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Abstract In many real applications, there exist situations where some independent and
decentralized entities will construct a common platform for production processes. A natural
and essential problem for the common platform is to allocate the fixed cost or common
revenue across these entities in an equitable way. Since there is no powerful central decision
maker, each decision-making unit (DMU)might propose an allocation scheme that will favor
itself, giving itself a minimal cost and/or a maximal revenue. It is clear that such allocations
are egoistic and unacceptable to all DMUs except for the distributing DMU. In this paper,
we will address the fixed cost allocation problem in this decentralized environment. For this
purpose, we suggest a non-egoistic principle which states that each DMU should propose its
allocation proposal in such a way that the maximal cost would be allocated to itself. Further,
a preferred allocation scheme should assign each DMU at most its non-egoistic allocation
and lead to efficiency scores at least as high as the efficiency scores based on non-egoistic
allocations. To this end, we integrate a goal programming method with data envelopment
analysis methodology to propose a new model under a set of common weights. The final
allocation scheme is determined in such a way that the efficiency scores are maximized for all
DMUs through minimizing the total deviation to goal efficiencies. Finally, both a numerical
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example from prior literature and an empirical study of nine truck fleets are provided to
demonstrate the proposed approach.

Keywords Data envelopment analysis (DEA) · Fixed cost allocation · Non-egoistic
principle · Decentralized units · Goal programming (GP)

1 Introduction

Fixed cost allocation (FCA) is the problem of determining how a total fixed cost generated
from a common platform should be distributed amongmultiple independent decision-making
units (DMUs) in an equitable way (Cook and Kress 1999; Beasley 2003; Lin 2011b; Li et al.
2013, 2018c; Du et al. 2014; Zhu et al. 2017). Since competition is increasingly fierce in
modern life, there will be many real managerial applications where some independent and
decentralizedDMUswill construct a commonplatform for production processes. Thismay be
due to their constrained capacities and the potential gains from common platforms (Wu et al.
2016; Jouida et al. 2017). In practice, many cases exist in banks, restaurants, supply chains,
disaster relief operations, universities, etc. For example, in the last century, the commercial
banks in China lacked credit information about their customers and were facing serious
credit risks. That led them to cooperate to establish a common credit information sharing
system, which improves their risk management and operations. The non-profit organizations
in humanitarian operations may participate in joint procurement, which will stretch their
limited money further and allow better preparedness and response to disasters. To establish
a common platform for all individual DMUs, some fixed costs are inevitable, such as the
maintenance expense of a credit information sharing system or the purchasing expense of
procuring the total relief supplies. Since all DMUswill enjoy the convenience of the common
platform, a natural and essential problem for the common platform is to distribute the total
fixed cost across these individual units in a fair way. Additionally, the fixed cost allocation
problem is more complex in a decentralized environment where there is no powerful central
decision maker (DM) who has the collective goal as a priority and sacrifices individual
interests. Lacking a central DM, these decentralized units need to reach a consensus on the
allocation plan and we believe that the so-called non-egoistic principle would be of vital
importance and significance in distributing a share of fixed costs to a set of independent and
competing DMUs.

Theoretically, the allocation scheme should be in line with the causation principle. How-
ever, particularly when assigning the total fixed cost, we often have the problem that their
causes cannot be determined exactly. Thus, entities mostly use size or activity-related dis-
tribution criteria to get a reasonable approximation, which is inherently consistent with the
data envelopment analysis (DEA) methodology. DEA, a linear mathematical programming
method introduced by Charnes et al. (1978) and further extended by Banker et al. (1984), has
proven to be a very useful nonparametric technique to measure the relative efficiency of mul-
tiple DMUs that consume multiple inputs to produce multiple outputs. The basic idea behind
the DEAmethodology is that a convex combination of a set of comparable and homogeneous
DMUs is calculated to construct an efficiency frontier. Then each DMU can be projected onto
the frontier, and the DMU is evaluated by comparing it to its projection. Since the inception
of DEA, this methodology has been applied to many activities in many sectors in many coun-
tries (Emrouznejad et al. 2008; Cooper et al. 2011; Emrouznejad and Yang 2018), including
universities (Bougnol and Dulá 2006; Yang et al. 2017), hospitals (Butler and Li 2005; Chen
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et al. 2017), banks (Sherman and Zhu 2006; An et al. 2015; Li et al. 2018a), supply chains
(Liang et al. 2006; Lozano and Adenso-Diaz 2017), sport avtivities (Anderson and Sharp
1997; Lei et al. 2015), manufacturing industries (Emrouznejad and Yang 2016a, b), disaster
contexts (Yang et al. 2016; Li et al. 2018d), and others. Recently, DEA-based fixed cost allo-
cation approaches have also attracted increasing attention and become a major application
area of DEA methodology (Cook and Kress 1999; Beasley 2003; Li et al. 2009, 2013; Lin
2011a, b; Du et al. 2014; Li et al. 2018c; Zhu et al. 2017). There are some significant advan-
tages in developing DEA-based fixed cost allocation approaches, such as multiple attribute
decision-making, weights flexibility, and the nonparametric property, and investigating the
effect of feasible allocations on efficiency evaluation (Li et al. 2009; Lin and Peng 2011; Si
et al. 2013).

In the existing literature, the first attempt to use a DEA-based approach to solve the fixed
cost allocation problemwas made by Cook and Kress (1999). In that seminal work, two basic
principles (efficiency invariance and Pareto-minimality) were used so that the allocation plan
will not affect the relative efficiencies and input transfer is impossible without changing the
DEA efficiency scores. The Cook and Kress (1999) approach can be used easily to examine
whether the given allocation plan satisfies the two principles, but with this approach, it
is hard to generate an allocation plan in cases with multiple inputs and multiple outputs.
Cook and Zhu (2005) extended the Cook and Kress (1999) method from input orientation
to output orientation and proposed a feasible method to generate the final allocation scheme
in multi-input–multi-output situations. However, Lin (2011a) argued that the Cook and Zhu
(2005) approach will be infeasible when some special constraints are added, and Lin (2011a)
modified the constraints to generate the final allocation plan through minimizing the gaps
between the largest and smallest allocated cost proportions. Jahanshahloo et al. (2004) showed
that the Pareto-minimality principle was also violated in Cook and Kress (1999) and then
proposed their approach using a simple formula, but this approach is thought to lack feasibility
and acceptability in real applications (Lin 2011b). By guaranteeing the efficiency invariance
principle, Lin (2011b) suggested an approach to minimize the deviation from the allocated
costs to the proportional costs, while not changing the current input–output scales and relative
efficiencies.Mostafaee (2013) allocated the fixed cost in such away that both efficiency scores
and returns-to-scale classifications remain unchanged for allDMUs.The efficiency invariance
principle was modeled with a common set of weights by Amirteimoori and Kordrostami
(2005), but recently Jahanshahloo et al. (2017) showed that theAmirteimoori andKordrostami
(2005) approach did not necessarily satisfy the efficiency invariance principle. Lin and Chen
(2016) allocated a fixed cost allocation approach based on super CCR efficiency and piratical
feasibility. Li et al. (2017) proposed a resource allocation and target setting method based on
common weights and efficiency invariance principles simultaneously.

The above studies try to keep the relative efficiency unchanged before and after the fixed
cost allocation, while there is another research stream initiated by Beasley (2003), in which
the goal is to maximize the average post-allocation efficiency score under a common set of
weights. Beasley (2003) obtained a unique allocation plan by solving a series of nonlinear
models and the generated allocations will make all DMUs efficient; this finding has also
been formally proved by Li et al. (2013) and Si et al. (2013). Although Amirteimoori and
Kordrostami (2005) used a numerical example to show the infeasibility of Beasley (2003),
recently Jahanshahloo et al. (2017) proved that the Beasley (2003) method is always fea-
sible. Li et al. (2009) considered a special case where the allocated costs are complements
of the existing measures and determined the allocation scheme using a super efficiency
method. Amirteimoori and Tabar (2010) proposed a fixed resource allocation and target
setting approach, which aims to minimize the total deviation and the maximum deviation
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simultaneously. Li et al. (2013) defined an efficient allocation set upon which all DMUs can
be CCR efficient with a common set of weights, and the unique allocation plan was deter-
mined by maximizing the satisfaction degree for all DMUs. On the basis of the extended
proportional sharing equation, Si et al. (2013) determined the final allocation plan through a
minimal total gap between the allocated costs and the algebra average allocations. Hossein-
zadeh Lotfi et al. (2013) proposed a resource allocation and target setting model by explicitly
assigning a post-allocation efficiency of one to all DMUs, and the unique allocation scheme
was determined using the goal programming technique. Khodabakhshi and Aryavash (2014)
allocated the fixed cost by considering themerits of the input–output bundle of the DMUs. Du
et al. (2014) developed a cross-efficiency iterative procedure to allowDMUs to negotiate with
each other until the cross efficiency cannot be increased for any DMU. In one of our recent
papers (Li et al. 2018c), we developed a DEA-game cross efficiency method for allocating a
total fixed cost, in which each DMU is considered as a player and the characteristic function
represents the efficiency increment. Further, we calculated the Shapley value for each DMU
and used the associated common weights to determine a unique allocation arrangement. Yu
et al. (2016), Zhu et al. (2017) and Li et al. (2018b) extended the fixed cost allocation problem
to network situations by considering internal two-stage processes.

In many existing publications, it is also explicitly supposed that there exists a central-
ized decision maker who can immediately seek the collective goal and sacrifice individual
interests, and the allocation schemewould be accordingly determined bymaximizing the col-
lective objective functions. For example, Lozano et al. (2004) addressed an output-oriented
target setting problem, in which the aggregated outputs across all DMUs were maximized
without exceeding the total inputs. Further, Lozano and Villa (2004, 2005) extended the
work of Lozano et al. (2004) to more general multiple-input-multiple-output centralized
cases with both radial and non-radial models. Also, the work of Lozano and Villa (2004)
was extended to the variable returns to scale assumption by Asmild et al. (2009). Fang and
Zhang (2008) allocated variable resources to DMUs by maximizing both the total efficiency
from centralized decision-making environment and the individual efficiency for each DMU.
Hosseinzadeh Lotfi et al. (2010, 2012) addressed the centralized resource allocation problem
using enhanced Russell models. Given a capital budget constraint, Lozano et al. (2011) pro-
posed a series of centralized DEA models for individual and collective output target setting,
input reallocation and additional input acquisitions. Fang (2013) combined the Lozano and
Villa (2004) and Asmild et al. (2009) models to more general cases. Lozano (2014) proposed
a slacks-based measure model for fixed cost and common revenue allocation in a central-
ized environment. Through solving just one linear problem, the Lozano (2014) approach
can obtain a unit-invariant and efficiency-invariant allocation plan, where the cost allocated
to each DMU is proportional to the weighted sum of its minimal input consumption. Fang
(2016) proposed a centralized resource allocation approach based on revenue efficiency, and
the allocation plan was determined bymaximizing the total output revenue. Ding et al. (2017)
addressed the centralized fixed cost allocation problem by considering technology hetero-
geneity for different DMUs. Similar work can also be seen in Lozano et al. (2009), Fang
(2015), Fang and Li (2015), Hatami-Marbini et al. (2015), etc.

Apart from the previous literature, there are also some parametric DEA approaches
proposed for fixed input and output allocation. Here the term “parametric” implies that a
hyperbolic DEA efficiency frontier is predefined with prior information. Avellar et al. (2007)
first allocated a new fixed input among a set of DMUs by considering a spherical fron-
tier. Their equitable allocation plan was determined using a straightforward formula, which
can ensure that all DMUs will be efficient or, in other words, be located on the spherically
shaped efficiency frontier. Further, Avellar et al. (2010) used a similar model to reallocate

123



Ann Oper Res (2019) 274:347–372 351

an already existing input among these DMUs. Milioni et al. (2011b) further extended the
Avellar et al. (2007) approach to not only distribute a new total fixed output but also redis-
tribute an already existing output. Milioni et al. (2011a) considered a different parametric
DEA model where the efficiency frontier is characterized by an ellipsoidal form. Besides
these approaches, weight restrictions can be incorporated into the ellipsoidal frontier DEA
model through varying the eccentricities. Silva andMilioni (2012) presented another method
to gain control of the weight restrictions in allocating inputs using a spherical frontier DEA
model. With the consideration of dimensional inconsistencies, Guedes et al. (2012) proposed
a new adjusted spherical frontier DEA model for input allocation. A very important prop-
erty related to that method is that the allocation plan is coherent, in the sense that a small
data modification would not lead to a huge change in the generated allocation plan. Silva
et al. (2017) generalized the previous parametric DEA approaches for fairly allocating a new
and fixed output under a centralized environment. Their new model can not only incorporate
value judgments, but is also useful under increasing, constant, and decreasing returns to scale
properties. All the above parametric DEAmodels can solve the problem of fairly distributing
a fixed input or output very easily if the predefined hyperbolic frontier is acceptable to all
DMUs.

In this paper, we will address the DEA-based fixed cost allocation problem taking a
decentralized environment into account. That is, we consider situations lacking a powerful
central decisionmaker who can directly seek the collective goal and who sacrifices individual
interests. In this scenario, each decentralized DMU might separately propose its own most
favorable allocation scheme, which is, in most cases, egoistic and unacceptable to the others.
Based on this observation, we suggest a non-egoistic principle, upon which each DMU
should give its suggested allocation plan with the restriction that it assigns a cost share to
itself no less than that of any other DMU. That is to say, from a decentralized perspective,
the DMU must propose an allocation plan that punishes itself the most to guarantee the
allocation plan’s acceptability. Otherwise, the allocation plan is unacceptable since it will
favor the distributing DMU as compared with the DMUs who are allocated more costs than
the distributing DMU. Further, we suggest determining the final allocation scheme in such
a way the post-allocation efficiency scores are maximized for all DMUs, yet it assigns each
DMU at most its non-egoistic allocation and leads to efficiency scores at least as high as the
efficiency scores based on non-egoistic allocations. To this end, a new goal programming
DEAmodel is proposed based on a set of common weights. Finally, the proposed approach is
applied to both a numerical example from the previous literature and an empirical application
from the real world. To sum up, the contribution of the current paper is threefold: Firstly, we
suggest a non-egoistic principle to address these decentralizedDMUs. The paper is significant
for situations without a powerful central decision maker. Secondly, we proposed a new goal
programmingmodel to obtain the optimal allocation plan. The allocation plan is generated on
the basis of the non-egoistic principle, and so it is more acceptable and practical. Thirdly, we
compare the proposed approach with some selected methods through a numerical example
derived from prior literature and we also demonstrate the usefulness and applicability of the
proposed approach by applying it to an empirical study in the real world.

The remainder of this paper is organized as follows: in Sect. 2, we propose the mathe-
matical models. Then we apply the proposed method to a numerical example in Sect. 3.1
and an empirical application in Sect. 3.2. Finally, we conclude this paper and provide some
perspectives in Sect. 4.
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2 Model

In this section, we first provide some preliminary information in Sect. 2.1 and then we
introduce and model the non-egoistic principle for fixed cost allocation in Sect. 2.2. The
proposed fixed cost allocation model will be presented in Sect. 2.3.

2.1 Preliminary

Consider a set of n independent DMUs, with each consuming m inputs to produce s out-
puts. Additionally, the input and output vectors of DMUj ( j � 1, . . . , n) are denoted as
X j � (

x1 j , . . . , xmj
)
and Y j � (

y1 j , . . . , ys j
)
, respectively. To evaluate the performance of

DMUd (d � 1, . . . , n), Charnes et al. (1978) proposed the following model (1) to calculate
its relative efficiency assuming constant returns to scale (CRS).

e∗
d � Max

∑s
r�1 μr yrd∑m
i�1 wi xid

s.t.

∑s
r�1 μr yr j∑m
i�1 wi xi j

≤ 1, j � 1, . . . , n

μr , wi ≥ 0, r � 1, . . . , s; i � 1, . . . ,m. (1)

In the above model (1), μr and wi are unknown relative weights attached to the rth

output and ith input, respectively. By solving model (1), the evaluated DMUd (d � 1, . . . , n)

will choose a set of optimal relative weights to maximize its ratio of aggregated outputs to
aggregated inputs while ensuring that the ratio is nomore than one for anyDMU.Model (1) is
nonlinear in a fractional programming form but by inserting τ � 1

/∑m
i�1 wi xid , μ̂r � τ ·μr

and ŵi � τ · wi into model (1), we have an equivalent linear model (2).

e∗
d � Max

∑s
r�1 μ̂r yrd

s.t.
∑m

i�1
ŵi xid � 1

∑s

r�1
μ̂r yr j −

∑m

i�1
ŵi xi j ≤ 0, j � 1, . . . , n

μ̂r , ŵi ≥ 0, r � 1, . . . , s; i � 1, . . . ,m. (2)

Solving model (2) one time for each DMUd (d � 1, . . . , n) determines a series of n
efficiency scores ranging from zero to one. DMUd (d � 1, . . . , n) is identified as DEA-
efficient if e∗

d � 1, and otherwise inefficient if e∗
d < 1.

Now suppose that a total fixed cost R will be completely allocated to the n decentralized
DMUs. A natural assumption is that each DMU would be given a proportion λ j ≥ 0 of the
total cost such that

R j � λ j R and
∑n

j�1
λ j � 1. (3)

Clearly, we have
∑n

j�1 R j � R, R j ≥ 0. Without loss of generality, we can consider the
allocated cost R j ( j � 1, . . . , n) as an additional input and add it to the current input–output
bundle (readers can refer to Li et al. (2009) for another case where the allocated cost is com-
bined with existing measures). Thus, the traditional method to calculate the post-allocation
efficiency of DMUd (d � 1, . . . , n) can be achieved by solving model (4).
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E∗
d � Max

∑s
r�1 μr yrd∑m

i�1 wi xid+wm+1Rd

s.t.

∑s
r�1 μr yr j∑m

i�1 wi xi j + wm+1R j
≤ 1, j � 1, . . . , n

∑n

j�1
R j � R

wm+1 > 0, μr , wi , R j ≥ 0, r � 1, . . . , s; i � 1, . . . ,m; j � 1, . . . , n. (4)

An additional relative weight wm+1 > 0 was attached to the allocated costs in model
(4). Note that model (4) is also a nonlinear fractional programming problem. Let t �
1
/(∑m

i�1 wi xid + wm+1Rd
)
, ur � t · μr , vi � t · wi , and r j � vm+1 · R j so model (4)

is changed into the linear version in model (5).

E∗
d � Max

∑s
r�1 ur yrd

s.t.
∑m

i�1
vi xid + rd � 1

∑s

r�1
ur yr j −

∑m

i�1
vi xi j − r j ≤ 0, j � 1, . . . , n

∑n

j�1
r j � vm+1R

vm+1 > 0, ur , vi , r j ≥ 0, r � 1, . . . , s; i � 1, . . . ,m; j � 1, . . . , n. (5)

2.2 Non-egoistic principle

Looking at the post-allocation efficiency evaluation in previous Sect. 2.1, we can find that the
considered DMUwill propose an allocation scheme to maximize its efficiency score without
any constraints except for the full coverage requirement. That is to say, any allocation plan is
considered as feasible if the total cost is entirely covered by all DMUs.However, this is not the
truth in real managerial applications. Consider an extreme case where the considered DMU
gives itself with an extremely small cost ε (or even zero) and evenly allocates the remainder
of the fixed cost to the remaining DMUs. Then it is possible to find that the considered
DMUwill be efficient by considering the allocated costs in the efficiency evaluation process.
However, this full efficiency is achieved under its most favorable allocation plan, which
would not be accepted by other DMUs since such allocation schemes are egoistic. From the
decentralized perspective, each DMU can propose a possible allocation plan to maximize
its post-allocation efficiency, but the proposed allocation plan should be non-egoistic so that
the allocation scheme is acceptable to all DMUs. Based on this idea, here we introduce the
non-egoistic principle as follows:

Definition 1 A particular DMUd (d=1,…, n) is said to propose a non-egoistic allocation
scheme if that scheme gives it the maximal cost among all DMUs. The corresponding allo-
cation scheme is said to satisfy the non-egoistic principle for DMUd .

We would emphasize that the non-egoistic principle is focused on the allocation plan
instead of relative efficiency. Intuitively, the non-egoistic principle is that theDMUd (d=1,…,
n) divides the total fixed cost R into n parts and all DMUs are required to bear one part, but
the other (n −1) DMUs will choose which parts they will bear before DMUd . If the DMUs
are rational, then each DMU will try to choose the minimum cost share and the maximum
will be left for DMUd , meaning that it must bear the maximum cost. The non-egoistic
principle requires that the distributing DMU who proposes the allocation scheme will pay
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the maximal cost. Thus the corresponding allocation plan is acceptable to all remaining
DMUs (i.e., the set of DMUs other than the distributing DMU), or at least the cost allocated
to the distributingDMU is absolutely acceptable by all DMUs.Denote the fixed cost allocated
to DMUj ( j � 1, . . . , n) as Rd

j when DMUd (d � 1, . . . , n) proposes an allocation of the
total fixed cost R. Then the non-egoistic principle can be modeled as formula (6) when
DMUd (d � 1, . . . , n) is under consideration.

Rd
d ≥ Rd

j , j � 1, . . . , n, j �� d. (6)

Further, the following model (7) can be used to calculate the post-allocation efficiency for
DMUd (d � 1, . . . , n) based on the non-egoistic principle.

Ê∗
d � Max

∑s
r�1 μr yrd∑m

i�1 wi xid+wm+1Rd
d

s.t.

∑s
r�1 μr yr j

∑m
i�1 wi xi j + wm+1Rd

j

≤ 1, j � 1, . . . , n

∑n

j�1
Rd
j � R

Rd
d ≥ Rd

j , j � 1, . . . , n, j �� d

wm+1 > 0, μr , wi , Rd
j ≥ 0, r � 1, . . . , s; i � 1, . . . ,m; j � 1, . . . , n. (7)

Model (7) is just the integration of model (4) with the non-egoistic principle expressed
by formula (6). Through model (7), DMUd (d � 1, . . . , n) will determine a set of allocated
costs and relativeweights tomaximize its efficiency score, yet it itself takes themaximal share
of the total fixed cost as compared with other DMUs. As with the previous nonlinear models,

model (7) can be linearized by inserting t � 1
/(∑m

i�1 wi xid + wm+1Rd
j

)
, ur � t · μr ,

vi � t · wi , and rdj � vm+1 · Rd
j .

Ê∗
d � Max

∑s
r�1 ur yrd

s.t.
∑m

i�1
vi xid + rdd � 1

∑s

r�1
ur yr j −

∑m

i�1
vi xi j − rdj ≤ 0, j � 1, . . . , n

∑n

j�1
rdj � vm+1R

rdd ≥ rdj , j � 1, . . . , n, j �� d

vm+1 > 0, ur , vi , rdj ≥ 0, r � 1, . . . , s; i � 1, . . . ,m; j � 1, . . . , n. (8)

Solving model (8) determines a set of optimal solutions
(
ud∗
r , vd∗

i , vd∗
m+1, r

d∗
j ,∀r, i, j

)

when DMUd (d � 1, . . . , n) is under consideration. Further, we can obtain a series of effi-
ciency scores Ê∗

d (d � 1, . . . , n) along with a set of decentralized non-egoistic allocation

schemes Rd∗
j � rd∗

j

/
vd∗
m+1 (d, j � 1, . . . , n). Note that the efficiency Ê∗

d (d � 1, . . . , n)

and allocation Rd∗
j (d, j � 1, . . . , n) are separately determined from each DMUd’s decen-

tralized perspective, and the allocation plan Rd∗
j (d, j � 1, . . . , n) will maximize DMUd’s

efficiency score despite allocating the maximal cost to DMUd . The decentralized allocations
are acceptable in the sense that at least each DMU’s own allocated cost Rd∗

d (d � 1, . . . , n)

is very acceptable to the other DMUs because each DMU got “last choice” in the alloca-
tion plan it itself proposed. Therefore, this allocation is a baseline cost share. Besides this,
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Table 1 A simple case from
Beasley (2003)

DMU Output 1 Output 2 Output 3

1 10 40 4

2 5 5 2

3 27 10 1

4 4 7 5

5 15 5 7

the efficiency Ê∗
d can also be considered as a baseline for each DMUd (d � 1, . . . , n) in

generating the optimal allocation plan.
Here we consider a small case derived from Beasley (2003) to show the difference when

the non-egoistic principle is considered. Here there are five DMUs that share a common
telecommunications cable and three outputs are considered without additional inputs. The
dataset is given in Table 1. Assume the total fixed cost is R=100. By solving model (5) and
model (8), the post-allocation efficiency scores can be calculated for each DMU, as shown
in the second and eighth column of Table 2.

It can be learned from Table 2 that without considering the non-egoistic principle all
DMUs can be separately efficient after bearing their allocated costs. However, DMU2 and
DMU4 will be inefficient when the non-egoistic principle is imposed, having efficiency
scores of 0.345 and 0.754, respectively. Moreover, the possible allocation plan will be
significantly different. Without the non-egoistic principle, each DMU will allocate an
extremely small cost amount (0.223, 0.233, 0.208, 0.142, and 0.170) to itself while the costs
assigned to the other four DMUs are relatively large. Using the non-egoistic principle, each
DMU will allocate the maximal cost amount (31.301, 20.976, 30.007, 22.876, and 26.322)
to itself. Clearly, by considering the non-egoistic principle the allocation plan separately
proposed by each DMU will be more acceptable as the extreme cases are avoided and the
gap among allocated costs for all DMUs is reduced.

Additionally, based on the allocations in Table 2 and corresponding relative weights, we
can calculate the cross-evaluated post-allocation efficiency scores, which are listed in Table 3.
Using the traditional method without any constraints on the allocation plan, each DMU can
maximize its own efficiency to the maximum (one), while the other DMUs are caused to
be extremely inefficient. If, however, each DMU proposes a feasible allocation plan on the
basis of non-egoistic principle, then very promising efficiency results will be available for all
DMUs. Looking at the last five columns of Table 3, we can find that the allocations proposed
by each DMU will not only determine an optimal efficiency score for itself but also assign a
relative large efficiency score to the other DMUs.

2.3 Proposed DEA model for fixed cost allocation

The goal of each DMU is to bear as little cost as possible. Meanwhile, it will try to raise
its relative efficiency as much as possible while taking the allocated costs into account. Fur-
ther, the non-egoistic allocation R j∗

j ( j � 1, . . . , n) and efficiency score Ê∗
j ( j � 1, . . . , n)

obtained in Sect. 2.2 can act as a baseline for each DMU. That is to say, each DMU would
like to be allocated a cost less than R j∗

j ( j � 1, . . . , n) and end up with an efficiency score

more than Ê∗
j ( j � 1, . . . , n). To generate the final allocation scheme, we propose to maxi-

mize the efficiency scores for all DMUs, yet assign each DMUj ( j � 1, . . . , n) at most its

non-egoistic allocation R j∗
j and lead to efficiency scores at least as high as the efficiency

scores Ê∗
j . The above idea is formulated in model (9).
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ρ � Max
∑n

j�1 α j

s.t.

∑s
r�1 μr yr j∑m

i�1 wi xi j + wm+1R j
� Ê∗

j+α j , j � 1, . . . , n

Ê∗
j ≤

∑s
r�1 μr yr j∑m

i�1 wi xi j + wm+1R j
≤ 1, j � 1, . . . , n

∑n

j�1
R j � R, j � 1, . . . , n

R j ≤ R j∗
j , j � 1, . . . , n

wm+1 > 0, μr , wi , R j , α j ≥ 0, r � 1, . . . , s; i � 1, . . . ,m; j � 1, . . . , n.

(9)

Inmodel (9), the variableα j represents the efficiency increment of DMUj ( j � 1, . . . , n).
Through maximizing

∑n
j�1 α j , model (9) aims to maximize the efficiency increment for

all DMUs simultaneously. The first constraint reveals the post-allocation efficiency scores,
while the second constraint ensures that for each DMUj ( j � 1, . . . , n) the post-allocation
efficiency score is no less than the baseline Ê∗

j and nomore than the full efficiency of one. The
third constraint ensures the total fixed cost is completely distributed, and the fourth constraint
addresses the non-egoistic allocations.

Unfortunately, model (9) cannot be immediately linearized and seems unsolvable. To
obtain a linear programming problem from model (9), here we integrate the goal program-
ming (GP) method to propose a new model in a way similar to those of Hosseinzadeh
Lotfi et al. (2013) and Hatami-Marbini et al. (2015). Given the known Ê∗

j ( j � 1, . . . , n),
maximizing the total efficiency increment

∑n
j�1 α j is equivalent tomaximizing the total post-

allocation efficiencies
∑n

j�1

(
Ê∗

j+α j

)
. To maximize the efficiency score

∑s
r�1 μr yr j∑m

i�1 wi xi j+wm+1R j
,

DMUj ( j � 1, . . . , n) must increase its virtual outputs
∑s

r�1 μr yr j in the numerator or
decrease its virtual inputs

(∑m
i�1 wi xi j + wm+1R j

)
in the denominator. Based on this

observation, we can introduce a series of deviation variables φ−
j and φ+

j , such that the

DMUj ( j � 1, . . . , n) can reach the efficiency frontier (i.e., the efficiency goal Ê∗
j +α j � 1)

by adding φ+
j to

∑s
r�1 μr yr j and taking φ−

j away from
(∑m

i�1 wi xi j + wm+1R j
)
. Clearly,

the smaller the deviation to the goal efficiency, the larger the post-allocation efficiency. Then
model (9) can be changed into this goal programming (GP) problem:

Min
∑n

j�1

(
φ+
j + φ−

j

)

s.t.

∑s
r�1 μr yr j + φ+

j∑m
i�1 wi xi j + wm+1R j − φ−

j

� 1, j � 1, . . . , n

Ê∗
j ≤

∑s
r�1 μr yr j∑m

i�1 wi xi j + wm+1R j
≤ 1, j � 1, . . . , n

∑n

j�1

(∑m

i�1
wi xi j + wm+1R j

)
� 1

∑n

j�1
R j � R, j � 1, . . . , n

R j ≤ R j∗
j , j � 1, . . . , n

wm+1 > 0, μr , wi , R j , φ+
j , φ

−
j ≥ 0, r � 1, . . . , s; i � 1, . . . ,m; j � 1, . . . , n.

(10)
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Model (10) integrates the GP method with DEA methodology to propose a new common
weights model. Here the goal is to make all DMUs efficient with an efficiency score of one
(the maximal possible efficiency score is one in the DEA framework) and the achievement
function is minimizing the total deviation to the goal such that the efficiency scores are
maximized for all DMUs. Here an additional constraint

∑n
j�1

(∑m
i�1 wi xi j + wm+1R j

) � 1
is introduced to avoid trivial solutions, as the optimal objective function might be extremely
small (or even approximate zero) with extremely small solutions of these relative weights.

Given the nonnegative deviations φ+
j and φ−

j in the first constraint,
∑s

r�1 μr yr j∑m
i�1 wi xi j+wm+1R j

≤ 1 in

the second constraint would be redundant. Further, model (10) can be equivalently converted
into model (11) by substituting wm+1R j � r j ( j � 1, . . . , n).

Min
∑n

j�1

(
φ+
j + φ−

j

)

s.t.
∑s

r�1
μr yr j + φ+

j �
∑m

i�1
wi xi j + r j − φ−

j , j � 1, . . . , n
∑s

r�1
μr yr j − Ê∗

j

(∑m

i�1
wi xi j + r j

)
≥ 0, j � 1, . . . , n

∑n

j�1

(∑m

i�1
wi xi j + r j

)
� 1

∑n

j�1
r j � wm+1R, j � 1, . . . , n

r j ≤ wm+1R
j∗
j , j � 1, . . . , n

wm+1 > 0, μr , wi , r j , φ+
j , φ−

j ≥ 0, r � 1, . . . , s; i � 1, . . . ,m; j � 1, . . . , n.

(11)

Model (11) can be further simplified by substituting φ+
j + φ−

j � φ j ( j � 1, . . . , n). As a
result, we have the following linear programmingmodel (12), which can be used to determine
the final allocation plan.

Min
∑n

j�1 φ j

s.t.
∑s

r�1
μr yr j + φ j �

∑m

i�1
wi xi j + r j , j � 1, . . . , n

∑s

r�1
μr yr j − Ê∗

j

(∑m

i�1
wi xi j + r j

)
≥ 0, j � 1, . . . , n

∑n

j�1

(∑m

i�1
wi xi j + r j

)
� 1

∑n

j�1
r j � wm+1R, j � 1, . . . , n

r j ≤ wm+1R
j∗
j , j � 1, . . . , n

wm+1 > 0, μr , wi , r j , φ j ≥ 0, r � 1, . . . , s; i � 1, . . . ,m; j � 1, . . . , n.

(12)

Clearly, model (10) is always feasible. Through minimizing the total deviation yet still
reaching the efficiency frontier as possible, the optimal allocation plan can be determined on
the basis of the non-egoistic principle. In other words, the efficiency increment is maximized
on the basis of Ê∗

j ( j � 1, . . . , n), which is the private baseline for each decentralized DMU
considering the non-egoistic principle. The final allocation plan is determined in such a way
that our proposed approach allocates a fixed cost to each DMUj ( j � 1, . . . , n) that is at
most its non-egoistic allocation and accordingly leads to efficiency scores at least as high as
the efficiency score based on the non-egoistic allocations. Supposing the optimal solution
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Table 4 A numerical example
from Cook and Kress (1999)

DMU Input 1 Input 2 Input 3 Output 1 Output 2

1 350 39 9 67 751

2 298 26 8 73 611

3 422 31 7 75 584

4 281 16 9 70 665

5 301 16 6 75 445

6 360 29 17 83 1070

7 540 18 10 72 457

8 276 33 5 78 590

9 323 25 5 75 1074

10 444 64 6 74 1072

11 323 25 5 25 350

12 444 64 6 104 1199

to model (12) is
(
μ∗
r , w

∗
i , w

∗
m+1, φ

∗
j , r

∗
j ,∀r, i, j

)
, then the optimal allocation plan under the

non-egoistic principle is R∗
j � r∗

j

/
w∗
m+1 ( j � 1, . . . , n).

3 Illustration applications

In this section, the proposed approach is illustrated with a numerical example derived from
Cook and Kress (1999) and an empirical study of nine truck fleets. Also, the results of the
numerical example will be compared with some selected approaches in the literature.

3.1 Numerical example

The dataset of the Cook and Kress (1999) case is shown in Table 4; this scenario consists of
twelve DMUs with three inputs (m=3) and two outputs (s=2). The problem is to distribute
a total fixed cost of R=100 to the twelve DMUs in a fair way.

First of all, solving model (2) determines a series of traditional CCR efficiency scores
without considering the fixed cost. The efficiency scores are listed in the second column of
Table 5, which shows that only five DMUs (4, 5, 8, 9, and 12) are efficient. Further, with
the non-egoistic principle, we solve model (8) one time for each DMU to obtain allocations
proposed by each DMU separately. The non-egoistic allocations are given in Table 6. Since
the non-egoistic principle is imposed to ensure that the allocation plan is acceptable, the
distributing DMU will be allocated the greatest cost by its own plan. For example, DMU12

proposes an allocation scheme that assigns a maximal cost of 9.94 to itself, while all other
DMUs are required to afford a cost amount less than 9.94. Also, DMU2 proposes an allocation
scheme that has multiple maximal costs, as DMU2, DMU4, DMU5, DMU6, and DMU8 are
simultaneously allocated themaximal cost 9.72. This situation also applies to DMU1, DMU3,
DMU7, DMU10, and DMU11. Additionally, by using the allocated costs in the efficiency
evaluation, the DMUs other than DMU4, DMU5, DMU8, DMU9, DMU11, and DMU12 are
able to improve their relative performance, as the efficiency scores in the third column of
Table 5 are larger than the original CCR efficiencies. Five DMUs (4, 5, 8, 9, and 12) cannot
improve their efficiency due to the fact that they already have a full efficiency of one. Since
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Table 5 Efficiency scores

DMU Before allocation After allocation

Separate allocation Final allocation

1 0.7567 0.7825 0.9403

2 0.9230 0.9453 0.9821

3 0.7470 0.8921 0.9831

4 1.0000 1.0000 1.0000

5 1.0000 1.0000 1.0000

6 0.9612 1.0000 1.0000

7 0.8604 0.9445 1.0000

8 1.0000 1.0000 1.0000

9 1.0000 1.0000 1.0000

10 0.8318 0.8941 0.9297

11 0.3333 0.3333 0.7488

12 1.0000 1.0000 1.0000

DMU11 is extremely inefficient and with its proposed allocation plan it will be allocated
the maximal cost, it has no increment of its efficiency score. It can be concluded that the
inefficient DMUs cannot necessarily improve their efficiency scores when the non-egoistic
principle is used.

Then we solve model (12) to determine the final allocation plan. At this time, the value of
the optimal objective function is 0.024126>0, which demonstrates that the efficiency scores
of some DMUs will be further improved from the scores based on non-egoistic allocations,
but not all DMUs will be simultaneously efficient as the total deviation to the goal efficiency
is not zero. The final allocation plan is given in the second column of Table 7 and the post-
allocation efficiency is presented in the last column of Table 5. With this plan, six DMUs (1,
2, 3, 7, 10, and 11) will have their efficiency score increased and the rest have their efficiency
unchanged at the full efficiency of 1.0000. These results imply that the final allocation plan
will favor all DMUs and the generated allocation plan is acceptable to all DMUs.

For the purpose of comparison, the allocations of Cook and Kress (1999), Beasley (2003),
Cook and Zhu (2005), Amirteimoori and Kordrostami (2005), Lin (2011b), Hosseinzadeh
Lotfi et al. (2013), Li et al. (2013), Du et al. (2014) and Li et al. (2017, 2018c) (denoted as
CK, B, CZ, AK, L, HH, LY, DC, LS, and LZ, respectively) are also shown in Table 7.

Looking at all allocated costs, most methods including our proposed approach allocate
a positive value to all DMUs. As Cook and Kress (1999) indicated that any allocation plan
that exempts some DMUs from all responsibility is unfair and thus will not be accepted by
all DMUs. From this perspective, the allocation derived from our proposed method is well
designed.

Following a common practice, we then turn our attention to two pairs of DMUs, DMU9

vs. DMU11, DMU10 vs. DMU12, where each pair consumes the same inputs to produce
different outputs. It can be learned from Table 7 that some methods allocate very similar or
even identical cost to one or both pairs of DMUs, such as the methods of Cook and Kress
(1999), Cook and Zhu (2005), Amirteimoori and Kordrostami (2005), Lin (2011b), and Li
et al. (2017). Beasley (2003) argued that this near-identical cost allocation is an inherent
drawback of approaches emphasizing efficiency-invariance before and after the allocation,
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but it is not a problem for our proposed approach. Our proposed approach allocates very
different costs to the two pairs of DMUs: R9 =11.4033, R10 =4.7228, R11 =0.8787, and R12

=10.1482.
Note that all methods in Table 7 can be categorized into two groups on the principle

of whether the post-allocation efficiencies are maximized or unchanged. Apparently, the
Cook and Kress (1999), Cook and Zhu (2005), Amirteimoori and Kordrostami (2005), Lin
(2011b), and Li et al. (2017) methods try to keep the efficiency unchanged before and after
the fixed cost allocation, while the remaining methods (including our proposed approach)
are methods which use efficiency maximization. Although the efficiency-invariance based
methods are more likely to have a smaller gap between the maximal and minimal allocated
cost (Li et al. 2017), our proposed approach has one of the smallest gaps among these eleven
methods, as shown in Table 7. Further, our proposed approach has the smallest allocated cost
gap among these efficiency-maximization approaches, as 8.929 compared to 13.530, 16.330,
15.416, 16.680, and 11.508. Therefore, the allocation plan generated from our proposed
approach will confront less resistance and would be easier to implement yet still maximize
the post-allocation efficiencies through an equitable allocation scheme.

More importantly, our proposed approach is the only one that satisfies the non-egoistic
principle. Given the individual non-egoistic allocation for eachDMU (9.76, 9.72, 8.95, 11.35,
10.65, 9.22, 8.98, 11.43, 11.50, 10.26, 10.31, and 9.94), all DMUs are willing to bear a lower
cost. Otherwise, that DMUwill violently disagree with the allocation results and promote its
own allocation proposal. For example, Li et al. (2017) allocated a larger cost to DMU3 and
DMU12 (9.9731>8.95 and 13.3351>9.94), so both of these will strongly fight against the
allocation plan. Similarly, Li et al. (2018c) allocated more costs than the decentralized non-
egoistic allocations to DMU6, DMU8, DMU10, and DMU12. All methods listed in Table 7
except for our new proposed one are found to invalid the non-egoistic principle and thus their
generated allocation results are all egoistic to some extent. Since the non-egoistic allocation
plan allocates the distributing DMU the maximal cost, which is certainly more than the
equivalent sharing, then the resistance to the allocation plan will not be extreme. Among all
approaches in Table 7, our approach is the only one that allocates each DMU a cost less than
the individual non-egoistic allocations as we explicitly take the non-egoistic principle into
account. From this perspective, the proposed approach should be more acceptable.

To sum up, we use Table 8 to describe different conditions that these methods satisfied.
Here we consider the following questions: (1) is the efficiency maximized, (2) is the method
linear, (3) is the allocated cost positive for eachDMU, (4) does themethoduse a common set of
weights, (5) is the allocation plan unique, and lastly, (6) is the non-egoistic principle satisfied.
All these conditions are good features for DEA-based fixed cost allocation approaches and
are also assumed to be very important in distributing a total fixed cost or input among a set
of competing DMUs (Cook and Kress 1999; Beasley 2003; Amirteimoori and Kordrostami
2005; Cook and Zhu 2005; Amirteimoori and Tabar 2010; Lin 2011a, b; Hosseinzadeh Lotfi
et al. 2013; Li et al. 2013, 2017, 2018c). We can learn from the results in Table 8 that our
proposed approach is the only one that satisfies these six conditions simultaneously. To the
best of our knowledge, our new approach presented in this paper is the first and the only one
to consider the non-egoistic principle in fixed cost and resource allocation problems.

3.2 Empirical study

In this subsection, we apply the proposed approach to nine truck fleets in China. The nine
truck fleets are independent and have different owners (n=9). Facing with fierce competition,
the nine truck fleets are willing to construct a coalition to favor their business activities, but
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Table 9 Input and output variables

Input/output Variable Explanation

Input Driver hours (x1) Paid hours of drivers (h)

Vehicles (x2) Normalized by vehicle capacity
(ton)

Operations cost (x3) Monetary expenditure (104 CNY)

Output Products delivered (y1) Amount of products delivered to
customers (ton)

Number of customers (y2) The total number of customers
(person)

Distance (y3) Total distance traveled to deliver
products (103 km)

Table 10 The dataset of nine independent truck fleets

DMU x1 x2 x3 y1 y2 y3

1 28,273.2 90.4 204.504 16,220.870 2210 1870.341

2 34,404.8 96.0 132.582 14,981.454 2632 2105.535

3 65,944.7 127.5 134.980 36,882.499 3912 3390.779

4 31,459.5 50.9 42.110 15,805.016 2708 3079.039

5 27,117.4 49.8 76.364 10,554.727 1984 2098.304

6 67,701.7 192.2 142.345 55,336.271 5502 5487.752

7 62,746.3 77.9 161.343 19,647.125 3842 3894.381

8 46,646.1 156.4 127.930 34,989.351 3733 2946.956

9 53,847.8 82.1 110.238 29,977.251 4543 2816.606

the finance and operations are still controlled separately. In the year 2016, operating that
coalition’s common platform led to a total cost of 430 thousand Chinese Yuan (CNY), and
the problem is how to distribute the total cost to these decentralized and independent truck
fleets. A significant feature of the empirical study is that the nine truck fleets are independent
in a decentralized environment, and there is not a central decision maker who can will seek
only the collective goal while sacrificing individual goals.

Hereafter each truck fleet is considered as a homogeneous and comparable peer DMU.We
select three inputs (m=3) and three outputs (s=3) from the operations in 2016. Inputs consist
of: (1) Driver hours (x1), which refers to driver’s working efforts by normalizing the number
of drivers into paid hours of drivers; (2) Vehicles (x2), referring to the number of vehicles
owned by the truck fleet, which is similarly normalized by vehicle capacity. (3) Operation
costs other than staff costs (x3), which will include fuel cost, vehicle maintenance costs, etc.
The outputs considered are: (1) products delivered (y1), which refers to a standard unit of the
amount of products delivered to customers; (2) number of customers (y2), and (3) the driving
distance (y3), that is, the total distance traveled to deliver products to customers. The input
and output measures are summarized in Table 9 and the detailed data is given in Table 10.

Based on the data in Table 10, we have a series of CCR efficiencies through model (2),
as shown in the second column of Table 11. We can learn from Table 11 that three truck
fleets are identified as efficient (4, 6, and 9), while the other six truck fleets are inefficient
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Table 11 Calculation process and results

DMU Original
efficiency

Non-egoistic
allocation

Non-egoistic
efficiency

Final allocation Post-allocation
efficiency

1 0.9272 68.8763 0.9272 31.5442 0.9429

2 0.8887 68.2522 0.8924 33.9350 0.9260

3 0.8794 62.3731 0.9122 27.6651 1.0000

4 1.0000 77.8923 1.0000 77.8923 1.0000

5 0.8500 75.2985 0.8500 54.3014 0.8672

6 1.0000 61.4876 1.0000 61.4876 1.0000

7 0.9185 57.4743 1.0000 57.4743 1.0000

8 0.9758 67.1093 0.9758 23.8794 1.0000

9 1.0000 61.8208 1.0000 61.8208 1.0000

(1, 2, 3, 5, 7 and 8). The smallest efficiency score appears for the fifth vehicle fleet, reaching
0.8500. This finding shows that the nine truck fleets performed relatively well in operations.
Further, we proceed to calculate the individual allocation on the basis of the non-egoistic
principle. Solving model (8) determines a 9 × 9 allocation matrix, as shown in Table 12.
Each truck fleet’s proposed allocation plan is a column vector in Table 12 and each truck fleet
will try to maximize its own post-allocation efficiency on the condition that it will allocate
the maximal cost to itself. For example, the third fleet suggests an allocation R1 =40.1226,
R2 =35.8552, R3 =62.3731, R4 =46.5299, R5 =39.3643, R6 =62.3731, R7 =41.3313, R8

=39.6774, and R9 =62.3731 to increase its efficiency score from 0.8794 to 0.9122. Both the
non-egoistic allocations presented in the third column of Table 11 and efficiency scores in the
fourth column of Table 11 are baselines for all DMUs to determine the final allocation plan.

Further, solving model (12) determines an optimal objective function of 0.065826. This
result is associated with the allocation scheme R1 =31.5442, R2 =33.9350, R3 =27.6651,
R4 =77.8923, R5 =54.3014, R6 =61.4876, R7 =57.4743, R8 =23.8794, and R9 =61.8208.
Considering the allocated costs as an additional input, the relative efficiency for the nine
truck fleets would be 0.9429, 0.9260, 1.0000, 1.0000, 0.8672, 1.0000, 1.0000, 1.0000, and
1.0000, respectively. The final allocation and post-allocation efficiency are listed in the last
two columns of Table 11. The truck fleets with lower allocated costs are more likely to have
more efficiency increments. We can find that three truck fleets (3, 7, and 8) become efficient
whereas three other truck fleets (1, 2, and 5) remain inefficient.

To sum up, the numerical example and empirical application illustrate significant features
of the proposed approach. The features listed in Table 8 summarize the advantages of the
proposed approach. More importantly, this paper suggests the non-egoistic principle as a
key component of a scheme to address the fixed cost allocation problem in a decentralized
scenario with a set of independent DMUs. On the basis of the non-egoistic principle, the
proposed common weights DEA model is of vital significance to allocate a common or
shared cost among a set of decentralized and independent DMUs.

4 Conclusions

In many real applications, there are situations where some independent DMUs will construct
a common platform for production processes, and thus some common or shared costs will be
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inevitable. In a decentralized environment, an important problem emerges of how to distribute
the total fixed cost to these individual DMUs in an equitable manner. To solve such problems,
this paper proposes a new approach based on data envelopment analysis. For this purpose,
we first suggest a basic rule called the non-egoistic principle, which is that each DMU will
separately propose its allocation scheme in such a way that the considered DMU itself will
be allocated the maximal cost among all DMUs. In other words, each DMU splits the cost
into shares but takes the least desirable share. Then we modify the post-allocation efficiency
evaluation on the basis of the non-egoistic principle. It can be found that not all DMUswill be
necessarily efficient after adding the allocated cost to current inputs. Further, we suggest that
the final allocation plan should be generated such that the efficiency scores are maximized
for all DMUs, yet each DMU receives an allocation no greater than its own non-egoistic
allocation and has an efficiency score no less than the one based on that allocation. Then a
new goal programming model is proposed to calculate the allocation results. By applying
the proposed approach to both a numerical example and an empirical study, the results and
analysis show that the proposed approach is useful and has some significant features compared
with previous methods.

This paper could be extended in several ways. First, a fairness concern can be explicitly
incorporated into the fixed cost allocation problem, and the trade-off and balance between
fairness and efficiency criteria might provide valuable insights for managerial implications.
Second, similar work can be extended to the problem of resource allocation, target setting,
and benefit–cost sharing simultaneously. Third, the non-egoistic principle suggested in this
paper can also be used to modify some existing approaches in the literature. For example,
one can thus obtain a new cost interval and then use the satisfaction degree method defined in
Li et al. (2013) to determine an optimal allocation plan. Finally, an important and significant
property in allocating a total and fixed resource is “coherence” (Milioni et al., 2011a, b;
Guedes et al. 2012), which implies that the allocation plan must be coherent in the sense
that only small changes in results would occur with small uncertainties in the original inputs
and outputs. We believe that such a coherence property has great importance in practical
applications and should be seriously addressed in future research.
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