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Abstract This article is devoted to the study of a nonsmooth multiobjective bilevel opti-
mization problem, which involves the vector-valued objective functions in both levels of
the considered program. We first formulate a relaxation multiobjective formulation for the
multiobjective bilevel problem and examine the relationships of solutions between them. We
then establish Fritz John (FJ) and Karush–Kuhn–Tucker (KKT) necessary conditions for the
nonsmooth multiobjective bilevel optimization problem via its relaxation. This is done by
studying a related multiobjective optimization problem with operator constraints.
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1 Introduction

A multiobjective optimization problem (also known as a multi-criteria optimization problem
or a vector optimization problem) (Ehrgott 2005; Jahn 2004; Luc 1989) is a mathemati-
cal problem of making the best possible choices (i.e. optimal solutions) that satisfy two or
more conflicting objectives from a set of feasible choices, described by the constraints of the
problem. Most of the real-life optimization problems are multi-objective in their nature. For
instance, multi-objective optimization is a natural setting for investment portfolio manage-
ment as such problems have to deal with the conflicting notions of revenue and risk. In this
case, themulti-objective optimization problem corresponds to choosing a portfolio allocation
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that optimizes the tradeoff of risk and revenue, among all possible allocations that satisfy
certain constraints.

A bilevel optimization problem is a combination of two programming problems where
the constraint region of the upper-level optimization problem is determined by the solution
set to the lower-level one. When the objective functions of both levels are vector-valued, one
has the notion of multiobjective bilevel optimization problem.

Single-objective/or scalar bilevel optimization problems have been investigated inten-
sively in the literature; see e.g., Colson et al. (2007), Bard (1998), Dempe (2002), Dempe
and Dutta (2012), Dempe et al. (2012, 2014), Dempe and Zemkoho (2012, 2014), Ye et al.
(1997), Jeyakumar et al. (2016), Chuong and Jeyakumar (2017) and Jeyakumar andLi (2015),
Calvete et al. (2012). However, there are only few works dealing with multiobjective/or vec-
tor bilevel optimization problems Bonnel (2006), Bonnel and Morgan (2006), Bonnel and
Collonge (2015), Dempe et al. (2013), Dempe and Franke (2012), Eichfelder (2010), Gadhi
and Dempe (2012) and Ye (2011). Here, we describe briefly some of them. The authors in
Dempe and Franke (2012) formulated the lower-level problem as a nonlinear programming
one and then solved the problem with some scalarization methods. By using a Pascoletti
and Serafini scalarization approach, paper Eichfelder (2010) solved a multiobjective bilevel
optimization problem via an iterative process without any convex assumption. For the bilevel
optimization problems where the upper-level is a scalar optimization problem and the lower-
level is a vector optimization problem, we refer the reader to Bonnel and Morgan (2006) for
an approach by using a penalty function. For the bilevel optimization problems with vector-
valued objectives only in the upper-level one, we refer the reader to Gadhi and Dempe (2012)
for an approach by means of the Hiriart–Urruty scalarization function, and to Ye (2011) for
optimality conditions in a smooth setting.

We are now interested in a nonsmooth multiobjective bilevel optimization problem of the
form:

V − min
x,y

{
(F1(x, y), . . . , Fp(x, y)) | y ∈ S(x), Gk(x) ≤ 0, k = 1, . . . , l

}
, (P)

where S(x) denotes the set of (weakly) Pareto solutions of the lower-level multiobjective
optimization problem

V − min
y

{( f1(x, y), . . . , fq(x, y)) | gt (x, y) ≤ 0, t = 1, . . . , r}, (Px )

and “V −min” stands for vector minimization. Here, the functions Fi , f j , gt : Rn ×R
m →

R, i = 1, . . . , p, j = 1, . . . , q, t = 1, . . . , r , and Gk : Rn → R, k = 1, . . . , l are assumed
to be locally Lipschitz, andmoreover, the lower-level multiobjective problem (Px ) is assumed
to be convex for each x ∈ R

n . The model of multiobjective bilevel optimization problem like
(P) was introduced by Eichfelder (2010) under the term optimistic bilevel programming.

Based on the definitions in multiobjective optimization and multiobjective bilevel pro-
gramming [cf. Dempe and Franke 2012; Ehrgott 2005; Eichfelder 2010; Gadhi and Dempe
2012; Ye 2011], we present the following concepts of optimal/Pareto solutions. For the sake
of convenience, we denote the feasible sets of (P) and (Px ) respectively by

C := {
(x, y) ∈ R

n × R
m | y ∈ S(x), Gk(x) ≤ 0, k = 1, . . . , l

}
, (1.1)

Cx := {
y ∈ R

m | gt (x, y) ≤ 0, t = 1, . . . , r
}
. (1.2)
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Definition 1.1 (i) Let x ∈ R
n . We say that ȳ ∈ Cx is a weak Pareto solution of problem

(Px ), and write ȳ ∈ S(x), if there does not exist ŷ ∈ Cx such that

f j (x, ŷ) < f j (x, ȳ), j = 1, . . . , q.

(ii) We say that (x̄, ȳ) ∈ C is called a local weak Pareto solution of problem (P), and write
(x̄, ȳ) ∈ locS(P), if there is a neighborhood U of (x̄, ȳ) such that there does not exist
(x̂, ŷ) ∈ C ∩ U satisfying

Fi (x̂, ŷ) < Fi (x̄, ȳ), i = 1, . . . , p.

In this work, we provide necessary optimality conditions for local weak Pareto solutions
of the multiobjective bilevel optimization problem (P). More precisely, we first derive a
relaxation problem for the problem (P) and examine the relationships of local weak Pareto
solutions between them. We then establish Fritz John (FJ) and Karush–Kuhn–Tucker (KKT)
necessary conditions for the problem (P) via its relaxation.

It is known that the task of identifying and locating the optimal/Pareto solutions of the
upper-levelmultiobjective problembecomes extremely difficult due to lack ofmathematically
tractable representations of the optimal/Pareto solutions of many lower-level optimization
problems (Dempe 2002; Eichfelder 2010; Ye 2011). The representation of optimal solutions
of a simple one-dimensional lower-level optimization problem results in hard nonlinear
constraints, often nonsmooth/nonlinear constraints. These non-standard constraints produce
complex nonsmoothness in the underlyingmultiobjective optimization problem even if all the
constraint functions are just simple one-dimensional quadratic functions. As an illustration,
the constraint

y ∈ S(x) = argmin
y∈R {g0(x, y) := y | g1(x, y) := y2 − x ≤ 0}

is given by y = h(x) := −√
x with x ≥ 0, which leads to a nonsmooth constraint.

Our approach in this paper is to convert the multiobjective bilevel optimization prob-
lem (P) into a multiobjective optimization problemwith operator constraints (i.e., constraints
described by inverse maps of sets) and obtain optimality conditions by applying some
advanced tools of variational analysis and generalized differentiation (Mordukhovich 2006a;
Rockafellar andWets 1998) to the transformed problem. This approach is inspired by a recent
progress in studying scalar bilevel optimization problems of Dempe and Zemkoho (2014),
where one can see almost important extensions of concepts like M-, C-, and S-stationarity
as well as corresponding results from the smooth case to a nonsmooth one. In what follows,
we will exploit some techniques and ideas from Dempe and Zemkoho (2014) to examine the
M-type stationarity condition. These techniques can be found in Dempe et al. (2012) for an
optimistic bilevel program and in Dempe et al. (2014) for the more challenging pessimistic
version of bilevel programming problems.

We would also like to point out that employing advanced tools of variational analy-
sis and generalized differentiation to study a vector nonsmooth optimization problem with
a general form of equilibrium constraints was given by Bao et al. (2007), where the
reader can also find applications for deriving necessary optimality conditions in bilevel
programming via coderivatives of set-valued mappings. In fact, there are some similari-
ties between the class of multiobjective bilevel programs and the class of multiobjective
optimization problems with equilibrium constraints; see, e.g., the paper by Mordukhovich
(2009). It is worth mentioning here that the recent paper by Zemkoho (2016) proposed
a novel approach to dealing with optimistic smooth bilevel programs by way of set-
valued optimization techniques. It would be of interest to explore how the results in
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Zemkoho (2016) can be extended to the nonsmooth setting of problem (P). Moreover,
since the set of local Pareto solutions of problem (P) is contained in the set of local
weak Pareto solutions of problem (P), it would be possible to formulate the correspond-
ing results for the local Pareto solutions. These would also form interesting topics for further
research.

The rest of the paper is organized as follows. Section 2 contains some basic definitions
from variational analysis and several auxiliary results. Section 3 investigates some stability
properties of the map of nonsmooth Lagrange multipliers and evaluates the coderivative of
the subdifferential multifunction for the lower-level optimization problem (Px ). In Sect. 4, we
first address a relaxation reformulation for the problem (P) and examine the relationships of
solutions between them. We then derive FJ and KKT necessary conditions for the relaxation
reformulation of problem (P).

2 Preliminaries and auxiliary results

Throughout the paper we use the standard notation of variational analysis; see e.g., Mor-
dukhovich (2006a) and Rockafellar and Wets (1998). All spaces under consideration are
finite dimensional spaces whose norms are always denoted by ‖ · ‖. The symbol 〈· , ·〉 stands
for the inner product in the referred space. For f : Rn → R

m and v ∈ R
m , the scalarization

function 〈v, f 〉 : Rn → R is defined by 〈v, f 〉(x) := 〈v, f (x)〉 for all x ∈ R
n . The closed

unit ball (resp., the unit sphere) inRn is denoted by IBn (resp., Sn) or sometimes by IB (resp.,
S) for simplicity if there is no confusion, while IBr (x̄) := x̄ + r IBn for x̄ ∈ R

n and r > 0.
The topological closure and the topological interior of a set � ⊂ R

n are denoted by cl �

and int �, respectively. As usual, the origin of any space is denoted by 0 but we may use 0n

for the origin of Rn in situations where some confusion might be possible. For two vectors
x, y ∈ R

n , we may write (x, y) instead of (x, y)�, and x ≥ y means that x − y ∈ R
n+, where

R
n+ denotes the nonnegative orthant of Rn . Also, Rn− = −R

n+ is the nonpositive orthant of
R

n .

A set � ⊂ R
n is called closed around x̄ ∈ � if there is a neighborhood U of x̄ such

that � ∩ clU is closed. A multifunction F : Rn ⇒ Rm is closed at x̄ ∈ R
n if for every

sequence xk → x̄ and yk → ȳ with yk ∈ F(xk), one has ȳ ∈ F(x̄). If F is closed at very
point x̄ ∈ R

n , then we say that F is closed (or graph-closed). We say that (cf. Mordukhovich
2006a, Definition 1.63) F : Rn ⇒ Rm is inner semicompact at x̄ ∈ R

n if for every sequence
xk → x̄ there is a sequence yk ∈ F(xk) that contains a convergent subsequence as k → ∞.
It is clear that when F has nonempty values around x̄ , the inner semicompact property is
guaranteed by the local boundedness of F at this point; that is, there exists a neighborhood
U of x̄ such that F(U ) is bounded.

Given a set-valued mapping F : Rn ⇒ R
n , we denote by

Lim sup
x→x̄

F(x) :=
{
v ∈ R

n
∣∣∃ sequences xn → x̄ and vn → v

with vn ∈ F(xn) for all n ∈ N

}

the sequential Painlevé–Kuratowski upper/outer limit of F as x → x̄,whereN := {1, 2, . . .}.
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Let � ⊂ X be closed around x̄ ∈ �.
The regular/Fréchet normal cone to � at x̄ ∈ � is defined by

N̂ (x̄;�) :=
⎧
⎨

⎩
v ∈ R

n
∣∣∣ lim sup

x
�−→x̄

〈v, x − x̄〉
‖x − x̄‖ ≤ 0

⎫
⎬

⎭
, (2.1)

where x
�−→ x̄ means that x → x̄ with x ∈ �. If x̄ /∈ �, we put N̂ (x̄;�) := ∅.

The limiting/Mordukhovich normal cone N (x̄;�) to � at x̄ ∈ � is obtained from Fréchet
normal cones by taking the sequential Painlevé–Kuratowski upper limits as

N (x̄;�) := Lim sup

x
�−→x̄

N̂ (x;�). (2.2)

If x̄ /∈ �, we put N (x̄;�) := ∅.

It is clear by (2.1) and (2.2) that

N̂ (x̄;�) ⊂ N (x̄;�). (2.3)

If the inclusion (2.3) holds as equality, then we say that � is normally regular at x̄ . The
class of normally regular sets is sufficiently large including, besides convex ones, many other
sets important in variational analysis and optimization; see Mordukhovich (2006a) for more
details.

Let � : Rn ⇒ R
m be a set-valued mapping with the graph

gph� := {
(x, y) ∈ R

n × R
m
∣∣ y ∈ �(x)

}
.

The normal/Mordukhovich coderivative of � at (x̄, ȳ) ∈ gph� is defined by

D∗�(x̄, ȳ)(y∗) := {
x∗ ∈ R

n
∣∣ (x∗,−y∗) ∈ N ((x̄, ȳ); gph�)

}
, y∗ ∈ R

m . (2.4)

When� is a single-valuedmapping, to simplify the notation, one writes D∗�(x̄)(y∗) instead
of D∗�(x̄,�(x̄))(y∗).

If the single-valued mapping � : Rn → R
m is strictly differentiable at x̄ ∈ R

n with the
derivative ∇�(x̄), then we have

D∗�(x̄)(y∗) = {∇�(x̄)�y∗}, y∗ ∈ R
m .

A calculation for the coderivative of the inverse image of a set via a strict differentiable
function is taken from Mordukhovich (2006a, Theorem 1.17).

Lemma 2.1 Let f : R
n → R

m be strictly differentiable at x̄ ∈ R
n with the surjective

derivative ∇ f (x̄), and let � ⊂ R
m be a closed set such that f (x̄) ∈ �. Then we have

N
(
x̄; f −1(�)

) = ∇ f (x̄)�N ( f (x̄);�) . (2.5)

In what follows, we also use an evaluation for the coderivative of a product set-valued
mapping (cf. Dempe and Zemkoho 2014, Proposition 3.2).

Lemma 2.2 Let �i : Rn ⇒ R
m, i = 1, . . . , q, be closed set-valued maps, and let � : Rn ⇒

R
m×q be defined by �(x) := �1(x) × · · · × �q(x). Assume that the following qualification

condition
[ q∑

i=1

vi = 0, vi ∈ D∗�i (x̄, ȳi )(0), i = 1, . . . , q

]

⇒ v1 = · · · = vq = 0 (2.6)
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holds at (x̄, ȳ) with x̄ ∈ R
m and ȳ := (ȳ1, . . . , ȳq) ∈ �(x̄). Then, we have

D∗�(x̄, ȳ)(v) ⊆
q∑

i=1

D∗�i (x̄, ȳi )(vi ), (2.7)

where v := (v1, . . . , vq) ∈ R
m×q . If in addition gph�i is normally regular at (x̄, ȳi ) for

i = 1, . . . , q, then the inclusion (2.7) holds as equality.

For an extended real-valued function ϕ : Rn → R := [−∞,∞], we set
domϕ := {x ∈ R

n | ϕ(x) < ∞}, epiϕ := {(x, μ) ∈ R
n × R | μ ≥ ϕ(x)}.

The limiting/Mordukhovich subdifferential of ϕ at x̄ ∈ R
n with |ϕ(x̄)| < ∞ is defined by

∂ϕ(x̄) := {v ∈ R
n | (v,−1) ∈ N ((x̄, ϕ(x̄)); epiϕ)}. (2.8)

If |ϕ(x̄)| = ∞, then one puts ∂ϕ(x̄) := ∅. It is known (cf. Mordukhovich 2006a, Theo-
rem 1.93) that when ϕ is a convex function, the limiting subdifferential coincides with the
subdifferential in the sense of convex analysis (cf. Rockafellar 1970); i.e.,

∂ϕ(x̄) := {v ∈ R
n | 〈v, x − x̄〉 ≤ ϕ(x) − ϕ(x̄) for all x ∈ R

n}.
For a function ϕ locally Lipschitz continuous at x̄ ∈ R

n with modulus � > 0, it holds [see
Mordukhovich (2006a, Corollaries 1.81 and 2.25)] that

∂ϕ(x̄) �= ∅ and ||v|| ≤ � ∀v ∈ ∂ϕ(x̄). (2.9)

Given a nonempty set � ⊂ R
n , the distance function d(·;�) : R

n → R defined by
d(x;�) := infu∈� ||x − u|| is globally Lipschitz continuous on R

n with modulus � = 1,
and furthermore, if � is closed around x̄ ∈ �, then one has (cf. Rockafellar and Wets 1998,
Example 8.53)

∂d(x̄;�) = N (x̄;�) ∩ IBn . (2.10)

Let� ⊂ R
n .Considering the indicator function δ(·;�) defined by δ(x;�) := 0 for x ∈ �

and by δ(x;�) := ∞ otherwise, we have [see Mordukhovich (2006a, Proposition 1.79)]:

N (x̄;�) = ∂δ(x̄;�) for any x̄ ∈ �. (2.11)

The following limiting subdifferential sum rule is needed for our study.

Lemma 2.3 (See Mordukhovich 2006a, Theorem 3.36) Let ϕi : R
n → R, i =

1, 2, . . . , n, n ≥ 2, be lower semicontinuous around x̄ ∈ R
n, and let all but one of these

functions be Lipschitz continuous around x̄ . Then one has

∂(ϕ1 + ϕ2 + · · · + ϕn)(x̄) ⊂ ∂ϕ1(x̄) + ∂ϕ2(x̄) + · · · + ∂ϕn(x̄). (2.12)

The following result is known as the normal cone to a complementarity set, which can be
found in Outrata (1999, Lemma 2.2) or Ye (2000, Proposition 3.7).

Lemma 2.4 Let � := {(a, b) ∈ R
r ×R

r | a ∈ R
r+, b ∈ R

r+, 〈a, b〉 = 0}, and let (x, y) ∈ �.

One has
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N ((x, y);�) =
⎧
⎨

⎩
(u, v) ∈ R

r × R
r
∣∣∣∣

ui = 0, i ∈ Iy,

vi = 0, i ∈ Ix ,

(ui < 0 ∧ vi < 0) ∨ uivi = 0, i ∈ Ixy

⎫
⎬

⎭
, (2.13)

where x := (x1, . . . , xr ), y := (y1, . . . , yr ), u = (u1, . . . , ur ), v := (v1, . . . , vr ) and Ix :=
{i = 1, . . . , r | xi = 0, yi > 0}, Iy := {i = 1, . . . , r | xi > 0, yi = 0}, Ixy := {i =
1, . . . , r | xi = 0, yi = 0}.

Let us provide the computation for the limiting normal cone to an intersection of the
nonnegative orthant with the unit sphere in Rn , which will be used in the sequel.

Lemma 2.5 Let x̄ := (x̄1, . . . , x̄n) ∈ � := R
n+ ∩ Sn . We have

N (x̄;�) :=
{
v := (v1, . . . , vn) ∈ R

n
∣∣∣
vi ≤ 0, i ∈ I (x̄),

vi := λx̄i , λ ∈ R, i /∈ I (x̄)

}
,

where I (x̄) := {i = 1, . . . , n | x̄i = 0}.
Proof Let f : Rn → R be defined by f (x) := ||x || − 1. We see that Sn = f −1(0) :=
{x ∈ R

n | f (x) = 0}, and that f is strictly differentiable at every point x ∈ Sn with the
surjective derivative ∇ f (x) = x

||x || = x . Applying Lemma 2.1 and Mordukhovich (2006a,
Corollary 1.15), we have for each x ∈ Sn ,

N̂
(
x; f −1(0)

) = N
(
x; f −1(0)

) = {λx | λ ∈ R}. (2.14)

Since Rn+ is a convex cone, it holds (see, e.g., Henrion and Outrata 2008, Proposition 3.7)
that

N̂
(
x;Rn+

) = N
(
x;Rn+

) = {(μ1, . . . , μn) ∈ R
n | μi ≤ 0, μi xi = 0, i = 1, . . . , n}

(2.15)

for each x := (x1, . . . , xn) ∈ R
n+. Now, consider x̄ := (x̄1, . . . , x̄n) ∈ � := R

n+ ∩ Sn . Since
it can be checked that N

(
x̄;Rn+

) ∩ (−N (x̄;Sn)) = {0}, we conclude by Mordukhovich
(2006a, Theorem 3.4 and Corollary 3.5) that

N (x̄;�) = N
(
x̄;Rn+

) + N (x̄;Sn) .

This together with (2.14) and (2.15) finishes the proof. �

The partial first-order subdifferentialmapping ∂yϕ : Rn×R
m ⇒ R

m ofϕ : Rn×R
m → R

with respect to y is defined by

∂yϕ(x, y) := {set of subgradients u of ϕx := ϕ(x, ·) at y} = ∂ϕx (y). (2.16)

The definition of ∂xϕ(x, y) is defined similarly. We have a relation between the partial first-
order subdifferential of a function at a given point and its subdifferential at the corresponding
point as follows.

Lemma 2.6 (See Mordukhovich 2006a, Corollary 3.44) Let ϕ : Rn × R
m → R be locally

Lipschitz continuous at (x̄, ȳ) ∈ R
n × R

m . One has

∂xϕ(x̄, ȳ) ⊆ {v ∈ R
n | ∃u ∈ R

m with (v, u) ∈ ∂ϕ(x̄, ȳ)}.
Let ϕ be finite at (x̄, ȳ) ∈ R

n × R
m, and let ū ∈ ∂yϕ(x̄, ȳ). The partial second-order

subdifferential ∂2yϕ(x̄, ȳ, ū) : Rm ⇒ R
n × R

m of ϕ with respect to y at (x̄, ȳ) relate to ū is
defined by (cf. Mordukhovich 1992; Levy et al. 2000; Mordukhovich and Rockafellar 2012)
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∂2yϕ(x̄, ȳ, ū)(w) := D∗(∂yϕ)(x̄, ȳ, ū)(w), w ∈ R
m . (2.17)

Note that the scheme of deriving second-order subdifferentials as the coderivative of the
first-order ones was suggested by Mordukhovich (1992), see Mordukhovich (2006a, b) for
more discussions about this. The reader is referred to Mordukhovich et al. (2014) for various
calculus rules for partial second-order subdifferentials. Let us quote representations of the
partial second-order subdifferential for smooth functions with Lipschitz continuity or strictly
differentiability of partial derivatives.

Lemma 2.7 (SeeMordukhovich et al. 2014, Propositions 2.2 and 2.4) Let ϕ : Rn ×R
m → R

be continuously differentiable around (x̄, ȳ) ∈ R
n × R

m, and let its partial derivative
∇yϕ : Rn × R

m → R
m be Lipschitz continuous around (x̄, ȳ). Then we have

∂2yϕ(x̄, ȳ, ū)(w) = ∂〈w,∇yϕ〉(x̄, ȳ) �= ∅ for all w ∈ R
m,

where ū := ∇yϕ(x̄, ȳ). If in addition ∇yϕ is strictly differentiable at (x̄, ȳ) with the partial
derivatives denoted by ∇2

yxϕ(x̄, ȳ) and ∇2
yyϕ(x̄, ȳ), then

∂2yϕ(x̄, ȳ, ū)(w) =
{
(∇2

yxϕ(x̄, ȳ)�w,∇2
yyϕ(x̄, ȳ)�w)

}
for all w ∈ R

m .

Let Fi : Rn → R, i = 1, . . . , p, and ψ : Rn → R
m be locally Lipschitz continuous. The

forthcoming lemma provides Fritz John (FJ) and Karush–Kuhn–Tucker (KKT) conditions
for the multiobjective optimization problem:

V − min {(F1(x), . . . , Fp(x)) | x ∈ � ∩ ψ−1(�)}, (2.18)

where � ⊂ R
n and � ⊂ R

m are nonempty closed sets.

Lemma 2.8 Let x̄ be a local weak Pareto solution of problem (2.18). Then there exist ν :=
(ν1, . . . , νp) ∈ R

p
+ and v ∈ N (ψ(x̄);�), not all zero, such that

0 ∈
p∑

i=1

νi∂ Fi (x̄) + ∂〈v,ψ〉(x̄) + N (x̄;�). (2.19)

In addition, ν �= 0 provided that the following qualification condition holds:
[
0 ∈ ∂〈v,ψ〉(x̄) + N (x̄;�), v ∈ N

(
ψ(x̄);�

)] ⇒ v = 0. (2.20)

Proof The proof of this lemma can be derived from several corresponding results of mul-
tiobjective optimization problems with a general preference such as Ye and Zhu (2003,
Theorem 1.2) or Bellaassali and Jourani (2008, Theorem 4.1). �

3 Lower-level multiobjective optimization problem

In this section, we examine some stability properties of the map of nonsmooth Lagrange
multipliers and evaluate the coderivative of the subdifferential multifunction for the lower-
level multiobjective optimization problem defined by (Px ). For this purpose, we consider
x ∈ R

n as a parameter and recall the problem as follows:

V − min
y

{( f1(x, y), . . . , fq(x, y)) | gt (x, y) ≤ 0, t = 1, . . . , r}, (3.1)
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where the functions f j (x, ·), gt (x, ·), j = 1, . . . , q, t = 1, . . . , r, are real-valued convex for
all x ∈ R

n .

Consider a subdifferential multifunction L : Rn × R
m × R

q × R
r ⇒ R

m of functions
involved in the problem (3.1) defined by

L(x, y, α, λ) :=
q∑

j=1

α j∂y f j (x, y) +
r∑

t=1

λt∂y gt (x, y), (3.2)

where α := (α1, . . . , αq) and λ := (λ1, . . . , λr ). Then, the multifunction � : Rn × R
m ⇒

R
q × R

r of nonsmooth Lagrange multipliers of problem (3.1) can be expressed via the
multifunction L as

�(x, y) : =
{
(α, λ) ∈ (R

q
+ ∩ Sq) × R

r+ | 0 ∈ L(x, y, α, λ), gt (x, y)

≤ 0, λt gt (x, y) = 0, t = 1, . . . , r
}
,

=
{
(α, λ) ∈ (R

q
+ ∩ Sq) × R

r+ | 0 ∈
q∑

j=1

α j∂y f j (x, y) +
r∑

t=1

λt∂y gt (x, y),

gt (x, y) ≤ 0, λt gt (x, y) = 0, t = 1, . . . , r
}
, (3.3)

where α := (α1, . . . , αq) and λ := (λ1, . . . , λr ).

Definition 3.1 We say that the Slater constraint qualification (SCQ) for the problem (3.1)
is satisfied at x̄ ∈ R

n if there exists ŷ ∈ R
m such that

gt (x̄, ŷ) < 0, t = 1, . . . , r. (3.4)

Remark 3.2 If the (SCQ) in (3.4) is satisfied at x ∈ R
n, then we have the following assertion

(see, e.g., Ehrgott 2005, Theorem 4.1, p. 97): y ∈ S(x) if and only if there is (α, λ) ∈ �(x, y);
i.e., there exist α := (α1, . . . , αq) ∈ R

q
+ ∩ Sq and λ := (λ1, . . . , λr ) ∈ R

r+ such that
⎧
⎨

⎩

0 ∈ ∑q
j=1 α j∂y f j (x, y) + ∑r

t=1 λt∂y gt (x, y),

gt (x, y) ≤ 0, λt gt (x, y) = 0, t = 1, . . . , r.
(3.5)

In our framework, the closedness, nonemptyness and/or the local boundedness of par-
tial subdifferential of functions involved in the problem (3.1) as well as the subdifferential
multifunction L defined in (3.2) hold without any condition.

Proposition 3.3 Consider the functions involved in the problem (3.1) and the subdifferential
multifunction L in (3.2). We have the following assertions:

(i) The partial subdifferentials ∂y f j , j = 1, . . . , q, ∂y gt , t = 1, . . . , r are nonempty,
closed and locally bounded at any (x̄, ȳ) ∈ Rn × R

m.
(ii) The multifunction L in (3.2) is closed.

Proof We first justify (i). We only need to justify the nonemptiness, closedness and local
boundedness of f j at (x̄, ȳ) for j ∈ {1, . . . , q} due to the similarity of functions.

Since f j is locally Lipschitz continuous at (x̄, ȳ), there exists r > 0 such that f j is
Lipschitz continuous on IBr (x̄, ȳ) with modulus � > 0. Taking r1 ∈ (0, r), we assert that
∂y f j

(
IBr1(x̄, ȳ)

)
is a bounded set inRm . Indeed, picking any (x, y) ∈ IBr1(x̄, ȳ), it holds that
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IBr (x̄, ȳ) is a neighborhood of (x, y), and thus f j is locally Lipschitz continuous at (x, y)

with the same modulus �. By virtue of (2.9),

∂ f j (x, y) �= ∅ and ||w∗|| ≤ � ∀w∗ ∈ ∂ f j (x, y). (3.6)

Now, let v∗ ∈ ∂y f j (x, y). Thanks to Lemma 2.6, we find u∗ ∈ R
n such that (u∗, v∗) ∈

∂ f j (x, y). Then, it follows by (3.6) that

||v∗|| ≤ ||(u∗, v∗)|| ≤ �.

Consequently, ∂y f j is nonempty and locally bounded at (x̄, ȳ).

To prove the closedness of ∂y f j , let (xk, yk) → (x̄, ȳ) and v∗k → v∗ with v∗k ∈
∂y f j (xk, yk). For each k ∈ N, due to the convexity of f j (xk, ·), the relation v∗k ∈
∂y f j (xk, yk) means that

〈v∗k, y − yk〉 ≤ f j (xk, y) − f j (xk, yk) ∀y ∈ R
m . (3.7)

Letting k → ∞ in (3.7), we arrive at

〈v∗, y − ȳ〉 ≤ f j (x̄, y) − f j (x̄, ȳ) ∀y ∈ R
m,

i.e., v∗ ∈ ∂y f j (x̄, ȳ). So, ∂y f j is closed at (x̄, ȳ).

To justify (ii), letting any (x̄, ȳ, ᾱ, λ̄) ∈ R
n × R

m × R
q × R

r , we will prove that
L is closed at this point. Assume that (xk, yk, αk, λk) → (x̄, ȳ, ᾱ, λ̄) and wk → w̄

with wk ∈ L(xk, yk, αk, λk), where αk := (αk
1, . . . , α

k
q), ᾱ := (ᾱ1, . . . , ᾱq) ∈ R

q and

λk := (λk
1, . . . , λ

k
r ), λ̄ := (λ̄1, . . . , λ̄r ) ∈ R

r for all k ∈ N. For each k ∈ N, the relation
wk ∈ L(xk, yk, αk , λk) means that there exist v∗k

j ∈ ∂y f j (xk, yk), j = 1, . . . , q, u∗k
t ∈

∂y gt (xk, yk), t = 1, . . . , r, such that

wk =
q∑

j=1

αk
j v

∗k
j +

r∑

t=1

λk
t u∗k

t . (3.8)

Since (xk, yk) → (x̄, ȳ) and by (i), ∂y f j , j = 1, . . . , q, ∂y gt , t = 1, . . . , r are locally
bounded at (x̄, ȳ), it follows that the sequences {v∗k

j }, j = 1, . . . , q, {u∗k
t }, t = 1, . . . , r,

are bounded. So, by taking subsequences if necessary, we may assume that v∗k
j → v̄∗

j ∈
R

m, j = 1, . . . , q, u∗k
t → ū∗

t ∈ R
m, t = 1, . . . , r as k → ∞. Moreover, we confirm that

v̄∗
j ∈ ∂y f j (x̄, ȳ), j = 1, . . . , q and ū∗

t ∈ ∂y gt (x̄, ȳ), t = 1, . . . , r due to the closedness of
∂y f j , j = 1, . . . , q, ∂y gt , t = 1, . . . , r, at (x̄, ȳ) as in (i).

Now, letting k → ∞ in (3.8), we arrive at

w̄ =
q∑

j=1

ᾱ j v̄
∗
j +

r∑

t=1

λ̄t ū
∗
t ∈

q∑

j=1

ᾱ j∂y f j (x̄, ȳ) +
r∑

t=1

λ̄t∂y gt (x̄, ȳ),

showing that w̄ ∈ L(x̄, ȳ, ᾱ, λ̄). Hence, L is closed at (x̄, ȳ, ᾱ, λ̄), which completes the
proof. �

Using the above obtained results, we are able to derive the closedness of the nonsmooth
Lagrange multipliers multifunction � in (3.3) without any condition, and to justify the local
boundedness of this mapping under the fulfilment of (SCQ).
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Proposition 3.4 Consider the multifunction � in (3.3). We have the following assertions.

(i) The multifunction � is closed at any (x̄, ȳ) ∈ R
n × R

m .

(ii) If in addition the (SCQ) is satisfied at x̄ ∈ R
n, then � is locally bounded at (x̄, ȳ).

Proof We first justify (i). Let (xk, yk) → (x̄, ȳ), and let (αk, λk) ∈ �(xk, yk) be such
that (αk, λk) → (ᾱ, λ̄), where αk := (αk

1, . . . , α
k
q), ᾱ := (ᾱ1, . . . , ᾱq) ∈ R

q
+ and λk :=

(λk
1, . . . , λ

k
r ), λ̄ := (λ̄1, . . . , λ̄r ) ∈ R

r+ for all k ∈ N. Then,

0 ∈ L(xk, yk, αk, λk), αk ∈ Sq , (3.9)

gt (xk, yk) ≤ 0, λk
t gt (xk, yk) = 0, t = 1, . . . , r, k ∈ N. (3.10)

Taking into account the closedness of the mapping L as shown in Proposition 3.3(ii), by
letting k → ∞ in (3.9) and (3.10), we obtain that

0 ∈ L(x̄, ȳ, ᾱ, λ̄), ᾱ ∈ Sq ,

gt (x̄, ȳ) ≤ 0, λ̄t gt (x̄, ȳ) = 0, t = 1, . . . , r,

which shows that (ᾱ, λ̄) ∈ �(x̄, ȳ), and consequently, � is closed at (x̄, ȳ).

To prove (ii), we now suppose for contradiction that there exist sequences (xk, yk) →
(x̄, ȳ) and (αk, λk) ∈ �(xk, yk) with ||(αk, λk)|| → ∞ as k → ∞. The relation (αk, λk) ∈
�(xk, yk) means that αk := (αk

1, . . . , α
k
q) ∈ R

q
+ ∩ Sq , λk := (λk

1, . . . , λ
k
r ) ∈ R

r+ and

0 ∈
q∑

j=1

αk
j ∂y f j (xk, yk) +

r∑

t=1

λk
t ∂y gt (xk, yk), (3.11)

gt (xk, yk) ≤ 0, λk
t gt (xk, yk) = 0, t = 1, . . . , r, k ∈ N. (3.12)

On the one side, by ||αk || = 1, it ensures that ||λk || → ∞ as k → ∞. Letting λ̃k
t :=

λk
t

||λk || , t = 1, . . . , r, we obtain that ||λ̃k || = 1, where λ̃k := (λ̃k
1, . . . , λ̃

k
r ) ∈ R

r+ for all k ∈ N.

By passing to a subsequence if necessary, one may assume that λ̃k → λ̃ as k → ∞, where
λ̃ := (λ̃1, . . . , λ̃r ) ∈ R

r+ with ||λ̃|| = 1. On the other side, for each k ∈ N, dividing (3.11)
and (3.12) by ||λk ||, we get

0 ∈
q∑

j=1

αk
j

||λk ||∂y f j (xk, yk) +
r∑

t=1

λ̃k
t ∂y gt (xk, yk), (3.13)

gt (xk, yk) ≤ 0, λ̃k
t gt (xk, yk) = 0, t = 1, . . . , r. (3.14)

Observe that
αk

j

||λk || → 0 as k → ∞ for j = 1, . . . , q . Due to the closedness and local
boundedness of the subdifferentials ∂y f j , j = 1, . . . , q, ∂y gt , t = 1, . . . , r, at (x̄, ȳ) as
shown in Proposition 3.3(i), by passing to the limit as k → ∞ in (3.13) and (3.14) we come
to the following relations

0 ∈
r∑

t=1

λ̃t∂y gt (x̄, ȳ), (3.15)

gt (x̄, ȳ) ≤ 0, λ̃t gt (x̄, ȳ) = 0, t = 1, . . . , r. (3.16)
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Let the (SCQ) be satisfied at x̄, i.e., (3.4) holds true. By (3.15), there are ũ∗
t ∈ ∂y gt (x̄, ȳ), t =

1, . . . , r, such that
∑r

t=1 λ̃t ũ∗
t = 0. The relations ũ∗

t ∈ ∂y gt (x̄, ȳ), t = 1, . . . , r, mean that

〈ũ∗
t , y − ȳ〉 ≤ gt (x̄, y) − gt (x̄, ȳ) ∀y ∈ R

m, t = 1, . . . , r. (3.17)

Hence, by summing up these inequalities after substituting y := ŷ into (3.17) andmultiplying
them by λ̃t for t = 1, . . . , r , respectively, we arrive at

0 =
〈

r∑

t=1

λ̃t ũ
∗
t , ŷ − ȳ

〉

≤
r∑

t=1

λ̃t gt (x̄, ŷ) −
r∑

t=1

λ̃t gt (x̄, ȳ) < 0,

where the last inequality holds due to (3.16), (3.4) and the fact that ||λ̃|| = 1. So, we obtain
a contradiction, which finishes the proof. �

Remark 3.5 We have used Proposition 3.4(i) to give a proof for Proposition 3.4(ii). In fact,
the proof of Proposition 3.4(ii) can be derived from a more general result given in Li and
Zhang (2010). In the case of the lower-level optimization problem is scalar one (i.e., q = 1),
Proposition 3.4 agrees with Dempe and Zemkoho (2014, Theorem 3.1).

We next provide calculus rules for computing or estimating the coderivative of L given
in (3.2),whichwill be employed in the sequel. The statement (i) of Theorem3.6 below reduces
to Dempe and Zemkoho (2014, Theorem 3.3) for the case, where the lower-level optimization
problem is scalar one (i.e., q = 1), and an additional assumption on the local boundedness
and closedness of the partial subdifferentials of f j , j = 1, . . . , q, gt , t = 1, . . . , r has been
imposed.

Theorem 3.6 Let (x̄, ȳ) ∈ R
n × Rm, ᾱ := (ᾱ1, . . . , ᾱq) ∈ R

q and λ̄ := (λ̄1, . . . , λ̄r ) ∈ R
r .

(i) Let w̄ ∈ L(x̄, ȳ, ᾱ, λ̄). Assume that for all z := (v1, . . . , vq , u1, . . . , ur ) with v j :=
(v

j
1 , . . . , v

j
m) ∈ ∂y f j (x̄, ȳ), j = 1, . . . , q, ut := (ut

1, . . . , ut
m) ∈ ∂y gt (x̄, ȳ), t =

1, . . . , r and
∑q

j=1 ᾱ jv
j + ∑r

t=1 λ̄t ut = w̄, the following qualification condition
holds:

⎡

⎣v
j∗ ∈ ∂2y f j (x̄, ȳ, v j )(0), j = 1, . . . , q, ut∗ ∈ ∂2y gt (x̄, ȳ, ut )(0), t

= 1, . . . , r |
q∑

j=1

v
j∗ +

r∑

t=1

ut∗ = 0

⎤

⎦

⇒ v
j∗ = ut∗ = 0 for all j = 1, . . . , q, t = 1, . . . , r. (3.18)

Then for each w := (w1, . . . , wm) ∈ R
m, we have

D∗L(x̄, ȳ, ᾱ, λ̄, w̄)(w) ⊆
⋃

z:∑q
j=1 ᾱ j v

j +∑r
t=1 λ̄t ut =w̄,

v j ∈∂y f j (x̄,ȳ),ut ∈∂y gt (x̄,ȳ)

[( q∑

j=1

∂2y f j (x̄, ȳ, v j )(ᾱ jw)

+
r∑

t=1

∂2y gt (x̄, ȳ, ut )(λ̄tw)
)

×
{( m∑

i=1

v1i wi , . . . ,

m∑

i=1

v
q
i wi ,

m∑

i=1

u1
i wi , . . . ,

m∑

i=1

ur
i wi

)}]
.

(3.19)
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(ii) Let f j , j = 1, . . . , q, gt , t = 1, . . . , r be continuously differentiable around (x̄, ȳ),
and let the corresponding partial derivatives ∇y f j , j = 1, . . . , q,∇y gt , t = 1, . . . , r

be Lipschitz continuous around this point. Let ∇y f j (x̄, ȳ) := (v
j
1 , . . . , v

j
m), j =

1, . . . , q,∇y gt (x̄, ȳ) := (ut
1, . . . , ut

m), t = 1, . . . , r. Then the qualification condi-
tion (3.18) is automatically satisfied, and for each w := (w1, . . . , wm) ∈ R

m, it holds
that

D∗L
(
x̄, ȳ, ᾱ, λ̄, L(x̄, ȳ, ᾱ, λ̄)

)
(w) ⊆

( q∑

j=1

∂〈ᾱ jw,∇y f j 〉(x̄, ȳ)

+
r∑

t=1

∂〈λ̄tw,∇y gt 〉(x̄, ȳ)
)

×
( m∑

i=1

v1i wi , . . . ,

m∑

i=1

v
q
i wi ,

m∑

i=1

u1
i wi , . . . ,

m∑

i=1

ur
i wi

)
.

(3.20)

If in addition ∇y f j , j =1, . . . , q,∇y gt , t = 1, . . . , r are strictly differentiable at (x̄, ȳ)

with the partial derivatives ∇2
yx f j (x̄, ȳ),∇2

yy f j (x̄, ȳ), j = 1, . . . , q,∇2
yx gt (x̄, ȳ),

∇2
yy gt (x̄, ȳ), t = 1, . . . , r, then the inclusion (3.20) holds as equality, i.e.,

D∗L
(
x̄, ȳ, ᾱ, λ̄, L(x̄, ȳ, ᾱ, λ̄)

)
(w) =

{( q∑

j=1

ᾱ j (∇2
yx f j (x̄, ȳ)�w,∇2

yy f j (x̄, ȳ)�w)

+
r∑

t=1

λ̄t (∇2
yx gt (x̄, ȳ)�w,∇2

yy gt (x̄, ȳ)�w)
)

×
( m∑

i=1

v1i wi , . . . ,

m∑

i=1

v
q
i wi ,

m∑

i=1

u1
i wi , . . . ,

m∑

i=1

ur
i wi

)}
.

Proof Wefirst prove (i). Consider a function� : Rm(q+r) ×R
q ×R

r → R
m and a set-valued

map � : Rn × R
m × R

q × R
r ⇒ R

m(q+r) × R
q × R

r defined, respectively, by

�(z, α, λ) :=
q∑

j=1

α jv
j +

r∑

t=1

λt u
t , α := (α1, . . . , αq) ∈ R

q , λ := (λ1, . . . , λr ) ∈ R
r ,

z := (v1, . . . , vq , u1, . . . , ur ) ∈ R
m(q+r) with v j := (v

j
1 , . . . , v

j
m) ∈ R

m, j = 1, . . . , q,

ut := (ut
1, . . . , ut

m) ∈ R
m, t = 1, . . . , r,

and

�(x, y, α, λ) := {(z, α, λ) | z ∈ �0(x, y)}, x ∈ R
n, y ∈ R

m, α ∈ R
q , λ ∈ R

r ,

with �0(x, y) := ∂y f1(x, y) × · · · × ∂y fq(x, y) × ∂y g1(x, y) × · · · × ∂y gr (x, y). Then, it
holds that L = � ◦ �. Moreover, we see that the function � is continuously differentiable
at every point (z, α, λ) ∈ R

m(q+r) ×R
q ×R

r , and the set-valued map � is closed inasmuch
as ∂y f j , j = 1, . . . , q, ∂y gt , t = 1, . . . , r, are closed by virtue of Proposition 3.3(i). Let us
consider a set-valued map M : Rn × R

m × R
q × R

r × R
m ⇒ R

m(q+r) × R
q × R

r defined
by

M(x, y, α, λ,w) := �(x, y, α, λ) ∩ �−1(w) = {(z, α, λ) | z ∈ �0(x, y),�(z, α, λ) = w}
for x ∈ R

n, y ∈ R
m, α ∈ R

q , λ ∈ R
r , w ∈ R

m . Invoking Proposition 3.3(i) again, it
holds that ∂y f j , j = 1, . . . , q, ∂y gt , t = 1, . . . , r, are locally bounded at (x̄, ȳ), and thus,
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M is locally bounded at (x̄, ȳ, ᾱ, λ̄, w̄). Moreover, it is easy to see that M has nonempty
values around (x̄, ȳ, ᾱ, λ̄, w̄) due to the nonemptyness of ∂y f j , j = 1, . . . , q, ∂y gt , t =
1, . . . , r, and thus, M is inner semicompact at this point. Applying Mordukhovich (2006a,
Theorem 1.65(ii)), we have the following estimate

D∗L(x̄, ȳ, ᾱ, λ̄, w̄)(w)

⊆
⋃

(z,α,λ)∈M(x̄,ȳ,ᾱ,λ̄,w̄)

[
D∗�((x̄, ȳ, ᾱ, λ̄), (z, α, λ))(∇�(z, α, λ)�w)

]
, (3.21)

where∇�(z, α, λ) stands for the derivative of� at (z, α, λ). For eachw := (w1, . . . , wm) ∈
R

m, a direct computation shows that

∇�(z, α, λ)�w =
[
α1w, . . . , αqw, λ1w, . . . , λrw,

m∑

i=1

v1i wi , . . . ,

m∑

i=1

v
q
i wi ,

m∑

i=1

u1
i wi , . . . ,

m∑

i=1

ur
i wi

]
. (3.22)

To estimate the coderivative of �, we construct a function � : R
n × R

m × R
q × R

r ×
R

m(q+r) × R
q × R

r → R
n × R

m × R
m(q+r) × R

q × R
r defined by

�(x, y, α, λ, z, α̃, λ̃) := (x, y, z, α − α̃, λ − λ̃).

Then, it holds that gph� = �−1(�) with � := gph�0 × {0q} × {0r }, and that � is strictly
differentiable at any (x̄, ȳ, ᾱ, λ̄, z, α̃, λ̃)with the derivative∇�(x̄, ȳ, ᾱ, λ̄, z, α̃, λ̃) and thus,

D∗�(x̄, ȳ, ᾱ, λ̄, z, α̃, λ̃)(a, b, c, d, e) = ∇�(x̄, ȳ, ᾱ, λ̄, z, α̃, λ̃)�(a, b, c, d, e)

= (a, b, d, e, c,−d,−e)

for each (a, b, c, d, e) ∈ N
(
�(x̄, ȳ, ᾱ, λ̄, z, α̃, λ̃);�

) = N
(
(x̄, ȳ, z); gph�0

) × R
q × R

r .

It can be checked that ∇�(x̄, ȳ, ᾱ, λ̄, z, α̃, λ̃) is surjective, and then applying Lemma 2.1
allows us to assert that

N
(
(x̄, ȳ, ᾱ, λ̄, z, α, λ); gph�

)

= {
(a, b, d, e, c,−d,−e) | (a, b, c, d, e) ∈ N

(
(x̄, ȳ, z); gph�0

) × R
q × R

r}.

Thus, it follows by the definition of coderivative (2.4) that

D∗�((x̄, ȳ, ᾱ, λ̄), (z, α, λ))(s, γ, θ) = D∗�0(x̄, ȳ, z)(s) × {γ } × {θ}
for each (s, γ, θ) ∈ R

m(q+r) × R
q × R

r . Combining this with (3.21) and (3.22) yields

D∗L(x̄, ȳ, ᾱ, λ̄, w̄)(w) ⊆
⋃

z:z∈�0(x̄,ȳ),

�(z,ᾱ,λ̄)=w̄

[
D∗�((x̄, ȳ, ᾱ, λ̄), (z, ᾱ, λ̄))(∇�(z, ᾱ, λ̄)�w)

]

⊆
⋃

z:z∈�0(x̄,ȳ),

�(z,ᾱ,λ̄)=w̄

[
D∗�0(x̄, ȳ, z)(ᾱ1w, . . . , ᾱqw, λ̄1w, . . . , λ̄rw)

× {( m∑

i=1

v1i wi , . . . ,

m∑

i=1

v
q
i wi ,

m∑

i=1

u1
i wi , . . . ,

m∑

i=1

ur
i wi

)}]
.

(3.23)
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Taking into account the definition of partial second-order subdifferential in (2.17), we assert
that condition (2.6) is satisfied under the fulfillment of (3.18). Moreover, since ∂y f j , j =
1, . . . , q, ∂y gt , t = 1, . . . , r, are closed, we invoke Lemma 2.2 to obtain that

D∗�0(x̄, ȳ, z)(ᾱ1w, . . . , ᾱqw, λ̄1w, . . . , λ̄rw) ⊆
q∑

j=1

∂2y f j (x̄, ȳ, v j )(ᾱ jw)

+
r∑

t=1

∂2y gt (x̄, ȳ, ut )(λ̄tw). (3.24)

Now, the estimate (3.19) follows by (3.23) and (3.24), which ends the proof (i).
Let us now prove (ii). Under additional assumptions, we assert by Lemma 2.7 that for

each w ∈ R
m ,

∂2y f j (x̄, ȳ,∇y f j (x̄, ȳ))(w) = ∂〈w,∇y f j 〉(x̄, ȳ), j = 1, . . . , q,

∂2y gt (x̄, ȳ,∇y gt (x̄, ȳ))(w) = ∂〈w,∇y gt 〉(x̄, ȳ), t = 1, . . . , r.

Then,

∂2y f j (x̄, ȳ,∇y f j (x̄, ȳ))(0) = {0}, j = 1, . . . , q, ∂2y gt (x̄, ȳ,∇y gt (x̄, ȳ))(0) = {0}, t

= 1, . . . , r,

and thus, the qualification condition (3.18) is satisfied. So, the inclusion (3.20) holds by virtue
of (3.19) and Lemma 2.7. If in addition ∇y f j , j = 1, . . . , q,∇y gt , t = 1, . . . , r are strictly
differentiable at (x̄, ȳ), then one can employ Mordukhovich (2006a, Theorem 1.65(iii))
instead of Mordukhovich (2006a, Theorem 1.65(ii)) to obtain an equality in (3.21), and
thus, (3.23) becomes as equality as well. In this circumstance, the inclusion (3.24) becomes
as equality due to Lemma 2.2 under normal regularities of gph∇y f j , j = 1, . . . , q, and
gph∇y gt , t = 1, . . . , r. �

4 Optimality via KKT relaxation schemes for multiobjective bilevel
optimization

An often-used approach to dealing with a bilevel optimization problem is to replace the
lower-level problem by its KKT relaxation schemes. Inspired by the scalar one in Dempe and
Zemkoho (2014), we first propose a KKT relaxation multiobjective problem for the multiob-
jective bilevel optimization problem (P) and explore relationships of solutions between them.
We then establish FJ and KKT necessary conditions in terms of the first- and second-orders
limiting subdifferentials for a KKT relaxation multiobjective formulation of the multiobjec-
tive bilevel optimization problem (P). In this vein, we are able to obtain necessary conditions
in the forms of the M-,C-, and S-type stationarity. For the sake of concise presentation, we
only provide FJ and KKT necessary conditions that are of the M-type stationarity.

A KKT relaxation multiobjective formulation of the problem (P) reads as follows.

V − min
x,y,α,λ

{
(F1(x, y), . . . , Fp(x, y)) | 0 ∈ L(x, y, α, λ), Gk(x) ≤ 0, k = 1, . . . , l,

(RP)

gt (x, y) ≤ 0, λt gt (x, y) = 0, t = 1, . . . , r,

α := (α1, . . . , αq) ∈ R
q
+ ∩ Sq , λ := (λ1, . . . , λr ) ∈ R

r+
}
,
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where L(x, y, α, λ) is defined as in (3.2). The constraint set of the problem (RP) is denoted
by

CR := {
(x, y, α, λ) ∈ R

n+m+q+r | 0 ∈ L(x, y, α, λ), Gk(x) ≤ 0, k = 1, . . . , l,

gt (x, y) ≤ 0, λt gt (x, y) = 0, t = 1, . . . , r,

α := (α1, . . . , αq) ∈ R
q
+ ∩ Sq , λ := (λ1, . . . , λr ) ∈ R

r+
}
. (4.1)

It should be noted here that a local weak Pareto solution of the problem (RP) is similarly
defined as in Definition 1.1(ii), and we denote by locS(R P) the set of local weak Pareto
solution of this problem.

The first theorem describes a relationship between local weak Pareto solutions of prob-
lem (P) and problem (RP). The statement of this theorem is inspired by the scalar one in
Dempe and Zemkoho (2014, Theorem 4.1).

Theorem 4.1 Consider the map � given by (3.3), and let the (SCQ) be satisfied at x̄ ∈ R
n .

(i) If (x̄, ȳ) ∈ locS(P), then for each (ᾱ, λ̄) ∈ �(x̄, ȳ), one has (x̄, ȳ, ᾱ, λ̄) ∈ locS(R P).

(ii) If (x̄, ȳ, ᾱ, λ̄) ∈ locS(R P) for all (ᾱ, λ̄) ∈ �(x̄, ȳ), then it holds that (x̄, ȳ) ∈ locS(P).

Proof To justify (i), we let (x̄, ȳ) ∈ locS(P). Suppose for contradiction that there is
(α̃, λ̃) ∈ �(x̄, ȳ) such that (x̄, ȳ, α̃, λ̃) /∈ locS(R P). Then, we can find a sequence
{(xn, yn, αn, λn)} ⊂ CR such that (xn, yn, αn, λn) → (x̄, ȳ, α̃, λ̃) and

Fi (xn, yn) < Fi (x̄, ȳ), i = 1, . . . , p, n ∈ N,

where αn := (αn
1 , . . . , α

n
q ) and λn := (λn

1, . . . , λ
n
r ). As {(xn, yn, αn, λn)} ⊂ CR , it follows

that

0 ∈
q∑

j=1

αn
j ∂y f j (xn, yn) +

r∑

t=1

λn
t ∂y gt (xn, yn), (4.2)

||αn || = 1, gt (xn, yn) ≤ 0, λn
t gt (xn, yn) = 0, t = 1, . . . , r,

Gk(xn) ≤ 0, k = 1, . . . , l, n ∈ N. (4.3)

Since the (SCQ) is satisfied at x̄ , i.e., there exists ŷ ∈ R
m such that

gt (x̄, ŷ) < 0, t = 1, . . . , r,

it entails that there is n0 ∈ N such that

gt (xn, ŷ) < 0, t = 1, . . . , r,

for all n ≥ n0. It means that the (SCQ) is satisfied at xn for all n ≥ n0, without loss of
generality we assume that the (SCQ) is satisfied at xn for all n ∈ N. This together with (4.2)
and (4.3) confirms that yn ∈ S(xn) by virtue of (3.5) for all n ∈ N. Hence, we arrive at the
following assertions

Fi (xn, yn) < Fi (x̄, ȳ), i = 1, . . . , p,

yn ∈ S(xn), Gk(xn) ≤ 0, k = 1, . . . , l, n ∈ N,

(xn, yn) → (x̄, ȳ) as n → ∞,
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or equivalently,

Fi (xn, yn) < Fi (x̄, ȳ), i = 1, . . . , p,

(xn, yn) ∈ C, n ∈ N,

(xn, yn) → (x̄, ȳ) as n → ∞,

where C is given in (1.1), which contradicts the fact that (x̄, ȳ) ∈ locS(P).

To justify (ii), we let (x̄, ȳ, ᾱ, λ̄) ∈ locS(R P) for all (ᾱ, λ̄) ∈ �(x̄, ȳ). Then, for each
(ᾱ, λ̄) ∈ �(x̄, ȳ), it holds that

0 ∈
q∑

j=1

ᾱ j∂y f j (x̄, ȳ) +
r∑

t=1

λ̄t∂y gt (x̄, ȳ), (4.4)

||ᾱ|| = 1, gt (x̄, ȳ) ≤ 0, λ̄t gt (x̄, ȳ) = 0, t = 1, . . . , r, (4.5)

Gk(x̄) ≤ 0, k = 1, . . . , l. (4.6)

where ᾱ := (ᾱ1, . . . , ᾱq) and λ̄ := (λ̄1, . . . , λ̄r ). With the fulfilment of the (SCQ) at x̄ ,
invoking (3.5) again, we get by (4.4) and (4.5) that ȳ ∈ S(x̄). This together with (4.6) yields
(x̄, ȳ) ∈ C defined in (1.1). Arguing by contradiction that (x̄, ȳ) /∈ locS(P). This means
that there exists {(xn, yn)} ⊂ C such that (xn, yn) → (x̄, ȳ) as n → ∞ and

Fi (xn, yn) < Fi (x̄, ȳ), i = 1, . . . , p, n ∈ N.

Similarly as above, we may assume that the (SCQ) is satisfied at xn for all n ∈ N. For each
n ∈ N, the relation (xn, yn) ∈ C entails that Gk(xn) ≤ 0, k = 1, . . . , l and yn ∈ S(xn),
and then, by (3.5), we find αn := (αn

1 , . . . , α
n
q ) ∈ R

q
+ ∩ Sq and λn := (λn

1, . . . , λ
n
r ) ∈ R

r+
such that

0 ∈
q∑

j=1

αn
j ∂y f j (xn, yn) +

r∑

t=1

λn
t ∂y gt (xn, yn),

gt (xn, yn) ≤ 0, λn
t gt (xn, yn) = 0, t = 1, . . . , r,

which means that (αn, λn) ∈ �(xn, yn). Since the (SCQ) is satisfied at x̄, we apply Proposi-
tion 3.4(ii) to conclude that � is locally bounded at (x̄, ȳ). Hence, by taking a subsequence
if necessary, we may assume that (αn, λn) converges to some (α̃, λ̃). Furthermore, we asset
that (α̃, λ̃) ∈ �(x̄, ȳ) as � is closed at (x̄, ȳ) thanks to Proposition 3.4(i). Consequently, we
find a sequence {(xn, yn, αn, λn)} ⊂ CR such that (xn, yn, αn, λn) → (x̄, ȳ, α̃, λ̃) and

Fi (xn, yn) < Fi (x̄, ȳ), i = 1, . . . , p, n ∈ N.

This contradicts the fact that (x̄, ȳ, α̃, λ̃) ∈ locS(R P) because of (α̃, λ̃) ∈ �(x̄, ȳ). The
proof of the theorem is complete. �

Remark 4.2 As shown by Dempe and Dutta (2012, Example 3.1) with the smooth setting
that, in Theorem 4.1(ii), if the condition (x̄, ȳ, ᾱ, λ̄) ∈ locS(R P) holds not for all (ᾱ, λ̄) ∈
�(x̄, ȳ), then the corresponding result may go awry. The reader is referred to Dempe and
Dutta (2012) for further study on relationships of global solutions between a smooth scalar
bi-level problem and its KKT formulation one.

Let us establish FJ necessary condition for the KKT relaxation multiobjective formulation
of the multiobjective bilevel optimization problem (P).
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Theorem 4.3 Let (x̄, ȳ, ᾱ, λ̄) ∈ locS(R P) with ᾱ := (ᾱ1, . . . , ᾱq) and λ̄ := (λ̄1, . . . , λ̄r ).

Assume that for all z := (v1, . . . , vq , u1, . . . , ur )withv j := (v
j
1 , . . . , v

j
m) ∈ ∂y f j (x̄, ȳ), j =

1, . . . , q, ut := (ut
1, . . . , ut

m) ∈ ∂y gt (x̄, ȳ), t = 1, . . . , r satisfying

q∑

j=1

ᾱ jv
j +

r∑

t=1

λ̄t u
t = 0, (4.7)

the qualification condition (3.18) holds. Then there exist ν := (ν1, . . . , νp) ∈ R
p
+, η :=

(η1, . . . , ηl) ∈ R
l+, β := (β1, . . . , βr ) ∈ R

r+, γ ∈ R+, not all zero, and z :=
(v1, . . . , vq , u1, . . . , ur ) satisfying (4.7) as well as ω := (ω1, . . . , ωm) ∈ R

m with ||ω|| ≤ 1,
such that

0 ∈
p∑

i=1

νi∂ Fi (x̄, ȳ) +
l∑

k=1

ηk
(
∂Gk(x̄), 0m

) +
r∑

t=1

βt
(
∂gt (x̄, ȳ) ∪ ∂(−gt )(x̄, ȳ)

)

+
q∑

j=1

γ ∂2y f j (x̄, ȳ, v j )(ᾱ jω) +
r∑

t=1

γ ∂2y gt (x̄, ȳ, ut )(λ̄tω), (4.8)

ηk Gk(x̄) = 0, k = 1, . . . , l, (4.9)

γ

(
m∑

i=1

v
j
i ωi

)

≥ 0, j ∈ J (ᾱ), (4.10)

γ

(
m∑

i=1

ut
iωi

)

= 0, t ∈ I3(x̄, ȳ, λ̄), (4.11)

βt = 0, t ∈ I1(x̄, ȳ, λ̄), (4.12)

βtγ

(
m∑

i=1

ut
iωi

)

= 0 ∨
(

βt > 0 ∧ γ

(
m∑

i=1

ut
iωi

)

> 0

)

, t ∈ I2(x̄, ȳ, λ̄), (4.13)

where

J (ᾱ) : = { j = 1, . . . , q | ᾱ j = 0}, (4.14)

I1(x̄, ȳ, λ̄) : = {t = 1, . . . , r | λ̄t = 0, gt (x̄, ȳ) < 0}, (4.15)

I2(x̄, ȳ, λ̄) : = {t = 1, . . . , r | λ̄t = 0, gt (x̄, ȳ) = 0}, (4.16)

I3(x̄, ȳ, λ̄) : = {t = 1, . . . , r | λ̄t > 0, gt (x̄, ȳ) = 0}. (4.17)

Proof Note that the set-valued map L given in (3.2) is closed by virtue of Proposition 3.3(ii).
Then, the relationship 0 ∈ L(x, y, α, λ) is nothing else but d

(
(x, y, α, λ, 0); gph L

) = 0, or
equivalently, d

(
(x, y, α, λ, 0); gph L

) ≤ 0 due to that fact that d
(
(x, y, α, λ, 0); gph L

) ≥ 0.
Consider the functions h : Rn × R

m × R
q × R

r → R and ψ : Rn × R
m × R

q × R
r →

R
l × R × R

q × R
r × R

r defined respectively by

h(x, y, α, λ) : = d
(
(x, y, α, λ, 0); gph L

)
,

ψ(x, y, α, λ) : = [G(x), h(x, y, α, λ), α, (λ,−g(x, y))], (4.18)

where G(x) := (G1(x), . . . , Gl(x)) and g(x, y) := (g1(x, y), . . . , gr (x, y)).
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Now, the problem (RP) can be reformulated in the following form:

V − min
x,y,α,λ

{
(F1(x, y), . . . , Fp(x, y)) | (x, y, α, λ) ∈ ψ−1(�)

}
, (4.19)

whereψ was defined by (4.18),� := R
l−×R−×�1×�2 with�1 := {α := (α1, . . . , αq) ∈

R
q | α ∈ R

q
+ ∩ Sq} and �2 := {(a, b) ∈ R

r × R
r | a ∈ R

r+, b ∈ R
r+, 〈a, b〉 = 0}. Since

(x̄, ȳ, ᾱ, λ̄) is a local weak Pareto solution of the problem (4.19), applying Lemma 2.8 to
this problem, we find ν := (ν1, . . . , νp) ∈ R

p
+ and v∗ ∈ N

(
ψ(x̄, ȳ, ᾱ, λ̄);�

)
, not all zero,

such that

0 ∈
p∑

i=1

νi∂x,y,α,λFi (x̄, ȳ) + ∂〈v∗, ψ〉(x̄, ȳ, ᾱ, λ̄)

=
p∑

i=1

νi∂ Fi (x̄, ȳ) × {(0q , 0r )} + ∂〈v∗, ψ〉(x̄, ȳ, ᾱ, λ̄). (4.20)

Using the product rule for limiting normal cones (cf. Mordukhovich 2006a, Proposition 1.2),
it holds that

N
(
ψ(x̄, ȳ, ᾱ, λ̄);�

) = N
(
G(x̄);Rl−

) × N
(
h(x̄, ȳ, ᾱ, λ̄);R−

)

× N
(
ᾱ;�1

) × N
(
(λ̄,−g(x̄, ȳ));�2

)
. (4.21)

To calculate the normal cones in the right-hand side of (4.21), we apply Lemmas 2.4 and 2.5
to obtain that

N (G(x̄);Rl−) := {η := (η1, . . . , ηl) ∈ R
l | ηk ≥ 0, ηk Gk(x̄) = 0, k = 1, . . . , l}, (4.22)

N (h(x̄, ȳ, ᾱ, λ̄);R−) := {γ ∈ R | γ ≥ 0}, (4.23)

N (ᾱ;�1) := {μ := (μ1, . . . , μq) ∈ R
q | μ j ≤ 0, j ∈ J (ᾱ),

μ j := μ̃ᾱ j , μ̃ ∈ R, j /∈ J (ᾱ)}, (4.24)

and

N ((λ̄,−g(x̄, ȳ));�2) := {(ζ, β̃) := (ζ1, . . . , ζr , β̃1, . . . , β̃r ) ∈ R
r × R

r | ζt

= 0, t ∈ I3(x̄, ȳ, λ̄),

β̃t = 0, t ∈ I1(x̄, ȳ, λ̄),

(ζt < 0 ∧ β̃t < 0) ∨ ζt β̃t = 0, t ∈ I2(x̄, ȳ, λ̄)}, (4.25)

where J (ᾱ), I1(x̄, ȳ, λ̄), I2(x̄, ȳ, λ̄) and I3(x̄, ȳ, λ̄)were given in (4.14)–(4.17), respectively.
So, it holds that

N
(
ψ(x̄, ȳ, ᾱ, λ̄);�

)

= {
(η, γ, μ, ζ, β̃) | η, γ, μ, ζ, β̃ satisfying (4.22)−(4.25), respectively

}
.

Denoting by v∗ := (η, γ, μ, ζ, β̃) ∈ N
(
ψ(x̄, ȳ, ᾱ, λ̄);�

)
, we have

〈v∗, ψ〉(x, y, α, λ) =
l∑

k=1

ηk Gk(x)+γ h(x, y, α, λ)+
q∑

j=1

μ jα j +
r∑

t=1

ζtλt −
r∑

t=1

β̃t gt (x, y).

(4.26)

123



636 Ann Oper Res (2020) 287:617–642

Since the functions given in (4.26) are locally Lipschitz continuous at (x̄, ȳ, ᾱ, λ̄), applying
the limiting subdifferential sum rule in Lemma 2.3 yields the following inclusions

∂〈v∗, ψ〉(x̄, ȳ, ᾱ, λ̄) ⊆
l∑

k=1

ηk∂Gk(x̄) × {(0m, 0q , 0r )} + γ ∂h(x̄, ȳ, ᾱ, λ̄)

+ {(0n, 0m)} × {μ} × {0r }

+ {(0n, 0m, 0q)} × {ζ } +
r∑

t=1

∂
( − β̃t gt

)
(x̄, ȳ) × {(0q , 0r )}

⊆
l∑

k=1

ηk∂Gk(x̄) × {(0m, 0q , 0r )} + γ ∂h(x̄, ȳ, ᾱ, λ̄)

+
r∑

t=1

βt
(
∂gt (x̄, ȳ) ∪ ∂(−gt )(x̄, ȳ)

) × {(μ, ζ )}, (4.27)

where βt := |β̃t | for each t = 1, . . . , r , and the second inclusion holds inasmuch as ∂
( −

β̃t gt
)
(x̄, ȳ) ⊂ |β̃t |

(
∂gt (x̄, ȳ) ∪ ∂(−gt )(x̄, ȳ)

)
for all t = 1, . . . , r. Due to the Lipschitz

continuity of the distance function d(·; gph L), using Lemma 2.6 allows us to obtain the
following ones

∂h(x̄, ȳ, ᾱ, λ̄) = ∂x,y,α,λd
(
(x̄, ȳ, ᾱ, λ̄, 0); gph L

)

⊆ {
(a, b, c, d) ∈ R

n+m+q+r | ∃e ∈ R
m with (a, b, c, d, e)

∈ ∂d
(
(x̄, ȳ, ᾱ, λ̄, 0); gph L

)}

= {
(a, b, c, d) ∈ R

n+m+q+r | ∃e ∈ R
m with (a, b, c, d, e)

∈ N
(
(x̄, ȳ, ᾱ, λ̄, 0); gph L

) ∩ IB
}

(4.28)

⊆
⋃

ω∈IBm

D∗L
(
x̄, ȳ, ᾱ, λ̄, 0)(ω), (4.29)

where IB ⊂ R
n+m+q+r+m, and noting further that the equality (4.28) holds by virtue of

(2.10) and the inclusion (4.29) is valid because of (2.4). It together with Theorem 3.6, under
the fulfillment of condition (3.18), entails that

γ ∂h(x̄, ȳ, ᾱ, λ̄) ⊆
⋃

ω:||ω||≤1

⋃

z:∑q
j=1 ᾱ j v

j +∑r
t=1 λ̄t ut =0,

v j ∈∂y f j (x̄,ȳ),ut ∈∂y gt (x̄,ȳ)

γ
[( q∑

j=1

∂2y f j (x̄, ȳ, v j )(ᾱ jω)

+
r∑

t=1

∂2y gt (x̄, ȳ, ut )(λ̄tω)
)

×
{( m∑

i=1

v1i ωi , . . . ,

m∑

i=1

v
q
i ωi ,

m∑

i=1

u1
i ωi , . . . ,

m∑

i=1

ur
i ωi

)}]
,

(4.30)
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where ω := (ω1, . . . , ωm) ∈ R
m . We deduce from (4.27) and (4.30) the following estimate

∂〈v∗, ψ〉(x̄, ȳ, ᾱ, λ̄) ⊆
[

l∑

k=1

ηk
(
∂Gk(x̄), 0m

)

+
r∑

t=1

βt
(
∂gt (x̄, ȳ) ∪ ∂(−gt )(x̄, ȳ)

)
]

× {(μ, ζ )}

+
⋃

ω:||ω||≤1

⋃

z:∑q
j=1 ᾱ j v

j +∑r
t=1 λ̄t ut =0,

v j ∈∂y f j (x̄,ȳ),ut ∈∂y gt (x̄,ȳ)

γ
[( q∑

j=1

∂2y f j (x̄, ȳ, v j )(ᾱ jω)

+
r∑

t=1

∂2y gt (x̄, ȳ, ut )(λ̄tω)
)

×
{( m∑

i=1

v1i ωi , . . . ,

m∑

i=1

v
q
i ωi ,

m∑

i=1

u1
i ωi , . . . ,

m∑

i=1

ur
i ωi

)}]
. (4.31)

We assert by the relation (4.20) that there are u∗
i ∈ ∂ Fi (x̄, ȳ), i = 1, . . . , p such that

−
p∑

i=1

νi u
∗
i × {(0q , 0r )} ∈ ∂〈v∗, ψ〉(x̄, ȳ, ᾱ, λ̄).

Thus, by (4.31), there exist ω := (ω1, . . . , ωm) ∈ R
m with ||ω|| ≤ 1 and z :=

(v1, . . . , vq , u1, . . . , ur ) with v j := (v
j
1 , . . . , v

j
m) ∈ ∂y f j (x̄, ȳ), j = 1, . . . , q, ut :=

(ut
1, . . . , ut

m) ∈ ∂y gt (x̄, ȳ), t = 1, . . . , r ,
∑q

j=1 ᾱ jv
j + ∑r

t=1 λ̄t ut = 0 such that

−
p∑

i=1

νi u
∗
i ∈

[ l∑

k=1

ηk
(
∂Gk(x̄), 0m

) +
r∑

t=1

βt
(
∂gt (x̄, ȳ) ∪ ∂(−gt )(x̄, ȳ)

)

+
q∑

j=1

γ ∂2y f j (x̄, ȳ, v j )(ᾱ jω) +
r∑

t=1

γ ∂2y gt (x̄, ȳ, ut )(λ̄tω)
]
,

(0q , 0r ) =(μ, ζ ) + ( m∑

i=1

γ v1i ωi , . . . ,

m∑

i=1

γ v
q
i ωi ,

m∑

i=1

γ u1
i ωi , . . . ,

m∑

i=1

γ ur
i ωi

)
,

where one can easily check that the conditions (4.8)–(4.13) are satisfied. Here, it should be
noted further that if ν, η, β, γ are simultaneously equal to zero, then it confirms that ν = 0 and
v∗ = (η, γ, μ, ζ, β̃) = 0, which contradicts the assertion in (4.20). Consequently, ν, η, β, γ

are not all equal to zero. The proof of the theorem is complete. �

We now provide an example which illustrates the obtained results.

Example 4.4 Consider the problem (P) with F1, F2, f1, f2, g1, g2 : R2 → R and G1, G2 :
R → R defined, respectively, by

F1(x, y) := |x | − |y|, F2(x, y) := −|x | − y, f1(x, y) := x + y, f2(x, y) := |x − y|,
g1(x, y) := y, g2(x, y) := x + |y|, G1(x) := x3, G2(x) := |x | − 1.
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Observe that the functions f j (x, ·), j = 1, 2, gt (x, ·), t = 1, 2 are convex for all x ∈ R, and
∂y f1(x, y) = 1, ∂y g1(x, y) = 1 for all (x, y) ∈ R

2, as well as

∂y f2(x, y) =

⎧
⎪⎨

⎪⎩

−1 if x > y,

1 if x < y,

[ − 1, 1] if x = y,

∂y g2(x, y) =

⎧
⎪⎨

⎪⎩

−1 if y < 0,

1 if y > 0,

[ − 1, 1] if y = 0.

(4.32)

Then, we can compute the feasible set of the problem (RP) defined by (4.1) as

CR := {
(x, y, α, λ) ∈ R × R × R

2 × R
2 | 0

∈
2∑

j=1

α j∂y f j (x, y) +
2∑

t=1

λt∂y gt (x, y),

− 1 ≤ x ≤ 0, y ≤ 0, x + |y| ≤ 0,

λ1y = 0, λ2(x + |y|) = 0,

α := (α1, α2) ∈ R
2+ ∩ S2, λ := (λ1, λ2) ∈ R

2+
}

= {
(0, 0, α, λ) | α1 ≥ 0, α2 ≥ 0, α2

1 + α2
2 = 1, λ1 ≥ 0, λ2 ≥ 0,−α1

− λ1 ∈ [−α2, α2] + [−λ2, λ2]
}

∪ {
(υ, υ, α, λ) | −1 ≤ υ < 0, α1 ≥ 0, α2 ≥ 0, α2

1 + α2
2 = 1, λ1

= 0, λ2 ≥ 0,−α1 + λ2 ∈ [−α2, α2]
}
,

and see that locS(R P) = CR .

Let us consider point (x̄, ȳ) := (−1,−1), and then

�(x̄, ȳ) = {(α, λ) ∈ R
2 × R

2 | α1 ≥ 0, α2 ≥ 0, α2
1 + α2

2 = 1, λ1
= 0, λ2 ≥ 0,−α1 + λ2 ∈ [−α2, α2]}.

It is easy to see that the (SCQ) is satisfied at x̄ := −1 and (x̄, ȳ, α̃, λ̃) ∈ locS(R P) for all
(α̃, λ̃) ∈ �(x̄, ȳ). Applying now Theorem 4.1(ii) to conclude that (x̄, ȳ) ∈ S(P).

Next, by choosing ᾱ := (0, 1), λ̄ := (0, 0), it holds that (x̄, ȳ, ᾱ, λ̄) ∈ locS(R P). For
all z := (v1, v2, u1, u2) with v1 ∈ ∂y f1(x̄, ȳ), v2 ∈ ∂y f2(x̄, ȳ), u1 ∈ ∂y g1(x̄, ȳ), u2 ∈
∂y g2(x̄, ȳ) satisfying (4.7), we have v1 = 1, v2 = 0, u1 = 1 and u2 = −1, i.e., we obtain
the unique element z = (1, 0, 1,−1). For each ω ∈ R, it is easy to see by Lemma 2.7 that

∂2y f1(x̄, ȳ, v1)(ω) = ∂2y g1(x̄, ȳ, u1)(ω) = ∂2y g2(x̄, ȳ, u2)(ω) = {(0, 0)}.
To deal with the partial second-order subdifferential of f2 at (x̄, ȳ, v2), we present the graph
of f2 as

gph (∂y f2) = {(x, y,−1) | x > y} ∪ {(x, y, 1) | x < y} ∪ {(x, y, z) | x = y, z ∈ [−1, 1]}
= �1 ∪ �2 ∪ �3,

where �1 := {(x, y,−1) | x ≥ y},�2 := {(x, y, z) | x = y, z ∈ [−1, 1]} and �3 :=
{(x, y, 1) | x ≤ y} are closed sets. Then, we will compute the Fréchet normal cones to
gph (∂y f2) at (x, y, z) near (x̄, ȳ, v2) = (−1,−1, 0). It suffices to consider points (x, y, z) ∈
gph (∂y f2) such that −1 < z < 1, i.e., (x, y, z) ∈ �2, and thus,

N̂
(
(x, y, z); gph (∂y f2)

) = {(a,−a) | a ∈ R} × {0}.
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It implies by the definition of limiting normal cone (2.2) that

N
(
(x̄, ȳ, v2); gph (∂y f2)

) = {(a,−a) | a ∈ R} × {0},
and then, due to (2.4) and (2.17),

∂2y f2(x̄, ȳ, v2)(ω) =
{

{(a,−a) | a ∈ R} if ω = 0,

∅ if ω �= 0.

It is clear that the qualification condition (3.18) holds. Finally, applying Theorem 4.3, we
obtain the assertions in (4.8)–(4.13).

In the smooth framework, the result obtained in Theorem 4.3 reduces to the following
form, which can be found partially in Ye (2011).

Corollary 4.5 Let (x̄, ȳ, ᾱ, λ̄) ∈ locS(R P) with ᾱ := (ᾱ1, . . . , ᾱq) and λ̄ := (λ̄1, . . . , λ̄r ).
Let the functions involving in the problem (P) be continuously differentiable at the referenced
points. Let ∇y f j (x̄, ȳ) := (v

j
1 , . . . , v

j
m), j = 1, . . . , q,∇y gt (x̄, ȳ) := (ut

1, . . . , ut
m), t =

1, . . . , r. Assume further that ∇y f j , j = 1, . . . , q,∇y gt , t = 1, . . . , r are strictly differ-
entiable at (x̄, ȳ) with the partial derivatives denoted by ∇2

yx f j (x̄, ȳ),∇2
yy f j (x̄, ȳ), j =

1, . . . , q,∇2
yx gt (x̄, ȳ),∇2

yy gt (x̄, ȳ), t = 1, . . . , r. Then there exist ν := (ν1, . . . , νp) ∈
R

p
+, η := (η1, . . . , ηl) ∈ R

l+, β := (β1, . . . , βr ) ∈ R
r , γ ∈ R+, not all zero, as well as

ω := (ω1, . . . , ωm) ∈ R
m with ||ω|| ≤ 1 such that

0 =
p∑

i=1

νi∇x Fi (x̄, ȳ) +
l∑

k=1

ηk∇Gk(x̄) +
r∑

t=1

βt∇x gt (x̄, ȳ)

+
q∑

j=1

γ ᾱ j∇2
yx f j (x̄, ȳ)�w +

r∑

t=1

γ λ̄t∇2
yx gt (x̄, ȳ)�w,

0 =
p∑

i=1

νi∇y Fi (x̄, ȳ) +
r∑

t=1

βt∇y gt (x̄, ȳ) +
q∑

j=1

γ ᾱ j∇2
yy f j (x̄, ȳ)�w

+
r∑

t=1

γ λ̄t∇2
yy gt (x̄, ȳ)�w,

with (4.9)−(4.13).

Proof The proof follows from Theorems 4.3 and 3.6(ii). �

In order to obtain a KKT necessary condition for the KKT relaxation multiobjective
formulation of the multiobjective bilevel optimization problem (P), we need the following
qualification constraint condition, which involves the constraint functions of both the upper-
level and lower-level multiobjective problems.

Definition 4.6 Let (x̄, ȳ, ᾱ, λ̄) be a feasible point of the problem (RP), where ᾱ :=
(ᾱ1, . . . , ᾱq) and λ̄ := (λ̄1, . . . , λ̄r ), and let z := (v1, . . . , vq , u1, . . . , ur ) with v j :=
(v

j
1 , . . . , v

j
m) ∈ ∂y f j (x̄, ȳ), j = 1, . . . , q, ut := (ut

1, . . . , ut
m) ∈ ∂y gt (x̄, ȳ), t = 1, . . . , r

satisfying (4.7) and ω := (ω1, . . . , ωm) ∈ R
m with ||ω|| ≤ 1. We say that the bi-level
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qualification condition (BCQ) holds at (x̄, ȳ, ᾱ, λ̄) if for any η := (η1, . . . , ηl) ∈ R
l+, β :=

(β1, . . . , βr ) ∈ R
r+, γ ∈ R+ satisfying

0 ∈ ∑l
k=1 ηk

(
∂Gk(x̄), 0m

) + ∑r
t=1 βt

(
∂gt (x̄, ȳ) ∪ ∂(−gt )(x̄, ȳ)

)

+∑q
j=1 γ ∂2y f j (x̄, ȳ, v j )(ᾱ jω) + ∑r

t=1 γ ∂2y gt (x̄, ȳ, ut )(λ̄tω)

with (4.9)−(4.13)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⇒

⎧
⎪⎨

⎪⎩

η = 0

β = 0

γ = 0.

(4.33)

It should be emphasized here that common regularity conditions for nonlinear program-
ming such as the Mangasarian–Fromovitz constraint qualification are violated at every
feasible point for KKT reformulations; see e.g., Ye et al. (1997) and Scheel and Scholtes
(2000), and thus this assertion is also valid for our problem (RP). So, a qualification condi-
tion as above, which glues the constraint functions of both the upper-level and lower-level
multiobjective problems together, is essential for investigation of KKT necessary conditions.
In the scalar case, i.e., q = 1, the above-defined (BCQ) reduces to the (CQ) introduced
in Dempe and Zemkoho (2014, (5.5)). In this case, as mentioned in Dempe and Zemkoho
(2014), the (BCQ) is closely related to the so-called No Nonzero Abnormal Multiplier Con-
straint Qualification (NNAMCQ) used in Ye (2005) for a smooth mathematical programs
with equilibrium constraints. Note further that a slightly different consideration is that we
use in Definition 4.6 the term

∑r
t=1 βt

(
∂gt (x̄, ȳ) ∪ ∂(−gt )(x̄, ȳ)

)
, βt ≥ 0, instead of the

one ∂
(∑r

t=1 β̃t gt (x̄, ȳ)
)
, β̃t ∈ R, as in Dempe and Zemkoho (2014, (5.5)) because it allows

us to obtain the corresponding multipliers which are nonnegative that is commonly attained
when dealing with optimization problems with inequality constraints.

We are now in a position to establish a KKT necessary condition for the problem (RP)
under the fulfilment of the (BCQ).

Corollary 4.7 Let (x̄, ȳ, ᾱ, λ̄)∈ locS(R P). Assume that for all z :=(v1, . . . , vq , u1, . . . , ur )

with v j := (v
j
1 , . . . , v

j
m) ∈ ∂y f j (x̄, ȳ), j = 1, . . . , q, ut := (ut

1, . . . , ut
m) ∈ ∂y gt (x̄, ȳ), t =

1, . . . , r satisfying (4.7), the qualification condition (3.18) holds together with the fulfill-
ment of the (BCQ) given in (4.33). Then there exist ν := (ν1, . . . , νp) ∈ R

p
+ \ {0}, η :=

(η1, . . . , ηl) ∈ R
l+, β := (β1, . . . , βr ) ∈ R

r+, γ ∈ R+ and z := (v1, . . . , vq , u1, . . . , ur )

satisfying (4.7) as well as ω := (ω1, . . . , ωm) ∈ R
m with ||ω|| ≤ 1 such that (4.8)–(4.13)

hold.

Proof Thanks to Theorem 4.3, we find ν := (ν1, . . . , νp) ∈ R
p
+, η := (η1, . . . , ηl) ∈

R
l+, β := (β1, . . . , βr ) ∈ R

r+, γ ∈ R+, not all zero, and z := (v1, . . . , vq , u1, . . . , ur )

satisfying (4.7) as well as ω := (ω1, . . . , ωm) ∈ R
m with ||ω|| ≤ 1 such that (4.8)–(4.13)

hold. Suppose for contradiction that ν = 0. Then, we have

0 ∈ ∑l
k=1 ηk

(
∂Gk(x̄), 0m

) + ∑r
t=1 βt

(
∂gt (x̄, ȳ) ∪ ∂(−gt )(x̄, ȳ)

)

+∑q
j=1 γ ∂2y f j (x̄, ȳ, v j )(ᾱ jω) + ∑r

t=1 γ ∂2y gt (x̄, ȳ, ut )(λ̄tω)

with (4.9)−(4.13).

Invoking the (BCQ) in (4.33), it ensures that η = 0, β = 0 and γ = 0. Hence, ν, η, β, γ are
all equal to zero that is absurd. The proof is finished. �

Remark 4.8 It is worth mentioning here that in the case of the lower-level optimization
problem is a scalar one (i.e., q = 1 and thus, ᾱ = 1), the condition (4.10) disappears

123



Ann Oper Res (2020) 287:617–642 641

due to the fact that J (ᾱ) given in (4.14) is an empty set. If we consider both the upper-
level and lower-level problems are scalar ones (i.e., p = 1 and q = 1), then the result
obtained in Corollary 4.7 reduces to the similar one established in Dempe and Zemkoho
(2014, Theorem 5.2), where a direct proof has been constructed by verifying a condition of
type (2.20) under the fulfilment of the (BCQ) given in (4.33).
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