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Abstract In this paper we consider a time slotted cognitive radio (CR) network with N
wireless channels and M secondary users (SUs). We focus on a multiple channel access
policy where each SU stochastically decides whether to access idle channels or not based on
the given access probability (AP) that is adapted to the channel state information (CSI), if
possible. The AP plays an important role in the random access policy because it can control
the number of SUs who can access idle channels in a simple manner and hence alleviate
packet collisions among SUs. We assume that each SU can access at most L idle channels
simultaneously at a time slot whenever possible. We consider three cases—(a) all SUs have
full CSI, (b) all SUs have no CSI, and (c) all SUs have partial CSI.We analyze the throughput
of an arbitrary SU for the three cases, and rigorously derive a closed-form expression of the
optimal AP values that maximize the throughput of an arbitrary SU for the three cases. From
the analysis, we show the impact of multiple channel access and the acquisition of CSI on
throughput performance.
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1 Introduction

As the demands ofwireless communication services increase, the utilization of radio spectrum
resources becomes more important. However, most of the radio spectrums have been already
allocated to licensed users, and recent studies have revealed that they are not occupied for
most of the time (Spectrum policy task force 2002; Facilitating opportunities 2003;McHenry
2003). To improve the efficiency of the radio spectrum usage, the concept of Cognitive Radio
(CR) has been introduced. In a CR network, there are a set of primary users (PUs) and a set
of secondary users (SUs). PUs are licensed users having absolute priority to occupy their
designated radio spectrums, called channels. SUs are unlicensed users who are allowed to
use the temporarily unoccupied licensed radio spectrums (Haykin 2005; Mitola and Maguire
1999).

We consider a time slotted CR network with N channels and M SUs and focus on a
multiple channel access policy. To utilize idle channels by SUs in CR, SUs first have to
acquire the channel state information (CSI) by individually or cooperatively sensing the
channels and sharing the CSI as much as possible. To investigate the impact of the multiple
channel access policy on network performance, we assume that the channel sensing is perfect
in this paper. After acquiring the CSI, each SU selects multiple idle channels and transmits its
packets according to a pre-determined channel access policy. Here, multiple channel access
can be implemented by the channel aggregation (CA) scheme with discontinuous orthogonal
frequency division multiplexing (DOFDM) defined in IEEE 802.22 (Poston and Horne 2005;
Park et al. 2016). With this CA scheme, an SU can aggregate multiple channels and transmit
data through them. Thus, it is important to choose appropriate channel sensing and accessing
policies to improve the efficiency of spectrum usage and network performance.

The design challenge in CR is to optimize the performance of SUs, and in this regard
a number of channel sensing and accessing policies in CR have been recently proposed in
the open literature, e.g., Ma et al. (2005), Sankaranarayanan et al. (2005), Jia et al. (2008),
Cordeiro and Challapali (2007), Sabharwal et al. (2007), Hsu et al. (2007), Zhao et al. (2007),
Su and Zhang (2008), Zhao et al. (2008), Li et al. (2011), Hwang and Roy (2012), Cho and
Hwang (2012), Urkowitz (1967), Yucek and Arslan (2009), Gardner (1988). A good survey
on the design issues and recent works in CR is provided in Cormio and Chowdhury (2009),
Hossain et al. (2009), Akyildiz et al. (2006), Qing and Adler (2007). Interested readers may
refer to them and the references therein.

Since the already proposed channel sensing/accessing policies are different from each
other in modeling assumption, analytic techniques, and having different implementation
issues, it is not an easy task to determine which one is superior to the others. However, one
of good candidates for CR is the random access policy considered in this work because it
is a generalization of the conventional p-persistent CSMA which is easy to implement in
practice. In the conventional p-persistent CSMA, a node senses a channel for busy or idle.
If the channel is idle, the node transmits a packet with probability p and does not transmit a
packet with probability 1 − p. On the other hand, if the channel is busy, the node senses it
continuously until it becomes idle (Kwon et al. 2009). Note that the conventional p-persistent
CSMA is already considered for CR (Hu and Mao 2009; Wang et al. 2010). In addition, as
discussed inHwang andRoy (2012) the random access policy is closely relatedwith the IEEE
802.11DistributedCoordination Function (DCF)which is also considered forCR.Apractical
example of the random channel access policy is a sensor network equipped with CR where
a fixed number of sensors send out measurement data of the environment sporadically and
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opportunistically over empty PU channels (Wang et al. 2010). Due to the above-mentioned
reasons, we focus in this work on the random access policy for SUs.

In the random access policy considered in this work, each SU stochastically decides
whether to access idle channels at each slot based on the common access probabilities (APs).
When an SU decides to access idle channels, it is called an active SU. To analyze the per-
formance of the random access policy, we consider the following two extreme cases and an
intermediate case which combines the two extreme cases:

– one extreme case where all SUs have full CSI;
– the other extreme case where all SUs have no CSI;
– an intermediate case where all SUs have partial CSI.

In the first case where all SUs have full CSI, we assume that an active SU is allowed
to access at most L(≥ 1) idle channels. That is, when the number of idle channels is k,
an active SU selects min(L , k) idle channels randomly and transmits its packets over the
selected idle channels, one packet over each idle channel. We call this model the L-interface
CR network with full CSI. If two or more SUs select the same idle channel, it leads to a packet
collision. Obviously, it is desirable to adapt the AP value according to the information on
the idle channels so as to alleviate packet collisions. More importantly, we need to find the
optimal AP values which are functions of the number of idle channels, which maximize the
throughput of an arbitrary SU. Note that the full CSI can be acquired by all SUs via a suitable
channel sensing such as the negotiation based sensing (Su and Zhang 2008).

In the second case where all SUs have no CSI, SUs cannot adapt the AP to the number
of idle channels and accordingly use a fixed AP, irrespective of the number of idle channels.
We call this model the L-interface CR network with no CSI. In this case, there is still the
possibility of packet collision when two or more SUs select the same idle channel. So it is
also important to find the optimal unified AP that maximizes the throughput of an arbitrary
SU.

In the last case where all SUs have partial CSI, SUs have full CSI on N1 channels and
have no CSI on the remaining N2(= N − N1) channels. In this case, when the number of
idle channels among N1 channels is k1, an active SU selects min(N2 + k1, L) idle channels
randomly among the k1 idle channels with full CSI and the N2 channels with no CSI, and
then, it transmits its packets over the selected channels. We call this model the L-interface
CR network with partial CSI. This case is a compromise between the first and second cases
and is more practical than them because the sensing may not be completed for all channels
within a short time interval in practice.

In this work each SU is allowed to access multiple idle channels simultaneously at a slot.
To the best of the authors’ knowledge there have been limited works on this issue. From
the multiple channel access viewpoint, the most relevant works to ours include Wang et al.
(2010), Xu et al. (2008). In Wang et al. (2010) consider a CR network with the conventional
p-persistent CSMA and derive the optimal AP value under the assumption that no CSI is
available and each SU can access two channels simultaneously, which is a special case of
our work. In Xu et al. (2008) consider unslotted CR networks and derive the optimal SU
throughput and the optimal value of the number of SU’s interfaces, but the analysis on the
case with multiple SUs is based on an approximation.

The contributions of this work are summarized as follows.

– We derive a closed-form expression of the optimal AP values that maximize the through-
puts of an arbitrary SU in the L-interface CR network with full/no/partial CSI. Since our
result is of closed-form, we can easily investigate the relation between the optimal AP
values and the network parameters such as the numbers of PU channels and SUs as well
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as the maximum number of idle channels allowed for SUs. One interesting fact that we
find from the closed-form expression is that the optimal AP value is a function of the
total number of idle channels counting multiplicity that all SUs can access simultane-
ously. This implies that each SU behaves as if there were multiple virtual SUs accessing
a single idle channel as explained in the main context.

– In this work, we rigorously analyze three cases for the CR network with multiple channel
access for SUs - having full CSI, no CSI, and partial CSI. Even though the no CSI case is
the most practical due to less implementation cost, the analyses on two extreme cases are
important because we can compare them to investigate the impact of the acquisition of
CSI on throughput performance. In fact, we show that, when the network is not crowded,
the acquisition on CSI can improve the optimal throughput performance. On the other
hand, when the network is crowded, the acquisition on CSI cannot improve the optimal
throughput performance in the L-interface CR network. Moreover, the analysis on the
no CSI case becomes possible in this work with the help of the analytic result on the full
CSI case.

– We also show that the optimal throughput performance can be improved as we increase L
only when LM ≤ N . This provides an important insight on the design of a CR network
that, when LM > N , the optimal throughput performance cannot be improved any more
even though we increase L .

Note that this paper is an extended version of the work by Park et al. (2016), and the extension
is summarized as follows.

– While rigorous proofs of theorems are omitted in Park et al. (2016), we provide them in
this paper.

– We also provide amathematical analysis on the optimal access probability and the optimal
throughput for the partial CSI case.

– Our analysis on the partial CSI case is validated through numerical and simulation studies.

The rest of this paper is organized as follows. In Sect. 2, we explain the L-interface CR
network andmathematically model the PU’s activity and the random access policy. In Sect. 3,
we analyze the throughput of an arbitrary SU in the L-interface CR network, and derive the
optimal APs that maximize the throughput of an arbitrary SU. In the analysis we consider
three cases where full/no/partial CSI is available to SUs. In Sect. 4, we validate our analysis
through numerical and simulation studies. In Sect. 5, we give our conclusions.

2 System model

We consider a time slotted cognitive radio (CR) network with N wireless channels. There
are N primary users (PUs) and M(≥ 2) secondary users (SUs). Each primary user has its
own designated channel. At time slot t , we let N (t) denote by the number of idle channels
that are unoccupied by PUs. SUs are allowed to access only idle channels to transmit their
packets at each time slot.

2.1 Wireless channel occupancy model

For each channel, the channel occupancy process by a PU is modeled by a 2-state Markov
chain with state space {0, 1}, where 0 (1) denotes a busy (an idle) channel. Let p be the
transition probability that the state of a channel is changed from busy to idle and q be the
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transition probability that the state of a channel is changed from idle to busy. Then the
transition probability matrix Q of the channel occupancy process of a channel is given by

Q =
(
1 − p p
q 1 − q

)
.

Let π = (π0, π1) be the stationary probability vector of the matrix Q, i.e., πQ = π ,
π0 + π1 = 1. Note that π0 is the stationary probability of being a busy channel and π1 is the
stationary probability of being an idle channel. Then, we obtain

π0 = q

p + q
, π1 = p

p + q
. (1)

Note that N (t) is the number of idle channels at time slot t . We assume that the channel
occupancies by PUs are independent from channel to channel. Then N (t) is a discrete time
Markov Chain (DTMC) with state space {0, 1, . . . , N }. The steady state probability of N (t)
is then given by

P{N (t) = k} =
(
N

k

)
πk
1πN−k

0 , 0 ≤ k ≤ N , (2)

where π0 and π1 are given by (1).

2.2 Random access policy

Each SU is equipped with the capability of accessing L channels simultaneously at each time
slot. So each SU can transmit at most L packets, one for each idle channel, if possible, at
each time slot. Clearly, L ≤ N . We consider and analyze three cases in this paper.

2.2.1 Case 1: full CSI

SUs have perfect information on the states of all N channels at each time slot, i.e., which
channels are idle and which channels are busy.

The random access policy in this case is performed as follows. Each SU decides stochas-
tically whether to access channels with a common access probability (AP) based on the
number of idle channels N (t), independent of all other SUs. When N (t) = k, the AP is ak .
When an SU decides to access channels at time slot t , it is called an active SU. Each active
SU then randomly selects min(L , N (t)) channels among idle channels and transmits packets
over the selected channels at time slot t . We call this model the L-interface CR network with
full CSI. Note that, when two or more active SUs select the same idle channel at a time slot,
the transmitted packets over the same channel at the time slot collide and hence are assumed
lost. From this viewpoint, it is important to optimize the APs {a1, a2, . . . , aN } that maximize
the throughput. Figure 1 demonstrates the channel access in this case.

2.2.2 Case 2: no CSI

SUs have no CSI in this case. Then, all SUs cannot adapt the AP according to the number
of idle channels, and hence use a common unified AP, say a, to decide whether they are
active or not at each time slot, independently of all other SUs. When an SU becomes active,
it randomly selects L channels among the N channels. The active SU then checks at the
beginning of the time slot which selected channels are idle. We assume that the channel
sensing is perfect. Then, the active SU transmits only through the idle channels among the
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Fig. 1 L-interface CR network with full CSI

Fig. 2 L-interface CR network with no CSI

selected L channels. Obviously, there is the possibility of packet collision when two or more
active SUs select the same idle channel. So, as in the previous case, the common unified
AP a needs to be optimized. The benefit of this policy is that each active SU senses only
L (randomly selected) channels at each time slot and does not need any information about
the other channels, reducing the sensing overhead. This model is called the L-interface CR
network with no CSI. Figure 2 demonstrates the channel access in this case.

2.2.3 Case 3: partial CSI

In the partial CSI case considered in this paper, wireless channels are divided into the fol-
lowing two groups, say N1 and N2: (1) group N1 consists of N1 channels of which CSI
is perfectly known to all SUs; and (2) group N2 consists of the remaining N2(= N − N1)
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Fig. 3 L-interface CR network with Partial CSI

channels of which CSI is not known to all SUs. For convenience, define N idle
1 (t), N1(t),

N idle
2 (t) and N2(t) as follows: N idle

1 (t) = {ω ∈ N1 | ω is idle at time slot t}with N1(t) =
|N idle

1 (t)|;N idle
2 (t) = {ω ∈ N2 | ω is idle at time slot t}with N2(t) = |N idle

2 (t)| where |A|
denotes the number of elements in set A. Each SU decides stochastically whether to access
channels with an AP based on N1(t). Thus, when N1(t) = k, the AP depends on the value
of k, denoted by αk .

Now, after an SU becomes active with AP αk when N1(t) = k, the active SU selects
min(N2 + k, L) channels amongN idle

1 (t) ∪N2 randomly. At the beginning of the time slot,
the active SU checks the selected channels in N2, since there is no CSI for the channels in
N2. After sensing, the active SU transmits only through the idle channels among the selected
channels. The benefit of this policy is that each active SU senses up to L channels at each
time slot using the already known CSI for the channels inN1. This is why this model is called
the L-interface CR network with partial CSI. Figure 3 demonstrates the channel access in
this case.

3 Performance analysis

In this section, we analyze the throughput performance of an arbitrary SU in the L-interface
CR network for the three cases; with full CSI, with no CSI and with partial CSI. To this end,
we tag an arbitrary SU and call it the tagged SU. For analysis, we assume that all SUs are
saturated, that is, all SUs always have packets to transmit. We let cL(t) denote by the number
of packets transmitted successfully by the tagged SU at time slot t . Hence, cL(t) = j if the
tagged SU successfully transmits j packets at time slot t . Obviously, cL(t) ≤ L .

Moreover, since each SU independently decides to access idle channels with the common
APs, the probability Pm

i (x) that there are i active SUs among the total of m SUs when the
AP is x , is given by

Pm
i (x) =

(
m

i

)
xi (1 − x)m−i , (3)

which will be used later.
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3.1 The full CSI case

Consider the L-interface CR network with full CSI. We first define the throughput perfor-
mance of the tagged SU, denoted by T full

L . Assuming that the network is in steady state, T full
L

is defined by

T full
L := E[cL(t)]

=
N∑

k=1

P{N (t) = k}E[cL(t)|N (t) = k]

where P{N (t) = k} is given by (2). We define the conditional throughput of the tagged
SU in the L-interface CR network with full CSI, given that there are k idle channels, by
T full
L ,k = E[cL(t)|N (t) = k], so that

T full
L =

N∑
k=1

P{N (t) = k}T full
L ,k . (4)

To compute T full
L , observe that the throughput of the tagged SU depends on the number of

idle channels that the tagged SU selects but all active untagged SUs do not select. So, from the
tagged SU’s perspective the effective channels are defined by the idle channels that the tagged
SU selects but all active untagged SUs do not select. Note that the tagged SU transmits one
packet successfully through each effective channel. We now need the following two lemmas.

Lemma 1 When N (t) = k(≥ 1), assume that there are i (0 ≤ i ≤ M − 1) active untagged
SUs and that the tagged SU becomes active and hence transmits its packets at time slot t .
Then the probability Gi

L ,k(t; j) that there are j effective channels at time slot t , is given by,
for j ≥ 1,

Gi
L ,k(t; j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if i = 0 and j = Lk;(
L

j

) ∑L−
k − j

u=0
(−1)u

(
L − j

u

) ((k− j−u
L

)
(k
L

)
)i

,

if i > 0, k > L and j ≤ L−
k ;

0, otherwise

where Lk = min(L , k) and L−
k = min(L , k − L).

Proof Note that the taggedSUalways chooses Lk = min(L , k) idle channelswhen N (t) = k.
In the proof, we consider the following cases.

Case 1 There is no active untagged SU, i.e., i = 0:
In this case, it is obvious that the tagged SU successfully transmits its packets through

all Lk idle channels that it selects and packet collisions do not occur. This implies that
Gi

L ,k(t; j) = 1 if j = Lk and Gi
L ,k(t; j) = 0 if j �= Lk .

Case 2 There is at least one active untagged SU, i.e., i > 0, and k ≤ L:
In this case, since k ≤ L , all k idle channels are selected by the tagged SU. However, any

active untagged SU also selects all k idle channels, which implies that there are no effective
channels for the tagged SU. Hence, Gi

L ,k(t; j) = 0.

Case 3 There is at least one active untagged SU, i.e., i > 0, and k > L:
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In this case, for the tagged SU to have j effective channels, each active untagged SU
must choose L idle channels from the k − j idle channels that do not become the effective
channels. If L > k − j , then any active untagged SU has to select at least one of the j
effective channels, which is not possible. This implies that Gi

L ,k(t; j) = 0 if L > k − j in
this case.

It remains to consider the case where L ≤ k− j , i.e., j ≤ k− L . Since j ≤ L , we actually
consider the case where j ≤ L−

k . Note that the tagged SU can choose L idle channels in
this case, so we focus on the L idle channels selected by the tagged SU. To compute the
probability that there are only j effective channels among the selected L channels, suppose
we select j channels among the selected L channels and consider them as the effective
channels. The number of selecting such j effective channels among the selected L channels
is

(L
j

)
. Now, we order the selected L channels in such a way that the j effective channels are

numbered as channel 1, 2, . . . , j and the remaining L − j channels are numbered as channel
j + 1, j + 2, . . . , L .

Define El , 1 ≤ l ≤ L by the event that channel l is not selected by any of active untagged
SUs. We need to compute

P{E ∩ Ec
j+1 ∩ · · · ∩ Ec

L }
where E := E1∩E2∩· · ·∩E j and Ec

l is the complement of El . Recall that, for any sequence
of events {C1,C2, . . . ,Cm}, the inclusion-exclusion formula for the sequence is given by

P{∪m
l=1Cl}

=
m∑
l=1

P{Cl} −
∑

1≤l1<l2≤m

P{Cl1 ∩ Cl2} +
∑

1≤l1<l2<l3≤m

P{Cl1 ∩ Cl2 ∩ Cl3}

− · · · + (−1)m+1P{C1 ∩ C2 ∩ · · · ∩ Cm}. (5)

Using (5), we obtain

P{E ∩ Ec
j+1 ∩ · · · ∩ Ec

L }
= P{E ∩ (

E j+1 ∪ · · · ∪ EL
)c}

= P{E} − P{E ∩ (
E j+1 ∪ · · · ∪ EL

)}
= P{E} − P{(E ∩ E j+1) ∪ · · · ∪ (E ∩ EL)}

= P{E} −
L− j∑
l=1

P{E ∩ E j+l} +
∑

1≤l1<l2≤L− j

P{E ∩ E j+l1 ∩ E j+l2}

−
∑

1≤l1<l2<l3≤L− j

P{E ∩ E j+l1 ∩ E j+l2 ∩ E j+l3}

+ · · · + (−1)L− j P{E ∩ E j+1 ∩ E j+2 ∩ · · · ∩ EL }. (6)

Note that, if u > L−
k − j ,

P{E ∩ E j+l1 ∩ · · · ∩ E j+lu } = 0 (7)

because each active untagged SU selects L idle channels in this case, and hence themaximum
of j + u should be L−

k . Furthermore, we see that, for 0 ≤ u ≤ L−
k − j ,

P{E ∩ E j+l1 ∩ · · · ∩ E j+lu } =
((k− j−u

L

)
(k
L

)
)i

, (8)
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and

|{(l1, . . . , lu) : 1 ≤ l1 < l2 < · · · < lu ≤ L − j}|
=

(
L − j

u

)
(9)

where |C | denotes the number of elements in set C .
Combining (6), (7), (8), and (9), we finally have

P{E ∩ Ec
j+1 ∩ · · · ∩ Ec

L } =
L−
k − j∑
u=0

(−1)u
(
L − j

u

) ((k− j−u
L

)
(k
L

)
)i

. (10)

Now, recall that there are
(L
j

)
cases of selecting j channels (that become the effective

channels) from the selected L channels by the tagged SU. Multiplying it by the probability
obtained above, we finally get the probability Gi

L ,k(t; j) in this case as follows:

Gi
L ,k(t; j) =

(
L

j

) L−
k − j∑
u=0

(−1)u
(
L − j

u

) ((k− j−u
L

)
(k
L

)
)i

.

Hence, we prove our lemma. �	
Lemma 2 When N (t) = k, assume that there are i (0 ≤ i ≤ M − 1) active untagged SUs
and that the tagged SU becomes active and hence transmits its packets at time slot t . Then
the conditional throughput T full

L ,k of the tagged SU, given that N (t) = k, is given by

T full
L ,k = Lk ak

(
1 − Lk

k
ak

)M−1

.

Proof At time slot t , let Aa(t) be the number of active untagged SUs (0 ≤ Aa(t) ≤ M − 1)
and Ae(t) be the number of effective channels for the tagged SU (0 ≤ Ae(t) ≤ Lk).We define
D(t) by 1 if the tagged SU is active and by 0 otherwise at time slot t . Then the conditional
throughput T full

L ,k of the tagged SU when N (t) = k, is given by

T full
L ,k = E[cL(t)|N (t) = k]

= P{D(t) = 1|N (t) = k} · E [cL(t)|N (t) = k, D(t) = 1]

= ak

Lk∑
j=1

j P{Ae(t) = j |N (t) = k, D(t) = 1}

= ak

Lk∑
j=1

j
M−1∑
i=0

P{Aa(t) = i |N (t) = k, D(t) = 1}

× P{Ae(t) = j |N (t) = k, D(t) = 1, Aa(t) = i}

= ak

M−1∑
i=0

Lk∑
j=1

j PM−1
i (ak)G

i
L ,k(t; j)

= ak

Lk∑
j=1

j PM−1
i (ak)G

i
L ,k(t; j)

∣∣∣
i=0

+ ak

M−1∑
i=1

Lk∑
j=1

j PM−1
i (ak) Gi

L ,k(t; j)

= ak Lk (1 − ak)
M−1 + ak

M−1∑
i=1

Lk∑
j=1

j PM−1
i (ak) Gi

L ,k(t; j) (11)
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where PM−1
i is given by (3) and Gi

L ,k(t; j) is given by Lemma 1.

To further simplify T full
L ,k in (11) we consider two cases — k ≤ L and L < k. First, when

k ≤ L , by Lemma 1, we know the second term in (11) vanishes in this case. So the conditional
throughput T full

L ,k when k ≤ L , is given by

T full
L ,k = k ak (1 − ak)

M−1. (12)

Second, when L < k, again by Lemma 1, the second term in (11) is reduced as follow
using binomial theorem:

ak

M−1∑
i=1

Lk∑
j=1

j PM−1
i (ak) Gi

L ,k(t; j)

= ak

M−1∑
i=1

Lk∑
j=1

j

(
M − 1

i

)
aik(1 − ak)

M−1−i
(
L

j

) L−
k − j∑
u=0

(−1)u
(
L − j

u

)(k− j−u
L

)i
(k
L

)i

= ak

Lk∑
j=1

L−
k − j∑
u=0

(−1)u j

(
L

j

)(
L − j

u

) M−1∑
i=1

(
M − 1

i

) (
ak

(k− j−u
L

)
(k
L

)
)i

(1 − ak)
M−1−i

= ak

Lk∑
j=1

L−
k − j∑
u=0

(−1)u j

(
L

j

)(
L − j

u

) ⎡
⎣

(
1 − ak + ak

(k− j−u
L

)
(k
L

)
)M−1

− (1 − ak)
M−1

⎤
⎦ .

(13)

Let now F be a function of j + u, defined by

F( j + u) =
(
1 − ak + ak

(k− j−u
L

)
(k
L

)
)M−1

− (1 − ak)
M−1. (14)

By replacing F in (13) and letting p = j + u, the second term in (11) is given by

ak

Lk∑
j=1

L−
k − j∑
u=0

(−1)u j

(
L

j

)(
L − j

u

)
F( j + u)

= ak

L−
k∑

p=1

p∑
j=1

(−1)p− j L!
(p − j)!( j − 1)!(L − p)! F(p)

= ak

L−
k∑

p=1

F(p)L!
(L − p)!(p − 1)!

p∑
j=1

(−1)p− j (p − 1)!
( j − 1)!(p − j)!

= ak L F(1) + ak

L−
k∑

p=2

F(p)L!
(L − p)!(p − 1)!

p∑
j=1

(−1)p− j (p − 1)!
( j − 1)!(p − j)!
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= ak L F(1) + ak

L−
k∑

p=2

F(p)
L!

(L − p)!(p − 1)! · 0

= L ak

[(
1 − L

k
ak

)M−1

− (1 − ak)
M−1

]
. (15)

Hence, from (11) and (15) T full
L ,k is given by

T full
L ,k = L ak(1 − ak)

M−1 + Lak

[(
1 − L

k
ak

)M−1

− (1 − ak)
M−1

]

= L ak

(
1 − L

k
ak

)M−1

, (16)

which is the conditional throughput for L < k.
Combining the two cases, we finally get the conditional throughput performance, given

that N (t) = k, as follows:

T full
L ,k = Lkak(1 − Lk

k
ak)

M−1.

�	
Using Lemmas 1, 2, and (4), we obtain the throughput T full

L in the following theorem.

Theorem 1 For the L-interfaceCRnetworkwith full CSI, the throughput T full
L of an arbitrary

SU is given by

T full
L =

N∑
k=1

P{N (t) = k}ak Lk

(
1 − Lk

k
ak

)M−1

where Lk = min(L , k).

From Theorem 1, we can obtain the optimal AP values {a∗
1 , a

∗
2 , . . . , a

∗
N } that maximize

the throughput T full
L in the L-interface CR network with full CSI as follows.

Theorem 2 For the L-interface CR network with full CSI, the optimal AP values
{a∗

1 , a
∗
2 , . . . , a

∗
N } that maximize the throughput of an arbitrary SU, are given by

a∗
k = min

(
k

LkM
, 1

)
, 1 ≤ k ≤ N

where Lk = min(L , k).

Proof Note that all terms on the right hand side of (4) are nonnegative. So, if we maximize
the conditional throughput T full

L ,k for each k, then the throughput T full
L is maximized. From

Lemma 2, the conditional throughput T full
L ,k is given by

T full
L ,k = Lkak

(
1 − Lk

k
ak

)M−1

.

To find the optimal AP value ak , we differentiate the above equation and solve the following
equation

dT full
L ,k

dak
= Lk

(
1 − Lk

k
ak

)M−2 (
1 − LkM

k
ak

)
= 0.
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Since Lk = min(L , k) ≤ k and 0 ≤ ak ≤ 1, it is easy to show that T full
L ,k is maximized when,

a∗
k = min(

k

LkM
, 1).

�	
An interesting fact that we find from Theorem 2 is that the optimal AP value a∗

k is a
function of the total number of idle channels counting multiplicity that all SUs can access
simultaneously in the L-interface CR network with full CSI. When L = 1, we see from
Theorem 2 that the optimal AP value is a function of M , the number of SUs. This implies
that, if we allow SUs to access Lk channels simultaneously, the L-interface CR network in
the optimal case can be considered as a CR network where there are LkM virtual SUs and
virtual SUs independently access one channel.

We are now ready to compute the optimal throughput, denoted by (T full
L )∗, of an arbitrary

SU when the optimal APs {a∗
1 , a

∗
2 , . . . , a

∗
N } given in Theorem 2 are used.

Theorem 3 The optimal throughput (T full
L )∗ of an arbitrary SU in the L-interface CR net-

work with full CSI satisfies

(T full
L )∗ =

∑
1≤k≤LM

P{N (t) = k} k

M

(
1 − 1

M

)M−1

+
∑

LM<k≤N

P{N (t) = k}L
(
1 − L

k

)M−1

.

Moreover, (T full
L )∗ is an increasing function in L.

Proof We first need to compute the maximum conditional throughput performance (T full
L ,k )

∗.
Bearing in mind that a∗

k = min( k
LkM

, 1), we consider two cases: k > LM and 0 ≤ k ≤ LM .
When k > LM , we see that k > L . Consequently, Lk = min(L , k) = L and k > LM =

LkM . Since k
LkM

> 1 in this case, the optimal AP for (T full
L ,k )

∗ is given by a∗
k = 1. Hence,

(T full
L ,k )

∗ is given by

(T full
L ,k )

∗ = L

(
1 − L

k

)M−1

. (17)

When 0 ≤ k ≤ LM , we further have two subcases. If k > L , then Lk = min(L , k) = L
and k ≤ LM = LkM . If 0 ≤ k ≤ L , then Lk = min(L , k) = k and k ≤ kM = LkM . So
we always have that 0 ≤ k ≤ LkM in this case and a∗

k = k
LkM

. Hence, (T full
L ,k )

∗ is given by

(T full
L ,k )

∗ = k

M

(
1 − 1

M

)M−1

. (18)

Combining two Eqs. (17) and (18), we finally obtain the optimal throughput (T full
L )∗, given

by

(T full
L )∗ =

∑
1≤k≤LM

P{N (t) = k} k

M

(
1 − 1

M

)M−1

+
∑

LM<k≤N

P{N (t) = k}L
(
1 − L

k

)M−1

.

Now, to prove that (T full
L )∗ is an increasing function in L , we prove that

(T full
L+1)

∗ − (T full
L )∗ > 0.

Observe that

(T full
L+1)

∗ − (T full
L )∗
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=
∑

0≤k≤(L+1)M

P{N (t) = k} k

M

(
1 − 1

M

)M−1

+
∑

(L+1)M<k≤N

P{N (t) = k}(L + 1)

(
1 − L + 1

k

)M−1

−
∑

0≤k≤LM

P{N (t) = k} k

M

(
1 − 1

M

)M−1

−
∑

LM<k≤N

P{N (t) = k}L
(
1 − L

k

)M−1

=
∑

LM<k≤(L+1)M

P{N (t) = k} ×
[
k

M

(
1 − 1

M

)M−1

− L

(
1 − L

k

)M−1
]

+
∑

(L+1)M<k≤N

P{N (t) = k} ×
[
(L + 1)

(
1 − L + 1

k

)M−1

− L

(
1 − L

k

)M−1
]

.

Thus, it suffices to show the following two claims.
Claim 1When LM < k ≤ (L + 1)M ,

k

M

(
1 − 1

M

)M−1

> L

(
1 − L

k

)M−1

,

that is,

k

LM

[
k(M − 1)

M(k − L)

]M−1

> 1.

Claim 2 When (L + 1)M < k ≤ N ,

(L + 1)

(
1 − L + 1

k

)M−1

> L

(
1 − L

k

)M−1

,

that is,

L + 1

L

(
k − L − 1

k − L

)M−1

= L + 1

L

(
1 − 1

k − L

)M−1

> 1.

For the proof of Claim 1, let f (k) be defined by

f (k) = k

LM

[
k(M − 1)

M(k − L)

]M−1

for k ≥ LM . We can easily show that f (LM) = 1. The derivative of f is given by

f ′(k) = (k − LM)

Lk(M − 1)

[
k(M − 1)

M(k − L)

]M

.

It is clear that f ′(k) > 0 for k > LM , that is, f is strictly increasing for k > LM . Thus, we
conclude that f (k) > 1 for k > LM , as desired.

For the proof of Claim 2, let g(k) be defined by

g(k) = L + 1

L

(
1 − 1

k − L

)M−1
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for k ≥ (L + 1)M . Obviously, g is strictly increasing for k ≥ (L + 1)M . It remains to show
g ((L + 1)M) > 1 to complete the proof.

g ((L + 1) M) = L + 1

L

(
1 − 1

LM + M − L

)M−1

≥ L + 1

L

(
1 − M − 1

LM + M − L

)

= L + 1

L

(
LM − L + 1

LM + M − L

)

> 1.

�	
FromTheorem3,when LM ≥ N , the optimal throughput (T full

L )∗ is invariant in L because
the second term in the right hand side of the equation in the theorem disappears. This implies
that the optimal throughput (T full

L )∗ can be improved only when LM < N . Moreover, when
LM ≥ N , the optimal throughput (T full

L )∗ in the theorem becomes

(T full
L )∗ =

∑
1≤k≤N

P{N (t) = k} k

M

(
1 − 1

M

)M−1

=
∑

1≤k≤N

(
N

k

)
πk
1πN−k

0
k

M

(
1 − 1

M

)M−1

= π1
N

M

(
1 − 1

M

)M−1

. (19)

We will use (19) later for comparison between the optimal throughputs of the three cases.

3.2 The no CSI case

In this subsection we consider the L-interface CR network with no CSI. We first define the
throughput of the tagged SU, denoted by T no

L , in this case. Assuming that the network is in
steady state, T no

L is defined by

T no
L := E[cL(t)]

=
N∑

k=1

P{N (t) = k}E[cL(t)|N (t) = k]

where P{N (t) = k} is given by (2). We also define the conditional throughput of the tagged
SU in the L-interface CR network with no CSI, given that there are k idle channels, by

T no
L ,k = E[cL(t)|N (t) = k],

so that

T no
L =

N∑
k=1

P{N (t) = k}T no
L ,k . (20)

We then obtain the throughput T no
L in the following theorem.
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Theorem 4 For the L-interface CR network with no CSI, the throughput T no
L of an arbitrary

tagged SU is given by

T no
L = π1La

(
1 − L

N
a

)M−1

.

Proof For the L-interface CR network with no CSI, first observe that each active SU always
randomly selects L channels and transmits packets through the idle channels among the
selected L channels. This implies that, regardless of the number of idle channels (N (t)),
each active SU acts almost the same as in the L-interface CR network with full CSI as if all
channels were idle.

Let AN
e (t) be the number of effective channels in the L-interface CR networkwith full CSI

when all channels are idle. For each effective channel, the tagged SU transmits one packet
successfully through the effective channel if it is actually idle. Hence, the throughput T no

L ,k is
computed as follows.

T no
L ,k = E[cL(t)|N (t) = k]

=
L−
N∑

l=1

E[cL(t)|N (t) = k, AN
e (t) = l]P{AN

e (t) = l|N (t) = k}

=
L−
N∑

l=1

E[cL(t)|N (t) = k, AN
e (t) = l]P{AN

e (t) = l}.

where L−
N = min(L , N − L). For each effective channel considered above, the probability

that it is actually idle is k
N . This implies that

E[cL(t)|N (t) = k, AN
e (t) = l] = lk

N
,

from which we get

T no
L ,k =

L−
N∑

l=1

lk

N
P{AN

e (t) = l}

= k

N

L−
N∑

l=1

l P{AN
e (t) = l}

= k

N
La

(
1 − L

N
a

)M−1

. (21)

From (20) and (21), we finally derive the throughput of the tagged SU in the L-interface
CR network with no CSI as follows.

T no
L = a

N∑
k=1

P{N (t) = k}kL
N

(
1 − L

N
a

)M−1

=
[

N∑
k=1

kP{N (t) = k}
]

L

N
a

(
1 − L

N
a

)M−1

= Nπ1
L

N
a

(
1 − L

N
a

)M−1
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= π1La

(
1 − L

N
a

)M−1

.

�	
From Theorem 4, by differentiating T no

L with respect to a and solving d
da T

no
L = 0, we

obtain the optimal AP a∗ in the L-interface CR network with no CSI as follows.

Theorem 5 For the L-interface CR network with no CSI, the optimal AP value a∗ that
maximizes the throughput of an arbitrary SU, is given by

a∗ = min

(
N

LM
, 1

)
. (22)

From Theorem 5 we finally obtain the optimal throughput (T no
L )∗ of an arbitrary SU in

the no CSI case as follows.

Theorem 6 The optimal throughput (T no
L )∗ of an arbitrary SU in the L-interfaceCR network

with no CSI satisfies that

(T no
L )∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π1
N

M

(
1 − 1

M

)M−1

, if L ≥ N

M
;

π1L

(
1 − L

N

)M−1

, if L <
N

M
.

Moreover, (T no
L )∗ is an increasing function in L.

Proof Using the optimal AP a∗ in (22), we can easily obtain the expressions for (T no
L )∗

in the theorem. The increasing property of (T no
L )∗ follows from the fact that h(x) =

x (1 − x/N )M−1 is an increasing function in x for 0 ≤ x ≤ N/M. �	
From Theorem 6 we see that, when LM < N , the optimal throughput (T no

L )∗ is a function
of L and proportional to L . On the other hand, when LM ≥ N , the optimal throughput
(T no

L )∗ is not a function of L and invariant in L . This implies that the optimal throughput
(T no

L )∗ can be improved by the increase in L only when LM ≤ N , which is the same as in
the full CSI case. Moreover, by comparing the optimal throughputs (T full

L )∗ and (T no
L )∗ in

the two extreme cases, we find an interesting observation that, when LM ≥ N , the optimal
throughputs of an arbitrary SU in the two extreme cases are the same. On the other hand,
when LM < N , we show that (T no

L )∗ is always less than or equal to (T full
L )∗. This implies

that the acquisition of CSI is useful only when LM ≤ N , i.e., the network is less crowded.

3.3 The partial CSI case

In this subsection, we consider the L-interface CR network with partial CSI. The throughput
of the tagged SU in the partial CSI case is denoted by T part

L .

Theorem 7 For the L-interface CR network with partial CSI, the throughput T part
L of an

arbitrary SU is given by

T part
L =

N1∑
k=0

[
P{N1(t) = k}αk LN2+k

(
1 − LN2+k

N2 + k
αk

)M−1 (
π1N2 + k

N2 + k

)]
(23)

where LN2+k = min(L , N2 + k).
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Proof First recall that N idle
1 (t) = {ω ∈ N1 | ω is idle at time slot t} with N1(t) = |N idle

1 (t)|
and N idle

2 (t) = {ω ∈ N2 | ω is idle at time slot t} with N2(t) = |N idle
2 (t)|. For convenience,

we denote (N1(t), N2(t)) by N(t). For the L-interface CR network with partial CSI, each
active SU selects up to L channels among N idle

1 (t) ∪ N2 and transmits packets through the
actually idle channels among the selected L channels. To this end, we define two conditional
throughputs of the tagged SU as follows:

T part
L ,k = E [cL(t)|N1(t) = k] ,

T part
L ,k,k2

= E [cL(t)|N(t) = (k, k2)] .

Then the throughput performance of the tagged SU is given by

T part
L =

N1∑
k=0

P{N1(t) = k}T part
L ,k

=
N1∑
k=0

P{N1(t) = k}
N2∑

k2=0

P{N2(t) = k2}T part
L ,k,k2

. (24)

Now suppose that N1(t) = k. In this case, we only focus on all channels in N2 and k
idle channels in N1. So, from now on in the analysis, we assume that there are only N2 + k
channels in the network. Similar to the analysis of the no CSI case, let AN2+k

e (t) be the
number of effective channels in the L-interface CR network with full CSI when all channels
(N2+k channels) are idle. Note that the tagged SU transmits one packet successfully through
each effective channel if it is actually idle; if the selected channel is in N idle

1 (t), then it is
obviously idle, however, if the selected channel is inN2, then it can be busy. So, the conditional
throughput of the tagged SU T part

L ,k,k2
is computed as follows:

T part
L ,k,k2

= E [cL(t)|N(t) = (k, k2)]

=
L−
N2+k∑
l=1

E
[
cL(t)|N(t) = (k, k2), A

N2+k
e (t) = l

]

×P{AN2+k
e (t) = l|N(t) = (k, k2)}

=
L−
N2+k∑
l=1

E
[
cL(t)|N(t) = (k, k2), A

N2+k
e (t) = l

]

×P{AN2+k
e (t) = l|N1(t) = k}.

where L−
N2+k = min(L , N2 + k − L). In order to get T part

L ,k,k2
, we need to compute the

probability that a selected effective channel is actually idle. For an arbitrary effective channel
selected by the tagged SU, denoted by ω̌, we obtain

P{ω̌ is idle|N(t) = (k, k2)}
= P{ω̌ is idle | ω̌ ∈ N idle

1 (t), N(t) = (k, k2)}P{ω̌ ∈ N idle
1 (t)|N(t) = (k, k2)}

+ P{ω̌ is idle | ω̌ ∈ N2, N(t) = (k, k2)}P{ω̌ ∈ N2|N(t) = (k, k2)}
= 1 · k

N2 + k
+ k2

N2
· N2

N2 + k
= k

N2 + k
+ k2

N2 + k
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This implies that

E
[
cL(t)|N(t) = (k, k2), A

N
e (t) = l

]
= l

(
k

N2 + k
+ k2

N2 + k

)
,

from which we obtain

T part
L ,k,k2

=
L−
N2+k∑
l=1

l

(
k

N2 + k
+ k2

N2 + k

)
P{AN2+k

e (t) = l|N1(t) = k}

=
(

k

N2 + k
+ k2

N2 + k

) L−
N2+k∑
l=1

l P{AN2+k
e (t) = l|N1(t) = k}

=
(

k

N2 + k
+ k2

N2 + k

)
LN2+kαk

(
1 − LN2+k

N2 + k
αk

)M−1

.

Then, the conditional throughput T part
L ,k is given by

T part
L ,k =

N2∑
k2=0

P{N2(t) = k2}
(

k

N2 + k
+ k2

N2 + k

)
LN2+kαk

(
1 − LN2+k

N2 + k
αk

)M−1

= LN2+kαk

(
1 − LN2+k

N2 + k
αk

)M−1
(

k

N2 + k
+

∑N2
k2=0 P{N2(t) = k2}k2

N2 + k

)

= αk LN2+k

(
1 − LN2+k

N2 + k
αk

)M−1 (
π1N2 + k

N2 + k

)
. (25)

From (24) and (25), we finally obtain the throughput of the tagged SU in the L-interface CR
network with partial CSI as follows.

T part
L =

N1∑
k=0

[
P{N1(t) = k}αk LN2+k

(
1 − LN2+k

N2 + k
αk

)M−1 (
π1N2 + k

N2 + k

)]
.

�	
Theorem 8 For the L-interface CR network with partial CSI, the optimal AP values α∗

k , 1 ≤
k ≤ N1, that maximize the throughput of an arbitrary SU, are given by

α∗
k = min

(
N2 + k

LN2+kM
, 1

)
. (26)

Proof To find the optimal AP value αk , we solve the equation dT
part
L ,k /dαk = 0. By differen-

tiating T part
L ,k in (25), we get

(
1 − LN2+k

N2 + k
αk

)M−2 (
1 − LN2+kM

N2 + k
αk

)
= 0.

Since LN2+k = min(L , N2 − k) ≤ N2−k and 0 ≤ αk ≤ 1, it is clear that T part
L ,k is maximized

when

α∗
k = min

(
N2 + k

LN2+kM
, 1

)
.

�	
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Theorem 9 The optimal throughput (T part
L )∗ of an arbitrary SU in the L-interface CR net-

work with partial CSI satisfies

(T part
L )∗ =

∑
0≤k≤LM−N2

[
P{N1(t) = k} 1

M

(
1 − 1

M

)M−1

(π1N2 + k)

]

+
∑

LM−N2<k≤N1

[
P{N1(t) = k}L

(
1 − L

N2 + k

)M−1 (
π1N2 + k

N2 + k

)]
.

Moreover, (T part
L )∗ is an increasing function in L.

Proof It is easy to show that α∗
k = 1 when k > LM − N2 and α∗

k = N2+k
LN2+k M

when

k ≤ LM − N2. Substituting it into (23), we obtain the expressions for (T part
L )∗ in the

theorem. The increasing property is shown by a similar way as given in the proof of the full
CSI case. �	

From Theorem 9, similar to the full CSI case, we see that the optimal throughput (T part
L )∗

is improved only when LM < N (= N1 + N2). Moreover, when LM ≥ N , it is clear that
the optimal throughput in the partial CSI case becomes

(T part
L )∗ =

∑
0≤k≤N1

[
P{N1(t) = k} 1

M

(
1 − 1

M

)M−1

(π1N2 + k)

]

= 1

M

(
1 − 1

M

)M−1
⎡
⎣π1N2

∑
0≤k≤N1

P{N1(t) = k} +
∑

0≤k≤N1

kP{N1(t) = k}
⎤
⎦

= 1

M

(
1 − 1

M

)M−1

(π1N2 + π1N1)

= π1
N

M

(
1 − 1

M

)M−1

which coincides with the optimal throughput for both full CSI case and no CSI case.

4 Numerical results

In this section, we provide numerical results to validate our analysis and investigate through-
put performance behaviors in the three cases. We consider a CR network with N wireless
channels and M SUs. The state transition probabilities of each wireless channel are given by
p = 0.9 and q = 0.1. In this case the probability π1 of being an idle channel is 0.9, which is
a reasonable case in CR networks where the spectrum usage is very low. To validate our anal-
ysis, we use MATLAB to simulate the random behaviors of all users in the L-interface CR
network. We perform Tmax = 107 slot times in each simulation run to obtain the simulation
results. We then compare our analytical results with simulation results.

4.1 Throughput performance when LM ≥ N

In this subsection, we validate and investigate that (1) the optimal AP values {a∗
i }1≤k≤N

achieve the optimal throughput in the full CSI case, (2) the optimal AP value a∗ achieves the
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Fig. 4 Throughput of an arbitrary SU in the three cases versus AP values when LM ≥ N

optimal throughput in the no CSI case and (3) the optimal AP value {α∗
k }1≤k≤N achieve the

optimal throughput in the partial CSI case when LM ≥ N . In the numerical examples, we
use M = 6, N = 24, N1 = 12 and L = 5 so that LM(= 30) ≥ N (= 24).

4.1.1 The full CSI case

In this case, the optimal AP values in Theorem 2 are given by

a∗
k =

{
1/6, k ≤ 5;
k/30, otherwise.

To validate whether our optimal AP values achieve the optimal throughput in this case,
we select one AP ak and change its value from 0 to 1 while all the other APs are set to their
optimal values. Based on our observation that the AP values ak for k ≤ 16 do not affect
the throughput significantly, we select the following APs {a8, a20, a24} and plot the results
in Fig. 4. The index k and the optimal AP values {a∗

8 , a
∗
20, a

∗
24} are also given in Fig. 4. The

x-axis is the value of ak in the figure. As seen in the figure the optimal AP values achieve the
optimal throughput. In addition, our analytic results are well matched with the simulation
results in this case, which verifies the validity of our analysis.

4.1.2 The no CSI case

In this case, the optimal AP value in Theorem 5 is given by a∗ = 4/5. To validate that our
optimal AP value achieves the optimal throughput in this case, we change the value of AP
from 0 to 1. The resulting throughput is also plotted in Fig. 4. The x-axis is the value of a in
this case. From the figure we see that the optimal AP value achieves the optimal throughput.
In addition, our analytic results are well matched with the simulation results in this case,
which also verifies the validity of our analysis.

4.1.3 The partial CSI case

In this case, the optimal AP value in Theorem 8 is given by α∗
k = (12 + k)/30. To validate

our analysis, we select one AP αk and change its value from 0 to 1 while the other APs are
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Fig. 5 Throughput of an arbitrary SU in the three cases versus AP values for LM < N

fixed to {α∗
i }1≤i≤12. The results are plotted in 7 and it shows that the optimal AP values in

Theorem 8 achieve the optimal throughput. Moreover, we see that our analytic results are
well matched with the simulation results, which verifies the validity of our analysis.

Furthermore, by comparing the optimal throughput for the three cases when LM ≥ N ,
we see that the optimal throughputs in the three cases are the same, as we mentioned in our
analysis. The optimal throughput is 1.45 in this example.

4.2 Throughput performance when LM < N

In this subsection, we validate our analytic results as in Sect. 4.1 when LM < N . That is,
we use M = 5, N = 24 and L = 3 in this example, so that LM(= 15) < N (= 24).

4.2.1 The full CSI case

In this case, the optimal AP values in Theorem 2 are given by

a∗
k =

⎧⎨
⎩
1/5, k ≤ 3;
k/15, 3 < k ≤ 15;
1, otherwise.

We select {a8, a20, a24} as in Sect. 4.1, and change each AP value from 0 to 1. The throughput
results are plotted in Fig. 5.We see that the optimal AP values achieve the optimal throughput.

4.2.2 The no CSI case

In this case, the optimal AP value in Theorem 5 is given by a∗ = 1. We change the AP value
a from 0 to 1 and the resulting throughput is also plotted in Fig. 5. As we can see in the
figure, the optimal AP a∗ achieves the optimal throughput.
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Fig. 6 The optimal throughput of an arbitrary SU in the three cases versus L

4.2.3 The partial CSI case

In this case, the optimal AP values in Theorem 8 are given by

α∗
k =

{
(12 + k)/15, k ≤ 3;
1, otherwise.

For numerical analysis, we select {α8, α20, α24} and change each AP value from 0 to 1. The
throughput results are plotted in Fig. 5. The figure shows that the optimal AP values achieve
the optimal throughput. It also shows that the analytic and simulation results are well matched

A comparison among the throughputs in the three cases when LM < N shows that the
optimal throughput for the no CSI case is less than that for the partial CSI case, and both of
them are less than that for the full CSI case.

4.3 The optimal throughput performance

In this subsection, we investigate the optimal throughput performance behaviorwhen N = 30
and N1 = 15. So we assume that all SUs use the optimal AP values.

4.3.1 The impact of the maximum number of idle channels for SUs

First, we investigate the optimal throughput behavior of an arbitrary SU for the three cases
by changing the maximum number of idle channels for SUs when M = 4 and M = 5. The
results are plotted in Fig. 6. As seen in the figure, the optimal throughputs for the three cases
increase as L increases when L < N/M . When L ≥ N/M , it is observed that the optimal
throughput becomes constant, as we showed in Theorems 3, 6 and 9. We can also observe
that, only when LM < N , the optimal throughput for the full CSI case is bigger than that for
the partial CSI case, and that for the partial CSI case is bigger than that for the no CSI case.
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Fig. 7 The optimal throughput of an arbitrary SU for the partial CSI case versus N1

4.3.2 The impact of the number in the full CSI group

The optimal throughput of an arbitrary SU for the partial CSI case is plotted in Fig. 7 when
we change the number N1 in the full CSI group. Note that if N1 = 0, the L-interface CR
network with partial CSI becomes the L-interface CR network with no CSI; if N1 = 30, the
L-interface CR network with partial CSI becomes the L-interface CR network with full CSI.
In the figure, we see that the optimal throughput linearly increases as N1 increases when
L = 4, 5, 6, and 7. However, when L = 8, the optimal throughput does not increase as N1

increases; the reason is that LM > N in this case, as we mentioned before.

5 Conclusions

In this paper, we considered a cognitive radio network where multiple SUs contend to access
wireless channels.We analyzed the L-interface cognitive radio networkwith a random access
policy where each secondary user stochastically decides whether to access L channels simul-
taneously based on a given access probability.

We considered three cases in the analysis - the case of full channel state information,
the case of no channel state information, and the case of partial channel state information.
For each case, to obtain the optimal access probabilities we analyzed the throughput of an
arbitrary SU, defined by the average number of packets transmitted successfully per time
slot. We then derived the optimal APs that achieve the optimal throughput of an arbitrary
SU. We also investigated the impact of the number L on the optimal throughput for the three
cases. Our analytic results were verified through numerical and simulation results.
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