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Abstract One effective technique that has recently been considered for solving classifica-
tion problems is parametric ν-support vector regression. This method obtains a concurrent
learning framework for both margin determination and function approximation and leads to a
convex quadratic programming problem. In this paper we introduce a new idea that converts
this problem into an unconstrained convex problem. Moreover, we propose an extension of
Newton’s method for solving the unconstrained convex problem. We compare the accuracy
and efficiency of our method with support vector machines and parametric ν-support vector
regression methods. Experimental results on several UCI benchmark data sets indicate the
high efficiency and accuracy of this method.
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1 Introduction

Classification has numerous practical applications includingmedical science, letter and num-
ber recognition, voice recognition, face recognition and hand-writing (Joachims 1998; Cao
and Tay 2001; Osuna et al. 1997; Ivanciuc 2007). The first idea of classification as a support
vector machine (SVM) was introduced by Vapnik and Chervonenkis (1974). A new method
to obtain the separating hyperplane has recently been considered, the parametric v-support
vector classification (Par ν-SVC) (Hao 2010).

To date, many methods have been proposed for the classification of data by SVM as a
hyperplanewithmaximummargin [Themaximummargin hyperplanewas shown tominimize
an upper bound of the generalization error according to the Vapnik theory (Vapnik and
Chervonenkis 1974; Bennett and Bredensteiner 2000)], regression classifier, etc (Deng et al.
2012; Pappu et al. 2015; Xanthopoulos et al. 2014). The ν-support vector regression is a
new class of SVM. It can handle both classification and regression (Schölkopf et al. 2000;
Schölkopf and Smola 2001; Pontil et al. 1998). Schölkopf et al. introduced a new parameter
ν which can control the number of support vectors and training errors.

Finally, a new method for obtaining the regression line that has recently been considered
is the parametric ν-support vector regression (Par ν-SVR) (Hao 2010; Wang et al. 2014).

All the above-mentioned methods are used to solve constrained quadratic problems.
In this paper, we introduce a new idea for converting the constrained convex quadratic

problem into an unconstrained convex problem.There are several approaches for solving
unconstrained convex optimization problems (Resende and Pardalos 2002). One impor-
tant and fast established methods for convex unconstrained problems is Newton’s method.
Because in our case the objective function is not twice differentiable, we use the generalized
Newton’s method.

Our notations are described as follows:
Let a = [ai ] be a vector in Rn . By a+ we mean a vector in Rn whose i th entry is 0 if

ai < 0 and equals ai if ai ≥ 0. If f is a real valued function defined on the n-dimensional
real space Rn , the gradient of f at x is denoted by � f (x) which is a column vector in Rn ,
and the n × n Hessian matrix of second partial derivatives of f at x is denoted by �2 f (x).
By AT we mean the transpose of matrix A, and ∇ f (x)T d is called directional derivative of
f at x in direction d . For the two vectors x and y in the n−dimensional real space, xT y
denotes the scalar product. For x ∈ Rn , ‖x‖ denotes 2−norm. A column vector of ones
of arbitrary dimension will be indicated by e. For A ∈ Rm×n and B ∈ Rn×l ; the kernel
K (A; B) is an arbitrary function which maps Rm×n × Rn×l into Rm×l . In particular, if x
and y are column vectors in Rn then, K (xT ; y) is a real number, K (xT ; AT ) is a row vector
in Rm , and K (A; AT ) is an m × m matrix. The convex hull of a set S has been shown by
co{S}. The identity n × n matrix will be denoted by In×n .

2 Parametric ν-support vector classification

For a classification problem, a data set (xi , yi ) is given for training with the input xi ∈ Rn

and the corresponding target value or label yi = 1 or −1 i.e.:

(x1, y1), . . . , (xn, yn) ∈ Rn × {±1}.

A classification problem finds the unique hyperplane wT x + b = 0 (w, x ∈ Rn, b ∈ R) that
best separates the two classes of data.
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Schölkopf et al. proposed a new class of support vector machines which called ν-support
vector machine or ν-support vector classification (ν-SVC) (Schölkopf et al. 2000; Schölkopf
and Smola 2001). In ν-SVC, there is a parameter ν for controlling the number of support
vectors and this parameter also can eliminate one of the other free parameters of the original
support vector algorithms (Schölkopf and Smola 2001).

A modification of the ν-SVC algorithm, called Par ν-SVC, which considers a parametric-
margin model of arbitrary shape (Hao 2010). In fact, in the Par ν-SVC we consider a
parametric margin g (x) = cT x + d and hyperplane f (x) = wT x + b that classify data if
and only if:

yi
(
wT xi + b

)
≥ cT xi + d, yi ∈ {±1}, i = 1, . . . , n. (1)

For finding function f (x) and g (x) as follows using the minimization problem (Hao 2010)

min
w,b,c,d,ξ

1

2
‖w‖2 + C

(
−ν

(
1

2
‖c‖2 − d

)
+ 1

n

n∑
i=1

ξi

)

s.t. yi
(
wT xi + b

)
≥ (cT xi + d) − ξi ,

ξi ≥ 0, i = 1, . . . , n, (2)

where C and ν are the penalty parameters.
In Par ν-SVC, a margin of separation between the two pattern classes is maximized, and

the solutions are those examples that lie closest to this margin (Boser et al. 1992).
Also, it is obvious that the objective function of Par ν-SVC is an non-convex function and

so we are motivated to consider other techniques for finding an approximate solution of (2).
We know that the regression is more general than classification and if we apply Par ν-

SVR to a binary classification dataset, then under some conditions, Par ν-SVR gives the same
solution as Par ν-SVC. For this reason, we review ν-SVR and Par ν-SVR formulation for a
linear two-class classifier.

In the ε-support vector regression (ε-SVR) (Schölkopf and Smola 2001) for classification,
our goal is to solve the following constrained optimization problem

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

1

n

n∑
i=1

(ξi + ξ∗
i )

s.t.
(
wT xi + b

)
− yi ≤ ε + ξi ,

yi −
(
wT xi + b

)
≤ ε + ξ∗

i ,

ξ∗
i , ξi ≥ 0. i = 1, . . . , n (3)

The ν-SVR algorithm alleviates the problem (3) by considering ε part of the optimization
problem because it is difficult to select appropriate value of the ε in ε-SVR (Schölkopf et al.
2000; Schölkopf and Smola 2001).

Then the minimization problem of ν-SVR is as follows:

min
w,b,ξ,ξ∗,ε

1

2
‖w‖2 + C

(
νε + 1

n

n∑
i=1

(ξi + ξ∗
i )

)

s.t.
(
wT xi + b

)
− yi ≤ ε + ξi ,
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yi −
(
wT xi + b

)
≤ ε + ξ∗

i ,

ξ∗
i , ξi ≥ 0. i = 1, . . . , n

Everything above ε is captured in slack variables ξi and ξ∗
i , which are penalized in the

objective function via a regularization constant C , chosen a priori (Vapnik 1998). The size
of ε is traded off against model complexity and slack variables via a constant ν > 0.

In a Par ν-SVR, we consider a parametric margin g (x) = cT x +d instead of ε in ν-SVR.
Especially the hyperplane f (x) = wT x + b classifies data if and only if (Hao 2010; Wang
et al. 2014):

(
wT xi + b

)
≥ cT xi + d f or yi = +1,

(
wT xi + b

)
≤ −cT xi − d f or yi = −1.

Using the following minimization problem, we find f (x) and g (x) simultaneously

min
w,b,c,d,ξ∗,ξ

1

2
‖w‖2 + C

(
ν

(
1

2
‖c‖2 + d

)
+ 1

n

n∑
i=1

(
ξi + ξ∗

i

)
)

s.t.
(
wT xi + b

)
+

(
cT xi + d

)
≥ yi − ξi ,

(
cT xi + d

)
−

(
wT xi + b

)
≤ yi + ξ∗

i ,

ξ∗
i , ξi ≥ 0, i = 1, . . . , n, (4)

where C and ν are positive penalty parameters.
The point that is important here is that the Par ν-SVR for classification leads to a convex

problem. Figure 1 illustrates the Par ν-SVR for classification graphically.
The Lagrangian corresponding to the problem (4) is given by

L(w, b, c, d, α, α∗, β, β∗, ξ, ξ∗) = 1

2
‖w‖2 + C

(
ν

(
1

2
‖c‖2 + d

)
+ 1

n

n∑
i=1

(
ξi + ξ∗

i

))

−
n∑

i=1

αi

[(
wT xi + b

)
+

(
cT xi + d

)
− yi + ξi

]

−
n∑

i=1

α∗
i

[(
wT xi + b

)
−

(
cT xi + d

)
+ yi + ξ∗

i

]

−
n∑

i=1

βiξi −
n∑

i=1

β∗
i ξ∗

i ,

where αi , αi
∗, βi and βi

∗ are the nonnegative Lagrange multipliers.
By using the Karush–Kuhn–Tucker (KKT) conditions, we obtain the dual optimization

problem of (4) as (Boyd and Vandenberghe 2004)

max
α,α∗ −1

2

n∑
i=1

n∑
j=1

(
αi − α∗

i

) (
α j − α∗

j

)
xi

T x j

− 1

2Cν

n∑
i=1

n∑
j=1

(
αi + α∗

i

) (
α j + α∗

j

)
xi

T x j +
n∑

i=1

(
αi − α∗

i

)
yi
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Fig. 1 Illustration of parametric ν-SVR for classification

s.t.
n∑

i=1

(
αi − α∗

i

) = 0,

n∑
i=1

(
αi + α∗

i

) = Cν,

0 ≤ αi ≤ C

n
, 0 ≤ α∗

i ≤ C

n
. i = 1, . . . , n

By solving the above dual problem, we obtain the Lagrange multipliers αi and α∗
i , which

give the weight vector w and c as a linear combination of xi :

w =
n∑

i=1

(αi − α∗
i )xi ,

c = 1

Cν

n∑
i=1

(αi + α∗
i )xi ,

while the bias terms b and d are determined by exploiting the KKT conditions, which are

b = −1

2

(
wT xi + wT x j + cT xi − cT x j − yi − y j

)
,

d = −1

2

(
wT xi − wT x j + cT xi + cT x j − yi + y j

)
,

for some i , j such that αi , α
∗
j ∈ (0, C

n ).
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The regression function f (x) and the corresponding parametric insensitive function g(x)
can be obtained as follows [see Chen et al. (2012a)]:

f (x) =
n∑

i=1

(αi − α∗
i )(x

T
i x) + b,

g(x) = 1

Cν

n∑
i=1

(αi + α∗
i )(x

T
i x) + d.

In the next section, we focus on solving the minimization problem (4).

3 Solving quadratic constrained programming problem

We see that the classical Par ν-SVR formulation is equivalent to finding the f (x) and g(x)
simultaneously . Using 2-norm slack variables ξi and ξ∗

i in objective function of (4) leads to
the following minimization problem (Lee and Mangasarian 2001).

min
w,b,c,d,ξ∗,ξ

1

2
‖w‖2 + C

(
ν

(
1

2
‖c‖2 + d

)
+ 1

n

n∑
i=1

(
‖ξi‖2 + ∥∥ξ∗

i

∥∥2)
)

s.t.
(
wT xi + b

)
+

(
cT xi + d

)
≥ yi − ξi ,

−
(
cT xi + d

)
+

(
wT xi + b

)
≤ yi + ξ∗

i ,

ξ∗
i , ξi ≥ 0. i = 1, . . . , n (5)

With respect to the Lagrangian function of (5) and KKT condition we have

ξ ≥ Y −
[(

ATw + be
)

+
(
AT c + de

)]
, (6)

ξ T
(
ξ − Y +

(
ATw + be

)
+

(
AT c + de

))
= 0, (7)

ξ ≥ 0, (8)

where ξ = [ξ1, . . . , ξn]T , Y = [y1, . . . , yn]T and A = [x1, . . . , xn]T . According to the
inequalities (6)–(8) we have (Lee and Mangasarian 2001)

ξ =
(
Y −

[(
ATw + be

)
+

(
AT c + de

)])
+,

and similarly, we can show

ξ∗ =
([(

ATw + be
)

−
(
AT c + de

)]
− Y

)
+.

Thus the problem (5) is equivalent to the following problem:

min
w,b,c,d

ϕ(w, b, c, d) = min
w,b,c,d

1

2
‖w‖2 + Cν

(
1

2
‖c‖2 + d

)

+ C

n

∥∥∥∥
(
Y −

[(
ATw + be

)
+

(
AT c + de

)])
+

∥∥∥∥
2

+ C

n

∥∥∥∥
([(

ATw + be
)

−
(
AT c + de

)]
− Y

)
+

∥∥∥∥
2

. (9)
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In this way, we made some modifications of Par ν-SVR that led to unconstrained convex
problem (9) which we call Par ν-SVRC+.

The main advantage of Par ν-SVRC+ over Par ν-SVC (Hao 2010) and Par ν-SVR is
solving an unconstrained convex problem rather than a large complexity of quadratic pro-
gramming problem (QPP).

Our goal here is to solve the unconstrained problem (9). The objective function to problem
(9) is piecewise quadratic, convex, and differentiable, but it is not twice differentiable (Chen
et al. 2012b; Ketabchi and Moosaei 2012; Pardalos et al. 2014). To solve the problem (9),
we have provided some definitions that deal with the objective function of this problem.

Class LC1 of functions is defined as follows (Hiriart-Urruty et al. 1984):

Definition 1 A function f is said to be an LC1 function on an open set A if:

1. f is continuously differentiable on A,
2. ∇ f is locally Lipschitz on A.

We know that if f is a LC1 function on an open set A , then the ∇ f is differentiable almost
everywhere in A, and its generalized Jacobian in Clarkes sense can be defined (Clarke 1990).

Now, the generalized Hessian of f at x to be the set ∂2 f (x) of n × n matrices is defined
by:

∂2 f (x) = co{H ∈ Rn×n : ∃xk → x wi th ∇ f di f f erentiable at xk and ∂2 f (xk) →
H}.

By considering (9), we have

∂ϕ

∂w
= w + 2

n
(−A)

((
Y −

[(
ATw + be

)
+

(
AT c + de

)])
+

−
([(

ATw + be
)

−
(
AT c + de

)]
− Y

)
+

)
,

∂ϕ

∂b
= 2

n

(
−eT

)((
Y −

[(
ATw + be

)
+

(
AT c + de

)])
+

−
([(

ATw + be
)

−
(
AT c + de

)]
− Y

)
+

)
,

∂ϕ

∂c
= Cνc + 2

n
(−A)

((
Y −

[(
ATw + be

)
+

(
AT c + de

)])
+

+
([(

ATw + be
)

−
(
AT c + de

)]
− Y

)
+

)
,

∂ϕ

∂d
= Cν + 2

n
(−eT )

((
Y −

[(
ATw + be

)
+

(
AT c + de

)])
+

+
([(

ATw + be
)

−
(
AT c + de

)]
− Y

)
+

)
.

The formulation ∂ϕ
∂w

can be written

∂ϕ

∂w
= T1u − 2

n
A ((Y − T2u)+ − (T3u − Y )+) , (10)

where T1 = [In×n 0n×n 0n×1 0n×1], T2 = [A AT e e], T3 = [A − AT e − e] and
u = [wT cT bT dT ]T .

Note, we know (10) is not differentiable, but it satisfies Lipschitz conditions.
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Theorem 1 ∂ϕ
∂w

is globally Lipschitz.

Proof From (10) we have that
∥∥∥∥

∂ϕ

∂w
(s) − ∂ϕ

∂w
(z)

∥∥∥∥ =
∥∥∥∥T1s − 2

n
A ((Y − T2s)+ − (T3s − Y )+) − T1z

+ 2

n
A ((Y − T2z)+ + (T3z − Y )+)

∥∥∥∥

≤ ‖T1(s − z) − 2

n
A [(Y − T2s) − (T3s − Y )] + 2

n
A ((Y − T2z) + (T3z − Y )) ‖

≤ ‖T1(s − z)‖ + 2

n
‖A‖‖T2(s − z) + T3(s − z)‖

≤
(

‖T1‖ + 2

n
‖AT ‖‖T2 + T3‖

)
‖s − z‖. (11)

Then from (11) we conclude that
∂ϕ
∂w

is globally Lipschitz with constant K = ‖T1‖ + 2
n ‖A‖‖T2 + T3‖. ��

Similarly, ∂ϕ
∂b ,

∂ϕ
∂c and ∂ϕ

∂d are globally Lipschitz.

Theorem 2 ∇ϕ(u) is globally Lipschitz continuous and the generalized Hessian of ϕ(u) is
∂2ϕ(u) = (T1 + AD1(u)T2 + AD2(u)T3) where D1(u) denotes the diagonal matrix whose
i th diagonal entry ui is equal to 1 if (Y − T2u)i > 0 ; ui is equal to 0 if (Y − T2u)i ≤ 0
and D2(u) also denotes the diagonal matrix whose i th diagonal entry ui is equal to 1 if
(T3u − Y )i > 0; ui is equal to 0 if (T3u − Y )i ≤ 0 .

Proof See (Hiriart-Urruty et al. 1984). ��
From the previous discussion and according to the above theorem, we know that the ∇ϕ is
differentiable almost everywhere, and the generalized Hessian of ϕ exists everywhere.

Therefore, to solve unconstrained problem (9),we can use the generalizedNewtonmethod.

3.1 A brief expression for nonlinear par ν-SVRC+

In the nonlinear case, we have the following minimization problem (Hao 2010):

min
w,b,c,d,ξ,ξ∗

1

2
‖w‖2 + C

(
ν

(
1

2
‖c‖2 + d

)
+ 1

n

(
‖ξ‖2 + ∥∥ξ∗∥∥2)

)

s.t.
(
K (A, D)Tw + be

)
+

(
K (A, D)T c + de

)
≥ Y − ξ,

−
(
K (A, D)T c + de

)
+

(
K (A, D)Tw + be

)
≤ Y + ξ∗,

ξ∗, ξ ≥ 0,

where K (., .) is any arbitrary kernel function and D = [A; B]. Similarly, this constrained
problem can be considered an unconstrained problem as follows:

min
w,b,c,d

ϕ(w, b, c, d) = min
w,b,c,d

1

2
‖w‖2 + Cν

(
1

2
‖c‖2 + d

)

+ C

n

∥∥∥∥
(
Y −

[(
K (A, D)Tw + be

)
+

(
K (A, D)T c + de

)])
+

∥∥∥∥
2

+ C

n

∥∥∥∥
([(

K (A, D)Tw + be
)

−
(
K (A, D)T c + de

)]
− Y

)
+

∥∥∥∥
2

.
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Fig. 2 Classification results of linear Par ν-SVRC+ on generated dataset

4 Numerical experiments

In this section, we discuss our approach using two different performances: the accuracy and
the learning speed of a classifier. Throughout this experimental part, we used the Gaussian
kernel (i.e. K (x, y) = exp(−γ ‖x− y‖2) , γ > 0) for all data. The method was implemented
in MATLAB 8 and carried out on a PC with Corei5 2310 (2.9 GHz) and 8 GB main memory.
In order to examine the efficiency of Par ν-SVRC+, two samples of n-dimensional problems
are given and we derive the separating hyperplanes by means of aforesaid algorithm. In the
first problem, we determine randomly some arbitrary points in two classes of A and B which
are approximately separated from each other linearly based on given MATLAB code in the
“Appendix A” (here, we created 150 points for class A and 100 points for class B). These
data are produced randomly within the interval [− 50, 50]. In Fig. 2, the given separating
hyperplane has been shown by means of rendering Par ν-SVRC+ with red color and also the
parametric margin hyperplane are indicated by blue and violet color. The accuracy rate of
separating in this problem is 99.61%.

It is noted that bymeans ofMATLABcode the problemswith large-scale size are produced
and the separating hyperplanes are derived by implementing the Par ν-SVRC+.

The average accuracy of separation is approximately 99%.
In another example, Ripleys synthetic standard data set have been adapted (Ripley 1996).

These data comprise of 250 data samples out of which 125 data are placed in class of A
and the next 125 of them in class B and they are not linearly separated (see Fig. 3). In Fig.
3 the separating hyperplane has been shown by red color. Likewise, the parametric margin
hyperplanes, which have been derived by rendering this program, are identified by blue and
violet dotted line. The accuracy rate of separating in this problem is 84.80%.

In the following, demonstrate applications to two real data expression profiles for lung
cancer and colon tumor. Lung cancer data set was used byHong andYoung to show the power
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Fig. 3 Classification results of linear Par ν-SVRC+ on Ripleys dataset

Fig. 4 Performance comparisons of lung cancer and colon tumor data across Par ν-SVR and Par ν-SVRC+
methods

of the optimal discriminant plane even in ill-posed settings. Applying the KNN method in
the resulting plane gave 77% accuracy (Hong and Yang 1991). Colon tumor data set contains
62 samples collected from colon-cancer patients. Among them, 40 tumor biopsies are from
tumors (labeled as “negative”) and 22 normal (labeled as “positive”) biopsies are fromhealthy
parts of the colons of the same patients. 2000 out of around 6500 genes were selected (Alon
et al. 1999).

When we apply our method on these data sets we gain an accuracy of 87.50% for
lung cancer and 87.38% colon tumor while MATLAB Quadprog gain 85.83% and 84.29%,
respectively. In Fig. 4 accuracy between the proposed method and the method of quadratic
programming in MATLAB can be seen.

To further test the performance of Par ν-SVRC+, we run this algorithm on several UCI
benchmark data sets (Lichman 2013). We tested 13 UCI benchmark data sets, which are
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Table 1 Comparison of linear SVM, Par ν-SVR and Par ν-SVRC+ on benchmark data sets

Dataset SVM Par ν-SVR Par ν-SVRC+
size C Acc(%) C, ν Acc (%) C, ν Acc (%)

Time (s) Time (s) Time(s)

House-votes 102 94.96 ± 5.04 1020, 0.1 78.62 ± 5.54 106, 0.1 95.65 ± 4.34

435 × 16 1.52 23.14 0.43

Spect 109 72.63 ± 17.07 1015, 0.1 53.21 ± 6.03 106, 0.1 73.44 ± 7.32

237 × 22 1.12 4.51 0.54

Australian 10 85.65 ± 7.68 1020, 0.9 83.90 ± 4.66 108, 0.5 86.36 ± 7.8

690 × 14 2.18 389.72 0.65

Diabetes 103 77.86 ± 4.34 106 , 0.1 60.54 ± 4.39 1010, 0.9 77.73 ± 5.89

768 × 8 1.93 596.21 1.24

Heart 104 84.81 ± 10.37 1020 , 0.1 82.96 ± 0.74 107, 0.1 85.18 ± 11.11

270 × 14 1.07 112.55 0.51

Haberman 10 73.53 ± 4.22 107, 0.1 65.21 ± 9.49 106, 0.1 75.48 ± 4.51

306 × 3 0.81 48.81 0.53

F-Diagnosis 103 88.14 ± 6.32 1020, 0.1 44.18 ± 15.81 106, 0.1 88.14 ± 1.85

100 × 9 0.49 0.87 0.5

German 106 77.00 ± 7 1015 , 0.9 79.47 ± 4.5 106, 0.1 76.80 ± 4.20

1000 × 24 3.69 1352.82 0.81

Ionosphere 10 88.59 ± 10.81 1020 , 0.9 76.03 ± 10.76 108,0.1 88.01 ± 7.59

351 × 34 13.69 37.06 0.54

Bupa 103 69.85 ± 11.03 1010 , 0.9 71.84 ± 7.14 107, 0.2 71.88 ± 9.63

345 × 6 0.68 38.49 0.46

Sonar 100 79.98 ± 16.34 1020, 0.1 70.72 ± 11.22 109, 0.1 77.01 ± 3.53

208 × 60 0.95 8.49 0.67

Splice 106 80.90 ± 5.14 1020 , 0.1 63.50 ± 1.44 106, 0.1 81.5 ± 4.49

1000 × 60 6.98 2052.50 1.53

Wdbc 106 95.58 ± 4.42 1012 , 0.1 91.91 ± 4.36 1010, 0.1 95.06 ± 4.94

569 × 30 3.34 37.81 1.38

shown in Tables 1 and 2. To accelerate model selection, we tuned a set comprising randomly
20% of the training samples to select optimal parameters.

As we noted in the discussion on Par ν-SVRC+, the generalization errors of the classifier
depend on the values of the kernel parameter γ , the regularization parameterC , and parameter
ν. Tenfold cross-validationwas used to evaluate the performance of the classifier and estimate
the accuracy. Tenfold cross-validation followed these steps

– The datasets were divided into ten disjoint subsets of equal size.
– The classifier was trained on all the subsets except one.
– The validation error was computed by testing it on the omitted subset left out.
– This process was repeated for ten trials.

Tables 1 and 2, respectively, give the average accuracies, times, and kernel operations, of
this method in the linear and nonlinear case of classification. In Par ν-SVR we solve a
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Table 2 Comparison of non-linear SVM, Par ν-SVR and Par ν-SVRC+ on benchmark data sets

Dataset SVM Par ν-SVR Par ν-SVRC+
C Acc (%) C, ν Acc (%) C, ν Acc (%)
γ Time (s) γ Time (s) γ Time (s)

House-votes 106 94.91 ± 5.09 106, 0.1 76.58 ± 7.50 106, 0.1 97.00 ± 2.99

435 × 16 1 × 10−2 19.65 5 × 10−2 59.11 1 × 10−1 3.45

Spect 100 71.16 ± 9.60 1020, 0.1 58.06 ± 11.16 106, 0.1 75.71 ± 18.03

237 × 22 1 × 10−1 4.04 1 × 10−3 91.13 4 × 10−2 2.12

Australian 1010 82.17 ± 7.82 1010, 0.9 67.66 ± 10.90 106, 0.1 73.76 ± 1.94

690 × 14 1 × 10−6 106.34 1 × 10−4 115.60 5 × 10−4 11.09

Diabetes 101 75.25 ± 6.83 106 , 0.1 69.27 ± 4.75 106, 0.1 76.56 ± 7.98

768 × 8 1 × 10−4 72.43 5 × 10−4 328.23 9 × 10−5 12.16

Heart 106 81.48 ± 14.81 1015, 0.1 61.11 ± 1.85 106, 0.1 71.11 ± 2.14

270 × 14 1 × 10−5 7.60 1 × 10−6 133.89 5 × 10−4 1.28

Haberman 100 73.52 ± 2.55 107, 0.1 71.27 ± 6.13 106, 0.1 76.17 ± 7.80

306 × 3 1 × 10−5 7.55 5 × 10−6 55.47 5 × 10−5 1.74

F-Diagnosis 101 88.14 ± 6.32 1010, 0.1 60.31 ± 19.68 106, 0.1 88.14 ± 1.85

100 × 9 1 × 10−1 0.85 1 × 10−1 3.11 9 × 10−2 0.80

German 103 76.00 ± 6.00 1020, 0.9 71.80 ± 3.20 106, 0.1 76.00 ± 4.00

1000 × 24 1 × 10−4 147.96 1 × 10−3 620.94 5 × 10−3 21.12

Ionosphere 102 92.57 ± 4.64 1010, 0.1 89.14 ± 2.51 106, 0.1 96.58 ± 3.42

351 × 34 1 × 10−3 10.66 5 × 10−1 41.97 34 × 10−2 4.20

Bupa 103 73.31 ± 17.42 1020, 0.9 72.20 ± 10.15 106, 0.1 73.36 ± 15.85

345 × 6 1 × 10−5 8.23 1 × 10−3 31.04 3 × 10−4 1.77

Sonar 102 83.64 ± 12.21 1013, 0.8 74.03 ± 7.69 106, 0.1 89.90 ± 10.10

208 × 60 1 × 10−1 3.01 1 × 10−1 53.12 2 × 100 0.98

Splice 106 60.10 ± 3.53 1020, 0.9 64.79 ± 5.00 106, 0.1 88.70 ± 4.98

1000 × 60 1 × 10−1 82.03 9 × 10−3 3361.91 2 × 10−2 26.25

Wdbc 102 94.55 ± 3.69 1020, 0.1 86.28 ± 3.36 106, 0.1 94.03 ± 4.21

569 × 30 1 × 10−5 35.06 1 × 10−7 859.85 5 × 10−5 5.48

constrained convex quadratic programming problem by using dual problem with MATLAB
Quadprog optimization toolbox (the bolded values in the Tables 1, 2 represent highest accu-
racies obtained by corresponding classifiers).

In Table 1, we see that the accuracy of our linear Par ν-SVRC+ is higher than linear Par
ν-SVR on various datasets. For example, for House-votes dataset the accuracy of our Par
ν-SVRC+ is 95.65% , while the accuracy of SVM is 94.96% and Par ν-SVR is 78.62%.
Beside on the another example, for Sonar datasets the accuracy of our Par ν-SVRC+ is
77.01% , while the accuracy of SVM is 79.98% and Par ν-SVR is 70.72%. Although SVM
win in the accuracy, so our method is still winner in time. In other datasets, we also obtain
similar results. Our Par ν-SVRC+ is much far faster than the original SVM and Par ν-SVR,
indicating that the unconstrained optimization technique can improve the calculation speed.
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It can also be see that our Par ν-SVRC+ is the fastest on all of datasets. The results in Table 2
are better condition in time and accuracy with that appeared in Table 1, and therefore confirm
the above conclusions further.

As mentioned above, we have solved an unconstrained convex minimization problem
instead of a constrained convex one. The Experimental results in Tables 1 and 2 demonstrate
the high speed, efficiency and accuracy of the proposed method.

5 Concluding remarks

In this paper, we presented a new idea for solving the Par ν-SVR classification problem. By
using 2-norm of the slack variables in the objective function of (4) and the KKT conditions
associated with this obtained problem, we converted the constrained quadratic minimization
problem (4) into an unconstrained convex problem. Since the objective function of Par ν-
SVRC+ is an LC1 function, the generalized Newton method was proposed for solving it. In
this way, we have derived much faster and accurately method than Par ν-SVR which solves
a constrained quadratic problem. The experimental results on several UCI benchmark data
sets have shown that this method has high efficiency and accuracy both in the linear and
nonlinear case.

A Matlab code

% Generate random M,N;
%Input: m1,m2 n; Output:M N
pl=inline(’(abs(x)+x)/2’);
M=rand(m1,n); M=100*(M-0.5*spones(M));
M(:,2)=M(:,1)+1*ones(m1,1)+100*rand(m1,1)+100*rand(m1,1);
N=rand(m2,n); N=100*(N-0.5*spones(N));
N(:,2)=N(:,1)-1*ones(m2,1)-100*rand(m2,1)-100*rand(m2,1);
uu=5*rand(3,n); uu1=uu;uu1(:,2)= uu1(:,1)+1*ones(3,1);
uu2=uu;uu2(:,2)= uu2(:,1)-1*ones(3,1);
M=[M;uu1;10 0]; N=[N;uu2;30 -20];m1=m1+4;m2=m2+4;m=m1+m2;
xM=[-50:40*rand: 50];yM=xM+1;xN=[-50:20*rand:50];yN=xN-1;
plot(M(:,1),M(:,2),’oblack’,N(:,1),N(:,2),’*bl’);
axis square
format short ;[m1 m2 n toc],[max(M(:,1)) min( N(:,1))]
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