
Ann Oper Res (2019) 277:197–212
https://doi.org/10.1007/s10479-018-2800-8

S.I . : QUEUEING THEORY AND NETWORK APPLICATIONS

Analysis of the waiting time distribution for polling
systems with retrials and glue periods

Bara Kim1 · Jeongsim Kim2

Published online: 2 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract We consider a single-server multi-station polling system with retrials and glue
periods. Just before the server arrives at a station, there is a deterministic glue period. During
a glue period, arriving customers (either newly arriving customers or retrying customers) at
the station stick in the queue of that station and will be served during the following service
period of that station. Whereas during any other period, arriving customers at the station join
the orbit of that station and will retry after an exponentially distributed time. In this paper,
we derive the Laplace–Stieltjes transform of the waiting time distribution of an arbitrary
customer. This transform allows us to obtain the mean and variance of the waiting time.

Keywords Polling system · Retrials · Glue periods

1 Introduction

Polling systems are queueing models where a single server visits (or polls) a finite number of
stations in a prescribed order. Polling systems have beenwidely used tomodelmany problems
in computer-communication systems, production systems, traffic and transportation systems,
and maintenance systems. A typical polling system is a system where a single server visits
the stations in a cyclic order. Detailed overviews for polling systems can be found in the
surveys of Boon et al. (2011), Levy and Sidi (1990) and Vishnevskii and Semenova (2006)
and the books of Borst (1996) and Takagi (1986).
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A service discipline determines how many customers are served during a visit of the
server to a station. Many service disciplines have been considered and studied in the context
of polling systems. The most commonly used service disciplines are exhaustive discipline,
gated discipline, and 1-limited discipline. In this paper, the service discipline at all stations
is gated. Under gated service, the server serves only the customers that were present at the
start of the visit. Customers who arrive during the course of a visit, are served in the next
visit.

Langaris (1997, 1999a, b) studied a multi-station polling system with retrials. In all these
papers, the author obtained the mean number of retrial customers in each station at the steady
state, under various service disciplines. In a single server queueing system with retrials, any
customer who finds the server busy upon arrival joins an orbit, and then attempts for service
after a random amount of time. For details regarding retrial queueing systems, refer to the
books of Falin and Templeton (1997) and Artalejo and Gómez-Corral (2008).

In this paper we consider a polling system with retrials and glue periods. The glue period
is activated just before the arrival of the server at a station. During a glue period, arriving
customers (either newly arriving customers or retrying customers) at the station stick in the
queue of that station and will be served during the following service period of that station.
Whereas during any other period, arriving customers at the station join the orbit of that station
and will retry after an exponentially distributed time. As described in the introduction section
of Abidini et al. (2016, 2017), a polling system with retrials and glue periods can be used to
study the performance of certain switches in optical communication systems.

Boxma and Resing (2014) first studied a polling model with retrials and glue periods.
They analyzed the steady-state distribution of the number of customers in a station, when
the glue periods are deterministic. The main focus of their paper was on a single server and
a single station, but it also outlined how that analysis can be extended to the case of two
stations. Abidini et al. (2016) considered the same model with multiple stations and then
obtained the generating functions of the steady-state joint distribution of the station size (i.e.,
the number of customers in each station), both at the embedded points (the beginnings of
glue periods, service periods and switchover periods), and at arbitrary time points. Recently,
Abidini et al. (2017) studied the steady-state joint distribution of the station size for the same
model as in Abidini et al. (2016), but when the glue periods are exponentially distributed.

The waiting time distribution for a polling system with retrials and glue periods is much
more difficult to analyze than the station size distribution.Due to the complexity of this polling
system, analytic results for the waiting time distribution are difficult to obtain, although the
mean waiting times can be easily obtained with the help of Little’s formula. In this paper, we
derive the Laplace–Stieltjes transform (LST) of the waiting time distribution of an arbitrary
customer for the same model as in Abidini et al. (2016). This transform allows us to obtain
the mean and variance of the waiting time. Also, numerical results are given to show the
computations of the mean and variance of the waiting time.

The paper is organized as follows. In Sect. 2, we describe our model in detail. In Sect. 3,
we provide the station size distributions at embedded points as a preliminary. In Sect. 4, we
derive the LST of the waiting time distribution of an arbitrary customer. In Sect. 5, numerical
results are given to show the computations of the mean and variance of the waiting time.
Conclusion and suggestions for further research are given in Sect. 6.
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2 The model

We consider a single server polling system with retrials and glue periods. There are K ≥ 2
stations each with an infinite capacity. The server visits and serves the stations in a cyclic
order. We index the stations by i , i = 1, . . . , K , in the order of the server movement. All
references to station indices greater than K or less than 1 are implicitly assumed to bemodulo
K . Customers arrive at station i according to a Poisson process with rate λi , and they are
called type-i customers, i = 1, . . . , K . We denote the total arrival rate by λ = λ1 +· · ·+λK

and the vector of arrival rates by λ = (λ1, . . . , λK ). The service times of customers at station
i are independent and identically distributed (i.i.d.) random variables with a generic random
variable Bi , i = 1, . . . , K . Let B̃i (s) = E[e−sBi ] be the LST of the service time distribution
at station i . The switchover times from station i to station i + 1 are i.i.d. random variables
with a generic random variable Si , i = 1, . . . , K . Let S̃i (s) = E[e−sSi ] be the LST of the
switchover time from station i to station i + 1. The interarrival times, the service times, and
the switchover times are assumed to be mutually independent. After the server switches to
station i , there is a deterministic glue period, which will be followed by the service period of
station i . After the service period, the server starts switching to the next station. See Fig. 1.
Let gi be the length of the glue period of station i , i = 1, . . . , K .

Each station consists of an orbit and a queue. During a glue period, arriving customers
(either newly arriving customers or retrying customers) at station i stick and wait in the queue
of station i to receive a service during the service period of station i . Whereas during any
other period, arriving customers at station i join the orbit of station i and will retry after
a random amount of time. The inter-retrial time of each customer in the orbit of station i
is exponentially distributed with mean ν−1

i , i = 1, . . . , K , and is independent of all other
processes.

A single server cyclically moves from one station to another serving the glued customers
at each of the stations. The service discipline at all stations is gated. During the service
period of station i , the server serves all glued customers in the queue of station i , i.e., all
type-i customers waiting in the queue at the end of the glue period (both newly arriving
customers and retrying customers during the course of the service period will not be served).
The utilization of the server at station i (also called the offered load at station i), ρi , is defined
by ρi = λiE[Bi ], and the total utilization of the server, ρ, is given by ρ = ∑K

i=1 ρi . The
system is stable if and only if ρ < 1 (see the “Appendix” section). Therefore, we assume
that ρ < 1 for stability of the system.

a cycle

G1 V1 S1 Gi Vi Si GK VK SK G1 V1 S1

Gi: glue period of station i

Vi: service period of station i

Si: switchover from station i to station i+ 1

Fig. 1 A cycle starting from the beginning of a glue period of station 1
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3 Preliminary: station size distribution at embedded points

In this section,webriefly review the steady-state joint distributions of the number of customers
in each station at embedded points. For further details, refer to Abidini et al. (2016).

Let X (i)
j be the number of customers in the orbit of station j (i.e., the number of type- j

customers in the system) at the start of a glue period of station i (i, j = 1, . . . , K ) in the
steady state. Let Y (i)

j be the number of customers in the orbit of station j at the start of a

service period to station i (i, j = 1, . . . , K ) in the steady state. Let Ỹ (i) be the number of
glued customers at the start of a service period to station i (i = 1, . . . , K ) in the steady
state. Finally, Z (i)

j denotes the number of customers in the orbit of station j at the start of a
switchover from station i to station i + 1 (i, j = 1, . . . , K ) in the steady state. Let us define
the following joint generating functions of the number of customers at the start of a glue
period, service period and switchover period as:

�Gi (z) = E

[

z
X (i)
1

1 z
X (i)
2

2 · · · zX
(i)
K

K

]

,

�Vi (z, w) = E

[

z
Y (i)
1

1 z
Y (i)
2

2 · · · zY
(i)
K

K wỸ (i)
]

,

�Si (z) = E

[

z
Z (i)
1

1 z
Z (i)
2

2 · · · zZ
(i)
K

K

]

,

for z = (z1, z2, . . . , zK ) with |zi | ≤ 1, i = 1, . . . , K , and |w| ≤ 1. Then we have the
following result for these joint generating functions, refer to Eqs. (3.1)–(3.3) of Abidini et al.
(2016).

Proposition 1 (Abidini et al. 2016) The generating functions �Gi (z),�Vi (z, w), and
�Si (z), satisfy the following equations:

�Gi (z) = �Si−1(z)S̃i−1(λ − λ · z),
�Vi (z, w) = �Gi ( fi (z, w))egi (

∑
j �=i λ j z j+λiw−λ)

,

�Si (z) = �Vi (z, B̃i (λ − λ · z)),
where fi (z, w) = (z1, . . . , zi−1, e−gi νi zi + (1 − e−gi νi )w, zi+1, . . . , zK ).

4 The LST of the waiting time distribution

In this section, we investigate the waiting time distribution of an arbitrary customer. Let W
denote a generic random variable representing the waiting time of an arbitrary customer in
the steady state and let W̃ (s) = E[e−sW ] be its LST.

We assume that the order of service of the glued customerswithin each station is first-glued
first-served. We choose an arbitrary type-1 customer who arrives at station 1, and call it the
tagged customer. Let σ be the arrival epoch of the tagged customer and τ the service initiation
epoch of the tagged customer. Let A0 be the event that the tagged customer arrives during
the glue period of station 1 and A1 be the complement of event A0. Note that P(A0) = g1

E[C]
and P(A1) = 1 − g1

E[C] , where E[C] is the mean cycle length. The mean cycle length is
independent of the station involved (and the service discipline), and is given by
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E[C] =
∑K

i=1(E[Si ] + gi )

1 − ρ
.

Then the LST W̃ (s) of the waiting time distribution of the tagged customer is given by

W̃ (s) = E[e−s(τ−σ)]
= g1

E[C]E[e−s(τ−σ)|A0] +
(

1 − g1
E[C]

)

E[e−s(τ−σ)|A1]

= g1
E[C] W̃

G(s) +
(

1 − g1
E[C]

)

W̃ NG(s), (1)

where W̃G(s) = E[e−s(τ−σ)|A0] and W̃ NG(s) = E[e−s(τ−σ)|A1]. That is, W̃G(s) is the
conditional LST of the waiting time distribution of the tagged customer, given that the tagged
customer arrives during the glue period of station 1. W̃ NG(s) is the conditional LST of the
waiting time distribution of the tagged customer, given that the tagged customer arrives in
any other period than the glue period of station 1.

In order to obtain W̃ (s), we have to investigate W̃G(s) and W̃ NG(s). The expression for
W̃G(s) is given by Lemma 1, as shown below.

Lemma 1 The conditional LST W̃G(s) is given by

W̃G(s) = 1

g1

∫ g1

0
�G1(b1(s, x), 1, . . . , 1)e

λ1x(B̃1(s)−1)−(g1−x)sdx, (2)

where b1(s, x) = (1 − e−ν1x )B̃1(s) + e−ν1x .

Proof Assume that the tagged customer arrives during the glue period of station 1. Let x
be the elapsed time of the glue period at the arrival epoch of the tagged customer (i.e., the
elapsed time from the start of the glue period to the arrival of the tagged customer). The
waiting time of the tagged customer is the sum of (i) the remaining time of the glue period,
(ii) the service times of type-1 customers arriving during the elapsed glue period x , and (iii)
the service times of type-1 customers who retry during the elapsed glue period x . Note that
the LST of (i) is e−(g1−x)s . Also, the LSTs of (ii) and (iii) are given as follows: The number
of type-1 customers arriving during the elapsed glue period x , has a Poisson distribution
with mean λ1x . Since the generating function of the Poisson distribution with mean λ1x is
eλ1x(z−1), the LST of (ii) is eλ1x(B̃1(s)−1). The number of type-1 customers who retry during
the elapsed glue period x , has the generating function �G1((1− e−ν1x )z + e−ν1x , 1, . . . , 1).
Thus the LST of (iii) is �G1(b1(s, x), 1, . . . , 1). Therefore, the LST of the waiting time
distribution of the tagged customer, given that the tagged customer arrives during the glue
period of station 1 and the elapsed glue period is x , is

e−(g1−x)seλ1x(B̃1(s)−1)�G1(b1(s, x), 1, . . . , 1).

Since the elapsed glue period is uniformly distributed over [0, g1], given A0, we
obtain (2). ��

Now, we will find an expression for W̃ NG(s). When the tagged customer arrives in any
other period than the glue period of station 1 (i.e., given A1), we define the following epochs:

• η
G1
n = the initiation epoch of the nth glue period of station 1 after the arrival of the tagged

customer, n = 1, 2, . . .,

123



202 Ann Oper Res (2019) 277:197–212

• η
Gi
n = the initiation epoch of the first glue period of station i after η

G1
n , i = 2, 3, . . . , K ,

n = 1, 2, . . .,
• η

Vi
n = the initiation epoch of the first service period of station i after ηG1

n , i = 1, 2, . . . , K ,
n = 1, 2, . . .,

• η
Si
n = the initiation epoch of the first switchover period from station i (to station i + 1)

after η
G1
n , i = 1, 2, . . . , K , n = 1, 2, . . ..

With these notations, we define the following joint transforms: for i = 1, 2, . . . , K and
n = 1, 2 . . .,

TGi ,n(s, z) = E

[

e−s(η
Gi
n −σ)zN1(η

Gi
n )

1 · · · zNK (η
Gi
n )

K 1{ηGi
n <τ }

∣
∣A1

]

,

T Si ,n(s, z) = E

[

e−s(η
Si
n −σ)zN1(η

Si
n )

1 · · · zNK (η
Si
n )

K 1{ηSi
n <τ }

∣
∣A1

]

,

where Ni (t) is the number of customers in the orbit of station i , excluding the tagged customer,
at time t . Similarly, we define T Vi ,n(s, z, w) as

T Vi ,n(s, z, w) = E

[

e−s(η
Vi
n −σ)zN1(η

Vi
n )

1 · · · zNK (η
Vi
n )

K wM(η
Vi
n )1{ηVin <τ }

∣
∣A1

]

,

where M(t) is the number of glued customers at time t . Then the relations between
T Gi ,n(s, z), T Vi ,n(s, z, w) and T Si ,n(s, z) are given by Eqs. (3)–(6). The derivation is stan-
dard, therefore it will be omitted. For i = 1, 2, . . . , K , and n = 1, 2, . . .,

T Vi ,n(s, z, w) =
{
e−g1(ν1+s)T G1,n(s, f1(z, w))e

∑K
j=2 λ j z j+λ1w−λ if i = 1,

e−gi sT Gi ,n(s, fi (z, w))e
∑

j �=i λ j z j+λiw−λ if i = 2, . . . , K .
(3)

For i = 1, 2, . . . , K , and n = 1, 2, . . .,

T Si ,n(s, z) = T Vi ,n(s, z, B̃i (s + λ − λ · z)). (4)

For n = 2, 3, . . .,

TG1,n(s, z) = T SK ,n−1(s, z)S̃K (s + λ − λ · z). (5)

For i = 2, 3, . . . , K , and n = 1, 2, . . .,

TGi ,n(s, z) = T Si−1,n(s, z)S̃i−1(s + λ − λ · z). (6)

If we let TGi (s, z) = ∑∞
n=1 T

Gi ,n(s, z), T Vi (s, z, w) = ∑∞
n=1 T

Vi ,n(s, z, w), and
T Si (s, z) = ∑∞

n=1 T
Si ,n(s, z), then from Eqs. (3)–(6) we obtain the following lemma.

Lemma 2 The transforms T Gi (s, z), T Vi (s, z, w) and T Si (s, z) satisfy the following equa-
tions: for i = 1, 2, . . . , K,

T Vi (s, z, w) = e−ν1g1δi1−gi sT Gi (s, fi (z, w))e
∑

j �=i λ j z j+λiw−λ
,

T Si (s, z) = T Vi (s, z, B̃i (s + λ − λ · z)),
TGi (s, z) = δi1T

G1,1(s, z) + T Si−1(s, z)S̃i−1(s + λ − λ · z),
where δi1 denotes the Kronecker delta.

With Lemma 2 we are able to obtain an expression for W̃ NG(s), as shown below.
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Lemma 3 The conditional LST W̃ NG(s) is expressed as

W̃ NG(s) = ν1

∫ g1

0
T G1(s, b1(s, x), 1 . . . , 1)e−ν1x−g1s+λ1x(B̃1(s)−1)dx . (7)

Proof Write W̃ NG(s) as

W̃ NG(s) =
∞∑

n=1

E

[

e−s(τ−σ)1{ηG1
n <τ≤η

G1
n+1}

∣
∣A1

]

.

For η
G1
n < τ ≤ η

G1
n+1, the tagged customer should not start its service before η

G1
n and this

customer should retry during the glue period starting from η
G1
n . Assume that the tagged

customer does not begin its service before η
G1
n and this customer retries during the glue

period starting from η
G1
n . Let ξ be the retrial epoch of the tagged customer, i.e., ξ is the time

when the tagged customer is glued. Let x be the elapsed glue period at the retrial epoch of
the tagged customer, i.e., x = ξ − η

G1
n . The waiting time of the tagged customer is the sum

of (i) the elapsed time from the arrival of the tagged customer to η
G1
n , (ii) the glue period,

(iii) the service times of type-1 customers arriving during the elapsed glue period x , and (iv)
the service times of type-1 customers who retry during the elapsed glue period x . Note that

the LST for the sum of (i) and (iv) is TG1,n(s,b1(s,x),1...,1)
TG1,n(0,1,...,1)

, the LST of (ii) is e−g1s and the LST

of (iii) is eλ1x(B̃1(s)−1). Therefore, we have

E[e−s(τ−σ)|A1, η
G1
n < τ ≤ η

G1
n+1, ξ − ηG1

n = x]

= T G1,n(s, b1(s, x), 1 . . . , 1)

TG1,n(0, 1, . . . , 1)
e−g1s+λ1x(B̃1(s)−1). (8)

Since

P(ηG1
n < τ ≤ η

G1
n+1|A1) = P(ηG1

n < ξ ≤ ηG1
n + g1|A1)

= P(ξ > ηG1
n |A1)P(ξ − ηG1

n ≤ g1|ξ > ηG1
n )

= T G1,n(0, 1, . . . , 1)(1 − e−ν1g1),

and ξ − η
G1
n , given A1 ∩ {ηG1

n < τ ≤ η
G1
n+1}, has the probability density function

ν1e−ν1x

1−e−ν1g1
1{g1≥x}, it follows from (8) that

E

[

e−s(τ−σ)1{ηG1
n <τ≤η

G1
n+1}

∣
∣A1

]

= P(ηG1
n < τ ≤ η

G1
n+1|A1)

×
∫ g1

0

ν1e−ν1x

1 − e−ν1g1
E[e−s(τ−σ)|A1, η

G1
n < τ ≤ η

G1
n+1, ξ − ηG1

n = x]dx

=
∫ g1

0
ν1e

−ν1x T G1,n(s, b1(s, x), 1 . . . , 1)e−g1s+λ1x(B̃1(s)−1)dx .

Adding this equation for n = 1, 2, . . ., we obtain (7). ��
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By Lemmas 1 and 3, (1) is written as

W̃ (s) = 1

E[C]
∫ g1

0
�G1(b1(s, x), 1, . . . , 1)e

λ1x(B̃1(s)−1)−(g1−x)sdx

+
(

1 − g1
E[C]

)

ν1

∫ g1

0
T G1(s, b1(s, x), 1 . . . , 1)e−ν1x−g1s+λ1x(B̃1(s)−1)dx .

Therefore, in order to obtain W̃ (s), by Lemma 2, we need to look at TG1,1(s, z).
To obtain the expression for TG1,1(s, z), we define the following epochs:

• η
G1
0 = the initiation epoch of the last glue period of station 1 before the arrival of the

tagged customer,
• η

Gi
0 = the initiation epoch of the first glue period of station i after η

G1
0 , i = 2, 3, . . . , K ,

• η
Vi
0 = the initiation epoch of the first service period of station i after ηG1

0 , i = 1, 2, . . . , K ,

• η
Si
0 = the initiation epoch of the first switchover period from station i (to station i + 1)

after η
G1
0 , i = 1, 2, . . . , K .

With these notations, we define the following joint transforms: for i = 1, . . . , K ,

�Gi (s, z) = E

[

e−s(η
Gi
0 −σ)z

N1(η
Gi
0 )

1 · · · zNK (η
Gi
0 )

K 1{σ<η
Gi
0 }

∣
∣A1

]

,

�Vi (s, z, w) = E

[

e−s(η
Vi
0 −σ)z

N1(η
Vi
0 )

1 · · · zNK (η
Vi
0 )

K wM(η
Vi
0 )1{σ<η

Vi
0 }

∣
∣A1

]

,

�Si (s, z) = E

[

e−s(η
Si
0 −σ)z

N1(η
Si
0 )

1 · · · zNK (η
Si
0 )

K 1{σ<η
Si
0 }

∣
∣A1

]

.

Then, we have the relations between them and TG1,1(s, z). Note that �V1(s, z, w) = 0 and
for i = 2, 3, . . . , K ,

�Vi (s, z, w) = E

[

e−s(η
Vi
0 −σ)z

N1(η
Vi
0 )

1 · · · zNK (η
Vi
0 )

K M(η
Vi
0 )1{σ<η

Gi
0 }

∣
∣A1

]

+ E

[

e−s(η
Vi
0 −σ)z

N1(η
Vi
0 )

1 · · · zNK (η
Vi
0 )

K M(η
Vi
0 )1{ηGi

0 ≤σ<η
Vi
0 }

∣
∣A1

]

= �Gi ( fi (z, w))e−sgi+∑
j �=i λ j z j+λiw−λ + P(η

Gi
0 ≤ σ < η

Vi
0 |A1)

× E

[

e−s(η
Vi
0 −σ)z

N1(η
Vi
0 )

1 · · · zNK (η
Vi
0 )

K M(η
Vi
0 )

∣
∣ηGi

0 ≤ σ < η
Vi
0 , A1

]

= �Gi ( fi (z, w))e−sgi+∑
j �=i λ j z j+λiw−λ + gi

E[C] − g1
�Vi (z, w)

1 − e−gi s

gi s
.

Similarly, for i = 1, 2, . . . , K ,

�Si (s, z) = �Vi (s, z, B̃i (s + λ − λ · z)) + E[Ỹ (i)]E[Bi ]
E[C] − g1

B̃i (λ − λ · z) − B̃i (s + λ − λ · z)
sE[Bi ]

× �Vi (z, B̃i (s + λ − λ · z)) − �Vi (z, B̃i (λ − λ · z))
E[Ỹ (i)](B̃i (s + λ − λ · z) − B̃i (λ − λ · z)) .

Also, note that �G1(s, z) = 0 and for i = 1, 2, . . . , K − 1,

�Gi+1(s, z) = �Si (s, z)S̃i (s + λ − λ · z)
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+ E[Si ]
E[C] − g1

�Si (z)
S̃i (λ − λ · z) − S̃i (s + λ − λ · z)

sE[Si ] .
Finally,

T G1,1(s, z) = �SK (s, z)S̃K (s + λ − λ · z)

+ E[SK ]
E[C] − g1

�SK (z)
S̃K (λ − λ · z) − S̃K (s + λ − λ · z)

sE[SK ] .

In summary, we have the following lemma.

Lemma 4 (a) �V1(s, z, w) = 0 and for i = 2, 3, . . . , K,

�Vi (s, z, w) = �Gi ( fi (z, w))e−sgi+∑
j �=i λ j z j+λiw−λ+ 1

E[C] − g1
�Vi (z, w)

1 − e−gi s

s
.

(b) For i = 1, 2, . . . , K,

�Si (s, z) = �Vi (s, z, B̃i (s + λ − λ · z))

+ 1

E[C] − g1

�Vi (z, B̃i (λ − λ · z)) − �Vi (z, B̃i (s + λ − λ · z))
s

.

(c) �G1(s, z) = 0 and for i = 1, 2, . . . , K − 1,

�Gi+1(s, z) = �Si (s, z)S̃i (s + λ − λ · z)

+ 1

E[C] − g1
�Si (z)

S̃i (λ − λ · z) − S̃i (s + λ − λ · z)
s

,

TG1,1(s, z) = �SK (s, z)S̃K (s + λ − λ · z)

+ 1

E[C] − g1
�SK (z)

S̃K (λ − λ · z) − S̃K (s + λ − λ · z)
s

.

The main result of this section is summarized in the following theorem.

Theorem 1 The LST of the waiting time distribution of an arbitrary customer is given by

W̃ (s) = 1

E[C]
∫ g1

0
�G1(b1(s, x), 1, . . . , 1)e

λ1x(B̃1(s)−1)−(g1−x)sdx

+
(

1 − g1
E[C]

)

ν1

∫ g1

0
T G1(s, b1(s, x), 1 . . . , 1)e−ν1x−g1s+λ1x(B̃1(s)−1)dx,

where �G1(z) is obtained from Proposition 1, and T G1(s, z) is obtained from Lemmas 2
and 4.

5 Numerical results

In this section, we present numerical results for the computations of the mean and variance
of the waiting time of an arbitrary customer. By using Theorem 1, we can obtain the mean
and variance of the waiting time. To illustrate the computations of the mean and variance
of the waiting time, we consider the following two polling systems, both with three stations
(i.e., K = 3).
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Fig. 2 Mean waiting time of an arbitrary type-i customer, i = 1, 2, 3, for Example 1

Example 1 We assume that the arrival rate of type-i customers is λi = 0.12 for all i ,
i = 1, 2, 3. The service times of type-i customers are exponentially distributed with means
E[B1] = 1,E[B2] = 2 and E[B3] = 3, respectively. Hence the total utilization of the server
is ρ = ∑3

i=1 ρi = 0.72 < 1. The switchover times from station i to station i + 1 are deter-
ministic with E[Si ] = 1 for all i , i = 1, 2, 3. The retrial rates of customers in the orbit of
station i , i = 1, 2, 3, are 3, 2 and 1, respectively. The glue period at station i is deterministic,
x , i.e., gi = x for all i , i = 1, 2, 3.

Example 2 We assume that the arrival rate of type-i customers is λi = 0.15 for all i , i =
1, 2, 3. The same distributions as in Example 1 are assumed for the service times of type-i
customers. Hence the total utilization of the server is ρ = ∑3

i=1 ρi = 0.9 < 1. The same
distributions as in Example 1 are also assumed for the switchover times, the retrial times and
the glue periods.

LetWi denote the waiting time of an arbitrary type-i customer, i = 1, 2, 3. In Figs. 2 and 3
we plot the mean and variance of the waiting time of an arbitrary type-i customer, E[Wi ]
and Var[Wi ], i = 1, 2, 3, for Example 1, with the parameter x of the glue period varying.
In Figs. 4 and 5 we plot the mean and variance of the waiting time of an arbitrary type-i
customer, i = 1, 2, 3, for Example 2, with x varying.

We can assume from Figs. 2, 3, 4 and 5 that the mean and variance of the waiting time are
convex in x . A number of numerical examples also support this convexity property. Themean
waiting time is minimized for an appropriate x . This can be explained from the following
two facts: (i) If the glue period of a station is small, the chance for customers to retry in that
glue period is low, and therefore the mean waiting time is large. (ii) If the glue period of a
station is large, glued customers have to wait the remaining glue period, which is likely to
be long, until the beginning of service period, and so the mean waiting time is large.
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Fig. 3 Variance of the waiting time of an arbitrary type-i customer, i = 1, 2, 3, for Example 1
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Fig. 4 Mean waiting time of an arbitrary type-i customer, i = 1, 2, 3, for Example 2

6 Conclusion and suggestions for further research

We have considered a gated polling system with retrials and deterministic glue periods. Due
to the complexity of this polling system, analytic results for the waiting time distribution
are difficult to obtain. In this paper we have derived the Laplace–Stieltjes transform of the
waiting time distribution for deterministic glue periods. From this we have obtained the mean
and variance of the waiting time.
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Fig. 5 Variance of the waiting time of an arbitrary type-i customer, i = 1, 2, 3, for Example 2

As an extension of this research, we intend to study a polling system with retrials and
generally distributed glue periods. In order to study the waiting time distribution, the station
size distribution needs to be analyzed first. However, there has been no studies on the station
size distribution for generally distributed glue periods. Therefore, for future research, we will
study the station size distribution and the waiting time distribution, when the glue periods
are generally distributed.
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Appendix: Stability condition

We define the periodicity of our polling system as follows: Let D be the set of all positive
real numbers δ such that

∑K
i=1(gi + Si ), and B1, . . . , BK have their supports in δZ+ =

{0, δ, 2δ, . . .}. Our polling system is aperiodic if the set D is empty; otherwise the polling
system is periodic. When our polling system is periodic, i.e., when D is nonempty, it can be
shown that D has a maximum. This maximum is the period of the polling system.

In the following proposition, we obtain the stability condition of the system.

Proposition 2 Let N(t) = (N1(t), . . . , NK (t)), where Ni (t) is the number of customers in
station i at time t. Suppose that ρ < 1. If the system is aperiodic, then N(t) converges in
distribution as t → ∞. If the system is periodic with period d, then N(nd) converges in
distribution as n → ∞.
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Proposition 2 implies that if ρ < 1, then {L(N(t)) : t ≥ 0} is tight, where L(N(t)) is the
distribution of N(t).

Proof of Proposition 2. Let

τ L0 = inf

⎧
⎨

⎩
t ≥ 0 :

K∑

i=1

Ni (t)E[Bi ] ≤ L , t is the beginning epoch of a glue period of station 1

⎫
⎬

⎭
,

and for n ≥ 1,

τ L
n = inf

{

t > τ L
n−1 :

K∑

i=1

Ni (t)E[Bi ] ≤ L , t is the beginning epoch of a glue period of station 1

}

.

First, we show that there exist positive real numbers L , C , and ε such that for all l =
(l1, . . . , lK ) with

∑K
i=1 liE[Bi ] > L ,

E

[
K∑

i=1

Ni (τ
∞
1 )E[Bi ]|N(τ∞

0 ) = l

]

≤ (1 − ε)

K∑

i=1

liE[Bi ], (9)

E
[
τ∞
1 − τ∞

0 |N(τ∞
0 ) = l

] ≤ C
K∑

i=1

liE[Bi ], (10)

and for all l with
∑K

i=1 liE[Bi ] ≤ L ,

E

[
K∑

i=1

Ni (τ
∞
1 )E[Bi ]|N(τ∞

0 ) = l

]

≤ C, (11)

E
[
τ∞
1 − τ∞

0 |N(τ∞
0 ) = l

] ≤ C. (12)

Note that Ni (τ
∞
1 ) = Ni (τ

∞
0 ) − Di + Ai , where Di is the number of service completions

at station i during (τ∞
0 , τ∞

1 ), and Ai is the number of arrivals at station i during (τ∞
0 , τ∞

1 ).
Thus

E
[
N(τ∞

1 )|N(τ∞
0 ) = l

]

= l − E
[
(D1, . . . ,DK )|N(τ∞

0 ) = l
] + E

[
(A1, . . . ,AK )|N(τ∞

0 ) = l
]
.

Since

E
[
(A1, . . . ,AK )|N(τ∞

0 ) = l
] =

K∑

i=1

(gi + E[Si ] + E[Di |N(τ∞
0 ) = l]E[Bi ])λ,

we have

E

[
K∑

i=1

Ni (τ
∞
1 )E[Bi ]|N(τ∞

0 ) = l

]

=
K∑

i=1

liE[Bi ] − E

[
K∑

i=1

DiE[Bi ]|N(τ∞
0 ) = l

]

+
K∑

i=1

(gi + E[Si ] + E[Di |N(τ∞
0 ) = l]E[Bi ])

K∑

i=1

λiE[Bi ]
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= ρ

K∑

i=1

(gi + E[Si ]) +
K∑

i=1

liE[Bi ] − (1 − ρ)E

[
K∑

i=1

DiE[Bi ]|N(τ∞
0 ) = l

]

.

Note that

E[Di |N(τ∞
0 ) = l] ≥ li (1 − e−νi gi ) ≥ min

1≤ j≤K
(1 − e−ν j g j )li .

Hence

E

[
K∑

i=1

Ni (τ
∞
1 )E[Bi ]|N(τ∞

0 ) = l

]

≤ ρ

K∑

i=1

(gi + E[Si ]) +
(

1 − (1 − ρ) min
1≤ j≤K

(1 − e−ν j g j )

) K∑

i=1

liE[Bi ]

= ρ

K∑

i=1

(gi + E[Si ]) + (1 − 2ε)
K∑

i=1

liE[Bi ], (13)

where ε = 1−ρ
2 min1≤ j≤K (1 − e−ν j g j ). Therefore,

lim sup
∑K

i=1 liE[Bi ]→∞

E

[∑K
i=1 Ni (τ

∞
1 )E[Bi ]|N(τ∞

0 ) = l
]

∑K
i=1 liE[Bi ]

≤ 1 − 2ε,

and so there exists a positive number L such that

E

[∑K
i=1 Ni (τ

∞
1 )E[Bi ]|N(τ∞

0 ) = l
]

∑K
i=1 liE[Bi ]

≤ 1 − ε

for all l with
∑K

i=1 liE[Bi ] > L . This proves (9). We have from (13) that there exists C
satisfying (11). To prove (10) and (12), we note that τ∞

1 − τ∞
0 is stochastically less than the

sum of
∑K

i=1(gi + Si ), and the busy period with initial workloadW0 in the standard M/G/1
queue (where W0 has the same distribution as the workload at τ∞

0 in our polling system).
Thus

E
[
τ∞
1 − τ∞

0 |N(τ∞
0 ) = l

] ≤
∑K

i=1 liE[Bi ]
1 − ρ

+
K∑

i=1

(gi + E[Si ]).

This proves that there exists C satisfying (10) and (12).
Next, we prove

E[τ L
1 − τ L

0 |N(τ L
0 ) = l] < ∞

for all l with
∑K

i=1 liE[Bi ] ≤ L . We can see from (9) that for l with
∑K

i=1 liE[Bi ] > L ,

E

[
K∑

i=1

Ni (τ
∞
n )E[Bi ]1{τ∞

n <τ L
0 }|N(τ∞

0 ) = l

]

≤ (1 − ε)n
K∑

i=1

liE[Bi ]. (14)

Also, for l with
∑K

i=1 liE[Bi ] > L , by (10),

E

[
(τ∞

n+1 − τ∞
n )1{τ∞

n <τ L
0 }|N(τ∞

0 ) = l
]
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=
∑

l ′:∑K
i=1 l

′
iE[Bi ]>L

E

[
τ∞
n+1 − τ∞

n |N(τ∞
n ) = l ′, τ∞

n < τ L
0

]

× P(N(τ∞
n ) = l ′, τ∞

n < τ L
0 |N(τ∞

0 ) = l)

≤
∑

l ′:∑K
i=1 l

′
iE[Bi ]>L

C
K∑

i=1

l ′iE[Bi ]P(N(τ∞
n ) = l ′, τ∞

n < τ L
0 |N(τ∞

0 ) = l)

= CE

[
K∑

i=1

Ni (τ
∞
n )E[Bi ]1{τ∞

n <τ L
0 }|N(τ∞

0 ) = l

]

.

Thus, by (14),

E

[
(τ∞

n+1 − τ∞
n )1{τ∞

n <τ L
0 }|N(τ∞

0 ) = l
]

≤ C(1 − ε)n
K∑

i=1

liE[Bi ].

Hence, for l with
∑K

i=1 liE[Bi ] > L ,

E

[
τ L
0 − τ∞

0 |N(τ∞
0 ) = l

]
= E

[ ∞∑

n=0

(τ∞
n+1 − τ∞

n )1{τ∞
n <τ L

0 }|N(τ∞
0 ) = l

]

≤ C

ε

K∑

i=1

liE[Bi ]. (15)

Now, for l with
∑K

i=1 liE[Bi ] ≤ L ,

E

[
τ L
1 − τ L

0 |N(τ∞
0 ) = l

]

= E
[
τ∞
1 − τ∞

0 |N(τ∞
0 ) = l

]

+
∑

l ′:∑K
i=1 l

′
iE[Bi ]>L

P(N(τ∞
1 ) = l ′|N(τ∞

0 ) = l)E
[
τ L
1 − τ∞

1 |N(τ∞
0 ) = l, N(τ∞

1 ) = l ′
]

= E
[
τ∞
1 − τ∞

0 |N(τ∞
0 ) = l

]

+
∑

l ′:∑K
i=1 l

′
iE[Bi ]>L

P(N(τ∞
1 ) = l ′|N(τ∞

0 ) = l)E
[
τ L
0 − τ∞

0 |N(τ∞
0 ) = l ′

]

≤ E
[
τ∞
1 − τ∞

0 |N(τ∞
0 ) = l

] +
∑

l ′:∑K
i=1 l

′
iE[Bi ]>L

P(N(τ∞
1 ) = l ′|N(τ∞

0 ) = l)
C

ε

K∑

i=1

l ′iE[Bi ]

≤ E
[
τ∞
1 − τ∞

0 |N(τ∞
0 ) = l

] + C

ε
E

[
K∑

i=1

Ni (τ
∞
1 )E[Bi ]|N(τ∞

0 ) = l

]

,

which is finite by (11) and (12). Here we have used (15) in the second last inequality.
Therefore, we have proved E[τ L

1 − τ L
0 |N(τ L

0 ) = l] < ∞ for all l with
∑K

i=1 liE[Bi ] ≤ L .
Note that

• N(t) is a Markov regenerative process with Markov renewal sequence (N(τ L
n ), τ L

n ).
• The Markov process N(τ L

n ) has a finite state space and is irreducible.
• The semi-Markov process (SMP) corresponding to this Markov renewal sequence is

positive recurrent.
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Refer to Chapter 9 of Kulkarni (1995) for further details on the theory ofMarkov regenerative
processes, Markov renewal sequences, and SMPs.

If the polling system is aperiodic, then the SMP is aperiodic. In this case N(t) converges
in distribution as t → ∞ (refer to Theorem 9.30 of Kulkarni 1995). If the polling system is
periodic with period d , then the SMP is periodic with period d . In this case N(nd) converges
in distribution as n → ∞. ��

In the following proposition, we obtain the instability condition of the system.

Proposition 3 Let U (t) be the workload at time t in our polling system. If ρ ≥ 1, then

U (t) → ∞ in distribution as t → ∞.

Proposition 3 implies that if ρ ≥ 1, then {L(U (t)) : t ≥ 0} is not tight, where L(U (t)) is
the distribution of U (t). This also ensures that if ρ ≥ 1, then {L(N(t)) : t ≥ 0} is not tight.
Proof of Proposition 3. Let Ũ (t) be the workload at time t in the standard M/G/1 queue
with arrival rate λ and service time distribution

∑K
i=1

λi
λ
P(Bi ≤ x). If U (0) = Ũ (0) in

distribution, then U (t) ≥ Ũ (t) stochastically for all t ≥ 0. If ρ ≥ 1, then Ũ (t) → ∞ in
distribution as t → ∞, and so U (t) → ∞ in distribution as t → ∞. ��
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