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Abstract Employee scheduling is a well known problem that appears in a wide range of
different areas including health care, air lines, transportation services, and basically any orga-
nization that has to deal with workforces. In this paper we model a collection of challenging
staff scheduling instances as a weighted partial Boolean maximum satisfiability (maxSAT)
problem. Using our formulation we conduct a comparison of four different cardinality con-
straint encodings and analyze their applicability on this problem. Additionally, we measure
the performance of two leading solvers from the maxSAT evaluation 2015 in a series of
benchmark experiments and compare their results to state of the art solutions. In the process
we also generate a number of challenging maxSAT instances that are publicly available and
can be used as benchmarks for the development and verification of modern SAT solvers.

Keywords Employee scheduling · maxSAT · SAT encodings · Cardinality constraints

1 Introduction

Staff scheduling problems arise whenever there is the need for efficient management and
distribution ofworkforce over periods of time. Therefore, awide range of different institutions
can benefit from an optimized staff schedule, including hospitals, airlines, security personnel,
transportation services, and basically any organization that has to deal with a large number
of employees. Finding the ideal workforce roster however is not an easy task, and even a
basic variant of this problem belongs to the class of NP-hard problems (Chuin Lau 1996).
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A variety of different staff scheduling problems are described in the literature and many
solving methods have been proposed in the past. Corresponding surveys regarding employee
scheduling were provided by Ernst et al. (2004) and Bergh et al. (2013). While many
approaches are based on mathematical programming and heuristic methods, the application
of solution strategies which model the problem as a maximumBoolean satisfiability problem
(maxSAT) has not been considered. The intuitive way of working with propositional formu-
las, as well as growing developments in the SAT community motivate the investigation of
such an approach.

In this paper we concentrate on the employee scheduling instances introduced by Cur-
tois and Qu (2014). According to the authors those instances were designed to describe
realistic and challenging staff scheduling problems while still being straightforward to use.
The included scheduling periods range from one week up to one year, requiring up to 180
employees and 32 shift types to be assigned.

Recent publications provided an integer programming (IP) model as well as a metaheuris-
tic approach to this problem. The best known solutions using these techniques as well as a
description of the IP formulationwere provided byCurtois andQu (2014). A detailed descrip-
tion of the used algorithms, namely a branch and price method and a metaheuristic based on
ejection chains can be found in the literature (Burke and Curtois 2014; Burke et al. 2008).
With the use of the branch and price algorithm and ejection chains, optimal solutions could
be found for most of the smaller instances and new lower/upper bounds could be determined
for many instances. However, optimal solutions for a number of instances are still unknown.

In this paper we want to investigate a new solving paradigm for this problem based
on maxSAT. Modeling a problem with a maximum propositional satisfiability formulation
has shown to perform well on a variety of different applications in the past, including the
scheduling of business-to-businessmeetings (Bofill et al. 2015) andHigh School Timetabling
(Demirovic andMusliu 2014). The most related papers to our work are Kundu and Acharyya
(2008) and Haspeslagh et al. (2013). Kundu and Acharyya (2008) proposed a SAT formu-
lation for a basic nurse scheduling problem. The local search algorithm GSAT was used to
provide solutions for the generated SAT instances. Haspeslagh et al. (2013) investigated the
translation of instances from the first international nurse rostering competition (Haspeslagh
et al. 2014) to SAT. Additionally, in this work the features of SAT instances were used to ana-
lyze the hardness of nurse rostering instances. To the best of our knowledgewe investigate for
the first time the application of maxSAT for employee scheduling. We also experiment with
different encodings for the cardinality constraints and evaluate complete maxSAT solvers
for the considered instances. Additionally, to show that the applicability of maxSAT is not
restricted to the instances fromCurtois and Qu (2014), we will describe how themaxSAT for-
mulation introduced in this paper can be adapted to model the well known problem instances
from the second international nurse rostering competition (INRC2) (Ceschia et al. 2015).
Although several approaches have been applied on those instances within the competition
(e.g. Römer and Mellouli 2016), to the best of our knowledge they will be modeled for the
first time using maxSAT.

The main contributions of this paper are:

– We provide the first maxSAT formulation for the variant of the employee scheduling
problem introduced by Curtois and Qu (2014). Furthermore, we show how the proposed
maxSAT formulation can be adapted to model another well known variant from nurse
rostering.

– We experiment with different encodings for cardinality constraints and compare two
leading solvers from the maxSAT evaluation 2015. Additionally, we experiment with a
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simplification of the problem and provide a comparison with the state of the art solu-
tions.

– We provide challenging instances which can be used by the maxSAT community to test
and improve results of maxSAT solvers.

In Sect. 2 we first give a problem description to provide a deeper insight into the problem.
We provide a brief introduction into the maximum satisfiability problem (maxSAT) and give
the details of our maxSAT model in Sect. 3. In Sect. 4 we then present our experimental
environment as well as the experiments which have been conducted. At the end of the paper
in Sect. 5 we make final conclusions and provide an outlook on future work.

2 Problem description

In our work we deal with a variant of the employee scheduling problem as it was described by
Curtois and Qu (2014). We chose to focus on this specific problem formulation as it provides
a number of instances that include challenging and realistic scheduling problems, while still
being intuitive and straightforward to use.

The overall goal is to find an optimal roster for a number of given employees and shift
types, where every employee may either work a single shift or have a day off on each day
of a given scheduling period. For this problem the scheduling period is stated as a number
of weeks and therefore the number of days is always a multitude of seven. Another property
concerning the scheduling horizon ensures that the first day of the roster is always a Monday,
while the last day is always a Sunday. The employees and shift types which are considered
in this problem are specified by a list of unique names which are connected with a number
of constraints that restrict all possible shift assignments. Some employees might for example
be only allowed to work in certain shifts and patterns of consecutive working shifts might be
prohibited or requested. Each problem instance specifies hard- and soft-constraints to set up
a corresponding rule set. Hard constraints on the one hand are always strict and have to be
fulfilled in order to generate a feasible solution. Soft constraints on the other hand may be
violated, but will in case of a violation lead to an integer valued penalty. For example a hard
constraint in our problem could restrict the minimum and maximum amount of time that an
employee has to work in total over the whole scheduling horizon. Personal shift requests that
employees can state are formulated as soft constraints in our problem instances.

Finally, the objective function of a candidate solution is defined as the sum of all violated
soft constraints. We therefore deal with an optimization problem, where the optimal solution
is the schedule with the lowest possible objective value. We have a deeper look on all of the
constraints in the next section.

3 Modeling employee scheduling as partial weighted maxSAT

3.1 The maximum satisfiability problem

The satisfiability problem (SAT) is a decision problemwhich asks whether there exist assign-
ments of truth values to variables, such that a propositional logic formula is evaluated
true (that is, the formula is satisfied). A propositional logic formula is built from Boolean
variables using logic operators and parentheses. The formula is usually given in conjunc-
tive normal form (CNF), meaning that the formula is a conjunction of clauses, where a
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clause is a disjunction of literals, where a literal is a variable or its negation. For example,
the formula (X1 ∨ X2) ∧ (¬X1 ∨ ¬X3) is said to be satisfiable, because the assignment
(X1, X2, X3) = (true, f alse, f alse) satisfies the formula. However, had we inserted the
clause (¬X1 ∨ X2 ∨ X3), the same assignment would no longer satisfy the formula.

An extension to SAT that we consider in this work is Partial Weighted maxSAT, in which
clauses are partitioned into two types: hard and soft clauses. Each soft clause is given a
weight. The goal is to find an assignment which satisfies the hard clauses and minimizes the
sum of weights of the unsatisfied soft clauses. For more in depth information about SAT and
maxSAT, we direct the interested reader to the literature (Biere et al. 2009).

In the following sections we will formulate our problems as maxSAT. The obtained
maxSAT formulas which model the problem are called encodings.

3.2 Decision variables

In order to model the assignment of shifts to employees, we define variables Si,d,t ,∀i ∈
I, d ∈ D, t ∈ T , where I denotes the set of all employees, D refers to the set of days in the
planning horizon, and T is the set of all shift types in the problem. Each variable Si,d,t will be
set to true if and only if employee i gets the shift type t assigned on the d-th day in the roster,
otherwise it will be set to false. Additionally, we define helper variables Xi,d ,∀i ∈ I, d ∈ D
which are set to true if employee i has no shift assigned on day d . So Xi,d is set to true if
and only if employee i is considered to have a day off on this day.

To connect the X variables with the decision variables S we include the following equiv-
alences in our formulation:

Xi,d ↔
∧

t∈T
¬Si,d,t ∀i ∈ I, d ∈ D (1)

In the following sections we give a description of all the constraints in our employee
scheduling problem and additionally specify how each of them is encoded in our partial
weighted maxSAT formulation. Clauses which are generated from soft constraints will also
have weights assigned.

Since many of the constraints contain properties of cardinality constraints, we continue
by shortly introducing the notion of them.

3.3 Cardinality constraints

In order to be able to formulate all of the constraints for the problem, it is necessary tomake use
of cardinality constraints. Such constraints define limits on the number of truth assignments
on a set of given Boolean variables. There are three different types of cardinality constraints:
atLeastk(xi : xi ∈ X), exactlyk(xi : xi ∈ X), and atMostk(xi : xi ∈ X)which are defined on
sets of variables that should have at least, exactly, or atmost k variables having their truth value
assigned. For example if a cardinality constraint limits the number of true valued variables of
the set x1, x2, x3 to at most two atMost2({x1, x2, x3}), the assignment (x1, x2, x3) = (1, 1, 0)
is considered to be feasible,while the assignment (x1, x2, x3) = (1, 1, 1)would be considered
as infeasible.

Additionally, we have to distinguish between hard- and soft cardinality constraints. While
hard cardinality constraints decide whether or not the overall solution will become feasible,
soft cardinality constraints will only penalize the objective function if violated. In our prob-
lem we assign a weight to a cardinality constraint and calculate the total penalty linearly
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depending on the difference to the violated limit. For example if we consider the constraint
atLeast2({x1, x2, x3})with a weight of 40, the assignment (x1, x2, x3) = (0, 0, 0)would lead
to a penalty of 40 · 2 = 80.

Different variants of dealing with cardinality constraints in Boolean satisfiability prob-
lems have been studied in the literature (e.g. Sinz 2005; Asín et al. 2009). In this paper we
investigate four different encoding types: combinatorial encoding, sequential encoding, bit
adder encoding, and cardinality networks. The encodings differ in the number of variables
and clauses needed, and whether or not unit propagation is enough to ensure generalized
arc consistency. Unit propagation forces the assignments of variables that are contained in
unit clauses, that is, clauses which consist of only a single literal. Since all clauses must be
satisfied, including unit clauses, the value of a variable must be set such that the unit clause is
satisfied. A constraint is generalized arc consistent if for each unassigned variable and value
that it can be assigned, there exists an assignment of values to the other unassigned variables
in the constraint such that the constraint is satisfied (Mohr and Masini 1988). It is important
to note that in our modeling, whether an employee scheduling constraint is generalized arc
consistent or not solely depends on generalized arc consistency of the cardinality constraint
used. In the following we briefly describe the cardinality constraints used, we refer the reader
to Demirovic and Musliu (2014), Sinz (2005), and Asín et al. (2009) for more details.

3.3.1 Combinatorial encoding

The combinatorial encoding enumerates all possible undesired truth assignments and forbids
them explicitly by generating corresponding clauses. While this approach may provide an
efficient encoding for small cardinality constraints, the number of generated clauseswill grow
exponentially with the number of variables. An alternative approach would be to explicitly
enumerate all desired truth assignments. For example, to encode atLeast_2({x1, x2, x3}), one
needs to encode clauses that forbid every assignmentwhichdoes not have at least twovariables
x1, x2, and x3 set to true. This can be achieved with the following clauses: (x1 ∨ x2 ∨ x3),
(x1 ∨ x2 ∨ ¬x3), (x1 ∨ ¬x2 ∨ x3), and (¬x1 ∨ x2 ∨ x3). The first clause requires that at
least one variable is set to true, while the other three forbid assignments in which exactly one
variable is set to true, encoding the desired constraint. Unit propagation ensures generalized
arc consistency.

3.3.2 Sequential and bit-adder encoding

The main idea behind the sequential and bit adder encoding is to encode the sum of the
considered variables xi and then forbid certain output values. However, this cannot be done
directly in SAT. Thus, one must introduce auxiliary variables and clauses to capture the
desired behavior.

Both encodings use additional variables to represent each partial sum of the original
variables. The i-th partial sum is defined in terms of the i-th variable and the (i − 1)-th
partial sum (ps(i) = ps(i − 1) + xi and ps(0) = 0). Afterwards, a constraint on the last
partial sum is imposed to encode the cardinality constraint. For example, for the assignment
(x1, x2, x3, x4) = (1, 0, 1, 1), ps(1) = 1, ps(2) = 1, ps(3) = 2, and ps(4) = 3. Enforcing
ps(4) = 3 would lead to the exactly_3 cardinality constraint.

In SAT, variables (e.g. for ps above) cannot be assigned numeric values. Therefore, they
need to be encoded with Boolean variables instead. This is main difference between the
sequential and bit-adder encoding: the former uses unary, while the later uses binary number
representations.
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A number u ∈ [0, n] can be represented as unary in SAT with n additional variables ui
and the following constraints defined on them:

∧

i∈[1,n−1]
(ui ⇒ ui−1). (2)

For example, for the variable u ∈ [0, 5], five auxiliary variables are introduced and
the assignment u = 3 would be given by (u1, u2, u3, u4, u5) = (1, 1, 1, 0, 0). The addition
operation between can be defined on unary number with additional clauses and variables. The
same number may be represented in binary with log(n) bi variables: (b2, b1, b0) = (1, 0, 1).

Due to the different number representations, the bit-adder encoding requires less clauses
and variables when compared to the sequential encoding (O(nlog(n)) clauses and variables
as opposed to O(nk−k2) variables and O(kn) clauses), but unit propagation is not sufficient
to ensure generalized arc consistency for the bit-adder, while it is for the sequential encoding.
For more details on the encodings, we refer the reader to Demirovic and Musliu (2014), Sinz
(2005), and Asín et al. (2009).

3.3.3 Cardinality networks

Cardinality networks generate helper variables that are used to sort all the considered truth
assignments and then insert clauses which forbid certain outputs. The sorting is performed
in a similar way as a simple merge sort algorithm would work. For example, considering an
assignment (x1 = 0, x2 = 1, x3 = 0, x4 = 1), the helper variables a1−4 would represented
the sorted version of this assignment (a1 = 1, a2 = 1, a3 = 0, a4 = 0). Additional clauses
are then inserted to forbid undesired assignments of the helper variables. Generalized arc
consistency is maintained by unit propagation. The encoding requires O(nlog2k) auxiliary
variables and clauses. More details can be found in Asín et al. (2009).

In the experiments covered in later sections of this paper we compare the performance of
those four encodings on two maxSAT solvers.

3.4 Modeling of hard constraints

In this section we give a description of the hard constraints for employee scheduling problem
which is considered in this paper and specify how these constraints can be encoded in our
partial weighted maxSAT formulation.
An employee cannot be assigned more than one shift on a single day Since no employee
should work two shifts on the same day, we have to ensure that no two variables Si,d,t and
Si,d,x may be set to true at the same time if t �= x and i ∈ I , d ∈ D, t, x ∈ T where I is the
set of all employees, D is the set of all days in the scheduling horizon and T is the set of all
possible shift types.

We model this constraint with an atMost1 cardinality constraint.

atMost1({Si,d,1, Si,d,2, . . . , Si,d,|T |}) ∀i ∈ I, d ∈ D (3)

Disallowed shift sequences It is required that each employee needs to rest for a minimum
amount of time after he has worked in a shift. The length of the necessary rest period varies
for each shift type. Because each shift has fixed starting and ending times during the day,
the set of shift types that cannot follow a certain shift type t can be determined easily by
considering all pairs of shift types and comparing their difference in start and ending times
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with the minimum rest time.We refer to the set of all shift types that are not allowed to follow
a shift t as Rt .

The constraints can therefore also be thought of as a number of disallowed shift sequences
which consist of two consecutive shifts and can be included in our formulation by inserting
a clause for each sequence.

|D|−1∧

d=1

(Si,d,t → ¬Si,d+1,x ) ∀t ∈ T, x ∈ Rt (4)

The maximum numbers of shifts for each type that can be assigned to an employee In our
problem some of the employees can have contracts which only allow them to work in specific
shift types for amaximum number of days. For example such a limit could restrict the number
of night shifts an employee may work during the schedule to four, making any roster which
assigns five night shifts to a single employee infeasible. The maximum numbers for each
employee and shift type are given as parameters mmax

it with the problem instances, where
i ∈ I and t ∈ T .

Since this constraint can be seen as the basic case for a cardinality constraint, we do not
discuss the detailed encoding into Boolean satisfiability clauses here, but simply state it as
an atMost cardinality constraint instead:

atMostmmax
it

({Si,1,t , Si,2,t , . . . , Si,|D|,t }
) ∀i ∈ I, t ∈ T (5)

Minimum and maximum working time Each shift type assigns a certain amount of working
time in minutes to its associated employees. Moreover the total amount of the working time
in minutes is restricted for each employee and must lie between a minimum and maximum
bound. Those limits are given to the problem in form of the parameters bmin

i and bmax
i for

each i ∈ I .
In order to formulate this constraint efficiently, we introduce additional helper variables

which help us to count the total number ofminutesworkedby an employee. For their definition
we consider the shift lengths lt ,∀t ∈ T which are given as parameters to the problem and
specify the number of working time in minutes required for shift t . Furthermore we define
their greatest common divisor g = gcd(lt : t ∈ T ). If we have three different shift types,
with the first one lasting for 480, the second one lasting 620, and the third one lasting 120
min, g would then be 20 for example.

With g, we can then calculate simplified lengths for all shifts slt = lt
g ∀t ∈ T . Additionally,

we define the maximum simplified shift length slmax = max{slt : t ∈ T }. Now we are able
to introduce our variable set U , which counts the units of time an employee i works on day
d .

For each employee and day, we introduce helper variables Ui,d,x ,∀i ∈ I, d ∈ D, x ∈
1, . . . , slmax and set up a number of equivalences in order to correctly connect them with our
decision variables S:

Si,d,t ↔
slt∧

x=1

Ui,d,x

slmax∧

y=slt

¬Ui,d,y (6)

All of theU variables can nowbe used to count the overall units of time an employeeworks
and we can use them in order to set up two cardinality constraints that ensure the minimum
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and maximum working time constraint. Note that since we are using simplified lengths, we
also have to divide the given limits by the common divisor g and round appropriately:

atMost
bmax
i /g�

({Ui,d,x |d ∈ D, x ∈ {1, . . . , slmax }}
) ∀i ∈ I (7)

atLeast�bmin
i /g


({Ui,d,x |d ∈ D, x ∈ {1, . . . , slmax }}
) ∀i ∈ I (8)

Maximum consecutive shifts Each employee is only allowed to work for a maximum number
of consecutive days before hemust have a day off. Thismaximum limit is given to the problem
as cmax

i for each i ∈ I . In our formulation we state this constraint by introducing clauses
that require a day off during all possible sequences of length cmax

i . Since this constraint
assumes that the last day before the scheduling horizon sets a day off and the first day after
the scheduling horizon also sets a day off, we do not need to consider any corner cases where
a number of consecutive shifts lower than the maximum is scheduled directly next to the
borders of the planning horizon.

cmax
i∨

x=0

Xi,d+x ∀i ∈ I, d ∈ {1, . . . , |D| − cmax
i } (9)

Minimum consecutive shifts Our problem requires that each employee works at least for a
minimum number of consecutive days. In other words there is a minimum for the number
of consecutive shifts, which is given as parameter cmin

i for all i ∈ I , before an employee is
allowed to have a day off.

Again we do not have to consider corner cases, since this constraint always assumes an
infinite number of consecutive working days before and after the scheduling horizon. For
all the other cases, we formulate this constraint by implicating the minimum length shift
sequence whenever a new shift sequence starts after a day off:

(
Xi,d ∧ ¬Xi,d+1

) →
⎛

⎝
cmin
i∧

x=2

¬Xi, j+x

⎞

⎠ ∀i ∈ I, d ∈ {1, . . . , |D| − 3} (10)

Minimum consecutive days off This can be formulated similarly to the minimum consecu-
tive shifts constraint. No corner cases have to be considered, as this constraint assumes an
infinite sequence of days off before and after the scheduling horizon. The minimum limit of
consecutive days off is given to the problem as parameter omin

i for each employee i ∈ I .
We again use a formulation variant which applies an implication of a minimum length

day off sequence, similar as described for the minimum consecutive shifts constraint which
we described previously:

(¬Xi,d ∧ Xi,d+1
) →

⎛

⎝
omin
i∧

x=2

Xi,d+x

⎞

⎠ ∀i ∈ I, d ∈ {1, . . . , |D| − 3} (11)

Maximum number of weekends Whenever an employee has to work a shift on a Saturday or
a Sunday in the schedule, the corresponding weekend is considered as a working weekend
for this employee. The problem restricts the number of such working weekends for each
employee i as parameter amax

i . Because the scheduling always starts onMonday and ends on

Sunday, the number of weekends can be easily calculated asw = |D|
7 . We can now introduce

additional helper variables Wi,x to state if an employee i works on the x-th weekend. We
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introduce the following equivalences to connect theW variables with the existing X variables
in our formulation. Note that the x variables are multiplied with 7 in order to determine the
day index of the x-th Sunday.

Wi,x ↔ (¬Xi,(x ·7)−1 ∨ ¬Xi,x ·7) ∀i ∈ I, x ∈ {1, . . . , w} (12)

With the help of those variables we can then construct the following cardinality constraints
to formulate the maximum number of weekends constraint:

atMostamax
i

({Wi,1,Wi,2, . . . ,Wi,w}) ∀i ∈ I (13)

Days off An employee may have certain days on which it is strictly required that he has a
day off. Those are given to the problem as sets of day indices Ni for each employee i . We
can introduce this in our formulation by simply generating the corresponding unit clauses:

Xi,d ∀i ∈ I, d ∈ Ni (14)

3.5 Modeling of soft constraints

In this section we give a description of all the soft constraints of the employee scheduling
problem considered in this paper and specify how they can be encoded in our partial weighted
maxSAT formulation.

Requested shift types Each employee may have some days where a certain shift type is
requested for them to work. Since this is not a hard constraint, a violation will be penalized
with a given weight. The corresponding penalties are given to the problem as parameters
qi,d,t , where i ∈ I , d ∈ D and t ∈ T . We handle this constraint by inserting simple weighted
unit clauses for all shift requests into our formulation:

Si,d,t · qi,d,t ∀(i, d, t) where ∃qi,d,t (15)

Unpreferred shift types Similar to the requested shifts constraint, our problem may contain
requests that require an employee to not work a particular shift on a certain day. Our formu-
lation is again based on weighted unit clauses depending on problem parameters pi,d,t that
set the weight of an unpreferred shift, where i ∈ I , d ∈ D and t ∈ T :

¬Si,d,t · pi,d,t ∀(i, d, t) where ∃pi,d,t (16)

Cover requirements A preferred number of employees that should be working in a shift type
is defined for each day. This preferred value of working employees for shift t on day d is
given to the problem in the form of parameters udt for all d ∈ D and t ∈ T . Furthermore for
each of these values two penalty parameters vmin

dt and vmax
dt are used to penalize a possible

under- or over-coverage of the preferred value.
We introduce twocardinality constraints per cover requirement to formulate this constraint.

One for the over-coverage, which is penalized linearly depending on the weight vmax
dt , and

the second one for the under-coverage also penalized linearly depending on the weight vmin
dt :

atMostudt ({S1,d,t , S2,d,t , . . . , S|I |,d,t }) · vmax
dt ∀d ∈ D, t ∈ T (17)

atLeastudt ({S1,d,t ; S2,d,t ; . . . ; S|I |,d,t }) · vmin
dt ∀d ∈ D, t ∈ T (18)

123



88 Ann Oper Res (2019) 275:79–99

3.6 Using maxSAT to model nurse rostering

In this paper we provide a maxSAT formulation and computational results for the employee
scheduling problem that was described by Curtois and Qu (2014). We chose this particular
problemvariant because it provides a number of challenging instances that are straightforward
to use. However, the application of a partial weighted maxSAT formulation is not limited to
this problem variant.

In this section we describe how the presented maxSAT formulation can be extended
and adapted to model instances from the second international nurse rostering competition
(INRC2) described by Ceschia et al. (2015). The problem considered for INRC2 asked for
the assignment of nurses to shifts within a given planning horizon, subject to a number of
hard and soft constraints. Note that INRC2 required its competitors to solve a sequence of
consecutive weeks in the planning horizon in a multi-stage setting. We will not go into the
details of this setting here and want to refer the interested reader to Ceschia et al. (2015) for
more information.

In the following subsections we will briefly describe the constraints of the problem and
also provide information on how they can be modeled using partial weighted maxSAT.

3.6.1 Additional variables for nurse rostering

The given nurse rostering problem has many similarities to the employee scheduling problem
that we modeled in earlier sections of this paper, since the main goal of the problem is again
to find the optimal roster for a number of given nurses and shift types. Therefore, in the
following sections we will use the same decision variables and parameters that we have
previously introduced if not noted otherwise. However, to model some of the constraints for
the INRC2 instances we will also introduce some new variables and parameters which we
describe now.

Since the given problem assigns a set of skills to each nurse, we define the set K as the
set of all skills, and the sets Nk,∀k ∈ K which refer to the sets of all nurses that have a skill
k. Furthermore, the sets K i ,∀i ∈ I contain all skills that are provided by a nurse i . Because
a nurse can only use exactly one of its skills during a shift we also define the helper variables
Ui,d,t,k that are true if nurse i uses skill k in shift t on day d . The following hard constraints
are then inserted to ensure that a nurse can only use one skill per shift:

atMost1
({

Ui,d,t,k |k ∈ K i
})

∀i ∈ I, d ∈ D, t ∈ T (19)

3.6.2 Hard constraints

This section will shortly present the hard constraints of the INRC2 instances and describe
how they can be modeled using maxSAT.

Single assignment per day This constraint is the equivalent to the An employee cannot be
assigned more than one shift on a single day constraint in Sect. 3.4 and can be modeled
similarly.

Under-staffing The number of nurses for each shift and for each skill must be at least equal
to the minimum requirement. The cover requirements can be expressed in the form of cdtk ,
where d ∈ D, t ∈ T, k ∈ K and the constraint can be modeled as follows:

atLeastcdtk

({
Si,d,t ∧Ui,d,t,k |i ∈ Nk

})
∀d ∈ D, t ∈ T, k ∈ K (20)
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Shift type successions The shift type assignments of one nurse in two consecutive days must
belong to the legal successions provided in the scenario. This constraint can be modeled like
the similar constraint disallowed shift sequences, which is described in Sect. 3.4.

Missing required skill A shift of a given skill must necessarily be fulfilled by a nurse having
that skill. This constraint is implicitly covered by the formulation for the under-staffing
constraint.

3.6.3 Soft constraints

Insufficient staffing for optimal coverage This constraint is similar to under-staffing as it asks
for an optimal number of nurses with a particular skill for each shift. It can be formulated
similar to under-staffing, but as a soft cardinality constraint with a weighted penalty. The opti-
mal cover requirements are given to the problem in a similar form as the cover requirements
for under-staffing.

Minimum consecutive working days Assuming that the minimum number of consecutive
working days is given as cmin , this constraint can be formulated as follows (since corner
cases where a sequence of working days lies at a border of the planning horizon have to
be considered as well, we define that any variable Xi,d with a day d , that lies outside the
scheduling horizon will always be set to true):

atLeastcmin

⎛

⎝

⎧
⎨

⎩¬Xi,d−1 ∨ Xi,d ∨
⎛

⎝
j−1∧

k=0

¬Xi,d+k

⎞

⎠ | j ∈ {1, . . . , cmin}
⎫
⎬

⎭

⎞

⎠ · penaltycmin

∀d ∈ D, i ∈ I

(21)

The idea behind this formulation is to insert a soft cardinality constraint for each position
in the schedule. Whenever a new working day sequence starts on a position, the cardinality
constraint will evaluate a set of clauses that count the length of the working day sequence,
and will cause a penalty for each missing shift assignment if the length is lower than the
minimum.

Maximum consecutive working days The maximum number of consecutive working days
(cmax ) can be formulated as follows (Similar to the minimum consecutive working days
constraint we define that any variable Xi,d that lies outside the schedule will be set to true):

atMostcmax

⎛

⎝

⎧
⎨

⎩Xi,d−1 ∧
⎛

⎝
j−1∧

k=0

¬Xi,d+k

⎞

⎠ | j ∈ {1, . . . , |D|}
⎫
⎬

⎭

⎞

⎠ · penaltycmax

∀d ∈ D, i ∈ I

(22)

Similar to the minimum working days constraint this formulation inserts cardinality con-
straints for each position in the schedule and counts the length of any working day sequence.
A penalty will be caused for each shift assignment of a sequence that goes over the allowed
maximum.

Minimum/maximum consecutive working shifts These constraints can be formulated sim-
ilarly to the minimum/maximum consecutive working days constraints. However, because
they ask for consecutive assignments of a certain shift type, we have to introduce new helper
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variables Ot
i,d for each shift type t that will be true whenever employee i does not work in

shift t on day d . Then we can model the minimum/maximum consecutive working shifts by
just replacing the X variables with the corresponding O variables in the minimum/maximum
consecutive working days constraints.

Minimum/Maximum consecutive days off These constraints can also be formulated similar
to the minimum/maximum consecutive working days constraints, but with negated X vari-
ables. For example, the minimum number of consecutive days off constraint (dmin) can be
formulated as follows:

atLeastdmin

⎛

⎝

⎧
⎨

⎩Xi,d−1 ∨ ¬Xi,d ∨
⎛

⎝
j−1∧

k=0

Xi,d+k

⎞

⎠ | j ∈ {1, . . . , dmin}
⎫
⎬

⎭

⎞

⎠ · penaltydmin

∀d ∈ D, i ∈ I (23)

Preferences This constraint will penalize any shift assignment which is undesired in respect
to the nurse preferences. It can be formulated similar to theUnpreferred shift types constraint
in Sect. 3.5.

Complete week-ends Nurses may ask to only work on complete week-ends. In this case
they should either work on both week-end days or none. Any assigned weekend that is not
complete will lead to a penalty. To model this constraint we define the set of all weekends
as W , the set of all employees that have the complete weekend flag set to true as CW and
define helper variables Wcompletei,x , that are set to true if and only if weekend x is complete
for employee i :

Wcompletei,x ↔ ((¬Xi,(x ·7)−1 ∧ ¬Xi,x ·7
) ∨ (

Xi,(x ·7)−1 ∧ Xi,x ·7
))

(24)

atMost0
({¬Wcompletei,x |x∈W }) · penaltycw ∀i ∈ CW (25)

Total assignments For each nurse the total number of assignments must be included within
a given minimum and maximum. This constraint can be formulated similar to the maximum
number of shifts constraint in Sect. 3.4 but on a global level for all shift types and as a soft
cardinality constraint with a weighted penalty.

Total working week-ends This constraint can be formulated similar to the maximum number
of weekends constraint in Sect. 3.4, but as a soft cardinality constraint with aweighted penalty.

4 Computational results

We now give an overview of our experimental environment and describe how our benchmark
tests were executed and evaluated.

4.1 Experimental environment

We conducted a large number of experiments with generated maxSAT encodings for the
24 instances that were described by Curtois and Qu (2014). The planning horizon of the
instances ranges from two weeks to 52 weeks, while the number of considered employees
ranges from 8 to 150. As this dataset contains very large instances it provides challenging
benchmarks for solution techniques. If not noted otherwise we ran all of our experiments on
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an Intel Xeon E5345 2.33 GHz machine with a total of 48GB RAM. The encoded maxSAT
instances are available online in DIMACS format and can be downloaded at.1

In our benchmarks we used two solvers which performed well on timetabling instances in
the maxSAT evaluation 2015: WPM3 (Ansótegui et al. 2015) and Optiriss using the default
configuration. The latter uses the riss framework (Kahlert et al. 2015) in combination with
the publicly available OpenWBO solver (Martins et al. 2014). Both solvers were ranked first
and second in the industrial category for partial weighted maxSAT problems. Besides being
the leaders in their category, both solvers have also shown to provide good results for high
school timetabling and timetabling instances, which share similarities with the considered
employee scheduling problem.

4.2 Comparison of different cardinality constraint encodings

Because our model utilizes a number of cardinality constraints, a crucial point in the config-
uration of our experiments turned out to be the determination of which cardinality constraint
encodings we should use in order to get good results with the maxSAT solvers. There are
five constraints which are affected in our formulation: The cover requirement constraint, the
workload requirement constraint, the maximum number of shifts constraint, the maximum
number of weekends, and the One shift per day constraint. For those, we applied four differ-
ent encoding variants: combinatorial encoding, sequential encoding, cardinality networks
encoding, and bit adder encoding. We used the implementation by Demirovic and Musliu
(2014) to encode those constraints.

If we would consider all possible combinations for encoding the cardinality constraints in
ourmodel,wewould have to generate and compare a total of 45 = 1024different formulations
for each problem instance. In order to reduce this large amount of possibilities, we decided
to investigate the number of generated variables and clauses for all constraint/encoding pairs
in order to gather a first insight on their importance. We can see the results for one instance
in Table 1.

The combinatorial encoding turned out to be impractical in most cases and we were often
not able to generate maxSAT encodings for many of the instances when using it. The huge
amount of produced clauses required by this encoding forced our model generator to run out
of memory when dealing with larger instances. When looking at the numbers displayed in
Table 1, we can also see that the maximum number of weekends and the one shift per day
constraints have a relatively low impact when compared with the other constraints. As this
behavior appeared also in other instances, we decided to use only the sequential encoding
for themaximum number of weekends constraint and only the combinatorial encoding for the
one shift per day constraint in the remainder of our experiments. With the elimination of the
combinatorial encoding in our configuration options because of the caused inconveniences
with larger instances, and only three constraints remaining, we now have to examine only
33 = 27 possible combinations.

In order to determine the best configuration for bothWPM3 and Optiriss, we selected nine
instances of different sizes and ran experiments with all the 27 possible encoding variants
under a time limit of 30 min. The results of those experiments can be seen in Tables 2 and 3
for Optiriss and WPM3 respectively.

A comparison of those results reveals that there is no general best combination of cardi-
nality constraint encodings and good encodings are highly dependent on the solver which is
used. While Optiriss prefers the adder encoding for the cover requirements constraint, the

1 http://www.dbai.tuwien.ac.at/research/project/arte/maxsat_employeescheduling/.
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Table 1 Overview on the number of generated variables (vars.) as well as the hard- and soft-clauses (h.c. and
s.c.) for all the cardinality constraint/encoding pairs for instance 5

Combinatorial Sequential Cardinality N. Bit adders

Cover Req. vars. 10,192 7616 7056 5096

h.c. 35,616 28,672 21,168 17808

s.c. 896 896 896 896

Workload Req. vars. Out of memory 6176 8032 5088

h.c. Out of memory 20,240 21,760 14864

s.c. Out of memory 0 0 0

Max shifts vars. Out of memory 3010 3520 6374

h.c. Out of memory 11,928 10,658 22,646

s.c. Out of memory 0 0 0

Max weekends vars. 0 124 160 176

h.c. 46 420 496 602

s.c. 0 0 0 0

One shift per day vars. 0 896 896 1344

h.c. 448 2688 3136 4480

s.c. 0 0 0 0

sequential encoding shows the best results for WPM3. We selected the best candidates for
each solver by considering the sums of the results over all instances for each combination
of cardinality encodings. The encodings which led to the minimum of all those sums were
then taken to generate the instances for our final experiments. Therefore, the combinations of
cardinality constraint encodings used for Optiriss were as follows: bit adder encoding for the
cover requirements constraint, cardinality networks for theworkload requirements constraint,
and the sequential encoding for the maximum number of shifts constraint. The combinations
of cardinality constraint encodings forWPM3 on the other hand were: The sequential encod-
ing for the cover requirements constraint as well as theworkload requirements constraint, and
the encoding which uses cardinality networks for the maximum number of shifts constraint.

4.3 Final experiments and comparison of solvers

By using the encodings mentioned above, we were able to create maxSAT instances for the
original problems 1–21. Although our formulation can be used to encode Instances 22–24,
unfortunately we could not generate maxSAT instances for those two problems, since our
generator ran out ofmemory due to their large size (about 20GB). Our final experiments were
conducted using both solvers, giving them a time limit of 4h for each of the 21 instances.
The results of those benchmark tests can be seen in Table 4.

If we compare the outcomes for WPM3 and Optiriss we are not able to point out a clear
winner which performs better over all the instances. While WPM3 performs significantly
better on the smaller instances (Instances 1–7 and 11–12), it does not produce good solutions
for the larger instances (Instances 8–10 and 13–21). Using Optiriss provides better results
when it comes to solving the larger instances, except for the last two instances where the
solver could not find any solution under 4h.

Comparing our approach with another existing exact method based on integer program-
ming, which was provided by Curtois and Qu (2014) (last two columns in the table) we can
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Table 2 Best results found by Optiriss using different combinations of cardinality encodings

Optiriss Best solutions found in 30 min time limit

Cardinality encoding Inst. 2 Inst. 4 Inst. 7 Inst. 9 Inst. 11

seq./seq./seq. 837 5626 13,333 12,655 40,435

seq./seq./card. 837 5626 12,000 11,659 40,435

seq./seq./adder 839 5122 10,078 11,533 23,720

seq./card./seq. 840 6002 15,318 12,460 32,768

seq./card./card. 840 6002 12,111 12,242 32,768

seq./card./adder 838 5215 11,474 12,758 24,905

seq./adder/seq. 841 5407 14,319 11,044 34,612

seq./adder/card. 841 5407 15,148 11,662 34,612

seq./adder/adder 840 5331 11,785 12,752 25,633

card./seq./seq. 841 5609 13,813 14,353 32,281

card./seq./card. 841 5609 15,211 11,423 32,281

card./seq./adder 834 5723 11,987 13250 25,631

card./card./seq. 834 6210 14,080 12,156 37,028

card./card./card. 834 6210 13,779 13,154 37,028

card./card./adder 841 5316 10,682 10,641 22,130

card./adder/seq. 837 5711 13,002 12,570 32,618

card./adder/card. 837 5711 13,492 12,785 32,618

card./adder/adder 838 5504 9689 12,976 24,844

adder/seq./seq. 844 3900 5762 7729 15,916

adder/seq./card. 844 3900 5741 7526 15,916

adder/seq./adder 852 3720 5228 7437 16,624

adder/card./seq. 853 3608 5421 6394 15420

adder/card./card. 853 3608 5852 6804 15,420

adder/card./adder 847 3918 5452 7239 16,464

adder/adder/seq. 845 3907 5411 7716 16,627

adder/adder/card. 845 3907 5746 7422 16,627

adder/adder/adder 850 3798 5040 7215 16,436

Optiriss Best solutions found in 30 min time limit

Cardinality encoding Inst. 12 Inst. 14 Inst. 16 Inst. 18

seq./seq./seq. 57,680 17,959 15,584 35,073

seq./seq./card. 58,369 16,665 15,584 39,555

seq./seq./adder 34,964 17,549 13,263 25,829

seq./card./seq. 57,575 16,761 15,635 37,084

seq./card./card. 54,138 16,630 15,635 37,641

seq./card./adder 33,939 18,362 14,544 23,932

seq./adder/seq. 61,229 17,454 16,013 34,284

seq./adder/card. 52,854 16,043 16,013 28,074

seq./adder/adder 36,632 15,555 13,937 27,604

card./seq./seq. 72,062 19,358 16,093 37,501

card./seq./card. 49,699 18,247 16,093 38,147
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Table 2 continued

Optiriss Best solutions found in 30 min time limit

Cardinality encoding Inst. 12 Inst. 14 Inst. 16 Inst. 18

card./seq./adder 32,074 17,934 14,776 28,188

card./card./seq. 56,279 19,044 16,903 37,778

card./card./card. 50,404 15,546 16,903 35,638

card./card./adder 32,239 16,918 14,880 26,855

card./adder/seq. 62,154 18,980 17,419 38,269

card./adder/card. 49,096 18,565 17,419 30,601

card./adder/adder 33,340 18,593 15,990 29,781

adder/seq./seq. 28,602 10,076 12,546 21,039

adder/seq./card. 31,000 9875 12,546 22,548

adder/seq./adder 28,694 8777 12,223 21,095

adder/card./seq. 28,598 9776 13,026 20,710

adder/card./card. 30,324 9144 13,026 20,225

adder/card./adder 29,596 9555 13,049 20,280

adder/adder/seq. 27,193 9758 11,939 20,462

adder/adder/card. 29,606 9931 11,939 20,504

adder/adder/adder 29,417 9756 11,707 20,996

The first column describes the cardinality encodings used for the cover requirement/workload require-
ment/maximum number of shifts constraints. Encoding names have been abbreviated: seq. = sequential
encoding, card. = cardinality networks, adder = bit adders. In each column the best result is formatted in
boldface

conclude that both maxSAT solvers could not find new unknown optimal results. However
they could provide optimal solutions for instances 1 and 2. Running the maxSAT solvers for
4h resulted in finding solutions for two of the instances which could not be solved by the
integer programming approach within 1h on a different environment.

Although currently the state of the art solvers that are based on integer programming
produce better results for many of the considered instances, the results show that maxSAT
as an exact method gives promising results for employee scheduling problems. As many
maxSAT solvers are publicly available and their performance is consistently improving, this
approach can be useful to find solutions for staff scheduling problems.

4.4 Analyzing the influence of the under-coverage soft-constraint

To further investigate the problem we performed additional experiments by simplifying the
instances. We omitted all soft constraints except under-coverage (Eq.18). We wanted to
investigate this constraint because it shows to have the highest weight in all instances, and
as such contributed to the objective value significantly more than others.

Optiriss provides the option to experiment with the Linear maxSAT algorithm (Berre
and Parrain 2010). The Linear algorithm is an iterative upper bounding algorithm in which
the SAT solver is repeatedly called and in each call clauses are added which constrain the
objective value to be less than in the previous iteration. Therefore, this process is only repeated
until the SAT solver reports unsatisfiable, in which case the previously calculated solution
is the optimal one. The Linear algorithm is invoked in Optiriss by supplying the parameter
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Table 3 Best results found by WPM3 using different combinations of cardinality encodings

WPM3 Best solution found in 30 min time limit

Cardinality encoding Inst. 2 Inst. 4 Inst. 7 Inst. 9 Inst. 11

seq./seq./seq. 828 3189 5510 10,631 12,183

seq./seq./card. 828 3189 4596 10,949 12,183

seq./seq./adder 828 3494 8959 10,248 23,420

seq./card./seq. 828 3090 7446 11,132 11,516

seq./card./card. 828 3090 6545 11,405 11,516

seq./card./adder 828 2688 8351 12,154 24,114

seq./adder/seq. 828 2784 7712 12,178 12,478

seq./adder/card. 828 2784 8553 10,033 12,478

seq./adder/adder 828 2893 9364 10,964 24,195

card./seq./seq. 835 3394 5230 10,605 17,224

card./seq./card. 835 3394 6815 11,037 17,224

card./seq./adder 828 4082 7562 11,062 25,444

card./card./seq. 828 3087 7143 10,240 13,888

card./card./card. 828 3087 8147 10,942 13,888

card./card./adder 839 3704 9670 10,531 25,626

card./adder/seq. 840 3695 7543 11,871 15,393

card./adder/card. 840 3695 7760 11,235 15,393

card./adder/adder 828 3103 9287 12,374 22,719

adder/seq./seq. 1550 3718 10,502 13,982 29,673

adder/seq./card. 1550 3718 11,315 12,780 29,673

adder/seq./adder 1159 3198 9478 14,674 26,133

adder/card./seq. 1563 3994 9365 11,256 31,595

adder/card./card. 1563 3994 9253 12,773 31,595

adder/card./adder 856 4212 9791 12,693 25,827

adder/adder/seq. 1469 4108 10,292 10,771 29,083

adder/adder/card. 1469 4108 9476 11,963 29,083

adder/adder/adder 1359 3702 10,100 10,935 26,467

WPM3 Best solution found in 30 min time limit

Cardinality encoding Inst. 12 Inst. 14 Inst. 16 Inst. 18

seq./seq./seq. 23,937 18,045 10,292 19,771

seq./seq./card. 18,770 16303 10,292 18,498

seq./seq./adder 1,697,590 15,297 12,738 21,408

seq./card./seq. 22,010 15,419 12,528 19,191

seq./card./card. 19,845 16,285 12,528 19,241

seq./card./adder 1,697,590 16,654 16,099 22,100

seq./adder/seq. 22,536 17,130 12,550 17,277

seq./adder/card. 22,734 16,330 12,550 20,139

seq./adder/adder 1,697,590 15,155 15,031 20,793

card./seq./seq. 24,142 18,272 12,015 2,1095

card./seq./card. 23,726 18,948 12,015 22,605
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Table 3 continued

WPM3 Best solution found in 30 min time limit

Cardinality encoding Inst. 12 Inst. 14 Inst. 16 Inst. 18

card./seq./adder 32,150 18,455 14,126 29,910

card./card./seq. 24,206 16,321 12,848 25,567

card./card./card. 23,716 16,864 12,848 21,097

card./card./adder 1,697,590 14,915 16,176 24,417

card./adder/seq 25,331 17,055 13,360 24,620

card./adder/card. 26,272 18,104 13,360 25,051

card./adder/adder 1,697,590 17,490 16,998 30,144

adder/seq./seq. 48,422 18,356 18,064 31,426

adder/seq./card. 44,948 19,731 18,064 29,955

adder/seq./adder 38,822 18,376 16,497 27,336

adder/card./seq. 42,744 19,131 16,259 28,860

adder/card./card. 44,272 18,959 16,259 31,694

adder/card./adder 37,582 18,494 16,343 30,929

adder/adder/seq. 42,648 15,723 17,590 31,791

adder/adder/card. 45,583 20,184 17,590 27,403

adder/adder/adder 35,857 18,143 18,593 29,081

The first column describes the cardinality encodings used for the cover requirement/workload require-
ment/maximum number of shifts constraints. Encoding names have been abbreviated: seq. = sequential
encoding, card. = cardinality networks, adder = bit adders. In each column the best result is formatted in
boldface

-algorithm=1. As this algorithm is appropriate to be used in this scenario, below we report
experiments using it.

Every feasible solution for the simplified instances is a feasible solution for the original
problem as well, as removing soft constraints does not impact feasibility. In Table 5 we
provide the results obtained after running experiments for 1h. We compare the performance
of Optiriss with the Linear algorithm on the original and simplified instances (see column
1 and column 2 of Table 5). In the case of the simplified instances, we present the costs
obtained after converting the solution to the original instance. We used the same cardinality
constraint encoding as we did previously for Optiriss.

The results obtained in Table 5 are interesting for two reasons. Firstly, in most cases when
a solution could be generated, the obtained results with the described technique with the
simplified instances outperformed the previous maxSAT experiments even though less time
has been allocated. Secondly, the simplification proved to be a very useful improvement for
the Linear maxSAT algorithm. Instances 19–24 where not included in the table as no solution
could be generated with either encoding technique using the Linear maxSAT algorithm.

These results indicate that the under-coverage constraint has a high influence on the
objective value, at least for the Linear maxSAT algorithm. Because of this, leaving the
solver all the time to focus on the under-coverage constraint showed to be valuable. Using
this technique new unknown optimal results could not be found, but the results suggest the
importance of the under-coverage constraint. Focusing only on the under-coverage constraint
could also be applied to other solving techniques, like integer programming methods or local
search.
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Table 4 The final results obtained for Instance 1–21 using WPM3 and Optiriss, with the application of the
selected cardinality constraint encodings described in this paper

Instances WPM3 Optiriss Branch and Price Gurobi

Inst. Weeks Employees Shifts

I 1 2 8 1 607 607 607 607

I 2 2 14 2 828 835 828 828

I 3 2 20 3 1009 3475 1001 1001

I 4 4 10 2 3102 3608 1716 1716

I 5 4 16 2 4037 3645 1160 1143

I 6 4 18 3 6150 6941 1952 1950

I 7 4 20 3 4596 5421 1058 1056

I 8 4 30 4 11,018 7617 1308 1323

I 9 4 36 4 10,949 6394 439 439

I 10 4 40 5 16,435 15,350 4631 4631

I 11 4 50 6 12,183 15,420 3443 3443

I 12 4 60 10 18,770 28,598 4046 4040

I 13 4 120 18 6,110,163 69,203 – 3109

I 14 6 32 4 16,303 9776 – 1280

I 15 6 45 6 30,833 16,506 – 4964

I 16 8 20 3 10,292 13,026 3323 3233

I 17 8 32 4 22,002 22,073 – 5851

I 18 12 22 3 18,498 14,433 – 4760

I 19 12 40 5 1,698,538 50,274 – 5420

I 20 26 50 6 5,519,316 147,325 – –

I 21 26 100 8 14,715,064 – – –

Information about the size of each instance is included in the first four columns of the table, which display
the number of weeks of the scheduling horizon, the number of employees, and the number of shift types. For
comparison, the objective values of the best known solutions using the exact methods that were described by
Curtois and Qu (2014) are also included. Results formatted in bold face denote proven optimal solutions

5 Conclusion

In this paper we have introduced, to the best of our knowledge, for the first time a partial
weighted Boolean maximum satisfiability model for variants of the employee scheduling
problem and the nurse rostering problem. We further generated maxSAT instances using
four different cardinality encoding methods and compared the effects of these methods on
two maxSAT solvers. Our results showed that there is a need to experimentally select an
efficient combination of cardinality encodings for each solver separately, as the best encoding
strategy in our experiments varied depending on the used solver. A comparison between the
two solvers could not point out a clear winner for all of the considered benchmark tests.While
WPM3 performed better on smaller instances, Optiriss was able to produce better results for
many of the larger instances.

Currently an exact approach based on integer programming provides better results than
maxSAT for most of the considered instances. However, maxSAT could provide optimal
solutions for two of the instances and obtained solutions for two very large instances within
4h, which could not be solved by integer programming within 1h.
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Table 5 The results obtained by
running Optiriss with the Linear
maxSAT algorithm for 1h on
simplified and original instances

Instance Linear Simplified-linear Optiriss (Table 4)

Instance 1 607 620 607

Instance 2 847 858 835

Instance 3 1236 1050 3475

Instance 4 1859 1787 3608

Instance 5 2202 1534 3645

Instance 6 5763 2637 6941

Instance 7 6541 1625 5421

Instance 8 15,105 2894 7617

Instance 9 13,496 1991 6394

Instance 10 – 6649 15,350

Instance 11 – 6434 15,420

Instance 12 – 22,838 28,598

Instance 13 – 70,242 69,203

Instance 14 – 6634 9776

Instance 15 – 24,988 16,506

Instance 16 18,074 4867 13,026

Instance 17 – 14,315 22,073

Instance 18 18,498 13,143 14,433

For comparison purposes, we
provide the corresponding
solution for Optiriss from Table 4
and the best known solutions
obtained by exact methods that
were described by Curtois and
Qu (2014). Optimal solutions are
formatted in bold face

Although the results for many instances are currently not competitive when compared
with results produced by state of the art solvers that are based on integer programming,
we have shown that maxSAT was successfully used to solve the majority of the problem
instances. We think that the main reason why the results currently cannot compete with
integer programming lies in the intensive use of cardinality constraints that are required to
model the problem.The high significance of choosing good encoding strategies for cardinality
constraints that became apparent during our experiments as well as the discovered influence
of the under-coverage constraint indicate the importance of efficient strategies to deal with
these types of constraints. We therefore conclude that there is a need for improving the
performance of maxSAT solvers, especially regarding cardinality constraints. Seeing many
maxSAT solvers becoming available and consistently advancing in the recent years, we
believe that the provided instances for employee scheduling, which are now also part of the
annual maxSAT evaluation, can serve as relevant benchmarks to evaluate new strategies for
an efficient handling of cardinality constraints.

Possible improvements and extensions could be subject of future work when working
with the proposed model. It would be interesting to investigate if we can break symmetries in
our model. Further, given the findings regarding the under-coverage constraint, developing
a lexicographic optimization approach for Employee Scheduling might be valuable. In this
approach, one would first optimize for the under-coverage constraint and then optimize the
rest of the soft constraints. Furthermore, a hybridization ofmaxSATwith heuristic techniques
within the framework of very large neighbourhood search could be considered.
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