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Abstract Big data systems for reinforcement learning have often exhibited problems (e.g.,
failures or errors) when their components involve stochastic nature with the continuous con-
trol actions of reliability and quality. The complexity of big data systems and their stochastic
features raise the challenge of uncertainty. This article proposes a dynamic coherent quality
measure focusing on an axiomatic framework by characterizing the probability of critical
errors that can be used to evaluate if the conveyed information of big data interacts efficiently
with the integrated system (i.e., system of systems) to achieve desired performance. Herein,
we consider two new measures that compute the higher-than-expected error,—that is, the
tail error and its conditional expectation of the excessive error (conditional tail error)—as a
quality measure of a big data system. We illustrate several properties (that suffice stochastic
time-invariance) of the proposed dynamic coherent quality measure for a big data system.We
apply the proposed measures in an empirical study with three wavelet-based big data systems
in monitoring and forecasting electricity demand to conduct the reliability and quality man-
agement in terms of minimizing decision-making errors. Performance of using our approach
in the assessment illustrates its superiority and confirms the efficiency and robustness of the
proposed method.

Keywords Big data ·Dynamic coherent measure ·Optimal decision ·Quality management ·
Time consistency

JEL Classification C02 · C10 · C63

B Edward W. Sun
edward.sun@kedgebs.com; edward.sun@bem.edu

1 School of Business Informatics and Mathematics, University of Mannheim, Mannheim, Germany

2 College of Computer Science, National Chiao Tung University (NCTU), Hsinchu, Taiwan

3 KEDGE Business School, 680 Cours de la Libèration, 33405 Talance Cedex, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-018-2795-1&domain=pdf


4 Ann Oper Res (2019) 277:3–32

1 Introduction

Big data have become a torrent, flowing into every area of business and service along with the
integration of information and communication technology and the increasingly development
of decentralized and self-organizing infrastructures (see Sun et al. 2015, for example). A big
data system (BDS), which in our article refers to the big data-initiated system of systems,
is an incorporation of a task-oriented or dedicated system that interoperates with big data
resources, integrates their proprietary infrastructural components, and improves their analytic
capabilities to create a new and more sophisticated system for more functional and superior
performance. For example, the Internet of Things (IoT), as described by Deichmann et al.
(2015) is a BDS, and its network’s physical objects through the application of embedded
sensors, actuators, and other devices can collect or transmit data about the objects. BDS
generates an enormous amount of data through devices that are networked through computer
systems.

Challenges to BDS are therefore unavoidable with the tremendously ever-increasing scale
and complexity of systems. Hazen et al. (2014) address the data quality problem in the context
of supply chain management and propose methods for monitoring and controlling data qual-
ity. The fundamental challenge of BDS is that there exists an increasing number of software
and hardware failures when the scale of an application increases. Pham (2006) discusses the
system software reliability in theory and practice. Component failure is the norm rather than
exception, and applications must be designed to be resilient to failures and diligently han-
dle them to ensure continued operations. The second challenge is that complexity increases
with an increase in scale. There are more component interactions, increasingly unpredictable
requests on the processing of each component, and greater competition for shared resources
among interconnected components. This inherent complexity and non-deterministic behavior
makes diagnosing aberrant behavior an immense challenge. Identifying whether the inter-
ruption is caused by the processing implementation itself or unexpected interactions with
other components turns out to be rather ambiguous. The third challenge is that scale makes
a thorough testing of big data applications before deployment impractical and infeasible.

BDS pools all resources and capabilities together and offersmore functionality and perfor-
mance with sophisticated technologies to ensure the efficiency of such an integrated system.
Therefore, the efficiency of BDS should be higher than the merged efficiency of all con-
stituent systems. Deichmann et al. (2015) point out that the replacement cycle for networked
data may be longer than the innovation cycle for the algorithms embedded within those
systems. BDS therefore should consider ways to upgrade its computational capabilities to
enable continuous delivery of data (information) updates. Modular designs are required so
the system can refresh discrete components (e.g., data) of a BDS on a rolling basis without
having to upgrade the whole database. To pursue a continuous-delivery model of informa-
tion or decision, BDS must be enabled to review its computational processes and be focused
simultaneously on supporting data flows that must be updated quickly and frequently, such
as auto-maintenance. In addition, BDS has to ensure speed and fidelity in computation and
stability and security in operation. Networking efficiency is huge, but there is a lot of uncer-
tainty over it. Questions thus arise about how to accurately assess the performance of BDS,
and how to build a technology stack1 to support it.

Quality measures quantify a system’s noncompliance with the desirable or intended stan-
dard or objective. Such noncompliance may occur for a process, outcome, component,

1 These are layers of hardware, firmware, software applications, operating platforms, and networks that make
up IT architecture.
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structure, product, service, procedure, or system, and its occurrence usually causes loss.
Enlightened by the literature of managing the extreme events and disasters, in this article we
work on an axiomatic framework of new measures (based on the tail distribution of critical
defect or error) to address how to conduct optimal quality management for BDS with respect
to a dynamic coherent measurement that has been well established particularly for manag-
ing risk or loss—see, for example, Riedel (2004), Artzner et al. (2007), Sun et al. (2009),
Bion-Nadal (2009) and Chun et al. (2012) as well as references therein. Conventional quality
measures focus on quantizing either the central moment (i.e., the mean) or the extreme value
(e.g., six sigma) of error (or failure). The newly proposedmeasure focuses on a specific range
of distribution instead of a specific point, which modulates the overall exposure of defects
for quality management.

Conventional measurement based on average performance such as mean absolute error
(MAE) is particularly susceptible to the influence of outliers. When we conduct system
engineering, systems have their individual uncertainties that lead to error propagation that
will distort the overall efficiency. When these individual uncertainties are correlated with
an unknown pattern, simple aggregating a central tendency measure gives rise to erroneous
judgment. The six sigma approach that investigates the extremum2 has received considerable
attention in the quality literature and general business and management literature. However,
this approach has shown various deficiencies such as rigidity, inadequate for complex system,
and non-subadditivity, particularly, not suitable for an integrated systemor systemof dynamic
systems. However, Baucells and Borgonovo (2013) and Sun et al. (2007) suggested the
Kolmogorov–Smirnov (KS) distance, Cramér–von Mises (CVM) distance, and Kuiper (K)
distance as themetrics for evaluation. Thesemeasures are based on the probability distribution
of malfunction and only provide information for relative comparison of extremum. They fail
to identify the absolute difference when we need to know the substantiality of difference.
In order to overcome these shortcomings, we propose a dynamic measurement applying tail
error (TE) and its derivation, conditional tail error (CTE), to quantify the higher-than-expected
failure (or critical error) of a BDS.

Tail error (TE) describes the performance of a system in a worst-case scenario or the
critical error for a really bad performance with a given confidence level. TE measures an
error below a given probability α that can be treated as a percentage of all errors. α is then the
probability such that an error greater than TE is less than or equal to α, whereas an error less
than TE is less than or equal to 1−α. For example, one can state that it is 95% (i.e., α = 5%)
sure for a given system processing that the highest defect rate is no more than 15% (which
is the tail error that can be tolerated). TE can also be technically defined as a higher-than-
expected error of an outcome moving more than a certain tolerance level,—for example, a
latency with three standard deviations away from the mean, or even six standard deviations
away from the mean (i.e., the six sigma). For mere mortals, it has come to signify any big
downward move in dependability. Because an expectation is fairly subjective, a decision
maker can appropriately adjust it with respect to different severities.

When we assess (e.g., zoom in) tail-end (far distance from zero) along with the error (or
failure) distribution, the conditional tail error (CTE) is a type of sensitivity measure derived
fromTE describing the shape of the error (or failure) distribution for the far-end tail departing
from TE. CTE also quantifies the likelihood (at a specific confidence level) that a specific
error will exceed the tail error (i.e., the worst case for a given confidence level), which is
mathematically derived by taking a weighted average between the tail error and the errors

2 A six sigma process is one in which 99.99966% of all opportunities are statistically expected to be free of
defects (i.e., 3.4 defective features per million opportunities).
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exceeding it. CTE evaluates the value of an error in a conservative way, focusing on the
most severe (i.e., intolerable) outcomes above the tail error. The dynamic coherent version
of CTE is the upper bound of the exponentially decreasing bounds for TE and CTE. CTE is
convex and can be additive for an independent system. A preternatural character of them is
to quantitate the density of errors by choosing different α values (or percentages). Therefore,
a subjective tolerance (determined by α) of error can be predetermined by a specific utility
function of the decision maker. Intrinsic features of the conditional probability guarantee its
consistency and coherence when applying it to dynamic quality management throughout the
entire process. We show several properties of these measures in our study and explain how
to compute them for quality management of a BDS.

We organize the article as follows. Section 2 introduces some background information
focusing on BDS and quality management. We describe the prevailing paradigm for the qual-
ity management of a big data system. We then introduce the methodology in more details
and illustrate several properties of the proposed framework. Section 3 presents three big data
systems (i.e., SOWDA,GOWDA, andWRASA) based onwavelet algorithms. Section 4 con-
ducts an empirical study to evaluate these three systems’ performances on the big electricity
demand data from France through analysis and forecasting. It also provides a discussion
with simulation for several special cases that have not been observed in the empirical study.
Our empirical and simulation results confirm the efficiency and robustness of the method
proposed herein. We summarize our conclusions in Sect. 5.

2 Quality management for big data system

Optimal quality management refers to the methodologies, strategies, technologies, systems,
and applications that analyze critical data to help an institution or individual better understand
the viability, stability, and performance of systems with timely beneficial decisions in order
to maintain a desired level of excellence. In addition to the data processing and analytical
technologies, quality management for BDS assesses macroscopic and microscopic aspects
of system processing and then combines all relevant information to conduct various high-
impact operations to ensure the system’s consistency. Therefore, the foundation of quality
management for BDS is how to efficiently evaluate the interoperations of all components
dealing with the big data through robust methodologies (see Sun et al. 2015, for example).
In this section we first classify BDS—that is, the fundamentals for the system of systems
engineering. We then discuss quality lifecycle management (QLM) for systematic quality
management. We propose the framework of dynamic coherent quality management, which
is a continuous process to consistently identify critical errors. We then set up the quantitative
framework of metrics to evaluate the decision-making quality of BDS in terms of error
control.

2.1 Big data system

The integration and assessment of a broad spectrum of data—where such data usually illus-
trate the typical “6Vs” (i. e., variety, velocity, volume, veracity, viability, and value)—affect
a big data system. Sun et al. (2015) summarize four features of big data as follows: (1)
autonomous and heterogeneous resource, (2) diverse dimensionality, (3) unconventional pro-
cessing, and (4) dynamic complexity. Monitoring and controlling data quality turn out to be
more critical (see Hazen et al. 2014, for example). In our article we refer to the big data
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Fig. 1 Fundamental architectures of a big data system (BDS). Dots indicate components (processors and
terminals) and edges are links. The component could be a system or a unit. a Centralized BDS that has
a central location, using terminals that are attached to the central. b Fragmented (or decentralized) BDS
that allocates one central operator to many local clusters that communicate with associated processors (or
terminals). c Distributed BDS that spreads out computer programming and data on many equally-weighted
processors (or terminals) that directly communicate with each other

initiated a system of systems as BDS, which is an incorporation of task-oriented or dedicated
systems that interoperate their big data resources, integrate their proprietary infrastructural
components, and improve their analytic capabilities to create a new and more sophisticated
system for more functional and superior performance. A complete BDS contains (1) data
engineering that intends to design, develop, integrate data from various resources, and run
ETL (extract, transform and load) on top of big datasets and (2) data science that applies data
mining, machine learning, and statistics approaches to discovery knowledge and develop
intelligence (such as decision making).

When integrating all resources and capabilities together to a BDS for more functionality
and performance, such a processing is called system of systems engineering (SoSE) (see
Keating and Katina 2011, for example). SoSE for BDS integrates various, distributed, and
autonomous systems to a large sophisticated system that pools interacting, interrelated, and
interdependent components as an incorporation.We illustrate three fundamental architectures
of BDS with Fig. 1 centralized, fragmented, and distributed.

Centralized BDS has a central operator that serves as the acting agent for all communica-
tions with associated processors (or terminals). Fragmented (or decentralized) BDS allocates
one central operator to many local clusters that communicate with associated processors (or
terminals). Distributed BDS spreads out computer programming and data on many equally
weighted processors (or terminals) that directly communicate with each other. For more
details about data center network topologies, see Liu et al. (2013) and references therein.

We can identify five properties of BDS following “Maier’s criteria” (see Maier 1998):
(1) operational independence, i.e., each subsystem of BDS is independent and achieves its
purposes by itself; (2) managerial independence, that is, each subsystem of BDS is managed
in large part for its own purposes rather than the purposes of the whole; (3) heterogeneity,
that is, different technologies and implementation media are involved and a large geographic
extent will be considered; (4) emergent behavior, that is, BDS has capabilities and properties
in which the interaction of BDS inevitably results in behaviors that are not predictable in
advance for the component systems; and (5) evolutionary development, that is, a BDS evolves
with time and experience. This classification shares some joint properties that can be used
to characterize a complex system,—for example, the last three properties of heterogeneity,
emergence, and evolution.
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2.2 Systematic quality management

Modeling a system’s featuring quality helps characterize the availability and reliability of
the underlying system. The unavailability and unreliability of a system presents an overshoot
with respect to its asymptotic metrics of performance with the hazard that characterizes the
failure rate associated with design inadequacy. Levels of uncertainty in modeling and control
are likely to be significantly higher with BDS. Greater attention must be paid to the stochastic
aspects of learning and identification. Uncertainty and risk must be rigorously managed.

These arguments push for a renewedmechanism on systemmonitoring, fault detection and
diagnosis, and fault-tolerant control that include protective redundancies at the hardware and
software level (see Shooman 2002). Rigorous, scalable, and sophisticated algorithms shall be
applied for assuring the quality, reliability, and safety of theBDS.Achieving consistent quality
in the intelligent decision of the BDS is a multidimensional challenge with increasingly
global data flows, a widespread network of subsystems, technical complexity, and a highly
demanding computational efficiency.

To be most effective, quality management should be considered as a continuous
improvement program with learning as its core. Wu and Zhang (2013) point out that
exploitative-oriented and explorative-oriented quality management need to consistently
ensure quality control on the operation lifecycle throughout the entire process. Parast and
Adams (2012) highlight two theoretical perspectives (i.e., convergence theory and insti-
tutional theory) of quality management over time. Both of them emphasize that quality
management evolves over time by using cross-sectional, adaptive, flexible, and collaborative
methods so that the quality information obtained in one lifecycle stage can be transferred to
relevant processes in other lifecycle stages. Contingency theory also recommends that the
operation of quality control be continually adapted (see Agarwal et al. 2013, for example),
and quality information must therefore be highly available throughout the whole system to
ensure that any and all decisions that may require quality data or affect performance quality
are informed in a timely, efficient, and accurate fashion.

Quality lifecyclemanagement (QLM)3 is system-wide, cross-functional solution to ensure
that processing performance, reliability, and safety are aligned with the requirements set for
them over the course of the system performance. Mellat-Parst and Digman (2008) extend the
concept of quality beyond the scope of a firm by providing a network perspective of quality.
QLM is used to build quality, reliability, and risk planning into every part of the processing
lifecycle by aligning functional needs with performance requirements, ensuring that these
requirements are met by specific characteristics and tracking these characteristics systemat-
ically throughout design, testing, development, and operation to ensure the requirements are
met at every lifecycle stage. Outputs from each lifecycle stage, including analysis results,
performance failures, corrective actions, systemic calibrations, and algorithmic verifications,
are compiled within a single database platform using QLM. They are made accessible to
other relevant lifecycle stages using automated processes. This guarantees the continuous
improvement of systemic performance over the course of development and further improve-
ment. QLM links together the quality, reliability, and safety activities that take place across
every stage of the product development lifecycle. Through QLM, one lifecycle stage informs
the next, and the feedback from each stage is automatically fed into other stages to which it
relates, we then obtain a unified and holistic view of overall quality of performance.

3 PTC white paper. PTC is a global provider of technology platforms and solutions that transform how
companies create, operate, and service the “things” in the Internet of Things (IoT). See www.ptc.com.
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2.3 The methodology

In this section, we describe the axiomatic framework for QLM with respect to the dynamic
coherent errormeasures.Based on theKullback–Leibler distance,we propose two concepts—
that is, the tail error (TE) and conditional tail error (CTE)—and their dynamic setting to
guarantee the feature of time consistency. These two error measures can be applied dynami-
cally to control performance errors at each stage of BDS in order to conduct QLM.

2.3.1 Notation and definitions

The uncertainty of future states shall be represented by a probability space (�,F, P) that
is, the domain of all random variables. At time t a big data system is employed to make a
decision about future scenario after a given time horizon �, for example, to predict price
change from t to t + �. We denote a quantitative measure of the future scenario at time
t by V (t) that is a random variable and observable through time. The difference between
the predicted scenario at time t and its true observation at time t + � is then measured by
V (t + �) − V (t). If we denote ˜V (·) as the prediction and V (·) the observation, then the
Kullback–Leibler distance or divergence of the prediction error is given by the following
definition:

Definition 1 For given probability density functions V (x) and ˜V (x) on an open setA ∈ �N ,
the Kullback–Leibler distance or divergence of ˜V (x) from V (x) is defined by

K(V ‖˜V ) =
∫

A
V (x) log

V (x)
˜V (x)

dx . (1)

Axiom 1 Assume that V (x) and ˜V (x) are continuous on an open set A, then for arbitrary
V (x) and ˜V (x),K(V ‖˜V ) ≥ 0; andK(V ‖˜V ) = 0 if and only if V (x) = ˜V (x) for any x ∈ A.

Because ˜V (x) and V (x) are density functions, we have
∫

˜V (x)dx = 1 and
∫

V (x)dx = 1,
which shows Axiom 1.

Axiom 2 Consider a set K of real-valued random variables. A functional ρ : D → R is
referred to be a consistent error measure for D if it satisfies all of the following axioms:

(1) ∀K1,K2,∈ D such that K2 ≥ K1 a.s., we have ρ(K1) ≤ ρ(K2).
(2) ∀K1,K2,∈ D such that K1 + K2 ∈ D, we have ρ(K1 + K2) ≤ ρ(K1) + ρ(K2);

for K1 and K2 are comonotonic random variables, that is, for every ω1, ω2 ∈ � :
(K1(ω2) −K1(ω1))(K2(ω2) −K2(ω1)) ≥ 0, we have ρ(K1 +K2) = ρ(K1) + ρ(K2).

(3) ∀K ∈ D and γ ∈ �+ such that γK ∈ D, we have ρ(γK) ≤ γρ(K).
(4) ∀K ∈ D and a ∈ � such that K + a ∈ D, we have ρ(X + a) = ρ(X) + a.
(5) ∀K1,K2,∈ D with cumulative distribution functions FK1 and FK2 respectively, if

FK1 = FK2 then ρ(K1) = ρ(K2).

This axiom is motivated by the coherent measure proposed by Artzner et al. (2007). Here, we
modify the axiomatic framework of consistency in describing the error function. ByAxiom2-
(1), a monotonicity of the error function is proposed: the larger the Kullback–Leibler distance
is, the larger the error metric will be. Axiom 2-(2) says that if we combine two tasks, then
the total error of them is not greater than the sum of the error associated with each of them, if
these two tasks are independent. When these two tasks are dependent, the total error of them
is equal to the sum of the error associated with each of them. It is also called subadditivity in
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risk management and also is applied in systematic computing such that an integration does
not create any extra error. Axiom 2-(3) can be derived if Axiom 2-(2) holds, and it reflects
positive homogeneity. It shows that an error reduction requires that processing uncertainty
should linearly influence task loans. Axiom 2-(4) shows that the error will not be altered by
adding or subtracting a deterministic quantity a to a task. Axiom 2-(5) states the probabilistic
equivalence that is derived directly from Axiom 1.

2.3.2 Dynamic error measures

A dynamic error measure induces for each operation a quality control process describing
the error associated with the operation over the time. O’Neill et al. (2015) point out that
quality management helps maintain the inherent characteristics (distinguishing features) in
order to fulfill certain requirements. The inherence of quality requires a dynamic measure
to conduct continuous processing of error assessment in the rapidly changing circumstances
of an operational system. During the dynamic phase, the decision-making process involves
investigating the errors generated by the big data systems, selecting an appropriate response
(system of work), and making a judgment on whether the errors indicate a systematic failure.
How to interrelate quality control process over different periods of time is important for
the dynamic measure. Consequently, a dynamic error measure should take into account the
information available at the time of assessment and update the new information continuously
over time.Time consistency then plays a crucial role in evaluating the performance of dynamic
measures, particularly for big data systems that run everlastingly before stopping. Therefore,
the quality measure for errors shall preserve the property of consistency.

Bion-Nadal (2008) defines a dynamic risk measures based on a continuous time filtered
probability space as (�,F∞, (Ft )t∈�+ , P) where the filtration (Ft )t∈�+ is right continuous.
Similarly, following the Axiom 2, we can extend it to a dynamic error measure following
Bion-Nadal (2008), Chen et al. (2017), and references therein.

Definition 2 For any stopping time τ , we define the σ -algebraFτ by Fτ = {K ∈ F∞ | ∀ t ∈
�+ : K ∩ {τ ≤ t} ∈ Ft }. Then L∞(�,Fτ , P) is the Banach algebra of essentially bounded
real valued Fτ -measurable functions.

TheKullback–Leibler distance for the systemerrorwill be identified as an essentially bounded
Fτ -measurable function with its class in L∞(�,Fτ , P). Therefore, an error at a stopping
time τ is an element of L∞(�,Fτ , P). We can distinguish a finite time horizon as a case
defined by Ft = FT ∀ t ≥ T .

Axiom 3 For all K ∈ L∞(Fτ ), a dynamic error measure (
τ1,τ2)0≤τ1≤τ2 on (�,F∞,

(Ft )t∈�+ , P), where τ1 ≤ τ2 are two stopping times, is a family of maps defined on
L∞(�,Fτ2 , P) with values in L∞(�,Fτ1 , P). (
τ1,τ2) is consistent if it satisfies the fol-
lowing properties:

(1) ∀K1,K2,∈ L∞(Fτ )
2 such that K2 ≥ K1 a.s., we have 
τ1,τ2(K1) ≤ 
τ1,τ2(K2).

(2) ∀K1,K2,∈ L∞(Fτ )
2 such that K1 + K2 ∈ L∞(Fτ )

2, we have 
τ1,τ2(K1 + K2) ≤

τ1,τ2(K1)+
τ1,τ2(K2); forK1 andK2 are comonotonic random variables, i.e., for every
ω1, ω2 ∈ � : (K1(ω2)−K1(ω1))(K2(ω2)−K2(ω1)) ≥ 0, we have 
τ1,τ2(K1 +K2) =

τ1,τ2(K1) + 
τ1,τ2(K2).

(3) ∀K ∈ L∞(Fτ ) and γ ∈ �+ such that γK ∈ L∞(Fτ ), we have 
τ1,τ2(γK) ≤
γ 
τ1,τ2(K).

(4) ∀K ∈ L∞(Fτ ) and a ∈ L∞(Fσ ) such thatK+a ∈ L∞(Fσ ), we have 
τ1,τ2(X +a) =

τ1,τ2(X) + a.
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(5) For any increasing (resp. decreasing) sequence Kn ∈ L∞(Fτ )
n such that K = limKn,

the decreasing (resp. increasing) sequence 
τ1,τ2(Kn) has the limit 
τ1,τ2(K) and con-
tinuous from below (resp. above).

This axiom is motivated by Axiom 2 in consistency with respect to the dynamic setting for
error assessment. Following Bion-Nadal (2008), Chen et al. (2017), and references therein,
we can define time invariance as follows:

Definition 3 For allK ∈ L∞(Fτ ), a dynamic error measure (
τ ) on (�,F∞, (Ft )t∈�+ , P),
where τ1, τ2 ∈ {0, 1, . . . , T − 1} are consecutive stopping times and s is a constant of time,
is said to be time invariant if it satisfies the following properties:

(1) ∀K1,K2,∈ L∞(Fτ )
2: 
τ1+s(K1) = 
τ1+s(K2) ⇒ 
τ1(K1) = 
τ1(K2) and


τ2+s(K1) = 
τ2+s(K2) ⇒ 
τ2(K1) = 
τ2(K2).
(2) ∀K ∈ L∞(Fτ ): 
τ1+s(K) = 
τ2+s(K) ⇒ 
τ1(K) = 
τ2(K).
(3) ∀K ∈ L∞(Fτ ): 
τ1(K) = 
τ1(−
τ1+s(K)) and 
τ2(K) = 
τ2(−
τ2+s(K)).

Based on the equality and recursive property in Definition 3, we can construct a time invariant
error measure by composing one-period (i.e., s = 1) measures over time such that for all
t < T − 1 and K ∈ L∞(Fτ ) the composed measure 
̃τ is (1) 
̃T−1(K) = 
T−1(K) and (2)

̃τ (K) = 
τ (−
̃τ+1(K)) (see Cheridito and Stadje 2009, for example).

2.3.3 Tail error (TE) and conditional tail error (CTE)

Enlightened by the literature of the extreme value theory, we define the tail error (TE) and
its coherent extension, that is, the conditional tail error (CTE). Considering some outcomes
generated from a system, an error or distance is measured by the Kullback–Leibler distance
K, and there exists any arbitrary value ε, we denote FK(ε) = P(K ≤ ε) as the distribution
of the corresponding error. We intend to define a statistic based on FK that can measure the
severity of the erroneous outcome over a fixed time period.We can directly use the maximum
error (e.g., ε), such that inf{ε ∈ � : FK(ε) = 1}. When the support of FK is not bounded,
the maximum error becomes infinity. However, the maximum error does not provide us the
probabilistic information of FK. The tail error then extends it to the maximum error that will
not be exceeded with a given probability.

Definition 4 Given some confidence level α ∈ (0, 1), the tail error of outcomes from a
system at the confidence level α is given by the smallest value ε such that the probability that
the error K exceeds ε is not larger than 1 − α, that is, the tail error is a quantile of the error
distribution shown as follows:

TEα(K) = inf{ε ∈ � : P(K > ε) ≤ 1 − α}
= inf{ε ∈ � : FK(ε) ≥ α}. (2)

Definition 5 For an error measured by the Kullback–Leibler distance K with E(K) < ∞,
and a confidence level α ∈ (0, 1), the conditional tail error (CTE) of system’s outcomes at a
confidence level α is defined as follows:

CTEα(K) = 1

1 − α

∫ 1

α

TEβ (K) dβ, (3)

where β ∈ (0, 1).
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We can formally present TEα(K) in Eq. (2) as aminimumcontrast (discrepancy) parameter
as follows:

TEα(K) = argminTEα(K)

(

(1 − α)

∫ TEα(K)

−∞
|K − TEα(K)| f (K) dK

+α

∫ ∞

TEα(K)

|K − TEα(K)| f (K) dK
)

, (4)

where α ∈ (0, 1) identifies the location of K on the distribution of errors. Comparing with
TE, CTE averages TE over all levels β ≥ α and investigates further into the tail of the error
distribution. We can see CTEα is determined only by the distribution ofK and CTEα ≥ TEα .
We see TE ismonotonic, that is, given byAxiom 2-(1), positive homogenous byAxiom 2-(3),
translation invariant shown by Axiom 2-(4), and equivalent in probability by Axiom 2-(5).
However, the subadditivity property cannot be satisfied in general for TE, and it is thus not
a coherent error measure. The conditional tail error satisfies all properties given by Axiom 2
and it is a coherent error measure. In addition, under the dynamic setting, CTE satisfies all
properties given by Axiom 3, it is also a dynamic coherent error measure.

In other words, TE measures an error below a given percentage (i.e., α) of all errors. α is
then the probability such that an error greater than TE is less than or equal to α, whereas an
error less than TE is less or than or equal to 1 − α. CTE measures the average error of the
performance in a given percentage (i.e., α) of the worst cases (above TE). Given the expected
value of errorK is strictly exceeding TE such that CTEα(K)+ = E[K|K > TEα(K)] and the
expected value of error K is weakly exceeding TE where CTEα(K)− = E[K|K ≥ TEα(K)],
CTEα(K) can be treated as the weighted average of CTEα(K)+ and TEα(K) such that:

CTEα(K) =
{


α(K)TEα(K) + (1 − 
α(K))CTEα(K)+, if FK(TEα(K)) < 1;
TEα(K), if FK(TEα(K)) = 1,

(5)

where


α(K) = FK(TEα(K)) − α

1 − α
.

We can see that TEα(K) and CTEα(K)+ are discontinuous functions for the error distri-
butions of (K), whereas CTEα(K) is continuous with respect to α; see Sun et al. (2009) and
references therein. We then obtain TEα(K) ≤ CTEα(K)− ≤ CTEα(K)+ ≤ CTEα(K). It is
clear that CTE evaluates the performance quality in a conservative way by focusing on the
less accurate outcomes. α for TE and CTE can be used to scale the user’s tolerance of critical
errors.

2.3.4 Computational methods

The TEα represents the error that with probability α it will not be exceeded. For continuous
distributions, it is an α-quantile such that TEα(K) = F−1

K (α) where FK(·) is the cumulative
distribution function of the random variable of error K. For the discrete case, there might
not be a defined unique value but a probability mass around the value; we then can compute
TEα(K) with TEα(K) = min{TE(K) : P(K ≤ TE(K)) ≥ α}.

The CTEα(K) represents the worst (1−α) part of the error distribution ofK that is above
the TEα(K) (i.e., conditional on the error above the TEα). When TEα(K) has continuous part
of the error distribution, we can derive αth CTE of (K)with CTEα(K) = E(K|K > TEα(K)).
However, when TEα falls in a probability mass, we compute CTEα(K) following Eq. (5):
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CTEα(K) = (β̂ − α)TEα(K) + (1 − β̂)E (K |K > TEα(K))

1 − α
,

where β̂ = max{β : TEα(K) = TEβ(K)}.
It is obvious that the α-th quantile of (K) is critical. The classical method for computing

is based on the order statistics; see David and Nagaraja (2003) and references therein. Given
a set of values K1, K1, . . . ,Kn , we can define the quantile for any fraction p as follows:

1. Sort the values in order, such that K(1) ≤ K(2) ≤ · · · ≤ K(n). The values K(1), . . . ,K(n)

are called the order statistics of the original sample.
2. Take the order statistics to be the quantile that correspond to the fraction:

pi = i − 1

n − 1
,

for i = 1, 2, . . . , n.
3. Use the linear interpolation between two consecutive pi to define the p-th quantile if p

lies a fraction f to be:

TEp(K) = (1 − f )TEpi (K) + f TEpi+1(K).

K in Axiom 1 measures the distance (i.e., error) between ˜V (x) and V (x). If the error
illustrate homogeneity and isotropy, for example, the distribution of errors are characterized
by a known probability function, a parametric method then can be applied, see Sun et al.
(2009) and references therein.

3 Wavelet-based big data systems

We are now going to evaluate big data systems under the framework we proposed in Sect. 2.
We first describe three big data systems that have been used for intelligent decision making
with different functions in this section before we conduct a numerical investigation. These
three big data systems have been built with wavelet algorithms that were applied in big
data analytics; see Sun and Meinl (2012) and references therein. The first big data system
is named SOWDA (smoothness-oriented wavelet denoising algorithm), which optimizes a
decision function with two control variables as proposed by Chen et al. (2015). It is originally
used to preserve the smoothness (low-frequency information) when processing big data. The
second is GOWDA (generalized optimal wavelet decomposition algorithm) introduced by
Sun et al. (2015), which is an efficient system for data processing with multiple criteria (i.e.,
six equally weighted control variables). Because GOWDA has a more sophisticated decision
function, an equal weight framework significantly improves computational efficiency. It is
particularly suitable for decomposing multiple-frequency information with heterogeneity.
The third one is called WRASA (wavelet recurrently adaptive separation algorithm), an
extension of GOWDA as suggested by Chen et al. (2015), which determines the decision
function of multiple criteria with convex optimization to optimally weight the criteria. Chen
and Sun (2018) illustrate how to incorporate these systems with a reinforcement learning
framework. All three big data systems have open access to adopt components of wavelet
analysis.

As we have discussed in Sect. 2, a complete BDS contains two technology stacks: data
engineering and data science. The former intends to design, develop, and integrate data from
various resources and run ETL on top of big datasets and the latter applies data mining,
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machine learning, and statistics approaches to discovering knowledge and developing intel-
ligence (such as decisionmaking). In this section,we briefly introduce the threeBDS focusing
on their engineering and learning.

3.1 Data engineering with wavelet

Big data has several unique characteristics (see Sect. 2.1) and requires special processing
before mining it. When dealing with heterogeneity, multi-resolution transformation of the
input data enables us to analyze the information simultaneously on different dimensions. We
are going to decompose the input data X as follows:

Xt = St + Nt , (6)

where St is the trend and we can estimate it with S̃t and Nt is the additive random features
sampled at time t . LetW(·;ω, ζ )denote thewavelet transformoperatorswith specificwavelet
function ω for ζ level of decomposition and W−1(·) is its corresponding inverse transform.
Let D(·; γ ) denote the denoising operator with thresholding rule γ . Therefore, wavelet data
engineering is then to extract S̃t from Xt as an optimal approximation of St after removing
the randomness. We summarize the processing as follows:

Y = W (X;ω, ζ ),

Z = D (Y ; γ ),

S̃ = W−1 (Z).

The complete procedure shall implement the operatorsW(·) and D(·) after careful selection
of ω, ζ , and γ ; see Sun et al. (2015).

Wavelets are bases of L2(R) and enable a localized time-frequency analysis with wavelet
functions that usually have either compact support or decay exponentially fast to zero.Wavelet
function (or the mother wavelet) ψ(t) is defined as:

∫ ∞

−∞
ψ(t)dt = 0.

Given α, β ∈ R, α �= 0, with compressing and expanding ψ(t), we obtain a successive
wavelet ψα,β(t), such that,

ψα,β(t) = 1√|α|ψ
(

t − β

α

)

, (7)

where we call α the scale or frequency factor and β the time factor. Given ψ̄(t) as the complex
conjugate function of ψ(t), a successive wavelet transform of the time series or finite signals
f (t) ∈ L2(R) can be defined as:

Wψ f (α, β) = 1√|α|
∫

R

f (t)ψ̄

(

t − β

α

)

dt. (8)

Equation (8) shows that the wavelet transform is the decomposition of f (t) under a
different resolution level (scale). In other words, the idea of the wavelet transform W is to
translate and dilate a single function (the mother wavelet) ψ(t). The degree of compression
is determined by the scaling parameter α, and the time location of the wavelet is set by the
translation parameter β. Here, |a| < 1 leads to compression and thus higher frequencies.
The opposite (lower frequencies) is true for |a| > 1, leading to time widths adapted to their
frequencies, see Chen et al. (2017) and references therein.
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The continuous wavelet transform (CWT) is defined as the integral over all time of the
data multiplied by scaled (stretching or compressing), shifted (moving forward or backward)
version of wavelet function. Because most big data applications have a finite length of time,
therefore, only a finite range of scales and shifts are practically meaningful. Therefore, we
consider the discrete wavelet transform (DWT), which is an orthogonal transform of a vector
(discrete big data) X of length N (which must be a multiple of 2J ) into J wavelet coefficient
vectors Wj ∈ R

N/2 j
, 1 ≤ j ≤ J and one scaling coefficient vector VJ ∈ R

N/2J . The
maximal overlap discrete wavelet transform (MODWT) has also been applied to reduce the
sensitivity of DWT when choosing an initial value. The MODWT follows the same pyramid
algorithm as the DWT by using the rescaled filters; see Sun et al. (2015) for details. All three
BDSs can apply the DWT and MODWT. We focus on the wavelet transform on MODWT in
this study.

Sun et al. (2015) pointed out that wavelet transform can lead to different outcomes when
choosing different input variables. Since wavelets are oscillating functions and transform the
signal orthogonally in the Hilbert space, there are many wavelet functions that satisfy the
requirement for the transform. Chen et al. (2015) show that different wavelets are used for
different reasons. For example, the Haar wavelet has very small support, whereas wavelets
of higher orders such as Daubechies DB(4) and least asymmetric (LA) have bigger support.
Bigger support can ensure a smoother shape of S j , for 1 ≤ j ≤ J with each wavelet and that
the scaling coefficient carries more information because of the increased filter width. Sun
et al. (2015) highlighted three factors that influence the quality of wavelet transform: wavelet
function (or mother wavelet), number of maximal iterations (or level of decomposition), and
the thresholding rule. However, there is no straightforward method to determine these three
factors simultaneously. Therefore, different BDS applies different decision functions when
conducting machine learning.

3.2 Machine learning

In order to perform the wavelet transform to optimize the analysis, that is, to see how close
S̃t is toward St , three big data systems have been applied with different decision processing.
First, let us name a separation factor θ , which is the combination of wavelet function, number
of maximal iterations, and thresholding rule, as well as a factor space � ⊆ R

p, p ≥ 0, then
θ ∈ �. Different θ will lead to different wavelet performances. We then consider a random
variable K and K = S − S̃. Here, K is in fact the approximation error and determined by a
real value approximating function m(K, θ) ∈ R and E(m(K, θ)) = 0.

Definition 6 Let Kt ∈ R
d be i.i.d. random vectors, and given that θ ∈ R

p is uniquely
determined by E(m(K, θ)) = 0, where m(K, θ) is called the approximating function and
takes values in R

p+q for q ≥ 0. Algorithm determines θ̃ such that θ̃ = argmaxθ R(θ),
where

R(θ) = min

{

n
∑

i=1

ωi mi (K, θ)

}

, s.t. ωi ≥ 0;
n

∑

i=1

ωi = 1, (9)

where ωi is the weight for the approximating function.

If we use only one type of approximation—that is, a single criterion—then the weight is one.
If we need to apply multivariate criteria for approximation, then we have to determine the
associated weight for each approximating function.
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3.2.1 Decision criteria

Six model selection criteria (i. e., m1, . . . ,m6) have been suggested by Sun et al. (2015) to
evaluate m(·). Given Kt = St − S̃t , for all t = 1, 2, . . . , T where T is the data length and p
the number of parameters estimated, the first three criteria are shown as follows:

m1 =
√

∑T
t=1 K2

t

T
, (10)

m2 = ln

(

∑T
t=1 K2

t

T

)

+ 2p

T
, (11)

and

m3 = ln

(

∑T
t=1 K2

t

T

)

+ p ln T

T
. (12)

Another three criteria are based on specific indicating functions. They are given as follows:

m4 = 1

T

T
∑

t=1

1 × 1C(K)=1, (13)

where

C(K) =
⎧

⎨

⎩

1, i f
max |Kt − 1

T

∑T
1 Kt |

√

1
T−1

∑T
1 (Kt − 1

T

∑T
1 Kt )2

> zα

0, otherwise

and z is the α-th quantile of a probability distribution (e.g. α = 0.05) for K.

m5 = 1

T

T
∑

t=1

1 × (

1D(K)=1 + 1D∗(K)=1
)

, (14)

where

D(K) =
{

1, i f Kt ≤ �

0, i f otherwise

when � is the local maxima and

D∗(K) =
{

1, i f Kt ≥ λ

0, i f otherwise

when λ is the local minima.

m6 = 1

T

T
∑

t=1

1 × 1C(K)=1, (15)

where

C(K) =
{

1, i f (St+1 − St ) (S̃t+1 − St ) ≤ 0
0, i f otherwise.

Summaried by Sun et al. (2015) is m4 to indicate the global extrema and m5 for the local
extrema. Both of them have the ability to detect boundary problems—that is, an inefficient
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approximation at the beginning and the end of the signal. In addition, m6 detects the severity
of K focusing on directional consistence.

For the three big data systems we compare in our study, SOWDA uses m1 and m2 and
GOWDA and WRASA use all six criteria when formulating their decision making process.

3.2.2 Decision making

With the approximation error vector m = [m1,m2, . . . ,m6], the next step is to determine
the weights of these factors, that is, ω ∈ R

6. Because the approximation error m is random,
for any given combination of the wavelet, level of decomposition, and thresholding function,
the weighted error mTω can be expressed as a random variable with mean E[mTω] and
varianceV(mTω)where E[mTω] = m̄Tω andV(mTω) = E[mTω−E[mTω]]2 = ωT� ω.
In our work, we apply convex optimization suggested by Chen et al. (2017) to determine
the weight ω for minimizing a linear combination of the expected value and variance of the
approximation error, that is,

minimize
ω

mTω + γ ωT� ω,

s. t. 1Tω = 1,

ω � 0,

where γ is a sensitivity measure that trades off between small expected approximation error
and small error variance because of computational efficiency. In this article, we allow γ > 0
which ensures a sufficiently large decrease in error variance, when the expected approxima-
tion error is trivial with respect to computational tolerance.

Figure 2 illustrates the workflow for the three big data systems (i.e., SOWDA, GOWDA
and WRASA) that we investigated in this article. As we can see, the major difference of
these three big data systems is in the decision-making process. WRASA minimizes the
resulting difference sequence between S̃t and St based on choosing an optimal combination
of approximating functionsm(·). Therefore,WRASAdetermines the approximating function
m(·) and its corresponding weight with convex optimization. SOWDA and GOWDA simply
take the predetermined value of ωi (i.e., at equal weight in our study) rather than optimizing
them. There has to be a trade-off between accuracy and computational efficiency if we want
to keep the latency as low as possible.

4 Empirical study

4.1 The data

In our empirical study, we use electricity power consumption in France from 01 January
2009 to 31 December 2014. The consumption data are taken from real-time measurements
of production units. TheNational Control Center (CentreNational d’Exploitation du Système
-CNES) constantlymatches electricity generationwith consumers’ power demands, covering
total power consumed in France nationwide (except Corsica). The input data for our empirical
study are provided by RTE (Ré seau de Transport d’Èlectricitè—Electricity Transmission
Network), which is the electricity transmission system operator of France. RTE is in charge of
operating, maintaining and developing high-voltage transmission systems in France, which
is also the Europe’s largest one at approximately 100,000 kilometers in length. The data
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Fig. 2 Workflow of three big data systems (SOWDA, GOWDA, and WRASA) that have different decision
processing paths at the evaluation stage

supplied are calculated on the basis of load curves at 10-min frequency. RTE’s regional units
validate the data by adding missing values and by correcting erroneous data then provide
the information data at 30-min frequency. These data are completed by the estimated values
for consumed power from electricity generation on the distribution networks and private
industrial networks.4

4.2 The method

In our empirical study, we apply three big data systems (i.e., SOWDA, GOWDA, and
WRASA) to complete the whole decision making process, that is, process the original power
demand data and conduct a predictive analytics. We evaluate the quality of decision-making
process (forecasting accuracy) with the TE and CTE discussed in Sect. 2.3.

Following Sun et al. (2015) and Chen et al. (2017), we chose Haar, Daubechies (DB),
Symlet (LA), and Coiflets (Coif) as wavelet functions. We apply the MODWT with pyramid
algorithm in our empirical study. Several threshold rules have been considered as well. The
components served for the three systems in our study are listed as follows:

• ω ∈ { Haar, DB(2), DB(4), DB(8), LA(2), LA(4), LA(8), Coif(4), Coif(6), Coif(8)};
• ζ ∈ {i : i = 1, 2, 3};

4 See www.rte-france.com.
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• γ ∈ {Heuristic SURE, Minimax, SURE, Universal}.
The subsample series that are used for the in-sample study are randomly selected by a

moving window with length T . Replacement is allowed in the sampling. Letting TF denote
the length of the forecasting series, we perform the 1 day ahead out-of-sample forecasting
(1 ≤ T ≤ T + TF ≤ N ). In our analysis, the total sample length is T = 17,520 for a normal
year and T = 17,568 for a leap year. The subsample length (i.e., the window length) of
T = 672 (2 weeks) was chosen for the in-sample simulation and TF = 48 (1 day) for the
out-of-sample forecasting.

We compare the system’s performance by using the root mean squared error (RMSE),
the mean absolute error (MAE), and the mean absolute percentage error (MAPE) as the
goodness-of-fit measures:

RMSE :=

√

√

√

√

∑T
t=1

(

St − S̃t
)2

T
,

MAE :=
∑T

t=1 |St − S̃t |
T

, and

MAPE := 100

T

T
∑

t=1

∣

∣

∣

∣

∣

St − S̃t
St

∣

∣

∣

∣

∣

,

where St denotes the actual value at time t , and S̃t is its corresponding predicted value
generated by the big data system.

Baucells andBorgonovo (2013) and Sun et al. (2007) suggested theKolmogorov–Smirnov
(KS) distance, the Cramér–von Mises (CVM) distance, and the Kuiper (K) distance as the
metrics for evaluation. We use them here to compare the quality performance of the big data
systems in our study.

Let Fn(S) denote the actual sample distribution of S, and F(S̃) is the distribution function
of the approximation or forecasts (i. e., the output of BDS), Kolmogorov–Smirnov (KS)
distance, Cramér von Mises (CVM), and Kuiper distance (K), which are defined as follows:

KS := sup
x∈R

∣

∣

∣Fn(S) − F(S̃)

∣

∣

∣ ,

CVM :=
∫ ∞

−∞
(

Fn(S) − F(S̃)
)2 dF(S̃), and

K := sup
x∈R

(

Fn(S) − F(S̃)
) + sup

x∈R
(

F(S̃) − Fn(S)
)

.

We conclude that the smaller these distances are, the better the performance of the system.
The KS distance focuses on deviations near the median of the distribution. Thus, it tends to
be more sensitive near the center of the error distribution than at the tails, whereas the CVM
distance measures the sensitivity of dispersion between the output and its trend with respect
to the change of the data filter of BDS. The Kuiper distance considers the extreme errors.

4.3 Results

We show the forecasting performance of three big data systems (i.e., SOWDA, GOWDA,
andWRASA) in Fig. 3. Panel (a) illustrates the predictive power demand generated from the
three big data systems when compared with the actual power demand. Panel (b) illustrates
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Fig. 3 Comparison for forecasting performance of the three big data systems (i.e., SOWDA, GOWDA, and
WRASA). a Illustrates the predictive electricity power demand generated from the three systems compared
with the actual electricity power demand.b Illustrates the forecasting errors comparedwith the actual electricity
power demand

the forecasting errors versus the actual power demand. It is not easy to identify which one
performs better than the others. Therefore, we report different error evaluation results.

Table 1 reports the in-sample (training) and out-of-sample (forecasting) performances of
SOWDA, GOWDA, and WRASA measured by MAPE, MAE, and RMSE as the goodness-
of-fit criteria. For the in-sample modeling performances, we see that the values of MAPE,
MAE, and RMSE on average are all reduced after applying WRASA, compared with the
results of SOWDA and GOWDA. Compared to SOWDA, WRASA reduces the error on
average by 27.75, 27.87, and 24.17% for the MAPE, MAE, and RMSE criteria, respectively.
Compared to GOWDA, WRASA reduces the error on average by 24.55, 24.56, and 21.47%
for the MAPE, MAE, and RMSE, respectively.

We also focus on the results of the out-of-sample forecasting performances of SOWDA,
GOWDA, and WRASA and evaluate them by using MAPE, MAE, and RMSE as the quality
criteria. For the forecasting results, WRASA increases the accuracy on average by 28.06,
28.13, and 28.95% compared with SOWDA, and 10.49, 10.12, and 10.22% compared with
GOWDA, based on the MAPE, MAE, and RMSE criteria, respectively.

Table 2 reports the in-sample and out-of-sample performance of SOWDA, GOWDA,
and WRASA when we take the Cramér von Mises (CVM), Kolmogorov–Smirnov (KS),
and Kuiper statistics into consideration as the goodness-of-fit criteria. In comparison with
the results of SOWDA, WRASA improves the performance by 56.77, 38.26, and 32.94%
measured by theCVM,KS, andKuiper criteria, respectively. In addition,WRASAreduces the
error by 49.84, 19.79, and24.54%comparedwithGOWDAwhen evaluating by theCVM,KS,
andKuiper distance, respectively. From the CVM,KS, andKuiper criteria,WRASA achieves
better forecasting performance than SOWDA by 54.99, 34.58, and 30.80%, respectively.
Under the same measurement, WRASA outperforms GOWDA by 31.41, 10.88, and 6.84%,
respectively.

We next evaluate the performances of three big data systems with the methods we have
discussed in Sect. 2.3—that is, TE andCTE.With these tools, we can identify the performance
quality with respect to their cumulative absolute errors. We choose the significance level α

at 50%, 25%, 10%, 5%, and 1%. When α = 50%, TE is then the median of the absolute
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Table 1 Comparison of the in-sample (modeling) and out-of-sample (forecasting) performances measured
by the mean absolute percentage error (MAPE), the mean absolute error (MAE), and the root mean squared
error (RMSE) for three big data systems (i.e., SOWDA, GOWDA, and WRASA) with the electricity power
consumption data in France at 30-min frequency from 01 January, 2009 to 31 December, 2014

SOWDA GOWDA WRASA

Year MAPEa MAEb RMSEb MAPEa MAEb RMSEb MAPEa MAEb RMSEb

In-sample

2009 3.0185 1.5870 1.9814 2.8154 1.4784 1.8749 2.3259 1.2258 1.5974

2010 2.7178 1.5053 1.8968 2.6288 1.4508 1.8437 1.7450 0.9568 1.2757

2011 2.8850 1.5055 1.9051 2.7805 1.4483 1.8479 1.9873 1.0327 1.3910

2012 2.9668 1.5660 1.9620 2.8594 1.5062 1.9074 2.1041 1.1126 1.4665

2013 2.9423 1.5721 1.9562 2.8441 1.5206 1.9067 2.2082 1.1757 1.5353

2014 3.1117 1.5779 1.9700 2.9642 1.5012 1.8895 2.3752 1.2146 1.5847

Mean 2.9404 1.5523 1.9452 2.8154 1.4842 1.8784 2.1243 1.1197 1.4751

SD 0.1332 0.0370 0.0355 0.1104 0.0301 0.0280 0.2340 0.1073 0.1245

Out-of-sample

2009 3.9534 2.0636 2.7601 3.2247 1.6737 2.2063 2.7910 1.4596 1.9417

2010 3.6654 2.0143 2.6868 2.8704 1.5763 2.0847 2.5661 1.4100 1.8510

2011 3.7952 1.9664 2.6387 3.0108 1.5521 2.0652 2.7307 1.4109 1.8618

2012 3.9094 2.0533 2.7274 3.1387 1.6432 2.1584 2.8005 1.4724 1.9334

2013 3.9231 2.0869 2.7522 3.1521 1.6686 2.1840 2.8560 1.5162 1.9886

2014 4.0341 2.0408 2.7045 3.3145 1.6618 2.1762 3.0037 1.5172 1.9829

Mean 3.8801 2.0375 2.7116 3.1185 1.6293 2.1458 2.7913 1.4644 1.9266

SD 0.1305 0.0424 0.0452 0.1577 0.0520 0.0573 0.1441 0.0477 0.0587

a and b denote ×10−2 and ×103 respectively

error. Table 3 shows the comparison of SOWDA, GOWDA, and WRASA for their training
performance measured by TE and CTE, and Table 4 shows the comparison of forecasting
performance.

As we have mentioned, TE is exactly the α-th quantile of the error distribution. We could
also say that, the smaller TE is, the better the system’s performance will be. CTE assesses the
average error between TE at α confidence and the errors exceeding it. Obviously, the smaller
CTE is, the better the system’s performance is as well.

We find that the values of TE and CTE forWRASA are the smallest compared with that of
SOWDA andGOWDA for all αs in Tables 3 and 4. For example, in Table 3 whenwe compare
the training performance with TE, for α = 5%WRASA reduces the tail error on average by
21.43 and 16.58% compared with the results of SOWDA and GOWDA, respectively. When
α = 1%, the reduction ofWRASA then turns to be 15.78 and 15.12%, respectively. For CTE,
when α = 5%WRASA reduces the conditional tail error on average by 17.63 and 15.47% in
comparison with SOWDA and GOWDA, respectively and when α = 1%, WRASA reduces
the conditional tail error by 12.62 and 11.73%, respectively.

When we compare the forecasting performance in Table 4, for α = 5%WRASA reduces
TE by 27.49 and 10.91% comparing with SOWDA and GOWDA and CTE by 43.36 and
8.91%, respectively. For α = 1% WRASA reduces TE by 33.10 and 7.6% versus SOWDA
and GOWDA and CTE 49.15 and 6.13%, respectively.
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Table 2 Comparison of the in-sample (modeling) and out-of-sample (forecasting) performances measured by
the Kolmogorov–Smirnov (KS) distance, the Cramér–vonMises (CVM) distance, and the Kuiper (K) distance
for three big data systems (i.e., SOWDA, GOWDA, and WRASA) with the electricity power consumption
data in France at 30-min frequency from 01 January, 2009 to 31 December, 2014

SOWDA GOWDA WRASA

Year CVMa KSb Kuipera CVMa KSb Kuipera CVMa KSb Kuipera

In-sample

2009 25.6560 19.7500 2.8369 12.8150 11.0740 1.9408 12.2280 11.9870 1.9405

2010 4.8961 7.8772 1.2786 6.7468 8.4480 1.4156 1.5314 4.6236 0.7535

2011 15.1470 14.3840 2.2547 13.4820 11.017 2.0207 5.2405 8.3909 1.4327

2012 7.5085 10.4170 1.7761 8.9619 9.1080 1.8159 2.1589 5.8633 0.9962

2013 7.6970 10.1600 1.6553 9.0182 8.8475 1.5754 4.3538 6.9639 1.3243

2014 10.9350 11.5300 1.9408 10.8870 8.5621 1.6668 5.5425 7.9342 1.4270

Mean 11.9733 12.3530 1.9571 10.3185 9.5094 1.7392 5.1759 7.6272 1.3124

SD 7.5720 4.1978 0.5380 2.5633 1.2119 0.2292 3.8192 2.5400 0.4086

Out-of-sample

2009 5.1905 8.0846 1.3868 4.7813 6.6542 1.1505 3.1291 6.1567 1.2313

2010 3.6509 6.0945 1.2065 2.7960 5.4104 1.0759 1.6588 5.0373 0.9826

2011 8.1781 9.2040 1.7786 5.0804 5.9080 1.1754 3.1970 5.2861 1.0323

2012 7.5418 8.7426 1.5253 4.0844 6.3864 1.1719 2.9793 5.2703 1.0355

2013 3.8286 7.8980 1.4117 3.1775 5.8458 1.0199 2.1897 5.2239 0.9764

2014 8.4888 9.7637 1.8719 4.2839 6.3433 1.2251 3.4463 5.5970 1.0945

Mean 6.1465 8.2979 1.5301 4.0339 6.0914 1.1365 2.7667 5.4286 1.0588

SD 2.1943 1.2828 0.2521 0.8927 0.4528 0.0749 0.6905 0.3997 0.0947

a and b denote ×10−2 and ×10−3, respectively

As we have pointed out that, when α = 0.5, TE0.5 becomes the median of absolute error.
Comparing with MAE, we can identify the skewness of the underlying error distribution.
When the mean is larger than the median, we call it positively skewed (i.e., the mass of the
error is concentrated on the left approaching to zero). The better the performance of the BDS,
the more positive skewness of the mass of error approaching to zero. On the other hand, given
a skewness, we prefer the light tail (i.e., small tail or conditional tail error). Our results in
Tables 3 and 4 illustrate that the error distributions of three systems are all positively skewed
to zero.

In addition, from Tables 3 and 4, we can sketch the error distribution above the median.
For any given two confidences α1 and α2, if α1 > α2, we can ensure that TE(1−α1)(K) ≤
TE(1−α2)(K) and CTE(1−α1)(K) ≤ CTE(1−α2)(K), see Sect. 2.3.3. This is a robust feature
for TE and CTE. Furthermore, TE and CTE show their efficiency. When we compare two
performance (K1 and K2), there must exist a α such that TE(1−α)(K1) �= TE(1−α)(K2) and
CTE(1−α)(K1) �= CTE(1−α)(K2) if the underlying performance are not identical. With these
features, we can compare the system performance by choosing a proper α that reflects the
decision maker’s utility. For example, when we choose TE0.9, we can conclude that WRASA
performs better than GWODA and SOWDA in both in-sample training and out-of-sample
forecasting because the corresponding tail and conditional tail errors ofWRASAare smallest.
Similarly, when we apply TE and CTE for all α values, we conclude the same.
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Fig. 4 Comparison of a error density and b error distribution in forecasting electricity power demand for
three big data systems (i.e., SOWDA, GOWDA, and WRASA)

In order to graphically illustrate the performances we exhibit the complete plot of fore-
casting errors for the three big data systems in Fig. 4. Panel (a) in Fig. 4 presents the error
density of the system’ outcomes. We can see that all error densities are positively skewed to
zero, but we cannot easily distinguish the difference. Panel (b) in Fig. 4 exhibits the error
distribution where we can easily identify the quantile (i.e., TE) that is used to quantify the
tail error. From the right panel of Fig. 4, we see the error distribution of WRASA is shifted
to the left, which means that the performance of WRASA is better comparing with SOWDA
and GOWDA. Table 4 illustrates this with concrete quantile values for α ≥ 0.5. With these
values we can consistently compare the system performance after definite ranking TE and
CTE values. We can thus verify that the proposed measures (i.e., TE and CTE) for evaluating
quality perform well and can be confirmed to be very robust and efficient measures.

4.4 Discussion with simulation

In our empirical study of forecasting power consumption, all quality measurement tools we
applied suggest to us the best performance in conformity. As we have seen in Fig. 3, the
power consumption illustrates seasonality. Not surprisingly, WRASA works well for such a
weak irregularity. In this case, the preternatural feature of the proposed measure (i.e., CTE)
based on tail distribution is not startlingly clear. We are going to conduct a simulation study
to investigate the performance of the proposed quality measure for assessing the performance
of a BDS with strong irregularity.

4.4.1 Simulation method

In this study we perform Monte Carlo simulations where extreme irregular observations
(jumps) are generated from two different patterns: (1) excessive volatility and (2) excessive
volatility with regime switching.We generate 100 sequences of length 212. This trend is based
on a sine function, whose amplitude and frequency are drawn from a uniform distribution.
For generating the pattern (1) signals, following Sun and Meinl (2012), we add jumps to
the trend. Jump occurrences are uniformly distributed (coinciding with a Poisson arrival rate
observed in many systems), with the jump heights being a random number drawn from a
skewed contaminated normal noise suggested by Chun et al. (2012). For generating pattern
(2) data, we repeat the method used for pattern (2) signals, but shift the trend up and down
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once in order to characterize a sequence of excessive volatility with regime switching. The
amplitude of the shift is four times the previous trend; see Sun et al. (2015).

Similar to how the method was applied in our empirical study, we also need to decide
a moving window for the training and forecasting operations. We set the in-sample size as
200 and the out-of-sample size as 35, 80, and 100. The number of window moves is then
720, and we generate 100 data series for each pattern. Therefore, for each pattern we test our
algorithm 72,000 times for in-sample approximation and one-step ahead forecasting. In our
simulation, we have 216,000 runs in total. In our study, cases 1–3 and cases 4–6 are based
on the data pattern (1) and (2), respectively. The out-of-sample forecasting length is set as
35 for cases 1 and 4, 80 for cases 2 and 5, and 100 for cases 3 and 6.

For each run we collect the values of six conventional criteria and five newly proposed
measures. We report the results in next subsection.

4.4.2 Results and discussion

Table 5 reports the performance quality of three BDS evaluated by the six conventional
methods.We can see that when comparing the performances,WRASA is considered superior
by MAPE, MAE, and RMSE in Case 1 in training while SOWDA is preferred by CVM, KS,
andKuiper. Similarly,MAPE,MAE, and RMSE supportWRASA andCVM,KS, andKuiper
support SOWDA for out-of-sample performance in Case 1. In Table 5 we highlight the best
performance in bold. Obviously, we encounter difficulty in synchronizing because there are
contradictive results.

The contradiction can be identified by four different classes. The first is noncoincidence
among three mean error based methods, (i.e., MAPE, MAE, and RMSE). For example, for
the out-of-sample performance of Case 3, GOWDA is preferred by RMSE whereas MAE
and MAPE support WRASA. Second, there is noncoincidence among three extreme error
based methods, (i.e., CVM, KS, and Kuiper). For example, for the in-sample performance
of Case 4, SOWDA is preferred by CVM whereas KS and Kuiper support WRASA. Third,
there is noncoincidence between the mean error based methods and extreme error based
methods. For example, for the out-of-sample performance of Case 2, all mean error based
methods support GOWDA but all extreme error based methods benefit WRASA. Fourth,
one method is not distinguishable from another method. For example, for the out-of-sample
performance of Case 5, MAE cannot distinguish which one is better between GOWDA and
WRASA because a tie occurs in comparison. KS cannot distinguish SOWDA and WRASA
when comparing the in-sample performance of Case 6.

When we apply TE and CTE, it turns out to be much easier. In Table 6, when we evaluate
the in-sample performance, all smallest values of TE and CTE lead to WRASA. Therefore,
its in-sample performance is better than other two. When we compare the out-of-sample
performance, we recognize that TE cannot always provide a coherent conclusion with the
results reported in Table 7. For example, for Case 2, TE0.95 supports GOWDA whereas
TE0.90 benefit WRASA. Meantime, TE0.99 cannot distinguish5 the quality of GOWDA and
WRASA. Not surprisingly, CTE can provide the coherent conclusion that WRASA always
performs better. We have shown that CTE is a dynamic coherent measure since it satisfies all
properties given by Axiom 3.

There are many advantages of TE. First, it is a simple quality measure and has a straight-
forward interpretation. Second, it defines the complete error distribution by specifying TE
for all α. Third, it focuses only on the part of the error distribution specified by α. Fourth,

5 Not because of making a round number.
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it can be estimated with parametric models once the error distribution can be clarified and
the estimation procedures are stable with different methods. However, quality control using
TE may lead to undesirable results for skewed error distributions. It does not consider the
properties of the error distribution beyond α. In addition, it is non-convex and discontinuous
for discrete error distributions.

The advantages of applying CTE are threefold. First, it has superior mathematical proper-
ties, as we have shown, and preserves some properties of TE, such as easy interpretation and
complete definition of error distribution with all α. Second, it is continuous with respect to
α and coherent. Third, when making decision, we can optimize it with convex programming
since CTEα(ω1K1 + · · · + ωnKn) is a convex function with respect to weights ω1, . . . , ωn

where
∑n

1 ωn = 1. However, challenges still remain when estimating CTE as it is heavily
affected by tail modeling.

Coherence matters when we conduct system engineering either by reconfiguring systems
or aggregating tasks. System engineering refers to simple configurations, such as paralleliza-
tion, and complex ones, such as centralization, fragmentation, or distribution, as we show in
Fig. 1. TE is not coherent because it does not satisfy Axiom 2-(2) in Sect. 2.3.1. Axiom 2-(2)
states that if we combine two independent tasks, then the total error of them is not greater
than the sum of the error associated with each of them. When we reconfigure systems, we try
to avoid creating any extra errors (or system instability), but no one can guarantee it. In our
empirical study, all three big data systems apply only plain configuration because the input
data are simple high-frequency time series and work on a single task of forecasting the load.
Therefore, we can apply TE and CTE for dynamical measuring following Definition 3.

Accuracy is given by systemic computability. Many computational methods can be used
to accurately describe the probability distribution of errors; therefore, we can obtain a definite
value for TE and CTE. Compared with conventional methods, with more suitable models or
computational methods, we could optimally reduce the incapability of tail measures. If we
refer to robustness as consistency and efficiency as comparability, then we can confidentially
apply CTE, since it is a preferred method for quality control due to its robustness and effi-
ciency. Therefore, the only thing we need for conducting the quality control is to choose or
search for a proper α that reflects our own utility.

5 Conclusion

In this article we highlighted the challenge of big data systems and introduced some back-
ground information focusing on their quality management. We looked to describe the
prevailing paradigm for quality management of these systems. We proposed a new axiomatic
framework for qualitymanagement of a big data system (BDS) based on the tail error (TE) and
conditional tail error (CTE) of the system. From a decision analysis perspective, particularly
for the CTE, a dynamic coherent mechanism can be applied to perform these quality errors
by continuously updating the new information through out the whole systemic processing.
In addition, the time invariance property of the conditional tail error has been well defined
to ensure the inherent characteristics of a BDS are able to satisfy quality requirements.

We applied the proposed methods with three big data systems (i.e., SOWDA, GOWDA,
and WRASA) based on wavelet algorithms and conducted an empirical study to evaluate
their performances with big electricity demand data from France through analysis and fore-
casting. Our empirical results confirmed the efficiency and robustness of the method we
proposed herein. In order to fully illustrate the advantage of the proposed method, we also
provided a simulation study to highlight some features that were not obtained from our
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empirical study. We believe our results will enrich the future applications in quality manage-
ment.

As we have seen, the three big data systems we investigated in this article are mainly from
fragmented (decentralized) systems where the interconnection of each component is still
hierarchical in algorithms. When the underlying big data system exhibits strong distributed
features—for example, there are tremendous interoperations—how to execute the dynamic
coherent quality measure we proposed in this article should be paid more attention. In addi-
tion, some robust tests focusing on validating its conditional correlation over time should be
proposed for future study.

Acknowledgements The authors would like to thank the three anonymous reviewers and the guest editor for
providing valuable comments. This work was supported in part by the Ministry of Science and Technology
(MOST) under Grant 106-2221-E-009-006 and Grant 106-2221-E-009-049-MY2, in part by the “Aiming for
the Top University Program” of National Chiao Tung University and theMinistry of Education, Taiwan, and in
part by Academia Sinica AS-105-TP-A07 andMinistry of Economic Affairs (MOEA) 106-EC-17-A-24-0619.

References

Agarwal, R., Green, R., Brown, P., Tan, H., & Randhawa, K. (2013). Determinants of quality management
practices: An empirical study of New Zealand manufacturing firms. International Journal of Production
Economics, 142, 130–145.

Artzner, P., Delbaen, F., Eber, J., Heath, D., & Ku, K. (2007). Coherent multiperiod risk adjusted values and
Bellman’s principle. Annals of Operations Research, 152, 5–22.

Baucells, M., & Borgonovo, E. (2013). Invariant probabilistic sensitivity analysis. Management Science,
59(11), 2536–2549.

Bion-Nadal, J. (2008). Dynamic risk measures: Time consistency and risk measures from BMO martingales.
Finance and Stochastics, 12(2), 219–244.

Bion-Nadal, J. (2009). Time consistent dynamic risk processes. Stochastic Processes and their Applications,
119(2), 633–654.

Chen, Y., & Sun, E. (2015). Jump detection and noise separation with singular wavelet method for high-
frequency data. Working paper of KEDGE BS.

Chen, Y., & Sun, E. (2018). Chapter 8: Automated business analytics for artificial intelligence in big data @x
4.0 era. In M. Dehmer & F. Emmert-Streib (Eds.), Frontiers in Data Science (pp. 223–251). Boca Raton:
CRC Press.

Chen, Y., Sun, E., & Yu, M. (2015). Improving model performance with the integrated wavelet denoising
method. Studies in Nonlinear Dynamics and Econometrics, 19(4), 445–467.

Chen, Y., Sun, E., & Yu, M. (2017). Risk assessment with wavelet feature engineering for high-frequency
portfolio trading. Computational Economics. https://doi.org/10.1007/s10614-017-9711-7.

Cheridito, P., & Stadje, M. (2009). Time-inconsistency of VaR and time-consistent alternatives. Finance
Research Letters, 6, 40–46.

Chun, S., Shapiro, A., & Uryasev, S. (2012). Conditional value-at-risk and average value-at-risk: Estimation
and asymptotics. Operations Research, 60(4), 739–756.

David, H., & Nagaraja, H. (2003). Order statistics (3rd ed.). Hoboken: Wiley.
Deichmann, J., Roggendorf, M., &Wee, D. (2015). McKinsey quarterly november: Preparing IT systems and

organizations for the Internet of Things. McKinsey & Company.
Hazen, B., Boone, C., Ezell, J., & Jones-Farmer, J. (2014). Data quality for data science, predictive analytics,

and big data in supply chain management: An introduction to the problem and suggestions for research
and applications. International Journal of Production Economics, 154, 72–80.

Keating, C., & Katina, P. (2011). Systems of systems engineering: Prospects and challenges for the emerging
field. International Journal of System of Systems Engineering, 2(2/3), 234–256.

Liu, Y., Muppala, J., Veeraraghavan, M., Lin, D., & Hamdi, M. (2013). Data center networks: Topologies
architechtures and fault-tolerance characteristics. Berlin: Springer.

Maier, M. (1998). Architecting principles for systems-of-systems. Systems Engineering, 1(4), 267–284.
Mellat-Parst, M., &Digman, L. (2008). Learning: The interface of quality management and strategic alliances.

International Journal of Production Economics, 114, 820–829.

123

https://doi.org/10.1007/s10614-017-9711-7


32 Ann Oper Res (2019) 277:3–32

O’Neill, P., Sohal, A., & Teng,W. (2015). Quality management approaches and their impact on firms’ financial
performance—An Australian study. International Journal of Production Economics. https://doi.org/10.
1016/j.ijpe.2015.07.015i.

Parast, M., & Adams, S. (2012). Corporate social responsibility, benchmarking, and organizational perfor-
mance in the petroleum industry: A qualitymanagement perspective. International Journal of Production
Economics, 139, 447–458.

Pham, H. (2006). System software reliability. Berlin: Springer.
Riedel, F. (2004). Dynamic coherent risk measures. Stochastic Processes and their Applications, 112(2),

185–200.
Shooman, M. (2002). Reliability of computer systems and networks: Fault tolerance analysis and design.

Hoboken: Wiley.
Sun, E., Chen, Y., & Yu, M. (2015). Generalized optimal wavelet decomposing algorithm for big financial

data. International Journal of Production Economics, 165, 161–177.
Sun, E., & Meinl, T. (2012). A new wavelet-based denoising algorithm for high-frequency financial data

mining. European Journal of Operational Research, 217, 589–599.
Sun, W., Rachev, S., & Fabozzi, F. (2007). Fractals or I.I.D.: Evidence of long-range dependence and heavy

tailedness from modeling German equity market returns. Journal of Economics and Business, 59, 575–
595.

Sun, W., Rachev, S., & Fabozzi, F. (2009). A new approach for using Lèvy processes for determining high-
frequency value-at-risk predictions. European Financial Management, 15(2), 340–361.

Wu, S., & Zhang, D. (2013). Analyzing the effectiveness of quality management practices in China. Interna-
tional Journal of Production Economics, 144, 281–289.

123

https://doi.org/10.1016/j.ijpe.2015.07.015i
https://doi.org/10.1016/j.ijpe.2015.07.015i

	Coherent quality management for big data systems: a dynamic approach for stochastic time consistency
	Abstract
	1 Introduction
	2 Quality management for big data system
	2.1 Big data system
	2.2 Systematic quality management
	2.3 The methodology
	2.3.1 Notation and definitions
	2.3.2 Dynamic error measures
	2.3.3 Tail error (TE) and conditional tail error (CTE)
	2.3.4 Computational methods


	3 Wavelet-based big data systems
	3.1 Data engineering with wavelet
	3.2 Machine learning
	3.2.1 Decision criteria
	3.2.2 Decision making


	4 Empirical study
	4.1 The data
	4.2 The method
	4.3 Results
	4.4 Discussion with simulation
	4.4.1 Simulation method
	4.4.2 Results and discussion


	5 Conclusion
	Acknowledgements
	References




