1) with
(12) and constraint (6) with (16) is enough to obtain the mathematical model of the (general
cost) p-SHMP.

The first study that we have found about “hub” concept belongs to Minas and Mitten
(1958). They assume one “central” and a number of “outlying” terminals and define the
central terminal as the “hub” of the system. There are commodity flows between the terminals
but the flows are forced to be transported by trucks via the hub, i.e., direct transportations
between the “outlying” terminals (spokes) are forbidden. They consider the truck scheduling
problem. Then, perhaps the first article on the hub location problem is Goldman (1969).
O’Kelly (1987) presents the first mathematical model of the problem. Then the problem
becomes one of the most studied location problems. Several versions and extensions of
the problem are considered in the literature. There are some studies like Aykin (1995) and
O’Kelly (1992) considering the continuous version of the problem in which hubs can be
located at all points on a plane, they are not restricted by the nodes of a graph. Several studies
such as Yaman and Carello (2005), and Costa et al. (2008) consider capacitated hub location
problems. Some recent studies like Alamur et al. (2016) consider dynamic version of the
problem. In some studies like Çetiner et al. (2010) transportation in routs between hubs and
spokes is considered instead of direct transportation. The p-hub center problem, the hub
set covering problem and the p-hub maximal covering problem can be given as some other
versions of the hub location problem. More information on the literature can be found in the
review studies of Campbell et al. (2002), Alamur and Kara (2008), Campbell and O’Kelly
(2012), and Farahani et al. (2013).
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To the best of our knowledge there are three studies on the complexity of the (classical)
p-hub median problem with flow independent costs. Sohn and Park (1997) show that the
p-SHMP is polynomially solvable if p =2. They show that the 2-SHAP reduces to the poly-
nomially solvablemin-cut problem. Then the 2-SHMP is solved by solving the corresponding
min-cut problems for each of the C(n 2) alternative locations of hubs.

Sohn and Park (1998) show that the p-MHMP is polynomially solvable for a fixed p. For
a given P the allocation part of the p-MHMP is to find the least costly path via the given hubs
for each O–D pair, i.e., min

k,m∈P
{cik + αckm + cmj } for all i, j ∈ N . For an O–D pair this path

can be found using shortest path algorithms. Thus the allocation part of the p-MHMP can be
solved in O(pn2) by running Floyd’s shortest path algorithm iteratively for each O–D pair.
Ultimately, the p-MHMP can be solved polynomially for fixed p by repeating this method
for each of the C(n p) alternative locations of hubs.

Kara (1999) shows that the p-SHMP is NP-hard when p ≥3. For a given hub locations,
the allocation part of the problem is equivalent to the NP-hard multi-processor assignment
problem. Since the multi-processor assignment problem has polynomially solvable special
cases the allocation part of the problem is then polynomially solvable, for instance, if the
flows form a k-tree over the set of nodes.

There are several studies likeO’Kelly andBryan (1998), Bryan (1998),Klincewicz (2002),
Horner and O’Kelly (2001), Kimms (2005), Racunicam and Wynter (2005), and Cunha and
Silva (2007) that consider transportation mode options and flow dependent cost structures,
but there is no known result about complexity of these problems. In this study we consider
linear costs between spokes and hubs, and non-linear costs between hubs. We consider four
different non-linear cost functions between the hubs which are especially useful in freight
transportation and show that all of the corresponding p-MHAP, p-MHMP, p-SHAP, and
p-SHMP are NP-hard even p =2.

In Sect. 2, the all unit discount cost structure is considered. The structure is explained
and NP-hardness proofs of the problems are given. Similar to the organization of Sect. 2, the
modified all unit discount cost structure, car load discount cost structure and container cost
structure are considered in Sects. 3, 4 and 5, respectively. The study is concluded and future
study issues are explained in Sect. 6.

2 All unit discount cost structure

There may be different transportation mode alternatives such as air, rail and land transporta-
tion between the hubs. Suppose that each mode has a different unit transportation cost that
is pertinent within specified load bounds. If there are two or more discount options, the
lower bound of a lower unit transportation cost determines the upper bound of a higher unit
transportation cost.

Let αkm(Q) be the discount factor applied to the freight of Q units transported from hub
k to hub m. In all unit discount cost structure, the same discount factor is applied to every
units of Q within corresponding load bounds and it is determined as follows.

αkm(Q) �

⎧
⎪⎪⎨

⎪⎪⎩

α1 0 < Q < LB2

α2 LB2 ≤ Q < LB3

: :
αL LBL ≤ Q
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Fig. 2 All unit discount model

Q

Ckm(Q)

LB2 LB3 LB4

where 1 ≥ α1 > α2 > · · · > αL > 0, LBl is the lower bound for load level l and L
denotes the number of discount factor options or load levels specified. Let dij be the distance
between nodes i and j. Then the total transportation cost of Q units from hub k to hub m is:
Ckm (Q) � αkm (Q)∗Q ∗dkm . Figure 2 shows the shape of Ckm(Q) for the all-unit-discount
model.

Theorem 1 The 2-MHAP with all unit discount cost in two levels is NP-hard.

Proof We show that the binary knapsack problem is polynomially reducible to the 2-MHAP
with all unit discount cost even if L =2.

Consider an instance of the binary knapsack problem as given below.

min
∑

i∈R

fi xi

s.t.
∑

i∈R

gi xi ≥ U

xi ∈ {0, 1} ∀i ∈ R � {1, 2, . . . , n}
where fi and gi are positive integers for all i ∈ R, and

∑
i∈R

gi > U .

Let a � max
i∈R

{
fi
gi

}
, b � min

i∈R

{
fi
gi

}
and r � 1

2 (a + b).

Consider the following instance of the 2-MHAP with all unit discount cost and L =2. Let
N (N =R) be the set of spokes and k and m (k,m /∈ N ) be the fixed hubs. Let

dkm � 1

2
a + r

dik � r ∀i ∈ N

dim � r +
fi
gi

− 1

2
b ∀i ∈ N

di j � d ji ∀i, j ∈ N ∪ {k,m}

wmk �
∑
i∈R

fi

(α1 − α2)dkm
+ 1
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wkm � 0

wik � gi ∀i ∈ N

wim � wmk + gi ∀i ∈ N

wi j � 0 ∀i ∈ N ∪ {k,m}, j ∈ N

α(Q) �
{

α1 0 < Q < wmk +U
α2 Q ≥ wmk +U

where α1 � a

2a + b
and α2 � b

2a + b
.

Note that, in such a setting, triangular inequalities for distances are always satisfied. Let
transportation costs between the nodes be equal to the distances. There is a discount only on
the edge between hub nodes k and m.

Now we will show that we solve the above hub allocation problem if and only if we can
solve the above knapsack problem.

For the load to be sent from spoke i to m, wim, the transportation path is either i → m or i
→ k → m. Although the unit transportation cost on the second path is based on the total load
to be sent on this path, the unit costs can be specified as dim and (dik +α2dkm), respectively,
assuming that the discount level on the path from k to m is the best option, i.e., α2. Note that∑

i∈N wim � nwmk +
∑

i∈R gi ≥ wmk + U , therefore, there is enough loads to achieve the
option α2 for the flow from k to m. Since the unit transportation cost of the second path is
smaller than the first one for all i ∈ N , all these loads follow the second path in the optimal
solution.

Note that the load wmk is shipped fromm to k. For the load from spoke i to k the two paths
that may be followed are i → k and i → m → k. Let S be the set of spokes that their loads
follow the second path. There may be two cases:

(i)
∑

i∈S wik < U
In this case, because wmk +

∑
i∈S wik � wmk +

∑
i∈S gi < wmk +U , the discount level

on the path from m to k is α1. The total transportation cost of the flows to hub k is then,

cost1(S) � α1wmkdmk +
∑

i∈S
wik · (dim + α1dmk) +

∑

i∈N/S

wikdik

� α1

α1 − α2

∑

i∈N
fi +

a

2
+ r
∑

i∈N
gi +

∑

i∈S
fi +

a − b

2

∑

i∈S
gi

� a

a − b

∑

i∈R

fi +
a

2
+
a + b

2

∑

i∈R

gi +
∑

i∈S
fi +

a − b

2

∑

i∈S
gi

(ii)
∑
i∈S

wik ≥ U

In this case, because wmk +
∑
i∈S

wik � wmk +
∑
i∈S

gi ≥ wmk + U the discount level on

the path from m to k is α2. The total transportation cost of the flows to hub k is then,

cost2(S) � α2wmkdmk +
∑

i∈S
wik · (dim + α2dmk) +

∑

i∈N/S

wikdik

� α2

α1 − α2

∑

i∈N
fi +

b

2
+ r
∑

i∈N
gi +

∑

i∈S
fi

� b

a − b

∑

i∈R

fi +
b

2
+
a + b

2

∑

i∈R

gi +
∑

i∈S
fi
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Note that, cost1(S) is minimized if S � ϕ and it is equal to

bestcost1 � α1

α1 − α2

∑

i∈R

fi +
a

2
+ r
∑

i∈R

gi � a

a − b

∑

i∈R

fi +
a

2
+
a + b

2

∑

i∈R

gi

On the other hand, cost2(S) is maximized if S =N and it is equal to

worstcost2 � α2

α1 − α2

∑

i∈R

fi +
b

2
+ r
∑

i∈R

gi +
∑

i∈R

fi � b

a − b

∑

i∈R

fi +
b

2
+
a + b

2

∑

i∈R

gi +
∑

i∈R

fi

Since (bestcost1 −worstcost2)= (a−b)/2≥0, any solution that belongs to the first case is
always worse than the one that belongs to the second case. So, the optimal solution belongs
to the second case. The problem is then to find S ⊆ N such that

∑
i∈S wik ≥ U and cost2(S)

is minimized. Because the first three components of cost2(S) are constant the problem is
equivalent to the knapsack problem given above. So, we solve this instance of the 2-MHAP
with all unit discount cost if and only if we can solve the above knapsack problem. Because
the knapsack problem is NP-hard then the 2-MHAP with all unit discount cost in two levels
is NP-hard. �

Theorem 2 The 2-SHAP with all unit discount cost in two levels is NP-hard.

Proof Changing wim =0 for all i ∈ N in the proof of Theorem 1 proves Theorem 2. Because
when wim =0 for all i ∈ N , the problem is to determine the flow amount wik that follows
the path i → k or the path i → m → k, which is equivalent to determining the hub that
spoke i is assigned to. In the proof of Theorem 1 it has been shown that this problem
is NP-hard. �

Theorem 3 The 2-MHMP with all unit discount cost in two levels is NP-hard.

Proof Direct result of Theorem 1. �

Theorem 4 The 2-SHMP with all unit discount cost in two levels is NP-hard.

Proof Direct result of Theorem 2. �

3 Modified all unit discount (shipping Q but declaring LBi + 1) cost
structure

This structure is useful if the firm is a customer of another trucking firm. In all unit discount
cost structure the total cost decreases when the total quantity passes to the next interval. In
order not to give more money the firm can declare that the total amount of the freight is equal
to the lower bound of the next interval if the total cost is higher than the one with the true
cost level. In this case the total transportation cost of Q units from hub k to hub m is:

Ckm (Q) �
⎧
⎨

⎩

αnQdkm f or LBn ≤ Q ≤ (αn+1/αn)LBn+1 and n � 1, . . . , L − 1
αn+1LBn+1dkm f or (αn+1/αn)LBn+1 ≤ Q ≤ LBn+1 and n � 1, . . . , L − 1
αL Qdkm f or LBL ≤ Q

Figure 3 shows the shape of Ckm(Q) for the modified-all-unit-discount model.

Theorem 5 The 2-MHAP with modified all unit discount cost in two levels is NP-hard.

Proof We show that the binary knapsack problem is polynomially reducible to the 2-MHAP
with modified all unit discount cost even if L =2.
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Fig. 3 Modified all unit discount
model

Q

Ckm(Q)

LB2 LB3 LB4

Consider an instance of the binary knapsack problem as given below.

max
∑

i∈R

fi xi

s.t.
∑

i∈R

gi xi ≤ U

xi ∈ {0, 1} ∀i ∈ R � {1, 2, . . . , n}

where
∑

i∈R gi > U , U is a positive integer, and 0<gi ≤U and integer, and fi > 0 for all
i ∈ R.

Consider the following instance of the 2-MHAP with modified all unit discount cost and
L =2. Let N (N =R) be the set of spokes and k and m (k,m /∈ N ) be the fixed hubs. Let

D �
∑

i∈R

gi

dik �
∑

j∈R

f j ∀i ∈ N

dkm � 2
∑

i∈R

fi

dim � dik +
fi
gi

∀i ∈ N

di j � d ji ∀i, j ∈ N ∪ {k,m}
wim � gi ∀i ∈ N

wik � 1 ∀i ∈ N

wkm � D

wmk � 0

wi j � 0 ∀i ∈ N ∪ {k,m}, j ∈ N

α(Q) �
{

α1 0 < Q < D +U
α2 Q ≥ D +U
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where α1 � (D +U )

2D
and α2 � 1

2
.

Note that, in such a setting, triangular inequalities for distances are always satisfied. Also
it is satisfied that 0<α2 <α1 <1 since D >U. Let transportation costs between the nodes be
equal to the distances. There is a discount only on the edge between hub nodes k and m.

Now we will show that we solve the above hub allocation problem if and only if we can
solve the above knapsack problem.

Because dim >dik , the path i → k is always cheaper than the path i → m → k even if the
transportation cost from hub m to hub k is nil. Therefore, the load from spoke i to hub k, wik ,
follows the path i → k in the optimal solution.

According to the above settings, when the total flow from k to m is less than or equal
to D discount factor will be α1. When it is between D and (D +U) the total cost of this
transportation will be constant as α1*dkm*D. When it is more than (D +U) the discount
factor α2 will be applied. Since k and m are hubs wkm follows the path k → m. Because
wkm =D for some additional flows (up to D +U) the transportation cost from k to m is zero.
Because D +U < wkm +

∑
i∈N wim only some part of

∑
i∈N wim may be transported from

k to m with zero transportation cost.
When the transportation cost from k to m is zero, the unit transportation cost of the path i

→ k →m is equal to dik . For the amount of flows that exceeds (D +U), the unit transportation
cost per unit distance from k to m is α2. Then the unit transportation cost on the same path
is dik +α2dkm. If any load wim follows the path i → m, then the unit transportation cost
is dim. Since dik <dim <dik +α2dkm any load wim will follow the path i → k → m if the
transportation cost from k to m is zero. If this cost is α2 then it will follow the path i → m.
So the problem is to determine the amount of load to be sent using either the path i → k →
m or the path i → m. Let S be the set of spokes that their loads follow the first path. There
may be two cases:

(i)
∑

i∈S wim ≤ U
The total transportation cost of the flows to hub m is then,

cost1(S) �
∑

i∈S
wimdik +

∑

i∈N/S

wimdim + α1wkmdkm

�
∑

i∈N
gidik +

∑

i∈N
fi −

∑

i∈S
fi + α1Ddkm

�
(
2
∑

i∈R

gi +U + 1

)
∑

i∈R

fi −
∑

i∈S
fi

(ii)
∑

i∈S wim > U
The total transportation cost of the flows to hub m is,

cost2(S) �
∑

i∈S
wimdik +

∑

i∈N/S

wimdim +

(
∑

i∈S
wim −U

)
∑

i∈N
fi + α1wkmdkm

�
∑

i∈N
gidik +

∑

i∈N
fi −

∑

i∈S
fi +

(
∑

i∈S
gi −U

)
∑

i∈N
fi + α1Ddkm

�
(
2
∑

i∈R

gi +
∑

i∈S
gi + 1

)
∑

i∈R

fi −
∑

i∈S
fi
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Note that, cost1(S) is maximized if S � ϕ and it is equal to

worstcost1 �
(
2
∑

i∈R

gi +U + 1

)
∑

i∈R

fi .

On the other hand, cost2(S) is minimizedwhen
∑

i∈S wim is close toU. Becausewim � gi
for all i ∈ N and gi values and U are integer, this summation may be at least (U +1). In this
case cost2(S) is equal to

bestcost2(S) �
(
2
∑

i∈R

gi +U + 1

)
∑

i∈R

fi +
∑

i∈R\S
fi .

For any solution verifying (ii), transportation cost is more than the cost of any solution
belongs to case (i). So, the optimal solution belongs to the first case. The problem is then to
find S ⊆ N such that

∑
i∈S

wim ≤ U and cost1(S) is minimized. Because the first component

of cost1(S) is constant the problem is equivalent to the knapsack problem given above. So,
we solve this instance of the 2-MHAP with modified all unit discount cost if and only if we
can solve the above knapsack problem. Because the knapsack problem is NP-hard then the
2-MHAP with modified all unit discount cost in two levels is NP-hard. �

Theorem 6 The 2-SHAP with modified all unit discount cost in two levels is NP-hard.

Proof Changing wik =0 for all i ∈ N in the proof of Theorem 5 proves Theorem 6. Because
when wik =0 for all i ∈ N , the problem is to determine the amount of flow from N that
follows the path i → m or the path i → k → m, which is equivalent to determining the hub
that spoke i is assigned to. In the proof of Theorem 5, it has been shown that this problem is
NP-hard. �

Theorem 7 The 2-MHMP with modified all unit discount cost in two levels is NP-hard.

Proof Direct result of Theorem 5. �

Theorem 8 The 2-SHMP with modified all unit discount cost in two levels is NP-hard.

Proof Direct result of Theorem 6. �

4 Car (truck) load discount cost structure

This cost model is also useful if the firm is a customer of a truck carrier firm. There are 2
well known pricing policies of truck carriers: Truck Load (TL) policy and Less than Truck
Load (LTL) policy. Let C be the load capacity of a truck. In the TL policy, the truck carrier
allocates (or rents) a truck to the customer with a cost (let’s sayH).Whatever the load amount
of the customer is it pays this cost of a full truck. Paying the full truck cost is unnecessarily
expensive for the customer when its load is not high enough. This time the customer wants
to pay an amount of money which is based on the amount of the load. In this case the truck
carrier applies LTL policy: a unit transportation cost (let it be α) is applied on each unit of
the load. In this policy the carrier does not allocate the truck to a single customer. It can carry
load of some other customers together using the same truck. But it is not sure that it can
find some other customers and earn as much as H. As a result of this risk, the truck carrier
applies a more expensive unit transportation cost for small amount of loads. If the load of the
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Fig. 4 Car load discount model Ckm(Q)

QD C

H

customer is low then it prefers to pay according to LTL policy. Up to some load level (let’s
say D) which is less than C, the total cost of the transportation to the customer is less than
H. When the load exceeds D paying according to LTL policy becomes more expensive than
H because of more expensive unit transportation cost of the LTL policy. So, when its load
amount is between D and C, the customer prefers to rent the truck with the cost of H. If its
load amount is more than C, then the customer rents a truck and applies the same strategy
for the rest of its load considering second truck, and so on.

In this case the total transportation cost of Q units from hub k to hub m is:

Ckm(Q) �
⎧
⎨

⎩

[
αD

⌊
Q
C

⌋
+ α

(
Q − C

⌊
Q
C

⌋)]
dkm C

⌊
Q
C

⌋
≤ Q ≤ C

⌊
Q
C

⌋
+ D

αD
⌈
Q
C

⌉
dkm C

⌊
Q
C

⌋
+ D ≤ Q ≤ C

⌈
Q
C

⌉

Figure 4 shows the shape of Ckm(Q) for the car (truck) load discount model.

Theorem 9 The 2-MHAP with car load discount cost is NP-hard.

Proof We show that the binary knapsack problem is polynomially reducible to the 2-MHAP
with car load discount cost.

Consider an instance of the binary knapsack problem as given below.

max
∑

i∈R

fi xi

s.t.
∑

i∈R

gi xi ≤ U

xi ∈ {0, 1} ∀i ∈ R � {1, 2, . . . , n}
where

∑
i∈R gi > U , U is a positive integer, 0<gi ≤U and integer, fi > 0 for all i ∈ R.

Consider the following instance of the 2-MHAPwith car load discount cost. LetN (Nv=R)
be the set of spokes and k and m (k,m /∈ N ) be the fixed hubs. Let

D �
∑

i∈R

gi
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C �
∑

i∈R

gi +U

dik �
∑

j∈R

f j ∀i ∈ N

dim � dik +
fi
gi

∀i ∈ N

dkm � 2
∑

i∈R

fi

di j � d ji ∀i, j ∈ N ∪ {k,m}
α � 1

2
wim � gi ∀i ∈ N

wik � 1 ∀i ∈ N

wi j � 0 ∀i ∈ N ∪ {k,m}, j ∈ N

wkm � D

wmk � 0

Note that, in such a setting, triangular inequalities for distances are always satisfied. Let
transportation costs between the nodes be equal to the distances. There is a discount only on
the edge between hub nodes k and m.

Now we will show that we solve the above hub allocation problem if and only if we can
solve the above knapsack problem.

Because dim >dik , the path i → k is always cheaper than the path i → m → k even if the
transportation cost from hub m to hub k is zero. So the load from spoke i to hub k follows
the path i → k at the optimal solution.

Because k and m are hubs, wkm follows the path k → m. Since wkm =D for some
additional flows (up to C) the transportation cost from k to m is zero. Because C <

wkm +
∑

i∈N wim ≤ C + D only some amount of load
∑

i∈N wim may be transported from
k to m with zero transportation cost.

When the transportation cost from k to m is zero the unit transportation cost on the path
i → k → m is equal to dik . For the amount of flow that exceeds C, the unit transportation
cost per unit distance from k to m is α. The unit transportation cost on the same path is dik
+αdkm. If any load wim follows the path i →m, then the unit transportation cost is dim. Since
dik <dim <dik +αdkm, any load wim will follow the path i → k → m if the transportation
cost from k to m is zero. If this cost is α then it will follow the path i → m. So the problem
is about to find out the amount of the load to be sent using either the path i → k → m or the
path i → m. Let S be the set of spokes that their loads follow the first path. There may be two
cases:

(i)
∑

i∈S wim ≤ U
The total transportation cost of the flows to hub m is then,

cost1(S) �
∑

i∈S
wimdik +

∑

i∈N/S

wimdim + αdkmwkm

�
∑

i∈N
gidik +

∑

i∈N
fi −

∑

i∈S
fi +

∑

i∈N
gi
∑

i∈N
fi
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�
(
2
∑

i∈R

gi + 1

)
∑

i∈R

fi −
∑

i∈S
fi

(ii)
∑
i∈S

wim > U

The total transportation cost of the flows to hub m is then,

cost2(S) �
∑

i∈S
wimdik +

∑

i∈N/S

wimdim +

(
∑

i∈S
wim −U

)
∑

i∈N
fi + αdkmwkm

�
∑

i∈N
wimdik +

∑

i∈N
fi −

∑

i∈S
fi +

(
∑

i∈S
wim −U

)
∑

i∈N
fi +

∑

i∈N
gi
∑

i∈N
fi

�
(
2
∑

i∈R

gi +
∑

i∈S
gi + 1 −U

)
∑

i∈R

fi −
∑

i∈S
fi

Note that, cost1(S) is maximized if S � ϕ and it is equal to

worstcost1 � (2
∑

i∈R

gi + 1)
∑

i∈R

fi .

On the other hand, cost2(S) is minimized when
∑
i∈S

wim is close to U. Because wim � gi

for all i ∈ N and gi values and U are integer this summation may be at least (U +1). In this
case cost2(S) is equal to

bestcost2(S) �
(
2
∑

i∈R

gi + 1

)
∑

i∈N
fi +

∑

i∈R\S
fi .

Since (bestcost2(S)-worstcost1)>0, any solution that belongs to the second case is always
worse than the one that belongs to the first case. So, the optimal solution belongs to the first
case. The problem is then to find S ⊆ N such that

∑
i∈S

wim ≤ U and cost1(S) is minimized.

Because the first component of cost1(S) is constant the problem is equivalent to the knapsack
problem given above. So, we solve this instance of the 2-MHAPwith car load discount cost if
and only if we can solve the above knapsack problem. Because the given knapsack problem
is NP-hard then the 2-MHAP with car load discount cost is NP-hard. �

Theorem 10 The 2-SHAP with car load discount cost is NP-hard.

Proof Changing wik =0 for all i ∈ N in the proof of Theorem 9 proves Theorem 10. When
wik =0 for all i ∈ N , the problem is to determine the amount of load from N that follows
the path i → m or the path i → k → m, which is equivalent to determining the hub that
spoke i is assigned to. In the proof of Theorem 9, it has been shown that this problem
is NP-hard. �

Theorem 11 The 2-MHMP with car load discount cost is NP-hard.

Proof Direct result of Theorem 9. �

Theorem 12 The 2-SHMP with car load discount cost is NP-hard.

Proof Direct result of Theorem 10. �
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Ckm(Q)

Q

A

C

Fig. 5 Container based cost

5 Container cost structure

This cost structure is not a quantity discount cost structure, i.e. average unit transportation
cost per unit distance may increase when the quantity increases. This cost function may be
used on inter-hub links if the average transportation cost per unit distance is smaller than the
one of between spoke and hub links. This cost function is useful for the firm that uses its own
vehicles or it is a customer of another transportation firm. In this cost structure transportations
are made with containers (or trucks) and a fixed charge (A) occurs when a new container
is added and there is a unit variable transportation cost (α). Each container has capacity C.
When the amount of the flow between hubs k and m is Q then the total transportation cost is

Ckm(Q) � A

⌈
Q

C

⌉
+ αQdkm

Figure 5 shows the shape of Ckm(Q) for the container cost model.

Theorem 13 The 2-MHAP with container cost is NP-hard.

Proof We show that the binary knapsack problem is polynomially reducible to the 2-MHAP
with container cost.

Consider an instance of the binary knapsack problem as given below.

max
∑

i∈R

fi xi

s.t.
∑

i∈R

gi xi ≤ U

xi ∈ {0, 1} ∀i ∈ R � {1, 2, . . . , n}
where

∑
i∈R

gi > U , 0<gi ≤U, fi > 0 for all i ∈ R.

Consider the following instance of the 2-MHAP with container cost. Let N (N =R) be the
set of spokes and k and m (k,m /∈ N ) be the fixed hubs. Let
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C � wkm +U

A � 2
∑

i∈R

fi

α : any value in the interval

[
0,min

{
wkm − A

wkm
,
C − 2A

C

})

dik � 1 + max
i∈R

{
fi
gi

}
∀i ∈ N

dkm �
2max

i∈R

{
fi
gi

}

1 − α

dim � dik +
fi
gi

+ αdkm ∀i ∈ N

di j � d ji ∀i, j ∈ N ∪ {k,m}
wim � gi ∀i ∈ N

wik � 1 ∀i ∈ N

wkm � max

{
4
∑

i∈R

fi , 2
∑

i∈R

gi

}

wi j � 0 ∀i ∈ N ∪ {k,m}, j ∈ N

wmk � 0

Triangular inequalities are always satisfied for distances. Note that unit transportation cost
per unit distance between the hubs is always smaller than the one between spokes and hubs,
which is 1, for Q ≥ wkm .

Now we will show that we solve the above hub allocation problem if and only if we can
solve the above knapsack problem.

Because dim >dik , the path i → k is always cheaper than the path i → m → k. Then the
loads from spokes to hub k follow the path i → k at the optimal solution.

Because of the direct transportation between hubs and there is a load to be sent from k to
m, wkm, at least one truck (container) must be sent from k to m. So the problem is to find out
the amount to be sent through the path i → m or the path i→ k → m. Let S be the set of
spokes that their loads follow the second path. There may be two cases:

(i)
∑
i∈S

wim ≤ U

The total cost of transportation to hub m is,

cost1(S) � A

⎡

⎢⎢⎢

wkm +
∑
i∈S

wim

C

⎤

⎥⎥⎥
+ αwkmdkm +

∑

i∈S
wimdik +

∑

i∈S
wimαdkm +

∑

i∈N/S

wimdim

� A + αwkmdkm +
∑

i∈N
gi dik + αdkm

∑

i∈N
gi +

∑

i∈N
fi −

∑

i∈S
fi

(ii)
∑
i∈S

wim > U

The total cost of transportation to hub m is,

cost2(S) � A

⎡

⎢⎢⎢

wkm +
∑
i∈S

wim

C

⎤

⎥⎥⎥
+ αwkmdkm
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+
∑

i∈S
wimdik +

∑

i∈S
wimαdkm +

∑

i∈N/S

wimdim

� A

⎡

⎢⎢⎢

∑
i∈S

wim −U

C

⎤

⎥⎥⎥
+ A + αwkmdkm +

∑

i∈N
gidik + αdkm

∑

i∈N
gi

+
∑

i∈N
fi + 2

∑

i∈N
fi −

∑

i∈S
fi

� A

⎡

⎢⎢⎢⎢⎢⎢

∑
i∈S

gi −U

max

{
4
∑
i∈R

fi , 2
∑
i∈R

gi

}
+U

⎤

⎥⎥⎥⎥⎥⎥

+ A + αwkmdkm

+
∑

i∈N
gidik + αdkm

∑

i∈N
gi +

∑

i∈N
fi + 2

∑

i∈N
fi −

∑

i∈S
fi

� A + A + αwkmdkm +
∑

i∈N
gidik + αdkm

∑

i∈N
gi +

∑

i∈N
fi + 2

∑

i∈N
fi −

∑

i∈S
fi

Note that, cost1(S) is maximized if S � ϕ and it is equal to

worstcost1 � A + αwkmdkm +
∑

i∈N
gidik + αdkm

∑

i∈N
gi +

∑

i∈N
fi .

On the other hand, cost2(S) is minimized when S =N . In this case cost2(S) is equal to

bestcost2 � A + A + αwkmdkm +
∑

i∈N
gidik + αdkm

∑

i∈N
gi +

∑

i∈N
fi +

∑

i∈N
fi .

Since (bestcost2 −worstcost1)>0, any solution that belongs to the second case is always
worse than the one that belongs to the first case. So, the optimal solution belongs to the first
case. The problem is then to find S ⊆ N such that

∑
i∈S

wim ≤ U and cost1(S) is minimized.

Because only the last component of cost1(S) is constant and wim � gi for all i ∈ N , the
problem is equivalent to the knapsack problem given above. So, we solve this instance of
the 2-MHAP with container cost if and only if we can solve the above knapsack problem.
Because the given knapsack problem is NP-hard then the 2-MHAP with container cost is
NP-hard. �

Theorem 14 The 2-SHAP with container cost is NP-hard.
Proof Changing wik =0 for all i ∈ N in the proof of Theorem 13 proves Theorem 14.
Because when wik =0 for all i ∈ N , the problem is to determine the amount of load from
N that follows the path i → m or the path i→k→m, which is equivalent to determining
the hub that spoke i is assigned to. In the proof of Theorem 13, it has been shown that this
problem is NP-hard. �

Theorem 15 The 2-MHMP with container cost is NP-hard.

Proof Direct result of Theorem 13. �

Theorem 16 The 2-SHMP with container cost is NP-hard.

Proof Direct result of Theorem 14. �
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6 Conclusion and future study issues

In this study, we analyzed the complexity of the p-hub median problems with some non-
linear cost structures. We showed that when the transportation cost between spokes and hubs
is linear and the one between hubs is one of all unit discount, modified all unit discount,
truck load discount and container cost structures, the p-hub allocation problem is NP-hard
even p=2 for both single allocation and multiple allocation models. These results imply that
the p-hub median problem is NP-hard for given cases and if the transportation costs between
spokes and hubs are non-linear the problems are again NP-hard.

In producing our complexity results, we have shown that the knapsack problem is poly-
nomially reducible to our problems. Then we should be able to develop a general DP based
solution algorithm that runs in pseudo polynomial time to solve these restricted problems.
Unfortunately, our first attempt in this regard was not successful. If we could not develop such
an algorithm then we need to show that the problems are NP-hard in the strong sense. Other-
wise, we need to check whether the problems with p=3 and/or L=3 are pseudo polynomially
solvable or NP-hard in the strong sense. One another well-known and useful discount model
in transportation is the incremental (or progressive) discount model which has a piecewise-
linear concave total cost function of the transportation amount Q. Unfortunately, despite our
long efforts we could not be successful in proving the complexity of the problems with this
cost structure. These issues can be considered as a subject of some future research studies.
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