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Abstract We study a scheduling problem with the objective of minimizing total absolute
deviation of completion times (TADC). TADC is considered here in the most general form
studied so far: the machine setting is that of parallel unrelated, job processing time are
assumed to be position-dependent with no restrictions on the functional form, and the option
of processing only a subset of the jobs (i.e., job-rejection) is allowed.We show thatminimizing
TADC in this very general form remains polynomially solvable in the number of jobs.
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1 Introduction

The scheduling measure considered in this note is that of total absolute deviation of comple-
tion times (TADC). This measure arises in many service systems, where the main objective
is to provide customers with identical or similar quality of service. It reflects their total time-
in-system or total waiting time. TADC was introduced by Kanet (1981). He showed that
minimizing TADC on a single machine can be solved in O(n log n), where n is the number
of jobs. A number of extensions have been published: Mosheiov (2008) solved TADC on a
single machine and on parallel identical machines with position-dependent job processing
times. Oron (2008) and Li et al. (2009) focused on minimizing TADC on a single machine
with simple linear deterioration of the job processing times. Koulamas and Kyparisis (2008)
studied TADC with past-sequence-dependent setup times. Yang and Kuo (2009, 2010) con-
sidered TADC with both time-dependent increasing processing times (deterioration) and
position-dependent decreasing processing times (learning). A further extension to parallel
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identical machines and deteriorating jobs was studied by Huang and Wang (2011). Mani
et al. (2011) also studied TADC with past-sequence-dependent setup times and learning,
and focused on parametric analysis of the learning index. Mor and Mosheiov (2011) solved
TADC on uniform and unrelated machines, and also studied a more general bi-criteria objec-
tive function (containing a linear combination of TADC and total completion time). Chen
et al. (2015) studied the same bi-criteria objective with past-sequence-dependent setup times
and a learning effect. Recently, Ben-Yehoshua et al. (2015) focused on minimizing TADC
on a two-machine no-wait proportionate flowshop.

In this note we study a scheduling problem with the TADC objective in a more general
setting. First, we allow the option of job-rejection, which became a popular topic among
researchers in recent years. This is reflected in the recently published survey of Shabtay
et al. (2013). Shabtay et al. claim that “in many practical cases, mostly in highly loaded
make-to-order production systems, accepting all jobs may cause a delay in the completion of
orders which in turn may lead to high inventory and tardiness cost. Thus, in such systems, the
firm may wish to reject the processing of some jobs by either outsourcing them or rejecting
them all together”. Technically, in scheduling models considering rejection, the rejected jobs
are penalized, and this cost becomes a factor in the objective function (in addition to the
cost of a standard classical scheduling measure). Some of the very recent papers dealing
with various models of scheduling with job-rejection are: Thevenin et al. (2015), Ou et al.
(2015), Wang et al. (2016), Mor and Mosheiov (2016), Zhong et al. (2017) and Agnetis
and Mosheiov (2017), Gerstl and Mosheiov (2017), Gerstl et al. (2017) and Mosheiov and
Strusevich (2017).

Secondly, following another popular topic in scheduling research, we consider position-
dependent job processing times. Scheduling problems with variable job processing times
(either starting-time-dependent or position-dependent) have attracted many scheduling
researchers in recent years; see e.g. Gawiejnowicz (2008) and more recently Rudek (2012),
Sun et al. (2013), Agnetis et al. (2014), Gerstl et al. (2017) and Pei et al. (2017). Inmost cases,
such extensions increase significantly the complexity of the problems, even if the processing
times are restricted either to monotone functions of the job starting times or the job positions
(reflecting aging or learning), or to specific functions (such as linear or exponential). In this
study, we consider general position-dependent processing times, and thus no restrictions on
their functional form are assumed. Finally, the machine setting assumed in this note is that
of parallel unrelated. Thus, the processing time of a job is a function of: (1) the job itself, (2)
the machine to which it is assigned, and (3) the position in the sequence processed on this
machine.

In summary, in this notewe consider amore general version (than those published so far) of
a scheduling problem with a TADC objective. Specifically, we extend TADC in three aspects
simultaneously: we minimize TADC (1) on parallel unrelated machines, with (2) general
position-dependent job processing times, and (3) allowing the option of job-rejection. We
show that the problem remains polynomially solvable in the number of jobs.

2 Formulation

We consider an n-job m-machine scheduling problem. Job processing times are assumed to
be position-dependent, and the machines are unrelated. The set of jobs is denoted by N . The
set of jobs assigned to machine i is denoted Ni , i = 1, . . . ,m. The number of jobs assigned
to machine i is ni (= |Ni |). The scheduler may decide to process only a subset of the jobs
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and reject the others. Let P denote the set of the processed jobs (with nP = |P| denoting
the number of processed jobs), and R denote the set of the rejected jobs (with nR = |R|
denoting the number of rejected jobs). It follows that N = P ∪ R = (

⋃m
i=1 Ni ) ∪ R, and∑m

i=1 ni + nr = nP + nR = n.
The processing time of job j if assigned to position r on machine i is denoted by pi jr , i =

1, . . . ,m; j = 1, . . . , n; r = 1, . . . , ni . For a given job schedule, C j ( j ∈ P) denotes the
completion time of job j . Total absolute deviation of job completion times on machine i
is given by:

∑
k∈Ni

∑
l∈Ni ,l �=k |Ck − Cl |. T ADC on all m machines is given by T ADC =

∑m
i=1

∑
k∈Ni

∑
l∈Ni ,l �=k |Ck − Cl |. The rejection cost of job j is denoted by e j , j = 1, . . . , n.

The total rejection cost is given by T R = ∑
j∈R e j . The objective function considered in this

note is the sum of both: T ADC + T R. Using the standard three-field notation of scheduling
problems, the problem studied here is:

R/rejection, p jr/T ADC + T R.

3 A polynomial time solution for R/re j ect i on, p j r/T ADC + T R

In this section we introduce a polynomial time solution procedure, which is based on solving
a sequence of linear assignment problems. The single machine TADC problemwas solved by
Kanet (1981), who introduced a solution based onmatching job processing times to positions.
The positional weight of position r is given by:Wr = −r2 + nr + 2r − n− 1; r = 1, . . . , n.
Recall that the input to our problem contains the position-dependent job processing times on
each machine and the job-dependent rejection costs. Thus, the input consists of m matrices
of size n× n (each matrix contains the job-position processing times on one machine), and a
vector of size n containing the rejection costs. Recall that ni is the number of jobs assigned to
machine i, i = 1, ...,m

(
nP = ∑m

i=1 ni
)
, nR is the number of rejected jobs, and nP +nR = n.

Assume first that the vector (n1, n2, . . . , nm, nr ) is given. In order to build the input for a
linear assignment problem,wefirst create amatrix based on the job-position processing times,
consisting ofm+1 blocks. Block i (i = 1, . . . ,m) is of size n×ni , i = 1, . . .m, and contains
the processing times in the first ni positions of machine i . Blockm+1 (reflecting the rejected
jobs) is of size n×(

n − ∑m
i=1 ni

)
, and contains “1” in all entries. Blockm+1 can be regarded

as a “pseudo-rejection machine”. For convenience we define nm+1 = nR = n−∑m
i=1 ni : the

number of columns in block m + 1is the number of rejected jobs. Note that the size of the
matrix is n × n. Thus, the processing time matrix, denoted , PROC , is the following (see
Fig. 1 for the special case of m = 2):

PROCi jr =
{
pi jr , i = 1, . . . ,m; j = 1, . . . , n; r = 1, . . . , ni
1, i = m + 1; j = 1, . . . , n; r = 1, . . . , nm+1

The cost matrix has an identical structure (of m + 1 blocks). Block i (i = 1, ...,m) contains
Wi jr = Wir , i = 1, . . . ,m; j = 1, . . . , n; r = 1, . . . ni . Thus, the weight of job j if assigned
to position r onmachine i (on which ni jobs are processed) is:Wir = −r2+nir+2r−ni −1
Note that all lines in block are identical. Blockm+1 contains ei jr = e j for i = 1, . . . , nm+1,
i.e., the rejection cost, which is machine- and position-independent, is identical for all entries
of a given row in this block. Thus, the cost matrix, denoted COST , is the following (see
Fig. 2 for the case of m = 2):

COSTi jr =
{
Wi jr , i = 1, . . . ,m; j = 1, . . . , n; r = 1, . . . , ni
e j , i = m + 1; j = 1, . . . , n; r = 1, . . . , nm+1
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Fig. 1 The processing time matrix (PROC) for a 2-machine problem

Fig. 2 The cost matrix (COST) for a 2-machine problem

We define the standard binary variables: Xi jr = 1 if job j is assigned to position r on
machine i , or if job j is rejected (i.e., assigned to any position on the pseudo-rejection
machine m + 1), and Xi jr = 0 otherwise, i = 1, . . . ,m + 1; j = 1, . . . , n; r = 1, . . . , ni .
The resulting assignment problem is the following:

MI N
∑m+1

i=1

∑n

j=1

∑ni

r=1
Xi jr P ROCi jrCOSTi jr

S.T .
∑m+1

i=1

∑ni

r=1
Xi jr = 1 j = 1, . . . , n.

∑n

j=1
Xi jr = 1, i = 1, . . . ,m + 1; r = 1, . . . , ni

X jr binary, i = 1, . . . ,m + 1; j = 1, . . . , n; r = 1, . . . , ni

Recall that this assignment problem is defined for given numbers of jobs assigned
to the m machines and a given number of rejected jobs. We denote this problem
AP (n1, n2, . . . , nm, nm+1 = nr ). This standard (n × n) assignment problem is known to
be solved in O

(
n3

)
. It is clear that this problem should be solved for all possible vectors

(n1, n2, . . . , nm+1) (such that
∑m+1

i=1 ni = n). The number of allocation vectors of n num-

bers into m + 1 sets is bounded by (2n)m+1

m! ; see Stirzaker (1994). In fact, if the number of
processed jobs nP = ∑m

i=1 ni is known, then the number of the (remaining) rejected jobs is

determined. Thus, the latter expression can be reduced to (2n)m

(m−1)! ; see Ji and Cheng (2010). It
follows that the number of assignment problems to be solved does not exceed O (nm), which
is polynomial in the number of jobs for a given number of machines. We conclude that

Theorem 1 For a given number of machines, problem R/rejection, p jr /T ADC + T R
can be solved in polynomial time in the number of jobs.
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Table 1 Job-position processing
times: machine 1 (Example 1)

Job Position

1 2 3 4 5 6 7 8 9 10

1 53 78 92 96 73 48 49 92 75 40

2 2 12 60 27 11 78 31 17 20 30

3 66 5 50 35 81 9 36 68 45 87

4 23 32 21 21 97 55 5 5 71 77

5 47 13 87 67 3 47 95 70 71 9

6 46 37 4 28 41 48 86 30 30 4

7 56 47 29 7 79 4 8 30 49 29

8 41 65 90 76 14 71 24 67 17 9

7 1 11 44 9 23 53 63 11 95 74

8 4 58 61 1 31 65 37 91 53 27

Table 2 Job-position processing
times: machine 2 (Example 1)

Job Position

1 2 3 4 5 6 7 8 9 10

1 72 83 47 2 53 64 20 27 39 78

2 25 5 61 37 37 67 62 94 55 66

3 18 73 46 88 17 22 89 16 70 35

4 29 56 27 7 4 59 43 73 80 66

5 95 43 38 98 36 85 38 50 56 10

6 18 9 16 97 4 47 11 21 91 92

7 16 81 22 51 74 61 100 53 59 16

8 39 59 43 99 16 35 98 54 7 42

7 62 68 18 27 12 16 2 31 17 88

8 59 42 1 8 34 38 90 17 86 96

Table 3 Job-dependent rejection
costs (Example 1)

Job Rejection cost

1 49

2 11

3 75

4 55

5 37

6 17

7 55

8 23

9 54

10 69

Numerical Example 1:
We solved a 10-job 2-machine problem. The job-position processing times on the two
machines are given in Tables 1 and 2, respectively. The rejection costs are provided in
Table 3. We solved AP (n1, n2, . . . , nm+1) for all possible allocation vectors. The resulting
solution is the following: n1 = 4, n2 = 5, nr = 1. The job sequence on machine 1: (9, 3, 6,
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7). The job sequence on machine 2: (5, 2, 10, 1, 4). The rejected job: job 8. Total TADC of
the processed jobs: 106. Total rejection cost: 23. Total cost: 129.

4 Conclusion

We solved a scheduling problem with the objective of minimizing total absolute devia-
tions of job completion times (TADC). We extended the classical setting in three aspects
simultaneously: (1) we considered parallel unrelated machines, (2) we assumed general
position-dependent job processing times, and (3) we allowed the option of job-rejection.
We showed that the problem in this very general form is solved in polynomial time in the
number of jobs. Solving TADC with position- or time-dependent job processing time and
job rejection, is a challenging topic for future research.
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