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Abstract Militarymedical plannersmust develop dispatching policies that dictate howaerial
medical evacuation (MEDEVAC) units are utilized during major combat operations. The
objective of this research is to determine how to optimally dispatch MEDEVAC units in
response to 9-line MEDEVAC requests to maximize MEDEVAC system performance. A
discounted, infinite horizon Markov decision process (MDP) model is developed to examine
the MEDEVAC dispatching problem. The MDP model allows the dispatching authority to
accept, reject, or queue incoming requests based on a request’s classification (i.e., zone and
precedence level) and the state of the MEDEVAC system. A representative planning sce-
nario based on contingency operations in southern Afghanistan is utilized to investigate the
differences between the optimal dispatching policy and three practitioner-friendly myopic
policies. Two computational experiments are conducted to examine the impact of selected
MEDEVAC problem features on the optimal policy and the system performance measure.
Several excursions are examined to identify how the 9-line MEDEVAC request arrival rate
and the MEDEVAC flight speeds impact the optimal dispatching policy. Results indicate
that dispatching MEDEVAC units considering the precedence level of requests and the loca-
tions of busy MEDEVAC units increases the performance of the MEDEVAC system. These
results inform the development and implementation of MEDEVAC tactics, techniques, and
procedures by military medical planners. Moreover, an analysis of solution approaches for
the MEDEVAC dispatching problem reveals that the policy iteration algorithm substantially
outperforms the linear programming algorithms executed byCPLEX12.6with regard to com-
putational effort. This result supports the claim that policy iteration remains the superlative
solution algorithm for exactly solving computationally tractable Markov decision problems.
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1 Introduction

The primary objective of a deployedmilitary emergencymedical services (EMS) system is to
successfully evacuate casualties from the battlefield in a timely manner. Casualty evacuation
(CASEVAC) and medical evacuation (MEDEVAC) are the two main options available for
transporting combat casualties to amedical treatment facility (MTF). CASEVAC refers to the
transport of casualties to anMTFvia non-medical vehicles or aircraftwithout en routemedical
care by onboardmedical professionals. Casualties transported viaCASEVACmay not receive
the necessarymedical care nor be transported to an appropriateMTF.MEDEVAC refers to the
transport of casualties to an appropriate MTF via standardized medical evacuation platforms
with onboard medical professionals who are equipped to provide en route medical care and
emergency medical intervention (Department of the Army 2016). As such, MEDEVAC is
the preferred and primary method of transporting combat casualties.

Whereas MEDEVAC operations utilize several different types of evacuation platforms,
this paper focuses on the aerial aspect of MEDEVAC operations (i.e., aeromedical helicopter
operations). Helicopters have the capability and flexibility to fly directly to a predetermined
casualty collection point (CCP), meet battlefield casualties when they are at their most vul-
nerable and critical stages, and either land in an area where no other platform (e.g., ground
vehicle or fixed-wing aircraft) can or utilize a rescue hoist to lift casualties to the helicopter.
After securing the casualties, helicopters can fly directly to dedicated trauma centers or
hospitals, unencumbered by roads, at speeds often exceeding 150 miles per hour, all while
providing definitive en route care via well trained and highly skilled medics (O’Shea 2011).
These helicopter capabilities greatly contribute to recent increases in casualty survivability
rates.

Helicopter ambulances were first introduced in the military during the Korean conflict
and immediately became a high visibility asset of the MEDEVAC system. By the end of the
VietnamWar, the capabilities of helicopters (i.e., speed and versatility) in austere conditions
far exceeded the capabilities of ground platforms. The ability to travel across terrain in
remote areas not accessible to ground vehicles makes helicopters well suited for MEDEVAC
operations (De Lorenzo 2003; Clarke and Davis 2012). The United States Army operates
HH-60M helicopters specifically designed for the MEDEVACmission. HH-60M helicopters
are equipped with the necessary resources (e.g., oxygen generator, integrated EKGmachine,
electronically controlled litters, built-in external hoist, and an infrared system that can locate
patients by their body heat) to provide medical personnel the ability to simultaneously treat
and transport casualties from a CCP to an appropriate MTF. The urgency of the MEDEVAC
mission is critical to the survivability of battlefield casualties and the HH-60M helicopter
has proved to be advantageous to the Army with its ability to lift-off on a mission within
7min of notification (O’Shea 2011). The United States (U.S.) military recognizes the unique
capabilities of MEDEVAC helicopters and utilizes them as the primary evacuation platform
for battlefield casualties. For example, during theAfghanistan conflict betweenSeptember 11,
2001 andMarch 31, 2014, the U.S. military incurred 21,089 casualties, of which 19,148 were
transported viaMEDEVAC helicopter (Kotwal et al. 2016). Eastridge et al. (2012) report that
the survivability of combat casualties has continued to increase over time since World War
II (WWII). Approximately 80% of casualties occurring on the battlefield survived in WWII,
whereas 84% survived during the Vietnam War. An increase to 90% casualty survivability
was observed in the continuous decade of United States’ conflicts between 2001 and 2011.
The improved casualty rates are attributed to improvements in the versatility and speed of

123



Ann Oper Res (2018) 271:641–678 643

MEDEVAChelicopters and the resulting decrease in the time required for casualties to receive
proper medical care (De Lorenzo 2003).

Military medical planners are responsible for designing deployed MEDEVAC systems.
An effective and efficient MEDEVAC system boosts the esprit de corps of deployed mil-
itary personnel, who understand that rapid and quality care will be provided if they are
injured in combat (Department of the Army 2016). Important decisions include determining
where to locate MEDEVAC units and MTFs, identifying a MEDEVAC dispatching policy,
and recognizing when redeployment of aeromedical helicopters is necessary and possible.
The location of MEDEVAC units is usually determined while considering two objectives:
maximizing coverage and minimizing response time subject to logistical, resource, and force
protection constraints. Deciding whichMEDEVAC unit to dispatch to a given service request
is a vital aspect of any EMS, including a MEDEVAC system, and is the primary focus of this
paper. The military often defaults to a myopic dispatching policy wherein the closest avail-
ableMEDEVAC unit is dispatched to retrieve combat casualties from a CCP regardless of the
request’s evacuation precedence category (e.g., Priority I—Urgent, Priority II—Priority, and
Priority III—Routine). Redeployment of MEDEVAC units prior to returning to their origi-
nating base is possible but poses challenges due to the numerous resource and availability
requirements (e.g., refueling, resupply, and armed escort). These reasons also render tempo-
rary relocation of idle MEDEVAC units uncommon within a theater of operations (Rettke
et al. 2016).

This paper examines theMEDEVACdispatching problemwherein a dispatching authority
must decide which MEDEVAC unit to dispatch to a particular 9-line MEDEVAC request.
The location of MTFs and MEDEVAC assets are known and all MEDEVAC helicopters are
assumed to have the capability to meet the mission requirements of any 9-line MEDEVAC
request. Redeployment is not considered. The reported dispatch policy is based on the loca-
tion and status of MEDEVAC units, the location of the casualty event, and the evacuation
precedence category of the casualty event.

An infinite horizon, discounted Markov decision process (MDP) model is formulated to
determine how to optimally dispatch MEDEVAC helicopters to casualty events occurring in
combat to maximize the expected total discounted reward attained by the system. A com-
putational example is applied to a MEDEVAC system in Afghanistan in support of combat
operations. Comparisons are made between myopic policies that are typically utilized in
practice and the optimal policy derived from the formulated MDP model. Herein, we con-
sider three specific myopic policies that, while adopting the rule of dispatching the closest
available MEDEVAC unit to service a request, if all MEDEVAC units are busy, respectively
queue any MEDEVAC requests, queue only urgent MEDEVAC requests, or reject (i.e., do
not queue) any MEDEVAC requests.

An important difference between this paper and other papers in this research area is the
incorporation of admission control and queueing. Consideration of admission control and
queueing can greatly improve the performance of existing and proposed systems in many
contexts, including manufacturing, distributed computing, and communications (Stidham
1985; Shenker andWeinrib 1989; Stidham andWeber 1993; Stidham 2002) and has yet to be
examined in the context ofMEDEVACdispatching.Admission control allows the dispatching
authority to observe the current state of the MEDEVAC system before making the decision
to accept or reject an incoming request. This provides the dispatching authority the power to
reject incoming requests, thereby reserving MEDEVAC units for higher precedence requests
instead of satisfying all requests for service. The rejected requests are not simply discarded;
rather, they are redirected to another supporting agency to be serviced (i.e., CASEVAC). If
the dispatch authority allows a request to enter the MEDEVAC system but all MEDEVAC
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units are currently servicing other requests, the entering request will be allocated to a queue
based on its precedence level and location as categorized by geographic zone. Once a request
has entered the system, it will be serviced; however, the dispatching authority dictates which
available MEDEVAC unit will service each request in the system regardless of when the
request entered the system. For example, an urgent request will be serviced before a routine
request regardless of the order in which they entered the system. It is important to note that
MEDEVAC units will not interrupt service to a request in the case of a higher precedence
request arriving. Once a MEDEVAC unit is assigned a specific request, it will be considered
unavailable until it completes the service of that request.

The remainder of this paper is organized as follows. Section 2 provides a review of
research relating to MEDEVAC systems. Section 3 presents a description of the MEDEVAC
dispatching problem. Section 4 describes the MDP formulation developed to determine an
optimal MEDEVAC dispatch policy. Section 5 examines an application of the formulated
MDPmodel based on a representative scenario in southern Afghanistan. Section 6 concludes
the paper and proposes several directions for future research.

2 Literature review

For nearly half a century, research has been conducted on optimizing both civilian and
military emergency medical services (EMS) response systems. The main features of this
research include determining the location of servers; dictating the number of servers per
location, the server dispatch policy, and the size and number of response zones (if a partition-
ing strategy for the service area is implemented); identifying which performance measure
to focus on as the objective: response time thresholds (RTTs) or patient survivability rates;
and recognizing if and when server relocation is necessary due to either a service comple-
tion or an incoming service request. Another complicating feature concerns the location
of hospitals. In research examining civilian EMS systems, the locations of hospitals are
usually given as fixed; however, in some military planning contexts the medical treatment
facility (MTF) locations are not given. Military medical planners must decide where to
best place MTF locations when designing a military medical evacuation (MEDEVAC) sys-
tem (Rettke et al. 2016). Operations research (OR) methods provide rigorous, defensible,
and quantitative insights to researchers examining EMS systems. Applied OR methods
include stochastic modeling, queueing, discrete optimization, and simulation modeling
(Green and Kolesar 2004).

The research presented in this paper examines the optimal dispatch of military EMS
vehicles (i.e., HH-60M MEDEVAC helicopters) to prioritized requests for service. Consid-
eration of the precedence category (e.g., Priority I—Urgent, Priority II—Priority, and Priority
III—Routine) is important. A substantial amount of research seeks to improve the overall
performance of EMS systems, but most research endeavors do not account for the precedence
of the call (Bandara et al. 2014).When the precedence of the call is not considered, the default
dispatching rule sends the closest available emergency response vehicle to satisfy required
service requests with no regard as to how that specific vehicle’s absence impacts the overall
EMS system. Sending the closest available vehicle to a service request regardless of other
factors (e.g., precedence, or severity) is commonly referred to as a myopic policy. Many
researchers (Carter et al. 1972; Nicholl et al. 1999; Kuisma et al. 2004) show that myopic
policies tend to be suboptimal. Incorporating precedence categories into the construction of
dispatching polices can ultimately lead to more lives being saved on the battlefield.
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EMS research exists that focuses specifically on military MEDEVAC systems. Zeto et al.
(2006) develop a goal programming model that seeks to maximize the aggregate expected
demands covered and minimize the spare capacities of air ambulances. The authors leverage
the work of Alsalloum and Rand (2006) to examine both the problems of resource allocation
and coverage in a three-phased approach. In the first phase, they characterize the demand for
MEDEVAC missions using a multivariate hierarchical cluster analysis. In the second phase,
they estimate the parameters of the model via a Monte Carlo simulation. In the third phase,
they utilize a bi-criteria model to emplace the minimum number of required aircraft at each
location to maximize the probability of meeting the MEDEVAC demand in the Afghanistan
theater. Bastian et al. (2012) investigate the capabilities required forMEDEVAC aircraft plat-
forms to successfully perform the necessary duties and provide coverage within a brigade
operating space. The authors develop a decision support tool that military medical plan-
ners can utilize to analyze the risk associated with different MEDEVAC strategies. Fulton
et al. (2009) evaluate the planning factors and rules of allocation associated with Army air
ambulance companies. Military medical planners typically use the rules of allocation, which
are based on strategic planning documents, to estimate the number of MEDEVAC units
required for tactical and operational scenarios. The authors quantitatively analyze different
rules through a Monte Carlo simulation and record the impact that they respectively have on
major combat operations. The results indicate that 0.4 aircraft per admission would be a rea-
sonable planning factor. Sundstrom et al. (1996) incorporate linear programming techniques
to develop a model based on the probabilistic location set-covering problem that provides the
required numbers of MEDEVAC assets needed as well as the optimal positioning of those
assets to ensure orderly transport of battlefield casualties to an appropriate medical facility.

The allocation of MEDEVAC units during steady-state combat operations is studied by
Fulton et al. (2010) and Bastian (2010). Fulton et al. (2010) formulate a stochastic opti-
mization model that manages the locations of deployable military hospitals, hospital beds,
and both aerial and ground MEDEVAC units prior to the reception of a 9-line MEDEVAC
request. Their model uses an objective of minimizing the total travel time, weighted by the
urgency level of the casualty, from the POI to an appropriate MTF. The weights associated
with the urgency levels of casualties are derived from historical data of patient injury severity
scores collected from Operation Iraqi Freedom (OIF) combat operations. Bastian (2010) for-
mulates a stochastic optimization goal programmingmodel to meet three separate objectives:
maximize the coverage of theater-wide casualty demand in Afghanistan, minimize the spare
capacity of MEDEVAC units, and minimize the maximal MTF evacuation site vulnerability
to enemy attack. The aforementioned research endeavors alternatively focus on optimiz-
ing the location, allocation, or reallocation of MEDEVAC assets. Although such problems
are important to consider, this research assumes the locations of MEDEVAC staging areas
and MTFs to be fixed and the allocation of MEDEVAC helicopters to be both known and
fixed throughout steady-state combat operations. These assumptions are reasonable and are
adopted in otherworks focusing solely onMEDEVACdispatching policies (e.g., seeKeneally
et al. (2016) and Rettke et al. (2016)).

Keneally et al. (2016) examine MEDEVAC dispatch policies in the Afghanistan theater
via a Markov decision process (MDP) model. The authors assume that each service call
arrives sequentially and the locations of each service center are predetermined. Their work
classifies each service call into one of three evacuation precedence categories: urgent, prior-
ity, and routine. Moreover, they consider the possibility that an armed escort may be required
to accompany the MEDEVAC unit. The authors utilize a reward function based on an RTT
and conduct computational experiments wherein MEDEVAC units operate in support of
Operation Enduring Freedom (OEF). The results highlight that the myopic policy (i.e., the
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default policy in practice) is not always the optimal dispatching policy. This work herein
extends research by Keneally et al. (2016) via the consideration of admission control and
queueing. Moreover, this research measures performance via a survivability function rather
than an RTT since survival probability more accurately represents casualty outcomes (Ban-
dara et al. 2014). Grannan et al. (2015) develop a binary linear programming (BLP) model
to determine where to locate and how to dispatch multiple types of military MEDEVAC
air assets. A spatial queueing approximation model provides inputs to the BLP model. The
BLP model incorporates the precedence of each service call to maintain a high likelihood of
survival for the most urgent casualties. The overall objective is to maximize the proportion
of high-precedence calls responded to within a pre-determined RTT.

Rettke et al. (2016) formulate an MDP model to examine the MEDEVAC dispatching
problem. The problem instance size in their study is too large for an exact dynamic program-
ming solution approach, so the authors employ approximate dynamic programming (ADP)
techniques to determine a high-quality dispatch policy. The computational experiments in this
study indicate that the authors’ ADP-generated policy is nearly 31% better than the myopic
policy. Military medical planners can use these results to improve existing MEDEVAC tac-
tics and techniques. The problem instances in this research can be solved via exact dynamic
programming methods and, therefore, do not utilize ADP techniques to generate MEDEVAC
dispatching policies. Moreover, Rettke et al. (2016) assume that all incoming requests must
be serviced if there are any MEDEVAC units available and queue incoming requests if all
MEDEVAC units are busy. This paper relaxes the assumption that all incoming requests must
be serviced and gives the dispatching authority the option to reject incoming requests based
on the MEDEVAC system state. Lejeune and Margot (2016) propose a MEDEVAC model
that considers endogenous uncertainty in the delivery times of casualties. The objective of
their model is to provide prompt medical treatment and evacuation to soldiers injured in
combat. The model determines where to locate MEDEVAC units and MTFs. Moreover, it
helps the dispatch authority to determine which helicopters to dispatch and to which MTF
each call should be transported to. Results indicate a reduction in battlefield deaths due to an
increase in timely treatment of combat casualties when compared to a myopic policy. The
dispatching policies generated by Lejeune and Margot (2016) assign response districts to
each MEDEVAC staging area regardless of the system state. In contrast, the research herein
utilizes the benefits of MDP models to determine the optimal dispatching decision for every
feasible state in which the MEDEVAC system can be, considering all MEDEVAC assets in
the enterprise.

3 Problem description

One of the primary missions of the Army Health System is to provide medical evacuation
(MEDEVAC) across a wide range of military operations. The dedicated Army helicopters
(i.e., rotary-wing aircraft or air ambulances) utilized in MEDEVAC missions are under the
command of the general support aviation battalion (GSAB). Any use of air ambulances must
first be coordinated with the supporting GSAB to synchronize evacuation procedures. The
GSABmanages all activities related to the execution of aerial operations and serves as the pri-
mary decision-making authority for themilitaryMEDEVACsystem (Department of theArmy
2016). An Army aeromedical evacuation officer (AEO) that works within the GSAB acts
as the MEDEVAC dispatching authority in a deployed military emergency medical service
(EMS) system (Fish 2014). AEOs direct the use ofmedical aircraft, personnel, and equipment
in support of operational and strategic medical evacuations within a theater of operations.
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Fig. 1 MEDEVAC mission timeline

When a casualty event occurs and a 9-line MEDEVAC request is submitted, the AEO
must decide quickly which MEDEVAC unit (if any) to dispatch. The casualty survivability
rate will decrease if there are delays in decision making. To complicate matters further,
there are many situations in which MEDEVAC units require a team of armed helicopters
to escort them to the casualty site due to high threat-level conditions (e.g., enemy troops
in the area). Armed escort requirements can potentially increase the overall response time,
which ultimately decreases the chances of casualties surviving. Therefore, it is vital that
the GSAB implements a dispatching policy resulting in rapid and high-quality transport of
life-threatening battlefield casualties from a pre-determined casualty collection point (CCP)
to the nearest, most appropriate medical treatment facility (MTF). The procedures outlined
in the Army’s Medical Evacuation Field Manual (Department of the Army 2016) and the
graphical representations that Keneally et al. (2016) and Rettke et al. (2016) offer in their
problem descriptions are utilized as a basis for the MEDEVAC mission timeline depicted in
Fig. 1.

A 9-line MEDEVAC request is transmitted in a standardized message format with a pre-
scribed amount of information that helps expedite the process of transporting casualties.
When a 9-line MEDEVAC request is determined to be necessary, it should be transmitted
over a secure communication systemvia a dedicated frequency.However, a 9-lineMEDEVAC
request can still be transmitted without such precautions if no secure communication systems
are available. In wartime conditions, the information required in a 9-line MEDEVAC request
is reported in the following order: the location of the pickup site (i.e., CCP), radio frequency
and call sign, number of casualties by precedence, special equipment required, number of
casualties by type, security of pickup site, method of marking pickup site, casualty nation-
ality and status, and any chemical, biological, radiological, and nuclear contamination. The
United States Army utilizes a three-category casualty triage rubric that governs the evacua-
tion precedence of 9-line MEDEVAC requests. Priority I (i.e., urgent) and Priority II (i.e.,
priority) requests are life-threating and must be serviced within 60min and 4h, respectively.
Priority III (i.e., routine) requests are not life-threating but still must be serviced within 24h
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(Department of the Army 2016). Either the senior military member or the senior medical per-
son (if available) at the scene identifies the evacuation precedence category of each casualty
and determines whether a 9-line MEDEVAC request is necessary. The tactical situation and
the condition of each casualty are taken into consideration when making this decision. The
overall precedence of a 9-line MEDEVAC request is based on the most time sensitive prece-
dence among the casualties. Correct casualty event category identification is vital and cannot
be overemphasized because mistakes may burden the evacuation system. Aerial ambulances
are a low-asset, high-demand resource that must be managed accordingly.

In a combat situation, requests for MEDEVAC units are typically made at the point-
of-injury (POI) once enemy fire has been suppressed. MEDEVAC requests are transmitted
through several layers of command before reaching an AEO working within the GSAB
headquarters. The specific information flow depends on the communication infrastructure
within the command, the communication equipment available to the requesting unit, and the
command and control organization of the MEDEVAC system (Rettke et al. 2016). Once the
request has been made, casualties are transported to a CCP, which is a predesignated point
along the evacuation route for collecting the wounded (Department of the Army 2000). The
time at which the MEDEVAC request reaches the AEO is denoted by T1.

Once the GSAB receives the 9-line MEDEVAC request, the AEO must then decide
whether to immediately assign a MEDEVAC unit to the request, depending on any pre-
existing requests in the MEDEVAC system, the location of the pick-up site, the number and
precedence of the casualties, and the status of theMEDEVACunits. If theMEDEVAC system
is burdened with a high number of requests, the AEO may reject the incoming request from
entering the system and redirect the request to be handled by casualty evacuation (CASE-
VAC). Assuming the request enters the system, the AEO will wait for a suitable MEDEVAC
unit to become available. At time T2, the AEO assigns the MEDEVAC unit to service the
request with an armed escort, if required.

The amount of time between an AEO receiving the 9-line MEDEVAC request, T1, and the
assignment of theMEDEVAC unit, T2, is the total wait time for the request in theMEDEVAC
system.As stated earlier, once a 9-lineMEDEVAC request is received by theGSAB, theAEO
must decide whether the request should enter the MEDEVAC system or the request should
be serviced by another organization (i.e., CASEVAC). If the AEO allows the request to enter
the MEDEVAC system and at least one suitable MEDEVAC unit is available to service the
request, another decision must be made regarding whether the request should be assigned
immediately or the request should be placed in a queue based on the its precedence category
and location (i.e., zone). If the AEO allows a request to enter the MEDEVAC system and no
suitable MEDEVAC units are available to service the request, then the request is placed in
its respective zone-precedence queue. Figure 2 depicts the multiple-server, multiple-buffer
queueing model employed in this paper. The MEDEVAC queueing system represented in
Fig. 2 visually depicts the wait time between points T1 and T2 in Fig. 1.

Decision epochs occur when a 9-line MEDEVAC request is received by the GSAB or
when a MEDEVAC unit completes a service request and becomes available. When a 9-line
request is submitted and received by the GSAB, the AEO’s decision consists of sending the
just-arrived 9-line MEDEVAC request to its respective zone-precedence queue (if the queue
is not full), immediately assigning an available MEDEVAC unit to service the request, or
rejecting the request from ever entering the system. Once a MEDEVAC unit reaches service
completion and at least one of the zone-precedence queues is not empty, theAEOmustmake a
decision. TheAEO’s decision consists of either assigning a queued 9-lineMEDEVAC request
to one of the idle MEDEVAC units or waiting for either another (possibly higher precedence)
request to enter the system or another MEDEVAC unit to reach service completion.

123



Ann Oper Res (2018) 271:641–678 649

Fig. 2 MEDEVAC queueing system

The information from the 9-lineMEDEVAC request is transmitted to the assignedMEDE-
VAC unit through the command’s communication system. T3 denotes the time at which the
assigned MEDEVAC unit departs its station for the CCP. The amount of time between the
MEDEVAC unit being assigned the 9-line MEDEVAC request, T2, and the MEDEVAC unit
departure, T3, is the total mission preparation time, which includes preparing the medical
equipment, medical personnel, and helicopters for the MEDEVAC mission. Typically, if an
armed escort is required, it will take off with theMEDEVAC unit at the staging area, but there
are situations in which the MEDEVAC unit must meet an armed escort at a predetermined
rally point en route to the CCP. The MEDEVAC unit cannot land at a high-threat level CCP
site without an armed escort, and the additional coordination for an armed escort can increase
total response time.

T4 denotes the time at which the MEDEVAC unit lands at the CCP site. Upon arrival to
the CCP site, the MEDEVAC unit immediately loads casualties and begins initial medical
treatment. T5 denotes the time at which the MEDEVAC unit departs the CCP site and pro-
ceeds towards an MTF. The destination MTF is selected in a deterministic manner based
on sufficiency of medical capability to treat casualties and proximity to the CCP site. The
sufficiently capableMTF that is located closest to the CCP site is the one that theMEDEVAC
unit departs to at time T5.

TheMEDEVACunit arrives at theMTF site at time T6. After arriving, theMEDEVACunit
immediately begins to unload casualties and transfers the responsibility of subsequent care
of the casualties to the medical staff at the MTF. After all casualties have been unloaded, the
MEDEVACunit departs theMTF and travels back to its own staging area. Once aMEDEVAC
unit has finished unloading and transferring the subsequent care of casualties to the MTF
medical staff, it must return to its own staging area before being tasked to service another 9-
line MEDEVAC request. This requirement comes from concerns about low fuel levels, crew
bed down limitations, on-board equipment configurations, and other logistical issues (Rettke
et al. 2016). Typically, MEDEVAC units must return to their home staging areas to refuel
before being dispatched for another mission. T7 denotes the time at which the MEDEVAC
unit departs the MTF.

The MEDEVAC unit arrives back at its staging area at time T8. Once the MEDEVAC unit
arrives back at its staging area, the mission is considered complete. The MEDEVAC unit
then becomes available for dispatch to another 9-line MEDEVAC request.

It is important to note that battlefield conditions (e.g., enemy disposition, required equip-
ment being transported, weather conditions, and the air density due to flight altitude) are
expected to affect the travel times from theMEDEVAC staging area to the CCP site, from the
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CCP site to the selected MTF location, and from the MTF location back to the MEDEVAC
staging area.

Military medical planners must consider the measurement of MEDEVAC system perfor-
mance when examining dispatch policies. In civilian operations, the efficacy of EMS systems
has been a difficult area to evaluate due to the multitude of variables present (MacFarlane and
Benn 2003). The search for a reliable measure of performance remains a topic of interest in
the EMS field (e.g., see McLay and Mayorga (2010)). Practitioners and researchers employ
various means of assessment. The most common method for evaluating EMS systems uti-
lizes ambulance response times. EMS systems commonly define the response time as the
time required to reach the patient after receiving the emergency call. Since EMS systems
are evaluated on response time, one of their primary focuses is the rapid response to cardiac
arrest situations. This emphasis exists because the ability to provide effective treatment to
patients undergoing cardiac arrest is time-sensitive. Another reason behind this rationale is
as follows. If the EMS system has the capability to respond quickly to cardiac arrest patients,
then it is more likely to be able to service similar life-threatening medical situations. There-
fore, defining the response time for a civilian EMS system to be the time between receiving
the emergency call and the time the first emergency response vehicle arrives on scene is quite
intuitive.

Nonetheless, MEDEVAC system performance cannot be measured using the same evalu-
ation criteria as the civilian EMS system. Several additional factors complicate the medical
evacuation of a casualty from a battlefield. The travel times, load times, and unload times
can be much greater and vary more in military EMS systems when compared to a civilian
EMS system. Moreover, the primary cause of death for battlefield casualties is blood loss,
not cardiac arrest. Garrett (2013) indicates that blood loss is the primary cause of death for
nearly 85% of soldiers killed in action. Due to this issue, some MEDEVAC units have been
recently equipped with in-flight blood transfusion capabilities; however, the majority are not,
and there is a lack of data to confirm whether this addition improves the ability to handle
casualties with severe blood losses (Malsby III et al. 2013). Without sufficient data to deter-
mine the effectiveness of in-flight transfusion, there has not been a change in the MEDEVAC
system’s evaluation measure. Therefore, unlike civilian EMS systems, it is vital to stabilize
and transport battlefield casualties to an appropriate MTF (e.g., one that has the capability
and resources to perform necessary care such as blood transfusions) and into surgery rather
than simply providing medical aid at the CCP. So, while civilian EMS systems measure
performance by response time (i.e., the time it takes to reach the patient after receiving the
emergency call), military EMS systems are evaluated in terms of how long it takes to transport
the casualties from the CCP to an MTF. Therefore, it is appropriate to define the response
time for a MEDEVAC unit as T7 − T2. Moreover, the service time for a MEDEVAC unit is
defined as T8 − T2, which is commonly associated as the time expended to service a request.

The primary objective of the MEDEVAC system presented in this paper is to dispatch
MEDEVAC units in a manner that maximizes the expected total discounted reward attained
by the system.The dispatch authority (i.e.,AEO)mustmake sequential decisions under uncer-
tainty regarding which available MEDEVAC unit to dispatch to service a 9-line MEDEVAC
request. The system earns rewards based on the response times associated with servicing
9-line MEDEVAC requests. It is impossible to know exactly when and where casualty events
will occur, which prevents the dispatch authority from having a priori information on sub-
sequent 9-line MEDEVAC requests. The knowledge and details of any 9-line MEDEVAC
request only become known to the MEDEVAC system upon receipt of the request. Once the
GSAB receives the request and the AEO selects a MEDEVAC unit to dispatch, the assigned
MEDEVAC unit must initiate mission protocols immediately. The mission protocols of a
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MEDEVAC unit include preparing medical personnel and equipment prior to departure,
traveling to the CCP to pick up casualties, providing appropriate en route medical care,
and transporting casualties to the nearest MTF in a rapid and efficient manner. Delaying
any mission tasks negatively impacts the total response time and ultimately decreases the
survivability rates of casualties awaiting service.

Both a dynamic and stochastic approach are needed when analyzing the dispatch of either
civilian ormilitary emergency response vehicles. The stochastic aspect of this problemderives
from the uncertainty concerning themanifestation of casualty events.Moreover, the dispatch,
travel, and service times vary for each request and cannot be predicted precisely. When
examining civilian EMS systems, the data relating to dispatch, travel, and service times are
easily accessible and can be leveraged to parameterize decision models. Unfortunately, as
noted earlier, one of the implicit challenges for military medical planners is having to develop
and identify a dispatching policy prior to commencement of combat operations. No casualty
event data exists for such a situation. Therefore, this paper utilizes a rubric that emulates the
judgment and expertise of military planners with regard to the future interactions of enemy
and friendly forces to identify the locations and arrivals of casualty events.

4 Methodology

This section presents the Markov decision process (MDP) model of the military’s medical
evacuation (MEDEVAC) dispatching problem. One of the key benefits of formulating an
MDP model is that it provides a framework in which dynamic programming algorithms can
be utilized to compute exact optimal policies. In most cases, MDP formulations have clear
definitions for the state space, action space, rewards, transition probabilities, and optimality
equations.

The objective of the MDP model formulated in this paper is to determine which available
MEDEVAC unit to dispatch in response to a 9-line MEDEVAC request with the purpose of
maximizing the expected total discounted reward over an infinite horizon.

The MDP model assumes that 9-line MEDEVAC requests arrive according to a Poisson
process with parameter λ that is denoted by PP(λ). Recall that a Poisson process possesses
independent and stationary increments. The assumption of independent increments is reason-
able in the context of MEDEVAC request arrivals because a large number of small, widely
dispersed units perform combat operations that result in localized casualty events that are
unrelated to one another, and therefore the numbers of arrivals that occur in disjoint time
intervals are independent. The assumption of stationary increments is reasonable due to the
underlying presumption that the implicit sizes, locations, and dispositions of friendly and
adversary forces remain fixed with respect to time, and therefore the number of arrivals that
occur in any interval of time depends only on the length of the time interval. Military medical
planners must ensure the MEDEVAC system is tailored to effectively support friendly forces
within an assigned area of operations (AO) (Department of the Army 2016). In large-scale
combat operations, military medical planners should examine the expected conditions of the
operation and carefully select an appropriate λ-value based on these conditions to investi-
gate system performance during the peak hours of operation. Each casualty event that leads
to a 9-line MEDEVAC request submission is categorized by its precedence level, which is
determined by the senior military member and/or medical personnel present at the injury site.

The Army utilizes three casualty event precedence categories (i.e., urgent, priority, and
routine) when submitting a 9-line MEDEVAC request (Department of the Army 2016). A
routine evacuation precedence level is assigned to casualties that are triaged as minimally
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injured (i.e., non-life-threatening), and typically results in standard ground or waterborne
assets responding within 24h of the initial event (De Lorenzo 2003). Since the focus of this
paper is on the aerial aspect of MEDEVAC operations and routine 9-line requests typically
do not utilize dedicated air evacuation assets, this paper only considers 9-line MEDEVAC
requests that have a precedence level of either urgent or priority.

The arrival of urgent and priority 9-line MEDEVAC requests from different zones is
modeled utilizing a splitting technique. Splitting consists of generating two or more counting
processes out of a single Poisson process (Kulkarni 2009). Let the original counting process
{N (t ′) : t ′ ≥ 0} denote the PP(λ) that counts the number of 9-line MEDEVAC request
arrivals to the general support aviation battalion (GSAB) that have occurred during the time
interval (0, t ′]. The original counting process can be split into counting processes that are
categorized by both the zone z ∈ Z = {1, 2, . . . , |Z|} and the precedence level k ∈ K =
{1, 2, . . . , |K|} of the request. The sets Z and K represent the set of zones and the set of
precedence levels in the system, respectively. LetR = {(z, k) : (z, k) ∈ Z ×K} be the set of
request categories. There is a total of |R| = |Z||K| request categories. The original process
{N (t ′) : t ′ ≥ 0} is split into |R| independent processes {Nzk(t ′) : t ′ ≥ 0},∀ (z, k) ∈ R. It is
clear that

N (t ′) =
∑

(z,k)∈R
Nzk(t

′) (1)

since each request belongs to one and only one category. The nature of the split processes
{Nzk(t ′) : t ′ ≥ 0},∀ (z, k) ∈ R depends on how the requests are categorized. The pro-
cess of categorizing each request is called the splitting mechanism. The Bernoulli splitting
mechanism generates the split processes {Nzk(t ′) : t ′ ≥ 0},∀ (z, k) ∈ R, given parameters
pzk > 0, ∀ (z, k) ∈ R such that

∑
(z,k)∈R pzk = 1. Each request is independently catego-

rized by its zone z and precedence level k combination with probability pzk independent of
any other considerations. The splitting mechanism allows the characterization of each split
process {Nzk(t ′) : t ′ ≥ 0}, (z, k) ∈ R as a Poisson process with parameter λpzk , which is
denoted by PP(λpzk).

There may be times when a 9-line MEDEVAC request is admitted into the system, but
all MEDEVAC units are currently servicing other requests. When this occurs, the submitted
9-line MEDEVAC request is placed in its respective zone-precedence queue to be serviced at
a later time.Moreover, theremay be system states wherein an idleMEDEVAC is available for
assignment, but placing the submitted request in its respective zone-precedence queue rather
than assigning the idle MEDEVAC to the request could prove more advantageous in the long
run. For example, the decision not to assign an available MEDEVAC unit immediately could
prove beneficial if a lower precedence request enters the system while many MEDEVAC
units are busy. In such a situation, waiting for another MEDEVAC unit to become available
before servicing the lower precedence request allows the idle MEDEVAC unit to remain
available for a possibly higher precedence request, yet to arrive.

The service time for a MEDEVAC unit consists of the time between the initial assign-
ment notification and the return to the staging area. This paper assumes that the service
times of the MEDEVAC units are exponentially distributed. Kotwal et al. (2016) report real-
world summary statistics concerning MEDEVAC service times that support this assumption.
Moreover, the exponential distribution is commonly used to represent random, real-world
phenomena because it provides a reasonable, simplifying approximation of the actual empir-
ical distribution and enables the construction of a tractable mathematical model due to its
ease of use and favorable properties (e.g., the memoryless property). Indeed, this simplifying
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assumption is often utilized (and investigated) in related literature. For example, Jarvis (1985)
performs several computational experiments, and the results suggest that the shape of the
service-time distribution has little impact on the overall behavior of the system. Similarly,
research by Gross and Harris (1998) also indicates the insensitivity of service time distri-
butions to system performance. McLay and Mayorga (2013) perform simulation analyses
utilizing different types of service time distributions to study the impact of modeling the
system with exponential service times versus more realistic service times. Results indicate
that the assumption of exponential service times does not significantly impact the optimal
polices. This suggests that the optimal polices determined utilizing the MDP model from
this paper provide military medical planners relevant insight regarding how to dispatch
MEDEVAC units despite the simplifying assumption of exponentially distributed service
times.

Having introduced the characteristics of the arrival process and the nature of the service
times, formulation of the MDPmodel can now proceed. The development of the MDPmodel
components leverage Maxwell et al. (2010), Keneally et al. (2016), and Rettke et al. (2016).
The decision epochs, state space, action space, transition probabilities, rewards, objective,
and optimality equation are described in detail below.

The decision epochs of theMEDEVACsystemare the points in time that require a decision.
The set of decision epochs is denoted as T = {1, 2, . . .}. Two event types in the MEDEVAC
system constitute all decision epochs. The first event type is the submission of a 9-line
MEDEVAC request. The second event type is the change in the status of a MEDEVAC unit
from busy to available upon completing a mission.

The MEDEVAC system MDP model follows the properties of semi-Markov decision
processes (SMDPs). SMDPs generalize MDPs by requiring the decision-maker to select a
feasible action whenever the system changes, allowing the time spent in a specific state to
follow an arbitrary probability distribution, and modeling the system evolution in continu-
ous time (Puterman 1994). The MEDEVAC system MDP model is viewed as a continuous
time MDP (CTMDP), which is a special case of an SMDP wherein the inter-transition times
are exponentially distributed and decisions are made at every transition. There are several
different ways that CTMDPs can be analyzed, but the primary method utilized in this paper
is uniformization. Uniformization is applied to the CTMDP model to obtain an equivalent
discrete-time discounted model with constant transition rates (Puterman 1994). The trans-
formation allows the results and algorithms for discrete-time MDP models to be applied
directly.

The state St ∈ S describes the status of the entire MEDEVAC system at decision epoch

t ∈ T . The MEDEVAC system state is represented by the tuple St =
(
Mt , Qt , R̂t

)
wherein

Mt represents the MEDEVAC status tuple at epoch t , Qt represents the queue status tuple at
epoch t , and R̂t represents the request arrival status tuple at epoch t .

The MEDEVAC status tuple Mt describes the status of every MEDEVAC unit in the
system at epoch t . The tuple Mt can be written as

Mt = (Mtm)m∈M , (2)

where M = {1, 2, . . . , |M|} represents the set of MEDEVAC units in the system. The state
variable Mtm ∈ {0} ∪ Z contains the information pertaining to MEDEVAC unit m ∈ M at
epoch t . Each MEDEVAC unit can either be idle or servicing a request in one of the zones
in the system. When Mtm = 0, MEDEVAC unit m is idle. When Mtm = z, MEDEVAC unit
m is servicing a request from zone z ∈ Z.

123



654 Ann Oper Res (2018) 271:641–678

The queue status tuple Qt describes the status of every zone-precedence queue in the
system at epoch t . The tuple Qt can be written as

Qt = (Qtzk)z∈Z,k∈K . (3)

The state variable Qtzk ∈ {0, 1, . . . , qmax } contains the information pertaining to the (z, k) ∈
R zone-precedence queue at epoch t . Each zone-precedence queue can hold no more than
qmax requests at any point in time.

The request arrival status tuple R̂t indicates whether there is a request arrival awaiting an
admission decision at epoch t ; it also provides the zone and precedence level of the request
arrival, if one is present at epoch t . Let R̂t = (0, 0) when there is not a request arrival at the
GSAB at epoch t . Otherwise, let

R̂t =
(
Ẑt , K̂t

)

Ẑt∈Z,K̂t∈K
. (4)

The random variable Ẑt represents the zone of the request arrival at epoch t , and the random
variable K̂t represents the precedence level of the request arrival at epoch t . At epoch t , the
information in Ẑt and K̂t has just been realized and is no longer uncertain. However, Ẑt and
K̂t are random variables at epochs 1, 2, . . . , t − 1 because the information they contain is
still uncertain at those epochs.

The size of the state spaceS depends on |M|, |Z|, |K|, andqmax . The following expression
indicates the cardinality of the state space for the MEDEVAC system:

|S| = (1 + |Z|)|M| (1 + qmax)|Z||K|
(1 + |Z||K|) . (5)

The size of the state space grows exponentially with respect to the number of state variables.
This is commonly referred to as the curse of dimensionality and renders dynamic program-
ming intractable for analyzing practical scenarios (i.e., large-scale problem instances). The
purpose of formulating and analyzing small-scale problem instances is to examine the gen-
eral efficacy of currently practiced (myopic) policies, identify possible structural properties
of high-quality solutions, and inform the subsequent development of approximate solution
approaches for application to the analysis of large-scale problems.

Events are triggered when a 9-line MEDEVAC request is submitted to the system or if
a busy MEDEVAC unit completes a service request and becomes available. An admission
control decision only occurs when a 9-line MEDEVAC request is submitted to the system.
A dispatching decision may be necessary when either of these two event types occur.

TheMEDEVACsystememploys an inter-zone policy regarding airspace access that allows
any MEDEVAC unit to service any 9-line MEDEVAC request, regardless of the zone from
which the request originated. Once aMEDEVAC unit is tasked, it will be considered unavail-
able until the task is completed and the MEDEVAC unit has returned to its own staging
area. Although rerouting a MEDEVAC unit during mid-flight can be accomplished, potential
delays and communication difficulties can create issues in the MEDEVAC system that may
ultimately cost casualties their lives. Furthermore, most military operations do not utilize a
MEDEVAC unit rerouting strategy during combat operations (Rettke et al. 2016). Due to
these reasons, rerouting MEDEVAC units mid-flight is not incorporated in this MDP model.

When a 9-lineMEDEVACrequest is submitted, theAEOmust take into account the current
state of the system and make an admission control and possibly a dispatching decision. There
are three possible alternatives: allowing the request to enter its respective zone-precedence
queue; assigning an availableMEDEVACunit to service the request immediately; or rejecting
the request from entering the system, which forces the request to be serviced by an outside
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agency (i.e., CASEVAC). If a request arrival is present at epoch t and its queue is not full,

i.e., R̂t =
(
Ẑt , K̂t

)
and Qt Ẑt K̂t

< qmax , Ẑt ∈ Z, K̂t ∈ K, then the AEO can either accept or

reject the request from entering the system. If the request is accepted, it can either be placed
in its respective zone-precedence queue or an available MEDEVAC unit can be tasked to
service the request immediately. Moreover, if a request arrival is present at epoch t and its

queue is full, i.e., R̂t =
(
Ẑt , K̂t

)
and Qt Ẑt K̂t

= qmax , Ẑt ∈ Z, K̂t ∈ K, then the AEO must

reject the request from entering the system. Practically speaking, qmax should be set high
enough so that requests are not routinely rejected due to a full queue.

Let the decision variable xrejectt ∈ {Δ, 0, 1} denote the admission control decision at
epoch t . If an arrival request is not present at epoch t , i.e., R̂t = (0, 0), the only available
decision is xrejectt = Δ, which indicates the system will continue to transition without any
impact from xrejectt . When xrejectt = 0, the arrival request at epoch t is admitted to the
MEDEVAC system, whereas when xrejectt = 1, the arrival request at epoch t is rejected from
entering the MEDEVAC system.

Dispatching decisions may be required when either a 9-line request is submitted or a busy
MEDEVAC unit completes a service request and becomes available. Let I(St ) = {m : m ∈
M, Mtm = 0} denote the set of idle MEDEVAC units available for dispatching when the
state of the system is St at epoch t . Let W(St ) = {(z, k) : (z, k) ∈ R, Qtzk > 0} denote the
set of zone-precedence queues that have at least one casualty event awaiting service when
the state of the system is St at epoch t . The dispatching decision is represented by the tuple
xdt = (

xart , xqrt
)
wherein xart represents the arrival request dispatch decision tuple and xqrt

represents the queued requests dispatch decision tuple at epoch t .
The arrival request dispatch decision tuple xart describes the AEO’s dispatching decision

with regard to arrival requests at epoch t . The tuple xart can be written as

xart = (
xartm

)
m∈I(St )

. (6)

The decision variable xartm = 1 if MEDEVAC unit m ∈ I(St ) is dispatched to service the

arrival request R̂t =
(
Ẑt , K̂t

)
, where Ẑt ∈ Z and K̂t ∈ K, at epoch t , and 0 otherwise.

The queued requests dispatch decision tuple, xqrt , describes the AEO’s dispatching deci-
sion with regard to queued requests at epoch t . The tuple xqrt can be written as

xqrt = (
xqrtmzk

)
m∈I(St ),(z,k)∈W(St )

. (7)

The decision variable xqrtmzk = 1 if MEDEVAC unit m ∈ I(St ) is dispatched to service a
queued request from the (z, k) zone-precedence queue, where (z, k) ∈ W(St ), at epoch t ,
and 0 otherwise.

Let xt =
(
xrejectt , xdt

)
denote a compact representation of the decision variables at epoch

t . Several constraints bound the decisions being made at epoch t . The first constraint,

I{R̂t �=(0,0)}
∑

m∈I(St )

xartm +
∑

m∈I(St )

∑

(z,k)∈W(St )

xqrtmzk ≤ 1, (8)

requires that there is at most one MEDEVAC unit dispatched at epoch t . The next constraint,

xrejectt ≤ 1 −
∑

m∈I(St )

xartm, (9)

indicates that, if an arrival request is present at epoch t and a MEDEVAC unit is tasked to
service the arrival request at epoch t , as indicated by xartm = 1 for some m ∈ I(St ), then the
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arrival request must enter the system, as indicated by xrejectt = 0. Otherwise, xartm = 0 for

all m ∈ I(St ), and the arrival request is either queued (i.e., xrejectt = 0) or rejected (i.e.,
xrejectt = 1) from the system at epoch t . The set of available actions when a decision is
required is denoted as follows

X (St ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
�, ({0}|I(St )|, {0, 1}|I(St )|×|W(St )|)

)
, if R̂t = (0, 0), I(St ) �= Ø,W(St ) �= Ø(

�, ({0}|I(St )|, {0}|I(St )|×|W(St )|)
)
, if R̂t = (0, 0), I(St ) �= Ø,W(St ) = Ø(

1, ({0}|I(St )|, {0, 1}|I(St )|×|W(St )|)
)
, if R̂t = (Ẑt , K̂t ), Qt Ẑt K̂t

= qmax , I(St ) �= Ø(
1, ({0}|I(St )|, {0}|I(St )|×|W(St )|)

)
, if R̂t = (Ẑt , K̂t ), Qt Ẑt K̂t

= qmax , I(St ) = Ø
(

{0, 1},
(
{0, 1}|I(St )|, {0, 1}|I(St )|×|W(St )|

))
, if R̂t = (Ẑt , K̂t ), Qt Ẑt K̂t

< qmax , I(St ) �= Ø,W(St ) �= Ø
(
{0, 1}, ({0}|I(St )|, {0}|I(St )|×|W(St )|)

)
, if R̂t = (Ẑt , K̂t ), Qt Ẑt K̂t

< qmax , I(St ) = Ø(
{0, 1}, ({0, 1}|I(St )|, {0}|I(St )|×|W(St )|)

)
, if R̂t = (Ẑt , K̂t ), I(St ) �= Ø,W(St ) = Ø

(10)

where Constraints (8) and (9) must be satisfied. The first two cases in Eq. (10) represent
all feasible actions when the decision epoch occurs due to a MEDEVAC unit completing
a service request and becoming available, whereas the last five cases represent all feasible
actions when the decision epoch occurs due to a 9-line MEDEVAC request submission.

State transitions are Markovian with two possible events dictating the transition. The first
event type is the submission of a 9-line MEDEVAC request. Recall that 9-line MEDEVAC
requests arrive according to a PP(λ). The second event type is the change in the status of
a MEDEVAC unit from busy to available upon completing a mission. Let μmz denote the
service rate of MEDEVAC unit m ∈ M when servicing a 9-line MEDEVAC request in zone
z ∈ Z. Let B(St ) = {m : m ∈ M, Mtm �= 0} denote the set of busy MEDEVAC units when
the state of the system is St at epoch t . If the MEDEVAC system is in pre-decision state St
and action xt is taken, the system will immediately transition to a post-decision state Sxt .
The sojourn time in Sxt (i.e., the time the system remains in post decision state Sxt before
transitioning to to the next pre-decision state St+1) follows an exponential distribution with
parameter β(St , xt ). Simple calculations reveal that

β(St , xt ) = λ + ∑
m∈B(St )

μm,Mtm + ∑
m∈I(St )

μm,Ẑt
xartm + ∑

m∈I(St )

∑
(z,k)∈W(St )

μmzx
qr
tmzk . (11)

If B(St ) = Ø, xartm = 0 ∀ m ∈ I(St ), and xqrtmzk = 0 ∀ m ∈ I(St ), (z, k) ∈ W(St ), then
β(St , xt ) represents the sojourn time for the state-action pairs for which the next decision
epoch occurs upon the arrival of a 9-lineMEDEVAC request. Otherwise, β(St , xt ) represents
the sojourn time for the state-action pairs for which the next decision epoch occurs after
either a 9-line MEDEVAC request arrives to the GSAB or one of the busy MEDEVAC units
completes a service request and becomes available. Let Ta denote the time until the next
9-line MEDEVAC request arrival. Let Ts denote the time until the next service completion.
The time until the next decision epoch Te satisfies Te = min{Ta, Ts}. Since both Ta and Ts
follow an exponential distribution, standard calculations show that Te follows an exponential
distribution with parameter β(St , xt ).

The probabilistic behavior of the process is summarized in terms of its infinitesimal
generator. The infinitesimal generator is an |S| × |S| matrix G with components:

G(St+1|St , xt ) =
{

−[1 − p(St |St , xt )]β(St , xt ), if St+1 = St
p(St+1|St , xt )β(St , xt ), if St+1 �= St

(12)
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wherein

p(St+1|St , xt ) =

⎧
⎪⎨

⎪⎩

λzk
β(St ,xt )

, if R̂t+1 = (z, k), z ∈ Z, k ∈ K
μmz

β(St ,xt )
, if R̂t+1 = (0, 0), Mt+1,m = 0, Mx

tm = z,m ∈ M, z ∈ Z
0, otherwise

(13)

denotes the probability that the system transitions to state St+1 given that it is currently in
state St and decision xt is made. The post-decision state variable Mx

tm ∈ {0} ∪ Z contains
the information pertaining to MEDEVAC unit m ∈ M when decision xt is made at epoch t .
Note that p(St |St , xt ) = 0, which means that the system will transition to a different state at
the end of a sojourn in state Sxt .

Puterman (1994) argues that converting CTMDPs to equivalent discrete-time MDPs via
the uniformization approach makes subsequent analysis easier to perform. To uniformize the
system, the maximum rate of transition must be determined and is calculated by

ν = λ +
∑

m∈M
τm, (14)

wherein
τm = max

z∈Z μmz, ∀ m ∈ M. (15)

The restriction that there are no self-transitions from a state to itself is removed when uni-
formization is applied to the process. Applying uniformization yields the following transition
probabilities:

p̃(St+1|St , xt ) =
{
1 − [1−p(St |St ,xt )]β(St ,xt )

ν
, if St+1 = St

p(St+1|St ,xt )β(St ,xt )
ν

, if St+1 �= St .
(16)

This transformationmaybe viewed as inducing extra (i.e., “notional”) transition opportunities
froma state to itself. Thismodified process has the sameprobabilistic structure as theCTMDP.

The decision epochs in CTMDPs follow each state transition, and the times between
decision epochs are exponentially distributed. Several factors impact the amount of reward
gained from making a decision to service a 9-line MEDEVAC request. These factors include
the zone and precedence level of the 9-line MEDEVAC request as well as the staging area
of the servicing MEDEVAC unit. Let c(St , xt ) = ψmzk denote the immediate expected
reward (i.e., contribution) if MEDEVAC unit m ∈ M is dispatched to service a zone z ∈ Z,
precedence level k ∈ K 9-line MEDEVAC request (i.e., xartm = 1 or xqrtmzk = 1). The
immediate expected reward is computed as follows:

ψmzk =

⎧
⎪⎨

⎪⎩

δe
−ζmz
60 , if k = 1 (i.e., urgent)

e
−ζmz
240 , if k = 2 (i.e., priority)

0, otherwise,

(17)

wherein ζmz is the expected response time whenMEDEVACm ∈ M is dispatched to service
a request in zone z ∈ Z, and δ ≥ 1 is a tradeoff parameter utilized to vary the urgent-to-
priority immediate expected reward ratio. If a MEDEVAC unit is not dispatched to service a
9-line MEDEVAC request at epoch t , then c(St , xt ) = 0.

Let h(St , xt ) denote the holding cost accumulated when the MEDEVAC system is in state
St and decision xt is selected. The MEDEVAC system incurs a holding cost for queued
9-line MEDEVAC requests based on the time requirements outlined in the Army’s Medical
Evacuation Field Manual (Department of the Army 2016). The MEDEVAC system seeks to
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service urgent and priority 9-line MEDEVAC requests within 60 and 240min from notifi-
cation, respectively. Let φk denote the holding cost rate for holding a single precedence-k
request in its queue between decision epochs. The holding cost rate φk is defined as

φk = ξ

∑
m∈M

∑
z∈Z ψmzk

|M||Z| ,∀k ∈ K, (18)

where ξ ∈ [0, 1] is a parameter that scales the holding cost rate for a precedence-k request
based on the average immediate expected reward over all possible MEDEVAC-zone com-
binations. Summing the holding costs over all zone-precedence queues yields the following
expression

h(St , xt ) =
∑

z∈Z

∑

k∈K
φk Qtzk . (19)

Simple calculations show that, if W(St ) = Ø, then h(St , xt ) = 0. That is, if no requests
are queued, then no holding cost is incurred. Since the system does not change in the time
between decision epochs, the expected discounted reward is

r(St , xt ) = c(St , xt ) − h(St , xt )

α + β(St , xt )
, (20)

where α > 0 denotes the continuous time discounting rate. Applying uniformization gives

r̃(St , xt ) ≡ r(St , xt )
α + β(St , xt )

α + ν
. (21)

Note that the uniformized rewards agree with the rewards in the CTMDP.
Let Xπ (St ) be a policy (i.e., decision function) that prescribes AEO dispatch decisions

for each state St ∈ S. That is, x = Xπ (St ) is the dispatching decision returned when
utilizing policy π . The optimal policy π∗ is sought from the class of policies (Xπ (St ))π∈Π

to maximize the expected total discounted reward earned by the MEDEVAC system. The
objective is expressed as

max
π∈Π

E
π
{ ∞∑

t=1

γ t−1r̃(St , X
π (St ))

}
, (22)

where γ = ν
ν+α

is the uniformized discount factor. The optimal policy is found by solving
the Bellman equation

J (St ) = max
xt∈X (St )

{
r̃(St , xt ) + γ

∑

St+1∈S
p̃(St+1|St , xt )J (St+1)

}
. (23)

The policy iteration algorithm is implemented in MATLAB to solve Eq. (23) exactly. Policy
iteration startswith an initial policy and then iteratively performs two steps: policy evaluation,
which computes the expected total discounted reward of each state given the current policy,
and policy improvement, which updates the current policy if any improvements are available
(Puterman 1994). The policy iteration algorithm terminates after the policy converges.

For comparison purposes, a linear programming (LP) model of the Markov decision
problem is also constructed. Constructing an LP model of a Markov decision problem is
beneficial because it eases the inclusion of constraints and provides a better mechanism
with which to conduct sensitivity analyses. However, Puterman (1994) notes that LP has not
proven to be an efficient method for solving large discounted Markov decision problems.
Yet, recent advancements in LP algorithms have increased the computational efficiency of
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LP approaches (e.g., as indicated by the performance testing of CPLEX and Gurobi in Bixby
(2012)) and make LP a more viable solution method for solving MDPs.

5 Testing, analysis, and results

This section presents a representativemilitarymedical evacuation (MEDEVAC)planning sce-
nario utilized both to demonstrate the applicability of the Markov decision process (MDP)
model and to examine the behavior of the optimal dispatching policy. A series of sensitiv-
ity analyses and computational excursions identify the model parameters that significantly
impact the optimal dispatchingpolicy.Militarymedical planners should focus on these param-
eters when developing MEDEVAC dispatching polices. Moreover, this section compares the
computational efficiency of policy iteration via MATLAB versus linear programming via
CPLEX 12.6. The paper utilizes a dual Intel Xeon E5-2650v2 workstation having 128 GB
of RAM and MATLAB’s Parallel Computing Toolbox to conduct the computational experi-
ments and analyses presented herein.

5.1 Representative scenario

As of 2017, the United States (U.S.) continues to conduct military operations in Afghanistan.
The launch of U.S. military operations in Afghanistan began with the initiation of Operation
Enduring Freedom (OEF) on October 7, 2001 in response to the terrorist attacks on New
York’s World Trade Center and the Pentagon on September 11, 2001. OEF lasted a little over
13 years and officially ended when U.S. combat operations in Afghanistan were terminated
on December 31, 2014. However, as part of Operation Freedom’s Sentinel, U.S. military
forces still remain in Afghanistan to participate in a coalition mission to train and assist the
Afghan military and to conduct counter-terrorism operations against Al Qaeda (Department
of Defense 2016).While official U.S. combat operations are currently not being conducted in
Afghanistan, military medical planners still prepare and plan for potential combat scenarios
in the event that a sudden change requires U.S. combat operations.

The computational examples in Bandara et al. (2012), Keneally et al. (2016), and Rettke
et al. (2016) inform the development of the representative scenario examined herein. This
paper considers a notional planning scenario in which a coalition of allied countries executes
combat operations in response to an increase in insurgency operations by remnants of Al-
Qaeda militants in southern Afghanistan. For simplicity, this notional scenario (hereafter
referred to as the 2× 2 case) assumes a MEDEVAC system with two demand zones (i.e., the
zones at which 9-line MEDEVAC requests originate) and two MEDEVAC unit staging areas
(i.e., the locations in which the MEDEVAC units are stationed) with one medical treatment
facility (MTF) co-located at each staging area. Both MTFs are equally capable of treating
any casualty and each MTF has an unlimited capacity to treat incoming casualties (i.e., no
queueing at the MTF), so only the proximity of an MTF to a casualty collection point (CCP)
is utilized to determine where a MEDEVAC will transport casualties.

The 2 × 2 case assumes that southern Afghanistan is the area of operations (AO) and is
divided into two separate demand zones: Helmand province (Zone 1) and Kandahar province
(Zone 2). TwoMEDEVAC units are considered with one being staged in Zone 1 (i.e., MEDE-
VAC1) and the other being staged inZone 2 (i.e.,MEDEVAC2). The placement of the staging
areas and co-located MTFs represents a general realism based on the historical trends in
enemy activity in southern Afghanistan. Helmand and Kandahar are the two provinces that
have produced the most war-related fatalities in Afghanistan since the start of OEF with 956
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and 558 coalition service members killed in action, respectively (White 2016). While these
numbers do not account for every type of casualty (e.g., military wounded in action and civil-
ian casualties), they do provide a representative sample that is utilized as an approximation
of the threat level present in each zone. Moreover, these numbers are utilized to determine
the proportion of 9-line MEDEVAC requests from each zone; the proportion of requests
coming from Zone 1 is pz1 = 0.6314 and the proportion of requests coming from Zone 2 is
pz2 = 1 − pz1 = 0.3686.

Each 9-line MEDEVAC request is independently categorized by its zone z (e.g., Helmand
andKandahar) and precedence level k (e.g., urgent, priority, and routine) combination. Fulton
et al. (2010) report that the probability of a casualty event being classified with a precedence
level of urgent, priority, or routine is 11, 12, and 77%, respectively based on historical
MEDEVAC data from U.S. operations in Iraq. Recall that routine requests are assumed to
be serviced by non-MEDEVAC units (i.e., casualty evacuation (CASEVAC)). The 2 × 2
case assumes that the proportion of requests classified with an urgent precedence level is
approximately pk1 = 0.5 and the proportion of requests classified with a priority precedence
level is pk2 = 1 − pk1 = 0.5. The proportion of each request categorization pzk is found by
multiplying the zone proportion with the precedence level proportion (e.g., p11 = pz1 pk1 ).

Military medical planners estimate the arrival rate of 9-line MEDEVAC requests by esti-
matingwhen andwhere future tactical level engagementswill occur, alongwith the likelihood
and severity of corresponding casualty events. The reward obtained for servicing a 9-line
MEDEVAC request depends on the location of the request, the servicing MEDEVAC unit,
and the closest MTF. The response and service times described in Sect. 3 are generated by
leveraging the procedure set forth by Keneally et al. (2016).

The procedure utilized to model future 9-line MEDEVAC requests avoids using current
data from southern Afghanistan to maintain operational security. Indeed, actual data for
currentMEDEVAC unit, casualty event, andMTF locations are restricted. Instead, the spatial
distribution of future 9-line MEDEVAC requests are modeled with a Monte Carlo simulation
via a Poisson cluster process. Casualty cluster centers are selected by leveraging data from the
International Council on Security and Development (ICOS) (2008) pertaining to insurgent
attacks in southernAfghanistan resulting in death in 2007. It is assumed that all casualty events
generated from the casualty cluster centers result in 9-line MEDEVAC requests. Moreover,
the distribution of 9-line MEDEVAC request locations from a given casualty cluster center is
generated on a uniform distribution with respect to the distance of the request to the casualty
cluster center. Military medical planners must keep in mind that data will certainly change
with respect to each conflict. Furthermore, the dispatching policy generated depends on the
input data and therefore must relate to the scenario being modeled to obtain meaningful
results.

Figure 3 depicts the two zones (i.e., Helmand and Kandahar) in southern Afghanistan
utilized to generate the data, as well as the MEDEVAC and MTF locations. Recall that the
MEDEVAC andMTF locations are collocated for the 2×2 case. The collocated MEDEVAC
and MTF locations in each zone are represented by blue stars. The casualty cluster centers
in each zone are represented by red diamonds.

The data generated for theMEDEVACmission task times that comprise the response time
vary with each mission and, therefore, are represented as random variables. The response
time variables representingmission preparation time, travel time to CCP, service time at CCP,
travel time to MTF, and service time at the MTF are defined in Sect. 3 and described in detail
in the following four paragraphs.

Themission preparation time is exponentially distributedwith amean of 10min. The 2008
MEDEVAC after action report (AAR) estimates mission prep time to be 20min (Bastian
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Fig. 3 MEDEVAC and MTF locations with casualty cluster centers

2010). This AAR, along with personal experiences, influences Bastian (2010) to model
mission preparation time with a mean of 20min and standard deviation of 5min. However,
a more recent interview with a MEDEVAC pilot in O’Shea (2011) reports that with proper
pre-planning procedures the mission preparation time is often less than 10min.

The armed escort delay is exponentially distributed with a mean of 10min. Garrett (2013)
reports that there is a 31% chance that a MEDEVAC mission requires an armed escort.
Moreover, among the missions requiring an armed escort, approximately 4% are delayed
due to issues caused primarily by the escort aircraft. These percentages are included in the
computation of the expected response times and the corresponding expected rewards. The
delay induced by armed escorts is an important feature of the MEDEVAC problem. This
paper applies the same armed escort assumptions found in Keneally et al. (2016), to which
we refer amore interested reader for amore in depth description on how armed escorts impact
this MDP model.

The flight speed, which accounts for the travel time to the CCP and the travel time to the
MTF, is uniformly distributed between 120 and 193 knots with a mean of 156.5 knots. This
flight speed is based on currently fielded MEDEVAC helicopters (i.e., HH-60Ms) and on
subject matter expertise (Bastian 2010).

The service time at the CCP and the service time at the MTF are exponentially distributed
with a mean of 10 and 5min, respectively. These times are determined by leveraging the
data provided by in-theater MEDEVAC pilots and other subject matter experts described in
Bastian (2010) and Keneally et al. (2016).

The just-described response time random variables, casualty cluster centers, and MEDE-
VAC staging areas are utilized in aMonte Carlo simulation to obtain a synthetic, but realistic,
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Table 1 Expected response
times (min)

Zone, z MEDEVAC 1 MEDEVAC 2

1 (Helmand) 34.25 48.18

2 (Kandahar) 52.98 36.89

Table 2 Expected service times
(min)

Zone, z MEDEVAC 1 MEDEVAC 2

1 (Helmand) 34.25 67.28

2 (Kandahar) 72.13 36.89

Table 3 Immediate expected
rewards

Zone, z Precedence, k MEDEVAC, m

1 2

1 (Helmand) 1 (Urgent) 5.65 4.48

2 (Priority) 0.87 0.82

2 (Kandahar) 1 (Urgent) 4.14 5.41

2 (Priority) 0.80 0.86

spatial distribution of future 9-line MEDEVAC requests and response time data. The means
of the response times are computed and presented in Table 1.

After the expected response times are computed, the expected service times can be com-
puted by simply adding the appropriate expected response time to the MEDEVAC unit’s
travel time back to its staging area. This travel time is defined in Sect. 3 and is based on the
flight speed of the MEDEVAC helicopter. The distribution for the flight speed for the travel
time to the staging area is the same as the flight speed distributions for the travel times to the
CCP and MTF. The expected service times for the 2 × 2 case are provided in Table 2.

Recall from Sect. 4 that the MEDEVAC system employs an inter-zone policy regarding
airspace access. This means that any MEDEVAC unit can service any 9-line MEDEVAC
request, regardless of the zone from which the request originated. For example, the MEDE-
VAC unit staged in Helmand for the 2× 2 case can service requests from both Helmand and
Kandahar.

The paper applies a survivability function that is monotonically decreasing in response
time to compute the reward obtained fromservicing a 9-lineMEDEVACrequest. The immedi-
ate expected reward for servicing a 9-lineMEDEVACrequest is determined by the precedence
level and the response time of the request as indicated in Eq. (17). For the 2×2 case, the imme-
diate expected reward function utilizes δ = 10, which rewards the servicing of urgent (i.e.,
k = 1) 9-line MEDEVAC requests much more than priority (i.e., k = 2) 9-line MEDEVAC
requests. Table 3 summarizes the computed immediate expected rewards, ψmzk .

The continuous expected holding cost is computed based on the number of urgent and
priority 9-line MEDEVAC requests that are in the queue between decision epochs. The 2×2
case utilizes ξ = 0.20,which scales the holding cost rate for a precedence-k request to be 20%
of the average immediate expected reward over all possible MEDEVAC-zone combinations.

The 2× 2 case assumes a high operational tempo (i.e., combined frequency and intensity
of conflict) with a baseline request arrival rate of λ = 1

60 , representing an average 9-line
MEDEVAC request rate of one request per 60min. The military intelligence community,
operational planners, and medical planners should work together to determine a reasonable
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Table 4 2 × 2 case parameters Parameter Description Setting

λ 9-line MEDEVAC request arrival rate 1
60

|M| Total # of MEDEVAC units 2

|Z| Total # of zones 2

|K| Total # of precedence levels 2

qmax Max (z, k) queue length 5

γ Uniformized discount factor 0.99

δ Weight for urgent request 10

ξ Scale for holding cost rate 0.2

pz1 Zone 1 proportion of requests 0.6314

pz2 Zone 2 proportion of requests 0.3686

pk1 Urgent proportion of requests 0.5

pk2 Priority proportion of requests 0.5

estimate of the request arrival rate prior to a planned combat operation based on the equipment,
size, and disposition of friendly and adversary forces.

5.2 Representative scenario results

A list of parameters associated with the 2 × 2 case are displayed in Table 4. Utilizing the
parameter settings in Table 4 and the expected response times, expected service times, and
immediate expected rewards computed in the previous section, the optimal policy for the
2 × 2 case is determined via policy iteration. Applying Eq. (5) indicates that the size of the
state space for the 2× 2 case is 58,320. This result shows that even for this relatively simple
scenario, the size of the state space is quite large.

For comparison purposes, three myopic dispatching policies are considered. The three
myopic policies are all based on a classic inter-zone myopic policy. Recall that an inter-zone
myopic policy sends the closest available MEDEVAC unit to service an incoming 9-line
MEDEVAC request, regardless of the request’s zone or precedence level. All three myopic
policies adopt this strategy when at least one MEDEVAC unit is available. The differences
between the three myopic policies are found when both MEDEVAC units are busy. The first
myopic policy (i.e., Myopic 1) will queue 9-line MEDEVAC requests if there are no avail-
able MEDEVAC units to service the request, regardless of the request’s zone or precedence
level. The second myopic policy (i.e., Myopic 2) will queue only urgent 9-line MEDEVAC
requests if there are no available MEDEVAC units to service the request, regardless of the
urgent request’s zone. The third myopic policy (i.e., Myopic 3) will not queue any 9-line
MEDEVAC requests. If there are queued requests, the Myopic 1 and Myopic 2 dispatching
policies service requests with a prioritized first-come-first-serve basis. The optimal policy’s
dispatching decisions, queue lengths, and MEDEVAC utilization rates are compared against
the three myopic policies to obtain a better understanding of where similarities and differ-
ences exist. Moreover, the optimality gap for each myopic policy is computed to demonstrate
whether a myopic policy is appropriate for the given 2 × 2 case.

The dispatching decisions for the optimal policy and three myopic policies are compared
over three separate scenarios. Each scenario (i.e., Scenarios 1–3) considers a set of MEDE-
VAC system states with empty zone-precedence queues. The first scenario (i.e., Scenario 1)
considers a system state wherein both MEDEVAC units are idle, which can be represented
as St ∈ ((0, 0), (0, 0, 0, 0), R̂t ). Regardless of the zone or precedence level of the incoming
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Table 5 Dispatching policies for Scenario 2

Policy R̂t MEDEVAC 2 servicing zone 1 MEDEVAC 2 servicing zone 2
Queue\dispatch\reject Queue\dispatch\reject

Optimal (1, 1) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1

(1, 2) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1

(2, 1) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1

(2, 2)* Reject Queue

Myopic 1 (1, 1) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1

Myopic 2 (1, 2) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1

Myopic 3 (2, 1) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1

(2, 2) Dispatch MEDEVAC 1 Dispatch MEDEVAC 1

∗ Incoming requests for which the optimal policy does not correspond to a myopic policy

Table 6 Dispatching policies for Scenario 3

Policy R̂t MEDEVAC 1 servicing zone 1 MEDEVAC 1 servicing zone 2
Queue\dispatch\reject Queue\dispatch\reject

Optimal (1, 1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

(1, 2)* Queue Reject

(2, 1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

(2, 2) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

Myopic 1 (1, 1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

Myopic 2 (1, 2) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

Myopic 3 (2, 1) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

(2, 2) Dispatch MEDEVAC 2 Dispatch MEDEVAC 2

∗ Incoming requests for which the optimal policy does not correspond to a myopic policy

9-line MEDEVAC request, R̂t , all four policies react in a myopic fashion when the system
is in state St ∈ ((0, 0), (0, 0, 0, 0), R̂t ), sending the closest MEDEVAC unit to service the
request.

The second scenario (i.e., Scenario 2) considers a set of MEDEVAC system states
wherein MEDEVAC 1 is idle and MEDEVAC 2 is busy, which can be represented as
St ∈ ((0, z), (0, 0, 0, 0), R̂t ) where z ∈ {1, 2}. The third scenario (i.e., Scenario 3) con-
siders a set of MEDEVAC system states wherein MEDEVAC 1 is busy and MEDEVAC 2
is idle, which can be represented as St ∈ ((z, 0), (0, 0, 0, 0), R̂t ) where z ∈ {1, 2}. The dis-
patching policies for Scenarios 2 and 3 are displayed in Tables 5 and 6, respectively. Contrary
to the findings of Keneally et al. (2016) in their computational example, the best MEDEVAC
unit to dispatch to service a 9-lineMEDEVAC request does depend on the zone of the request
that the busy MEDEVAC is currently servicing. Note that this is an observed result based
on the parameter settings for the 2 × 2 case and that location-independent policies are a
possibility, as seen in Keneally et al. (2016). In Tables 5 and 6 an asterisk (*) is placed next
to the incoming requests, R̂t , for which the optimal policy does not correspond to a myopic
policy. It is expected that a myopic policy will apply to all urgent 9-line MEDEVAC requests
due to the life threatening nature of these requests and the accompanying high rewards for
servicing them.
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Consider the Scenario 2 results displayed in Table 5. The MEDEVAC system is in a
state St ∈ ((0, z), (0, 0, 0, 0), R̂t ) where z ∈ {1, 2}. The optimal dispatching policy for
R̂t = (2, 2) (i.e., a Zone 2, priority request) depends on z, the zone where MEDEVAC 2
is currently servicing a request. If MEDEVAC 2 is servicing a Zone 1 (i.e., z = 1) request
and R̂t = (2, 2), the optimal decision is to reject the request from entering the system
and send the request to be serviced by CASEVAC. The MEDEVAC system is not well
positioned to service the (2, 2) request in a timely manner since MEDEVAC 2 is currently
servicing a request outside its own zone. If MEDEVAC 2 is servicing Zone 2 (i.e., z = 2) and
R̂t = (2, 2), the optimal decision is to accept and queue the request. The MEDEVAC system
is in a better position to service the (2, 2) request here because MEDEVAC 2 is currently
servicing a request in its own zone. Both of these decisions differ from the myopic decision
(i.e., dispatch MEDEVAC 1 to service the request). This result illustrates that, if the system
is in a Scenario 2 state and R̂t = (2, 2), then the optimal policy will reserve MEDEVAC 1
for either an urgent 9-line MEDEVAC request or a Zone 1 request. The difference between
rejecting or queueing the request is driven by the holding costs as impacted by the difference
in expected service times. Recall that there is large difference in expected service times for
MEDEVAC 2 to Zone 1 and MEDEVAC 2 to Zone 2: 67.28 and 36.28min, respectively.

Consider the Scenario 3 results displayed in Table 6; they mirror those observed for
Scenario 2. TheMEDEVACsystem is in a state St ∈ ((z, 0), (0, 0, 0, 0), R̂t )where z ∈ {1, 2}.
The optimal dispatching policy for R̂t = (1, 2) depends on z, the zone whereMEDEVAC 1 is
currently servicing a request. IfMEDEVAC1 is servicingZone 2 (i.e., z = 2) and R̂t = (1, 2),
the optimal decision is to reject the request from entering the system and send the request
to be serviced by CASEVAC. The MEDEVAC system is not well positioned to service the
(1, 2) request in a timely manner since MEDEVAC 1 is currently servicing a request outside
its own zone. If MEDEVAC 1 is servicing Zone 1 (i.e., z = 1) and R̂t = (1, 2), the optimal
decision is to accept and queue the request. The MEDEVAC system is in a better position to
service the (1, 2) request here because MEDEVAC 1 is currently servicing a request in its
own zone. Both of these decisions differ from the myopic decision (i.e., dispatchMEDEVAC
2 to service the request). This result illustrates that, if the system is in a Scenario 3 state and
R̂t = (1, 2), then the optimal policy will reserve MEDEVAC 2 for either an urgent 9-line
MEDEVAC request or a Zone 2 request. The difference between rejecting or queueing the
request is driven by the holding costs as impacted by the difference in expected service times.
Recall that there is large difference in expected service times for MEDEVAC 1 to Zone 1 and
MEDEVAC 1 to Zone 1: 34.25 and 72.13min, respectively.

The optimality gaps between the myopic policies and the optimal policy are examined.
The expected total discounted reward for the optimal policy and myopic policies when the
system is in an empty and idle state S0 = ((0, 0), (0, 0, 0, 0), (0, 0)) (i.e., both MEDEVAC
units are idle, every zone-precedence queue is empty, and there are no 9-line MEDEVAC
requests in the system) are displayed in Table 7, along with the optimality gaps associated
with each myopic policy. The results indicate that the superlative myopic policy is Myopic
2, which has the smallest optimality gap of 0.74%. Without having the ability to queue any
requests, the Myopic 3 policy performs worse than every other policy and has the largest
optimality gap of 5.73%. While these optimality gaps may not seem large, over a long time
period the optimal policy will save more lives.

5.3 Computational experiments

Since there are many parameters associated with the MEDEVAC system, a screening exper-
iment is developed to reveal the parameters that significantly impact the value of the optimal
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Table 7 Expected total
discounted rewards and
optimality gaps

Policy, π Jπ (S0) Optimality gap

Optimal 63.50 N/A

Myopic 1 62.09 2.21%

Myopic 2 63.02 0.74%

Myopic 3 59.86 5.73%

Table 8 25 Full factorial
screening experimental factor
levels

Factor Low level High level

λ 1
75

1
45

δ 5 15

ξ 0.1 0.3

pz1 0.25 0.75

pk1 0.25 0.75

Table 9 Multiple linear
regression analysis

Factors Coef SE T P

Intercept − 76.00 17.18 − 4.42 <0.00

λ 2201.80 673.03 3.27 <0.00

δ 5.62 0.60 9.39 <0.00

ξ − 18.31 29.91 − 0.61 0.55

pz1 4.57 11.97 0.38 0.71

pk1 92.51 11.97 7.73 <0.00

dispatching policy. Leveraging the results found from the 2×2 case, a 25 full factorial screen-
ing experiment is designed to determine the relative significance of factors λ, δ, ξ, pz1 , and
pk1 . All five of these factors represent important MEDEVAC problem features of interest.
The initial screening design includes all five factors, each specified at two discrete parameter-
levels (i.e., low and high). For example, the rate at which 9-line MEDEVAC requests arrive
to the system, λ, is designed with low and high factor levels of 1

75 and 1
45 , respectively, to

determine whether λ has a significant impact on the value of the optimal dispatching policy.
The 25 full factorial screening experimental factors and the levels associated with each

factor are reported in Table 8. Once the results from the 25 full factorial screening experiment
are examined, the factors that have a statistically significant impact on the value of the optimal
dispatching policy are analyzed via a three-level experiment with low, intermediate, and high
factor levels.

Multiple linear regression analysis is conducted to examine the relationship between the
independent factorsλ, δ, ξ, pz1 , and pk1 and the dependent variable J

π∗
(S0). The results from

the multiple linear regression analysis are displayed in Table 9. Starting from the left, the first
column lists the experimental factors. The second through fifth columns list the estimated
coefficients (Coef), standard errors (SE), test statistics (T), and p-values (P) associated with
the experimental factors, respectively.

The results from the multiple linear regression analysis in Table 9 report that the p-values
associatedwith factorsλ, δ, and pk1 are all less than 0.01,which indicates that these factors are
statistically significant in predicting Jπ∗

(S0). Intuitively, these results make sense. The rate
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Table 10 33 Full factorial
experimental factor levels

Factor Low level Intermediate level High level

λ 1
75

1
60

1
45

δ 5 10 15

pk1 0.25 0.50 0.75

at which 9-line MEDEVAC requests arrive directly impacts the number of requests that can
be serviced, resulting in more or less opportunities to earn rewards. Increasing or decreasing
the weight and proportion of urgent requests also directly impacts the amount of reward
earned by the system. Moreover, Table 9 reports the p-values associated with ξ and pz1 are
both greater than 0.05 and, therefore, do not provide enough evidence to claim that the factors
ξ and pz1 are statistically significant in predicting Jπ∗

(S0). The reason that these factors are
not significant could be due to the selected experimental design factor levels. Selecting a
wider range in factor levels for ξ and pz1 could result in them becoming significant.

Utilizing the results fromTable 9, a 33 full factorial experiment is generated to examine the
differences between the optimal andmyopic dispatching policies at different levels for factors
λ, δ, and pk1 . The goal of the 3

3 full factorial experiment is to gain insight regarding when
medical planners should avoid implementing myopic dispatching policies (e.g., Myopic 1,
Myopic 2, and Myopic 3) and to understand how the changes in the factor levels for λ, δ, and
pk1 impact the optimal dispatching policy. The 33 full factorial experimental factors and the
levels associated with each factor are displayed in Table 10.

Table 11 reports the results from the 33 full factorial experiment. Starting from the left,
the first column indicates the run number. The next three columns indicate the factor levels.
The fifth column indicates the dependent variable Jπ∗

(S0), where Jπ∗
(S0) is the value of

the optimal policy π∗ when the system is empty and idle. The next three columns indicate
the optimality gaps for the Myopic 1, Myopic 2, and Myopic 3 policies, respectively. The
following four columns indicate the MEDEVAC busy probabilities when the system is oper-
ating under the optimal dispatching policy. The four rightmost columns indicate the average
zone-precedence queue lengths when the system is operating under the optimal dispatching
policy.

The results fromTable 11 indicate that theMyopic 2 policy (i.e., only queue urgent) strictly
outperforms the Myopic 3 policy (i.e., do not queue). Moreover, the Myopic 2 policy strictly
outperforms the Myopic 1 policy (i.e., queue both urgent and priority) when 1

λ
∈ {45, 60},

but not when 1
λ

= 75. These results suggest that medical planners should not employ the
Myopic 3 policy. More generally, these results suggest that queueing requests is advisable.
Additionally, theMyopic 1 policy outperforms theMyopic 2 policy in several instances when
1
λ

= 75, because as the inter-arrival time of 9-line MEDEVAC requests increases, it becomes
more beneficial to queue all requests versus just queueing urgent requests. Together, these
results indicate that, when the arrival rate of requests is relatively low, it is advisable for the
MEDEVAC system to queue all requests. However, as the arrival rate of requests increases,
there is a point at which it is no longer advisable to queue all requests and it is more beneficial
to queue only urgent requests.

The MEDEVAC unit busy probabilities associated with each run in Table 11 also provide
interesting results. MEDEVAC 1 is busy servicing Zone 1 requests substantially more often
than servicing Zone 2 requests for all 27 runs. MEDEVAC 2 is busy servicing each zone with
approximately the same proportion. This result aligns with intuition because the proportion
of requests arriving from Zone 1 (pz1 = 0.6314) is greater than the proportion of requests
arriving from Zone 2 (pz2 = 0.3686).
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Table 12 Dispatching policies
for Scenario 1 Policy R̂t Queue\dispatch\reject

Optimal (1, 1) Dispatch MEDEVAC 1

(1, 2)* Reject

(2, 1) Dispatch MEDEVAC 2

(2, 2)* Reject

Myopic 1 (1, 1) Dispatch MEDEVAC 1

Myopic 2 (1, 2) Dispatch MEDEVAC 1

Myopic 3 (2, 1) Dispatch MEDEVAC 2

(2, 2) Dispatch MEDEVAC 2

Settings: λ = 1
45 , δ = 15, and pk1 = 0.75

∗ Incoming requests for which
the optimal policy does not
correspond to a myopic policy

An interesting observation from the 33 full factorial experiment is that the optimal dis-
patching policy aligns with the myopic policy when the MEDEVAC system is in a Scenario
1 state for 26 out of the 27 runs. Table 12 reports the optimal and myopic dispatching
policies for the single run (i.e., Run 9) for which the optimal dispatching policy does not
align with myopic policies. The optimal dispatching policy will reject precedence level two
requests (i.e., priority requests) when the system is in a Scenario 1 state and λ = 1

45 , δ = 15,
and pk1 = 0.75. This result is intuitive because the inter-arrival times of the requests have
increased from one every 60min to one every 45min, the immediate expected reward for
servicing urgent requests is substantially higher than servicing priority requests, and there is
a much higher rate of urgent requests arriving to the system compared to priority requests.

5.4 Excursion 1—request arrival rate

The section considers the impact of the arrival rate λ on the optimal policy when the MEDE-
VAC system is in a Scenario 1 state St ∈ ((0, 0), (0, 0, 0, 0), R̂t ). The same parameter
settings from the 2 × 2 case are utilized for the request arrival rate excursion except for λ;
see Table 4 for a descriptive list of the parameters and their attendant values. The computa-
tional results indicate that the optimal policy dispatches the closest MEDEVAC unit when
the system is in a Scenario 1 state with an urgent 9-line MEDEVAC request arrival (i.e.,
St ∈ ((0, 0), (0, 0, 0, 0), (z, 1)) where z ∈ {1, 2}), regardless of the request arrival rate λ.
However, this same result does not hold when the system is in a Scenario 1 state with a prior-
ity 9-line MEDEVAC request arrival (i.e., St ∈ ((0, 0), (0, 0, 0, 0), (z, 2)) where z ∈ {1, 2}).
The dispatching policies for when the system is in a Scenario 1 state with a priority 9-line
request are displayed in Table 13.

The results from Table 13 indicate that, when 1
λ

≤ 25, the optimal policy is to reject
priority 9-line MEDEVAC requests regardless of the zone fromwhich the request originated.
For 1

λ
∈ {26, 27, 28} the optimal policy is to reject Zone 1 priority 9-lineMEDEVAC requests

and to dispatch MEDEVAC 2 to Zone 2 priority requests. Lastly, when 1
λ

≥ 29 the optimal
policy dispatches MEDEVAC units in a myopic manner. These results indicate that the
optimal policy reserves MEDEVAC units for urgent requests as the inter-arrival time of
9-line MEDEVAC requests decreases (i.e., more frequent arrivals).

5.5 Excursion 2—MEDEVAC helicopter flight speed

This section considers the impact of replacing the currently fielded HH-60M MEDE-
VAC helicopter with a more effective (i.e., faster flight speed) aeromedical aircraft. The

123



670 Ann Oper Res (2018) 271:641–678

Table 13 Comparison of MEDEVAC dispatching policies for priority requests

1
λ

Optimal policy Myopic policy

R̂t = (1, 2) R̂t = (2, 2) R̂t = (1, 2) R̂t = (2, 2)

21 Reject Reject MEDEVAC 1 MEDEVAC 2

22 Reject Reject MEDEVAC 1 MEDEVAC 2

23 Reject Reject MEDEVAC 1 MEDEVAC 2

24 Reject Reject MEDEVAC 1 MEDEVAC 2

25 Reject Reject MEDEVAC 1 MEDEVAC 2

26 Reject MEDEVAC 2 MEDEVAC 1 MEDEVAC 2

27 Reject MEDEVAC 2 MEDEVAC 1 MEDEVAC 2

28 Reject MEDEVAC 2 MEDEVAC 1 MEDEVAC 2

29 MEDEVAC 1 MEDEVAC 2 MEDEVAC 1 MEDEVAC 2

30 MEDEVAC 1 MEDEVAC 2 MEDEVAC 1 MEDEVAC 2

Table 14 MEDEVAC helicopter
flight speed results

Flight speed (%) Optimality gaps

Myopic 1 (%) Myopic 2 (%) Myopic 3 (%)

−50 17.07 7.95 10.93

−25 5.02 1.80 6.56

0 (i.e., current) 2.21 0.74 5.73

25 1.12 0.37 5.30

50 0.63 0.24 5.06

same parameter settings from the 2 × 2 case are utilized for the MEDEVAC flight speed
excursion; see Table 4 for a descriptive list of the parameters and their attendant val-
ues. The HH-60M MEDEVAC helicopter still utilizes a power plant that was designed
prior to 1989 (Leoni 2007). Significantly faster experimental tiltrotor aircraft could poten-
tially be put into service to replace the HH-60M (Cox 2016). Moreover, programs exist
to improve the turbine engines of the current platform (Hoffman 2015). It is reasonable
to assume that new aircraft designs or improved helicopter engines will result in a 25–50%
increase in average flight speedwhen compared to the currently fielded HH-60MMEDEVAC
helicopter.

To examine the impact of employing faster aircraft, the mean of the flight speed random
variable is adjustedwhile all other randomvariablesmodeling theMEDEVACprocess remain
the same. Incorporating this adjustment leads to immediate changes to response and service
times, along with the immediate expected reward. It is expected that, as the mean flight speed
increases, the optimal dispatching policy will deployMEDEVAC units in a more consistently
myopic fashion. Moreover, another interesting scenario examined is when the mean flight
speed decreases, which can occur due to potential maintenance issues or environmental issues
within the area of operations. With limited resources, it is reasonable to assume that slower
HH-60M MEDEVAC helicopters would still be utilized in a high intensity conflict.

Table 14 reports the results obtained by increasing and decreasing the mean flight speed,
where flight speed is indicated as a percentage increase over the flight speed of the currently
employed HH-60M MEDEVAC helicopter.
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As expected, the results from Table 14 indicate that as the mean flight speed of the
MEDEVAChelicopter increases, the optimality gaps for theMyopic 1,Myopic 2, andMyopic
3 policies all decrease. This shows that, if a new rotary wing aircraft is fielded forMEDEVAC
purposes, the optimal dispatching policy will deploy MEDEVAC units in a more myopic
fashion. Moreover, the results indicate that as the mean flight speed of the MEDEVAC
helicopter decreases, the optimality gaps for the Myopic 1, Myopic 2, and Myopic 3 policies
all increase. This is an important observation. Military medical planners must take flight
speed issues into consideration when developing dispatching policies. These results should
also persuade military medical planners to consider changing dispatching policies during
steady state combat operations if the mean flight speed of the MEDEVAC helicopters being
utilized decreases due to atmospheric, environmental, or mechanical issues.

5.6 Excursion 3—intra-zone policies

This section considers the impact of replacing the MEDEVAC system’s inter-zone policy
with an intra-zone policy with regard to airspace access. The same parameter settings from
the 2 × 2 case and the MEDEVAC flight speed excursion are utilized for the intra-zone
policies excursion; see Table 4 for a descriptive list of the parameters and their attendant
values. An intra-zone policy prevents MEDEVAC units from operating outside of the zone
in which they are staged. Military situations may arise that force strict adherence to an
intra-zone policy. For example, an execution of a specific, short-duration combat operation
may enforce an intra-zone policy to reduce the risk of collisions and fratricide (Keneally
et al. 2016). Moreover, when separate branches of the U.S. military (e.g., Army and Air
Force) and/or allied countries are working together in a combat environment, an intra-zone
policy restricting MEDEVAC units to serve their own zone may be enforced due to chain of
command restrictions, communication limitations, and/or political realities (Keneally et al.
2016).

To examine the impact of enforcing an intra-zone policy, eachMEDEVACunit is restricted
to operate in their own zone while all other random variables modeling the MEDEVAC
process remain the same. The queueing strategies associated with each myopic policy remain
the same. Recall that, when both MEDEVAC units are busy, the Myopic 1 policy queues
all incoming requests, the Myopic 2 policy only queues incoming urgent requests, and the
Myopic 3 policy does not queue any incoming requests. Regardless of the zone or precedence
level of the incoming 9-lineMEDEVAC request, R̂t , all four policies react in amyopic fashion
when the system is in a Scenario 1 state, sending the closest idle MEDEVAC unit to service
the request. Tables 15 and 16 report the dispatching policies associated with the system being
in a Scenario 2 and Scenario 3 state, respectively.

These results indicate that the intra-zone optimal dispatching policy and the intra-zone
Myopic 2 dispatching policy (i.e., queue urgent) dispatch MEDEVAC units in the same
manner for Scenarios 1-3. Moreover, it is observed that, when a MEDEVAC unit is busy
and a request from the MEDEVAC unit’s zone arrives to the system, the intra-zone optimal
dispatching policy always rejects priority requests from entering the system. The difference
between the intra-zone optimal dispatching policy and the intra-zone Myopic 2 dispatching
policy is observed when there is at least one urgent 9-line MEDEVAC request in the queue,
theMEDEVACunit able to service the urgent queued request is busy, and there is an incoming
request associated with that zone. Many states satisfy this description. Denote such states as
Scenario 4 states. Table 17 reports the dispatching policies associatedwith being in a Scenario
4 state when either: MEDEVAC 1 is busy, there is an urgent Zone 1 MEDEVAC request in
the queue (i.e., Qt11 = 1), and a Zone 1 MEDEVAC request is submitted; or MEDEVAC 2
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Table 15 Intra-zone dispatching
policies for Scenario 2 Policy R̂t Queue\dispatch\reject

Optimal (1, 1) Dispatch MEDEVAC 1

Myopic 2 (1, 2) Dispatch MEDEVAC 1

(2, 1) Queue

(2, 2) Reject

Myopic 1 (1, 1) Dispatch MEDEVAC 1

(1, 2) Dispatch MEDEVAC 1

(2, 1) Queue

(2, 2) Queue

Myopic 3 (1, 1) Dispatch MEDEVAC 1

(1, 2) Dispatch MEDEVAC 1

(2, 1) Reject

(2, 2) Reject

Table 16 Intra-zone dispatching
policies for Scenario 3 Policy R̂t Queue\dispatch\reject

Optimal (1, 1) Queue

Myopic 2 (1, 2) Reject

(2, 1) Dispatch MEDEVAC 2

(2, 2) Dispatch MEDEVAC 2

Myopic 1 (1, 1) Queue

(1, 2) Queue

(2, 1) Dispatch MEDEVAC 2

(2, 2) Dispatch MEDEVAC 2

Myopic 3 (1, 1) Reject

(1, 2) Reject

(2, 1) Dispatch MEDEVAC 2

(2, 2) Dispatch MEDEVAC 2

is busy, there is an urgent Zone 2 MEDEVAC request in the queue (i.e., Qt21 = 1), and a
Zone 2 MEDEVAC request is submitted.

Table 17 indicates that if theMEDEVAC system is in a Scenario 4 state, the optimal policy
will reject all incoming requests from the zone with the busy MEDEVAC and the queued
urgent request. Conversely, the intra-zone Myopic 2 policy will queue all incoming urgent
requests. While rejecting an urgent request may not align with expectations, holding more
than one request in the queue is detrimental due to the MEDEVAC units being restricted
to service only their own zones. If such a decision is not desired by command authorities,
the holding cost rate for urgent requests should be updated to be less detrimental to system
performance or the value of servicing urgent requests should be increased to discourage
rejecting urgent requests from entering the system. Otherwise, this result reflects the intuition
that, if the MEDEVAC system is being overwhelmed with requests, it will divert requests to
other command authorities (i.e., CASEVAC).

The optimality gap between the intra-zone optimal policy and the intra-zone myopic poli-
cies is examined. The expected total discounted reward for the intra-zone optimal policy
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Table 17 Intra-zone dispatching policies for Scenario 4

Policy R̂t MEDEVAC 1 busy
and Qt11 = 1

MEDEVAC 2 busy
and Qt21 = 1

Queue\dispatch\reject Queue\dispatch\reject

Optimal (1, 1) Reject N/A

(1, 2) Reject N/A

(2, 1) N/A Reject

(2, 2) N/A Reject

Myopic 1 (1, 1) Queue N/A

(1, 2) Reject N/A

(2, 1) N/A Queue

(2, 2) N/A Reject

Myopic 2 (1, 1) Queue N/A

(1, 2) Reject N/A

(2, 1) N/A Queue

(2, 2) N/A Reject

Myopic 3 (1, 1) N/A N/A

(1, 2) N/A N/A

(2, 1) N/A N/A

(2, 2) N/A N/A

Table 18 Expected total
discounted rewards and
optimality gaps for intra-zone
policies

Policy, π Jπ∗
(S0) Optimality gap

Optimal 60.23 N/A

Myopic 1 45.99 23.64%

Myopic 2 55.74 7.45%

Myopic 3 54.69 9.25%

and intra-zone myopic policies when the MEDEVAC system is in State S0 is displayed
in Table 18, along with the optimality gaps associated with each intra-zone myopic pol-
icy. The results indicate that the best intra-zone myopic policy is Myopic 2, which has the
smallest optimality gap of 7.45%. The intra-zone Myopic 1 policy performs worse than
every other policy with the largest optimality gap of 23.64%. These results indicate that,
when intra-zone policy restrictions are enforced, the myopic dispatching policies substan-
tially under-perform compared to the optimal policy. The 2× 2 case optimality gaps (for the
inter-zone policies) displayed in Table 7 are substantially less than the optimality gaps for
the intra-zone policies displayed in Table 18. The Myopic 2 policy has the best optimality
gaps for both the 2 × 2 case and the intra-zone policy excursion. However, the optimality
gap for the Myopic 2 policy in the 2 × 2 case is 0.74% whereas the Myopic 2 optimality
gap in the intra-zone policy excursion is 7.45%. Moreover, there is an even larger differ-
ence between the Myopic 1 policies (2.21 vs. 23.64%). These results show that intra-zone
policies perform substantially worse than inter-zone policies. Moreover, these results inform
military medical planners considering the cost associated with an intra-zone dispatching
policy.
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Table 19 Policy iteration versus
linear programming
computational efficiency (s)

|S| Policy iteration CPLEX (dual) CPLEX (primal)

720 0.03 0.07 1.17

3645 0.10 0.47 4.26

11,520 0.35 3.13 38.15

28,125 1.04 13.32 196.50

58,320 2.23 55.74 656.16

108,045 5.12 134.03 1981.55

184,320 10.91 216.66 4782.90

295,245 17.37 309.83 9754.49

450,000 47.86 412.66 17037.00

933,120 148.24 791.14 33212.01

1,285,245 264.54 967.03 42817.76

5.7 Policy iteration versus linear programming

This section compares the computational efficiency between policy iteration via MATLAB
and linear programming (LP) via CPLEX 12.6 for the MEDEVAC dispatching problem.
Since each solution algorithm determines the optimal dispatching policy, the focus of the
analysis is on how long it takes each algorithm to identify the optimal policy. Comparisons
are made on the same computer and on the same problem instances after they have been
loaded into memory. The problem instances are generated by adjusting the qmax parameter
in the 2×2 case. Table 19 reports the total time in seconds required to find the optimal policy
for each algorithm.

The results from Table 19 indicate that the computational efficiency in solving theMEDE-
VAC dispatching problem utilizing CPLEX 12.6 (with either its primal or dual Simplex
optimizer) is substantially worse than utilizing policy iteration. Moreover, the gaps between
each algorithm increase as |S| increases, indicating that larger, small-scale problems (i.e.,
ones that can still be solved to optimality) should be solved via policy iteration. These results
comport with the findings of Puterman (1994).

LP problems can be stated in primal or dual form. Moreover, the optimal solution
(if one exists) of the dual has a direct relationship to an optimal solution of the primal
LP model. The dual Simplex optimizer in CPLEX takes advantage of this relationship,
identifying a dual basic feasible solution and iteratively improving it while maintaining
complementary slackness until primal feasibility is attained, yielding a solution to the orig-
inal (primal) formulation. For the primal LP model of the MDP, the number of rows (i.e.,
inequality constraints) is equal to |S| × Π

S∈S|X (S)| (i.e., the number of state-action com-

binations). The number of columns (i.e., the number of variables) is equal to |S|. Modern
LP solvers can handle problems with tens of thousands of constraints without difficulty
(Powell 2011). Based on the sizes of the state and action space, it may be more efficient
to solve the problems in the dual space, and hence via the dual Simplex method, result-
ing in |S| rows and |S| × Π

S∈S|X (S)| columns in the dual formulation’s constraint matrix.

Despite the greatly increased computational efficiency in LP algorithms reported in Bixby
(2012), the results from this analysis indicate that policy iteration substantially outperforms
LP via CPLEX (for both primal and dual Simplex methods) for the MEDEVAC dispatching
problem.
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6 Conclusions

This paper examines the medical evacuation (MEDEVAC) dispatching problem. The objec-
tive of this research is to determine how to optimally dispatch MEDEVAC units to 9-line
MEDEVAC requests to improve the performance of a deployed medical service system
and ultimately maximize battlefield casualty survivability rates. A discounted, infinite hori-
zon Markov decision process (MDP) is developed to enable examination of many different
military medical planning scenarios. The MDP model incorporates admission control and
queueing, which allows the dispatching authority to accept, reject, or queue incoming 9-line
MEDEVAC requests based on the request’s classification (i.e., zone and precedence level)
and the state of the MEDEVAC system. Rejected requests are not simply discarded; rather,
they are redirected to another servicing agency, such as casualty evacuation, to be serviced.
The MDP model also accounts for the severity of each call (i.e., urgent and priority) and
applies a survivability function that is monotonically decreasing in response time to model
the outcome of casualties. While response time thresholds are typically utilized to measure
system performance for emergency medical systems, this paper measures performance in
terms of casualty survivability since survival probability more accurately represents casualty
outcomes. To demonstrate the applicability of the MDP model and to examine the behavior
of the optimal dispatching policy, a notional military planning scenario based on contingency
operations in southern Afghanistan is developed. A series of sensitivity analyses and com-
putational excursions identifies the model parameters that significantly impact the optimal
dispatching policy.Moreover, this paper compares the computational efficiency of policy iter-
ation viaMATLAB versus linear programming via CPLEX, utilizing either of two embedded
simplex implementation methodologies.

The immediate expected reward obtained from servicing a specific 9-line MEDEVAC
request depends on the locations of the request and the servicing MEDEVAC unit’s staging
area, alongwith the precedence level of the request. The total holding cost that theMEDEVAC
system incurs during each state transition depends on the total number of queued requests and
the precedence level of each queued request in the MEDEVAC system. Decisions are made
when either a 9-line MEDEVAC request is submitted to the system or when a MEDEVAC
unit finishes servicing a request. The dispatching authority examines the entire state of the
MEDEVAC system when a decision is required.

Results indicate that dispatching the closest available MEDEVAC unit (i.e., a myopic
policy) is not always optimal. Instead, dispatching MEDEVAC units considering the entire
MEDEVAC system state (i.e., the MEDEVAC units’ status, number and precedence level of
queued requests, and location and precedence of the incoming request) increases the casualty
survivability. The optimality gaps between the myopic policies examined and the optimal
policy range between 0.74 and 5.73% when inter-zone polices are allowed and 7.45 and
23.64% when intra-zone polices are enforced. Over a protracted conflict, these policies will
substantially decrease the survivability rates of battlefield causalities, and, therefore, imple-
mentation of optimal policies should be considered by medical planners. Myopic policies are
often utilized in military practice because they are relatively easy to implement and they per-
formwell as long as 9-lineMEDEVAC requests arrive less frequently. Of the myopic policies
tested in the 2× 2 case, the Myopic 2 policy (i.e., only queue urgent requests) performs best
with an optimality gaps of 0.74%.

Moreover, results confirm the criticality of the MEDEVAC helicopter’s flight speed. Cur-
rent flight speeds can decrease due to atmospheric, environmental, or mechanical issues. If
these problems arise during combat operations and degrade the flight speed of theMEDEVAC
helicopters, myopic policies perform even worse compared to the optimal policy. For exam-
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ple, if the current flight speeds of MEDEVAC helicopters decrease by 50%, a myopic policy
that queues all requests when no MEDEVAC units are available has a 17.07% optimality
gap, substantially more than the baseline optimality gap of 2.21%. These results suggest that
medical planners should consider changing dispatching policies during combat operations if
one or more of these problems arise and negatively impact the flight speed of the MEDEVAC
helicopters being utilized. Conversely, current flight speeds can increase if new rotary wing
aircraft are employed in combat operations. Were this to occur, initial results indicate that,
as the flight speed increases, the performance gap between myopic policies and the optimal
policy decreases. For example, if the current flight speed ofMEDEVAC helicopters increases
by 50%, a myopic policy that queues only urgent requests when no MEDEVAC units are
available only has a 0.24% optimality gap, which is less than the baseline optimality gap of
0.74%. This comparison informs current MEDEVAC helicopter designs and development,
and it provides promising results for saving lives with a faster MEDEVAC helicopter.

The research presented in this paper is of interest to both military and civilian medical
planners and dispatch authorities. Medical planners can apply the MDP model developed to
compare different dispatching policies for a variety of planning scenarios with fixed medical
treatment facility (MTF) and MEDEVAC staging locations (i.e., hospital and ambulance
locations for the civilian sector). Moreover, medical planners can evaluate different location
schemes for the medical assets (e.g., MTFs, hospitals, MEDEVAC stations, and ambulances)
to maximize the overall performance of the medical system.

One limiting assumption associated with the MDP model developed is that MEDEVAC
units are required to return to their own staging areas to refuel and replenish medical supplies
after unloading casualties at an MTF prior to servicing a queued request. During combat
operations, there are typically bases that have collocated MEDEVAC units and MTFs. It is
reasonable to assume that MEDEVAC units staged in different zones can refuel and replen-
ish medical supplies at these locations and immediately proceed to service a queued request
instead of first returning to their own staging areas. The MDP model restricts MEDEVAC
units from refueling at different locations as a simplifying assumption. Modifying the prob-
lem formulation and the corresponding MDP model to allow for refueling, replenishing of
supplies, and the ability to immediately service queued requests after casualty delivery at an
MTF with a collocated MEDEVAC unit would certainly reduce the response time for many
9-line MEDEVAC requests. This modification is a planned extension for future research.

The computational effort required to solve the MEDEVAC dispatching problem increases
substantially as the size of the state space grows. The computational efficiency of policy
iteration via MATLAB is compared to linear programming (LP) via CPLEX. The results
reveal that, although great improvements have been made concerning the performance of LP
algorithms (Bixby 2012), policy iteration still outperforms LP algorithms by a substantial
amount. Nevertheless, as the size of the state space grows exponentially, the use of exact
dynamic programming techniques becomes intractable. This makes more realistic, large-
scale problem instances impossible to analyze via exact algorithms. A planned extension to
this work involves incorporating several approximate dynamic programming algorithms to
address the issue known as the curse of dimensionality. Although the representative scenario
analyzed is not a large-scale scenario, important insights are still drawn concerning the
differences between the optimal policy and standard myopic policies utilized today. These
insights should be taken into consideration by military medical planners and utilized when
planning for major combat operations.
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