
Ann Oper Res (2019) 283:411–442
https://doi.org/10.1007/s10479-017-2635-8

APPLICATIONS OF OR IN DISASTER RELIEF OPERATIONS

Staff assignment policies for a mass casualty event
queuing network

Emmett J. Lodree1 · Nezih Altay2 · Robert A. Cook1

Published online: 30 October 2017
© Springer Science+Business Media, LLC 2017

Abstract We study parallel queuing systems in which heterogeneous teams collaborate to
serve queues with three different prioritization levels in the context of a mass casualty event.
We assume that the health condition of casualties deteriorate as time passes and aim to
minimize total deprivation cost in the system. Servers (i.e. doctors and nurses) have random
arrival rates and they are assigned to a queue as soon as they arrive. While nurses and doctors
serve their dedicated queues, collaborative teams of doctors and nurses serve a third type of
customer, the patients in critical condition. We model this queueing network with flexible
resources as a discrete-time finite horizon stochastic dynamic programming problem and
develop heuristic policies for it. Our results indicate that the standard cμ rule is not an
optimal policy, and that the most effective heuristic policy found in our simulation study is
intuitive and has a simple structure: assign doctor/nurse teams to clear the critical patient
queue with a buffer of extra teams to anticipate future critical patients, and allocate the
remaining servers among the other two queues.

Keywords Humanitarian logistics ·Medical emergency ·Stochastic dynamic programming ·
Monte Carlo simulation

1 Introduction

Mass casualty events (MCE) such as natural disasters and terror attacks are large scale inci-
dentswhich create a sudden peak in demand formedical resources. For example, immediately
after the Haiti earthquake in 2010 the Norwegian Red Cross set up their Rapid Deployment

B Nezih Altay
naltay@depaul.edu

Emmett J. Lodree
ejlodree@culverhouse.ua.edu

1 Culverhouse College of Commerce and Business Administration, The University of Alabama,
Tuscaloosa, AL 35487, USA

2 Driehaus College of Business, Depaul University, Chicago, IL 60604, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-017-2635-8&domain=pdf
http://orcid.org/0000-0002-1264-6859

412 Ann Oper Res (2019) 283:411–442

Emergency Hospital in Port-au-Prince. The outpatient department treated an average of 80
people per day and a total of 300 surgical procedures were performed during the 4-week
mission of this hospital (Elsharkawi et al. 2010). It is clear that after a mass casualty event,
the demand for medical response far exceeds the existing capacity to administer it. Thus
dynamic allocation of limited resources such as doctors, nurses and operating rooms to cases
will help ensure the survival of affected individuals (Merin et al. 2010).

Immediately after the event casualties arrive to hospitals (care facilities, field hospitals
and alike), some on foot (also called walking wounded) and some in an ambulance. During
their transport or on arrival, casualties are triaged and prioritized for treatment according to
their medical situation (Bostick et al. 2008). There are several triage systems that distinguish
between several classes of casualties but the probably the most commonly used one is Simple
Triage And Rapid Transport (START) which classifies patients into five different groups
(Lerner et al. 2008). Minor patients are the walking wounded. Delayed patients are those for
whom treatment may be delayed by some time without risking their lives. Immediate patients
need immediate care or their condition will get worse. Expectant patients are expected to
die. And the last category includes the dead. Even though casualties classified as Immediates
are prioritized for prompt treatment inadequate capacity may make it impossible to attend to
all them within a reasonable time. The medical staff, especially the surgeons who are most
frequently the bottleneck resource, simply cannot provide prompt treatment to all casualties
(Hirshberg et al. 1999). Therefore, the main objective of mass casualty event management is
to minimize the patients mortality (Cohen et al. 2014).

In general, patients in the minor category are attended by nurses. Patients triaged as
delayed can be seen by nurses or doctors depending on their specific need. Patients who
are in the immediate category will surely need a doctor, while some may need surgery.
However, a doctor cannot perform surgery by himself/herself. A team of doctors, nurses and
technicians is needed to perform a surgery. Limited resources means when a nurse attending
minor patients is assigned to a surgery team, his/her patients have to wait. Holguín-Veras
et al. (2013) suggest that after a disaster, casualties are deprived of basic needs, such as
water, food and medical attention, and their suffering increases by the hour parallel to their
deprivation. Thus the objective function of humanitarian operations should be to minimize
this deprivation cost. The question investigated in this paper is how medical personnel could
be allocated effectively to patient categories when all staff is already overwhelmed with a
sudden increase in demand so that the total deprivation cost in the system could beminimized.

We model this problem as a queueing network where servers (i.e. medical staff) are
assigned to queues of different triage groups. For example, nurses (resource A) are assigned
to minor patients. Doctors (resource B) are assigned to delayed patients. But we need a
team of doctors and nurses (resource A + B) working together on immediate patients. The
contribution of the paper is in the fact that we consider heterogeneous servers collaborating
to make up a new server. To the best of our knowledge servers of heterogeneous team
collaboration have not yet been studied in the queuing literature. We solve small instances
of the model with dynamic programming but realistic size problems prove to be too large to
handle. Therefore, we present three heuristics that produce reasonable solutions.We conclude
the paper with future research directions.

2 Problem description

This paper is concerned with staff assignment decisions within the context of the queuing
network shown in Fig. 1. The system represents a facility such as a hospital or emergency

123

Ann Oper Res (2019) 283:411–442 413

(Nurses)

Workstation 1

Workstation 2

Workstation 3

Triage
Server

Arrivals

(Type 1)

Doctors

(Type 2)

Nurses and

Doctors

1epyTsesruN
Customer Queue

Customer Queue

Customer Queue

Type 2

Type 3

Controller
Serious

Critical

Minor

Arrivals

Patient

(Doctors)

Fig. 1 MCE queuing network considered in this study

shelter where mass casualty event (MCE) survivors go to receive medical attention. At one
end, random numbers of patients arrive over time where through triage, each is assigned
to one of three priority classes based on the severity of his or her injuries: minor, serious,
or critical. Distinct queues are designated for each patient class, and patients within each
queue are treated on a first-come-first-serve basis. On the other side, medical staff enter the
system, and they also arrive in random numbers over time. There are two types of medical
workers, and for the purposes of this study, it is convenient to think of them as doctors and
nurses. Patients with minor injuries are treated by nurses only, and those with serious injuries
are only attended to by doctors.1 However, both doctors and nurses are required to handle
patients with critical injuries (e.g., these patients may need emergency surgery). Upon arrival,
a healthcare administrator (i.e., the “controller” in Fig. 1) assigns the doctors and nurses to
one of the three patient queues: Queue 1 for minor injuries, Queue 2 for major, or Queue 3 for
critical. Of course based on the above-mentioned protocols for handling each type of injury,
nurses can be assigned either to Queue 1 or Queue 3 and doctors to Queue 2 or Queue 3.

There are two characteristics that make this MCE queuing system unique from a research
perspective. First, we consider random staff (i.e., server) arrivals within the context of a
server assignment queuing control problem. To our knowledge, only two other studies exam-
ine random server arrivals and their subsequent service assignments in queuing systems:
Mayorga et al. (2017) and Zayas-Caban and Lodree (2017). Our rationale for taking random
server arrivals into account is motivated by the sudden surge in demand for medical services
associated with MCEs, and the emergency response network’s attempts to meet these needs.
In this situation, the facility’s capacity in terms of staff, supplies, equipment, and space is
often exceeded by a significant amount. As such, medical facilities rely on external help from
nearby healthcare service providers, and possibly other organizations such as Red Cross, for
additional capacity. The availability of supplemental staff, materials, and space (e.g., mobile
emergency tents) is uncertain. It takes time to identify and coordinate backup supply options
with no guarantee that all of these alternatives will materialize, and some materials and vol-
unteers may show up uninvited. Moreover, the additional capacity may not all come from the
same place, which means that there is also variation in the time it takes to reach the facility
from their respective origins. The crux of thematter is that various forms supplemental supply
arrive in random quantities at random points in time. The other distinguishing feature of the
queuing network shown in Fig. 1 is that for one class of patients (i.e., customers), a team of
servers comprised of individuals with different skill sets is required to provide service (recall
both a doctor and a nurse are required to serve the class of patients labeled as critical). This
is in contrast to classical queuing models where customers are processed by one server at a

1 Although doctors are perfectly capable of treating patients with minor injuries, we assume that their unique
skills are reserved for patients with serious or critical injures.

123

414 Ann Oper Res (2019) 283:411–442

time, or collaboratively by multiple identical servers.2 We believe that this is the first paper to
consider “mandatory collaboration” between two heterogeneous servers in a queuing control
framework, and is one of only a few papers that investigates server assignment policies for
servers who arrive randomly over time.

The performance of the MCE queuing network shown in Fig. 1 is evaluated based on a
holding cost that is linearly proportional to the number of unserved patients from each priority
class remaining at the end of each period during a finite horizon. This per unit holding cost is
greatest for critical patients, and is the least for patients with minor injuries; the cost for those
seriously wounded lies between these two extremes. We seek a series of decisions for the
controller that minimizes the sum of expected holding costs over a finite number of periods.
A stochastic dynamic programming model is developed whose solution gives an optimal
server assignment policy. We propose logical heuristic methods to solve problem instances
in an extensive computational study. The heuristics are related to the well-known cμ rule,
but modified to accommodates the server collaboration requirement introduced in this study.

The remainder of this paper proceeds as follows. Related literature is discussed in Sect. 3
followed by the development of the stochastic dynamic programming model in Sect. 4. Next,
our methodology is detailed in Sect. 5 which includes a description of heuristic methods,
research questions, a simulation approach, and experimental design for a computational
study. Results from the computational study are discussed in Sect. 6 followed by concluding
remarks in Sect. 7.

3 Literature review

The problem studied in this paper consists of a queueing network in a MCE setting where
servers (nurses, doctors and doctor and nurse teams) are allocated to queues with different
priority settings and impatient jobs (i.e. the cost of delaying service increases with time
similar to the idea of a deprivation cost). In the following paragraphs we review relevant
research that applies to our case, namely, queues in MCE where tasks are impatient, servers
are flexible and can be teamed up, and servers are assigned to queues rather than customers
being assigned to servers.

Altay and Green (2006) first identified the need for more operations research approaches
to problems in responding to disasters. Since then OR/MS research in the field of disaster
management has been growing fast (Anaya-Arenas et al. 2014; Gupta et al. 2016). Most
research on mass casualty events is focused on triage systems (Mills 2012). Triage is a
mitigation strategy to limit the loss of life because it is well understood that an MCE would
quickly overwhelm the service capacity and capability of a healthcare facility. Sacco et al.
(2005) are first to explicitly consider resource constraints in a mathematical triage model.
Hick et al. (2009) focus their attention on the response capacity of a hospital and propose
adaptive strategies to deal with staff and supply shortages.

The problem of allocating scarce resources to different priority queues in a MCE scenario
has been dealt by several researchers. Gong and Batta (2006) develop a two-priority, single-
server queueing model for a disaster scenario with thousands of casualties. They propose a
queue-length cutoff method to minimize the weighted average of customers in the system.

2 There are queuing models where servers with the same skill sets can work collaboratively to process a single
customer; but the scenario considered here is very different. In existing collaborative models, customers can
be served by one or more servers, where more servers increases the collective service rate. In this paper, the
servers that work together have different skills and their combined skills are required in order for service to
take place.

123

Ann Oper Res (2019) 283:411–442 415

Kilic et al. (2014) consider a two-priority non-preemptive S-server, and a finite capacity
queueing system. They calculate optimal treatment rates for each priority class while mini-
mizing both the expected value of the squared difference between the number of servers and
patients in the system.

In a MCE scenario it is reasonable to assume that some patients condition (e.g. Immedi-
ates) will deteriorate as time passes. Even patients in the minor or delayed triage categories
will get more and more uncomfortable if they do not receive timely service. This means
that although they may not perish there exists a deprivation cost if casualties are not receiv-
ing treatment. In queuing theory, customers with deadlines or deterioration of task value are
classified as impatient tasks. Since in our paper deprivation can be characterized as deteriora-
tion of task value, impatient task literature applies to our problem (Gaver and Jacobs 1999).
Glazebrook et al. (2004) and discuss optimal resource allocation of services to impatient
tasks. While the former develops multiple index heuristics the latter proposes improvements
to these heuristics. Xiang and Zhuang (2016) extend Gong and Batta (2006) work by includ-
ing the deterioration of the customers health condition into their model. Argon et al. (2009)
develop a single-server clearing systemwith state-dependent prioritization policies. Jacobson
et al. (2012) considered multiple resources and defined different mortality probabilities for
different types of casualties.

In this paper we assign servers to queues rather than assigning customers to servers.
Casualties are already assigned into queues during the triage process. Yang et al. (2013)
study the structural properties of the optimal resource allocation policy for single-queue
systems. Yang et al. (2011) generalizes the problem to multiple service facilities and shared
pool of servers. In both cases the authors assume that there is no cost to switching resources.

Another aspect of our problem is that each server can serve customers in their respective
triage category or below, making them somewhat flexible (e.g. doctors can serve the patients
nurses could serve but not vice versa). A resource’s ability to process k different triage
categories is referred to as level-k flexibility (Bassamboo et al. 2012). Resources may be
flexible in the way they handle processes (Sethi and Sethi 1990), products (Fine and Freund
1990) or scope (Mieghem2008).Ahn andRighter (2006) show that for dynamically allocating
flexible resources to tandem queues the optimal policy is often either last-buffer-first-served
or first-buffer-first-served. They also show that for exponential service times the optimal
policy will have several resources assigned to the same server. Cohen et al. (2014) analyze a
two-stage tandem queueing system with flexible resources, and time-varying arrivals using a
fluidmodel that accounts for the transient nature ofMCEs.Others investigated dynamic server
assignment policies that maximize system capacity with flexible servers and random server
switching times/costs (Andradóttir et al. 2001, 2003; Mayorga et al. 2009), or maximize
throughput in serial systems (Arumugam et al. 2009).

Finally, in this paperwe consider a “mandatory collaboration” between two heterogeneous
resources working as team. Although there is a decent amount of research on server collab-
oration, most of the published work considers the collaboration of homogeneous servers,
such as several technicians working together or multiple nurses forming a team, but not a
team of doctors and nurses. Andradóttir et al. (2001) consider flexible servers collaborating
on one customer to maximize average throughput in the system. Arumugam et al. (2009)
study a two-station serial system in which servers may either work collaboratively or non-
collaboratively. Only two papers we found deal with heterogeneous server collaboration (in
that different server types have different service rates). Andradóttir et al. (2011) show when
servers are homogeneous then synergistic servers should collaborate at all times. They add
however that when servers are heterogeneous then “there is a tradeoff between taking advan-
tage of server synergy on the one hand and of each servers training and abilities on the other

123

416 Ann Oper Res (2019) 283:411–442

hand” (Andradóttir et al. 2011, p. 2). Wang et al. (2015) generalize (Andradóttir et al. 2011)
by considering task-dependent server synergy.

4 Model formulation

We represent the MCE queuing portrayed in Fig. 1 and corresponding server assignment
control problem as a discrete-time finite horizon stochastic dynamic programming model
(Table 1). A finite horizon framework is used because MCEs usually only last for a short
time; hours, days or weeks. Also, even though the real world system evolves continuously
in time, a technique known as uniformization is often applied to continuous-time stochastic
dynamic programming models to create equivalent discrete time formulations that can be
solved using standard techniques, viz. policy iteration, value iteration, or backward recursion.
Servers arrive according to a stochastic process and are assigned to a queue by the controller.
Similarly, customer arrivals are also based on a stochastic process. Customers are given a
priority through triage upon arrival and are then routed to the appropriate queue. There are
two types of servers i ∈ {1, 2} and three classes of customers j ∈ {1, 2, 3}. Class 1 customers
are routed to Queue 1 where they are served by Type 1 servers exclusively; Class 2 customers
are only served by Type 2 servers at Queue 2. However, Class 3 customers require both Type 1
and Type 2 servers. Specifically, customers routed to the Class 3 customer queue (Queue 3)
in triage cannot be served unless both a Type 1 server and a Type 2 server are available at
that queue. Otherwise, Class 3 customers wait there until a server team becomes available.
Put another way, let zik be a binary variable that assumes the value 1 if Class j customers
require Type i servers for processing, and zero if not. Then the service requirement (z1 j , z2 j)
for each customer class j is (1, 0) for Class 1 customers, (0, 1) for Class 2 customers, and
(1, 1) for Class 3 customers.

4.1 Sequence of events in each period

We now explain the sequence of events that occurs during each period t of the finite horizon
model, which is also illustrated in Fig. 2.

1. The state of the process, (rit , w j t), is observed. The state variable rit represents the total
number of Type i servers in the system at the beginning of period t , andw j t is the number
of Class j customers at Queue j prior to the arrival of any new customers during period t .

2. The controller decides how many Type i servers to assign to each Queue j . These are
the control variables denoted xi j t . In particular, xi j t is the number of Type i servers
assigned to Queue j at epoch t which includes (i) the assignment of new servers who
arrived during the previous period and (ii) the reassignment of servers currently working
at one of the three customer queues. The control variables must chosen according to
some restrictions, namely: only Type i servers can be assigned to Queue i for i = 1 and
2; however, both Type 1 and Type 2 servers can be assigned to Queue 3. Also, the total
number of servers assigned during the current period cannot exceed the total number of
servers in the system at that time.

3. Customer arrivals occur throughout the period up to this point. The number of Class j
customers who arrive during period t is a random variable Djt , and its realization ξ j t is
observed at this juncture, before the period ends.

4. Customers are served at all queues that have the capacity to do so, and served customers
exit the system. For those customers who are not served, they remain in the system and

123

Ann Oper Res (2019) 283:411–442 417

Table 1 Notations for stochastic dynamic programming model

Indices i = 1, 2 Servers of two different types

j = 1, 2, 3 Customer queues, three classes: minor,
serious, and critical

t = 1, . . . , T Time periods, where T < ∞ is number of
decision epochs

State variables rit No. of Type i servers in the system at epoch t

w j t No. of Class j customers at epoch t (before
new arrivals)

(vector form) rt = (r1t , r2t)

wt = (w1t , w2t , w3t).

Control variables xi j t No. type i servers assigned to queue j at
epoch t

xi t = (xi1t , xi2t , xi3t) No. servers of Type i assigned to each queue

x j t = (x1 j t , x2 j t) No. servers of each type assigned to Queue j

xt = (x1t , x2t) Assignment of all server types to all queues

χ(xt , rt) Action space

Random variables Djt No. of Type j customer arrivals during
period t

Ait No. of Type i server arrivals during period t

ξ j t Realization of Djt

ait Realization of Ait
Dt = (D1t ,D2t ,D3t)

At = (A1t , A2t)

Other notations Vt (rt ,wt) Optimal value over periods t onward

C(rt ,wt , xt ,Dt) Expected cost in period t

L jt Expected number of unserved customers of
Type j at the end of period tμ j

Service rate, at queue j (customers per
server per period)

y+ = max{y, 0}

incur holding costs. Since the event sequence is such that the actual number of customer
arrivals in each period is observed prior to the initiation of the customer service process,
it is possible for customers who arrive in period t to be served in period t provided enough
capacity exists.

5. Servers arrive throughout the period up to this point. The number of servers of Type i who
arrive during period t is a random variable Ait , and its realization ait is observed at this
time. Note that servers who arrive in period t are not eligible for assignment during that
period. As shown in Fig. 2, the server assignment decision takes place prior to observing
the number of servers who arrive in the current period. From a practical standpoint, this
can be interpreted to mean that each server is briefed during his or her arrival period and
then assigned during a later period.

6. All state variables are updated based on the selected server assignments and realizations
of random variables.

123

418 Ann Oper Res (2019) 283:411–442

Server Arrivals

Customer Arrivals

Period Period

EndsBegins

Observe
(rit, wjt)

Observe ξjt
Customer
Arrivals

Compute weighted
holding cost

Assign
xijt ≤ rit
Servers

Serve
min{xijt, wjt + ξjt}

Customers

Observe ait

server arrivals

Fig. 2 Sequence of events during each period t of the finite horizon

4.2 Model assumptions

The sequence of events enumerated in Sect. 4.1 and stochastic dynamic programming model
presented later in Sect. 4.3 are based on the following assumptions:

A.1 There is no cost, time-lag, nor any other penalty associated with reassigning servers
from one queue to another. Thus servers can begin serving customers immediately upon
assignment or reassignment. Furthermore, the only costs considered in this study are
the weighted holding costs for unserved customers at the end of each period.

A.2 Just as the assignment of presently unassigned servers occurs at the beginning of a
period, so too do server reassignments. This means that server reassignments cannot
take place in the middle of a period, even if a server finishes serving customers at the
queue he or she is assigned to and there are customerswaiting for service at other queues.
This is indeed a limitation of our model resulting from the discrete-time formulation.
However, this limitation can be overcome from a practical perspective by restricting to
length of each period to say, 5 or 10 min, and considering planning horizons with large
values of T . That way, server reassignments can take place frequently if necessary.

A.3 Service rates are deterministic; specifically, each individual server (or server team at
Queue 3) has the ability to serve μ j customers that belong to Class j during a single
period. We introduce this assumption to make the process of computing the number
of unserved customers at the end of each period straightforward within the context of
our discrete-time formulation. This is also a limitation of our model, particularly given
that nearly all queuing models in the research literature consider random service times.
On the other hand, in addition to random customer arrivals for each customer class,
our model also includes random server arrivals, which to our knowledge has only been
addressed in two other papers.

A.4 Service interruptions are allowed, but only at the end of a period. Consider, for example,
a service rate of μ j = 0.5 customers per period, meaning that it takes two periods to
serve a Class j customer. If a server spends the first of the two periods needed to
complete the service process for a Class j customer, that server is still eligible for
reassignment at the end of the period even though the customer has one service period
remaining.

123

Ann Oper Res (2019) 283:411–442 419

A.5 Servers do not abandon the system until after the last decision epoch T . This may or
may not be the case in practice depending on the length of the MCE; if it lasts, say, 12 h
or so, servers will likely remain until the end. Otherwise for MCEs that span multiple
days or longer, server vacations are inevitable. From this perspective, our model is
appropriate for MCEs that go on for no more than 24 h.

An important implication of the above assumptions is that it is not necessary to distinguish
between server assignments and reassignments. As such, there is no need to track the precise
location of each server prior to an assignment decision; it is only necessary to know the total
number of servers of each type present in the system and the number of customers at each
queue. This is an important property from a modeling perspective because the number of
states and actions would otherwise increase exponentially. If any of assumptions A.1, A.2, or
A.4 were relaxed, then the location and status of each server would need monitoring and the
corresponding state variables would be ri j t , the number of Type i servers already assigned
to Queue j when period t begins. Moreover, the control variables would have to include
origin and destination queues and be defined as xi jkt : the number of Type i servers assigned
from Queue j to Queue k at epoch t . These additional variables represent increases in the
dimensions of the state and action spaces and would make our problem significantly more
difficult from a computational perspective.

4.3 Single period cost and optimality equations

The cost considered in this study is a holding cost that is linearly proportional to the expected
number of customers remaining in the system at the end of each period. Let h j denote the
holding cost per period for each unserved customer Type j ∈ {1, 2, 3}, where h1 < h2 < h3
is assumed. The interpretation is that Class 1 customers are the least critical, Class 3 customers
are the most critical, and the Class 2 customers are in between these two extremes. Now let
L jt be the expected number of unserved customers of Type j at the end of period t . Then
the one period cost associated with Queue j is simply h j L jt , and the total cost we wish to
minimize is ∑

t

∑

j

h j L jt . (1)

To derive an expression for L jt , let μ j denote the number of Class j customers that each
server (or team of servers) can process in a single period (i.e., μ j is the service rate for each
server or server team at Queue j). Then the overall service rate of Queue j during period t is
μ j multiplied by the number of servers (or server teams) assigned to that queue. For queues
j = 1 and 2, this amounts to μ j x j j t since only Type j servers can serve class j customers
(when j = 1, 2). However for Queue 3, the service rate is slightly different because of
the stipulation that each Class 3 customer requires both a Type 1 server and Type 2 server.
Specifically, the collective service rate at Queue 3 is based on the minimum of the number
of Type 1 and Type 2 servers assigned there. Thus for j = 3, the collective service rate is

μ3 min
i∈{1,2} xi j t .

For all queues j = 1, 2, 3, the number customers served in a period is the minimum of the
collective service rate of the queue and the number of customers at that queue, including
those arriving during the period. So for j = 1, 2, L jt = E

[
min{w j t + Djt , μ j x j j t }

]
, which

is equivalent to

L jt = E
[
w j t + Djt − μ j x j j t .

]+
(2)

123

420 Ann Oper Res (2019) 283:411–442

Similarly for j = 3, the expected number of unserved customers at the end of a single period
t is

L jt = E
[
w j t + Djt − μ j min

i∈{1,2} xi j t
]+

. (3)

The single period expected cost is the sum of the Eqs. (2) and (3) over all three queues:

C(r,w, x,D) =
3∑

k=1

hk Lkt

=
2∑

k=1

E
[
w j t + Djt − μ j x j j t

]+ + E
[
w3t + D3t − μ3 min

i∈{1,2} xi3t
]+

. (4)

The optimality equations take the standard form for t = 1, . . . , T − 1:

Vt (rt ,wt) = min
xt∈χ(x,r)

C(rt,wt, xt,Dt) + E
[
Vt+1(rt+1,Wt+1)

]
. (5)

Period t = T includes the last decision epoch; thus the optimality equation in that period
is the single period expected cost given by Eq. (4) with no future costs or decisions; i.e.,
Vt (rT ,wT) = C(rT,wT, xT,DT).

We seek a sequence of decisions (x∗
1, x

∗
2, . . . , x

∗
T) that satisfy the optimality Eq. (5), which

gives the optimal assignment of servers to queues such that the expected weighted holding
cost over a finite horizon is minimized. The control variables xt that appear in Eq. (5) with
components xi j t must be chosen such that the number of Type i servers assigned at epoch t
does not exceed the existing number ofType i servers in the systemat that time. In addition, the
assignment of Type 1 servers to Queue 2, and Type 2 servers to Queue 1, are not permissable.
Thus x12t = x21t = 0 for all t . Lastly, since servers can only work in pairs at Queue 3, there
is nothing to be gained from an imbalance in the number of servers of each type. Hence the
number of Type 1 servers and number of Type 2 servers at Queue 3 should always be equal,
or symbolically, x13t = x23t for all t . These restrictions constitute the action space for the
stochastic dynamic programming model can be expressed as

χ(xt , rt) =
{
(xt , rt) :

3∑

k=1

xi j t ≤ rit ; x12t = x21t = 0; x13t = x23t

}
, (6)

where i ∈ {1, 2}; j ∈ {1, 2, 3}, and t ∈ {1, . . . , T }.
The relationship between the state variables (rt ,wt) and (rt+1,Wt+1) in Eq. (5) are

specified by a transition function f : (rt ,wt) �→ (rt+1,Wt+1), where the components of
rt+1 and Wt+1 for t = 1, . . . , T − 1 are

Ri,t+1 = rit + Ait i = 1, 2; (7)

Wj,t+1 = [
w j t + Djt − μ j x j j t

]+
, j = 1, 2; (8)

Wj,t+1 =
[
w j t + Djt − μ j min

i∈{1,2} xi j t
]+

, j = 3. (9)

Equation (7) increments the total number of servers in the system by the number of servers
who arrived during the previous period. Equations (8) and (9) reflect the number of customers
in the system at the beginning of the next period, which is essentially the same as L jt in
Eqs. (2) and (3), but without the holding cost and expectation operator. Finally, note that the
upper case convention for Ri,t+1 and Wj,t+1 is deliberate to indicate that both are random

123

Ann Oper Res (2019) 283:411–442 421

variables. Ri,t+1 is a function of the random variable Ait and Wj,t+1 is a function of the
random variable Djt .

In order to express the transitions (7) through (9) in vector form as they appear in the
optimality Eqs. (5),we introduce a vector functionG j t . Specifically,G j t allows us to combine
Eqs. (8) and (9) into a single equation. Define μ = (μ1, μ2, μ3). Then we define G j t as
follows:

G j t =
⎧
⎨

⎩
x j j t , for j = 1, 2

min
i∈{1,2} xi j t , for k = 3.

The vector form of the transition equations are

Rt+1 = rt + At (10)

Wt+1 = [
wt + Dt − μᵀGt

]+
. (11)

Note the slight abuse of notation in Eq. (11). Here, T is the transpose of the vectorμwhereas
elsewhere in the paper, T refers to the number of decision epochs. Also, the superscript “+”
in Eq. (11) is interpreted here, and here only, to mean z+ = max{zi , 0} for each component
zi of the vector z. Finally, Gt ≡ (G1t ,G2t ,G3t) in Eq. (11).

5 Methodology

Unfortunately, the stochastic dynamic programming model presented in the previous section
is intractable from a computational standpoint, even for extremely small problem instances.
This is a direct consequence dynamic programming’s infamous curse of dimensionality,
which refers to exponential growth in the state space as its dimension increases. As such, a
computational study that examines properties of the optimal policy is not possible. Instead,
we conduct a simulation study in which the performance of heuristic policies based on the
well known cμ rule are analyzed under a variety of experimental conditions.

5.1 Illustrating the curse of dimensionality

Recall that the state variables for our problem are (r,w), where r = (r1, r2) represents
the number of servers of each type in the system at the beginning of a period, and w =
(w1, w2, w3) is the number of customers at each queue, also at the beginning of a period.
So the state space as five dimensions. Now let Ωs denote the support of a discrete random
variable S, and |S| its cardinality. Then the number of possible states associated with a single
period t is at most3

(
|ΩA1 | · |ΩA2 |

)t ×
(
|ΩD1 | · |ΩD2 | · |ΩD3 |

)t
. (12)

To see this, consider that the state vector r depends on the random vector A = (A1, A2)

and control vector x = (x11, x22, x13, x23), where the former denotes the number of
servers of each type that arrive during s single period, and the latter represents the assign-
ment/reassignment of servers to queues. Since servers never leave the system, the number of
possible combinations of Type 1 and Type 2 servers in the system at the beginning of each

3 We say “at most” because the transition equations can take multiple states in period t to the same state in
period t + 1. Thus the number of states in Eq. (12) includes some duplicates.

123

422 Ann Oper Res (2019) 283:411–442

period t = 1, . . . , T is
(
|ΩA1 | · |ΩA2 |

)t
. Similarly, the state vectorw depends on the random

vectorD = (D1, D2, D3) and the control vector x, whereD is the number of customer arrivals
from each class in a period. Since each Queue j consists of Class j customers exclusively, the
number of customers across all queues j = 1, 2, 3 can occur in (|ΩD1 | · |ΩD2 | · |ΩD3 |)t ways.
Therefore, the number of possible states (rt ,wt) in a single period t is given by Eq. (12). As
an example, consider a scenario where the maximum arrivals in any period are 3 nurses, 1
doctor, 10 patients with minor injuries, 5 patients with serious injuries, and 2 patients with
critical injuries. Applying Eq. (12), the number of possible states in period t is

(4 × 2)t × (11 × 6 × 3)t = (1, 568)t . (13)

If we interpret t as a 1-h time block and consider an 8-h planning horizon, the number of
states (just in period t = 8) would be (1, 568)8 = 3.65 × 1025.

In addition, we attempted to solve an unrealistically small problem instance to optimality
in order to get a sense computation time requirements. For this smaller problem instance,
we considered only t = 2 periods and allowed maximum arrivals per period of 2 nurses, 1
doctor, 3 Type 1 patients, 2 Type 2 patients, and 1 Type 3 patient. According to Eq. (12), there
could be up to (3× 2× 4× 3× 2)2 = 20,736 states in period 2. This problem instance was
executed on a computer with 3.6 GHz processing speed and 64GB of RAM. The computer
code was written in the Python programming language and included multi-threading for
parallel processing. The computation time for this small example was over 1 h.

5.2 Heuristic policies

We examine the performance of heuristic policies based on the well-known cμ rule. Within
the context of a generic discrete-time parallel queuing system, the cμ rule can be described
as follows: if c j is the unit holding cost for each customer at Queue j not served by the end of
a period, andμ j the average rate at which an individual server can process Type j customers,
then the cμ rule prioritizes the queue with the largest value of c jμ j . More generally, the cμ
rule clears the highest priority queue if enough servers are available, and only assigns servers
to lower priority queues when the highest priority queue is empty. The cμ rule is an optimal
server assignment policy for various queuing systems, such as the “N-network”, which is
somewhat similar to the queuing system addressed in this paper. The N-network consists
of two types of servers and two classes of customers. One server type is fully flexible and
can process both customer classes; the other is dedicated and can serve only one of the two
customer types. Bell and Williams (2001) and Saghafian et al. (2011) show that the cμ rule
is an optimal server assignment policy for the N-network if certain conditions hold. Given
the optimality of the cμ rule in a related queuing system (the N-network), we expect that it
would perform well within the context of the MCE queuing control problem introduced in
Sect. 2 of this paper. We test this theory by simulating the MCE queuing network shown in
Fig. 1 using the following variations of the cμ rule as server assignment policies.
Clear Queue 3 rule (CQ3) This policy always prioritizes Queue 3, logic being that critical
patients endure the highest degree of suffering and should never be kept waiting if at all
possible. The CQ3 assignment policy is a special case of the cμ rule with c j = 1 for each
queue j , in which case Queue 3 is prioritized because the Class 3 customers there have the
highest unit holding cost as mentioned at the beginning of Sect. 4.3. In essence, the CQ3
rule attempts to clear Queue 3 and will assign servers to queues 1 or 2 only if (i) Queue 3 is
empty at the beginning of a period, (ii) not all available servers are needed to clear Queue 3’s
current customers, or (iii) the system has more of one server type than the other. To illustrate

123

Ann Oper Res (2019) 283:411–442 423

(iii), suppose the number of Class 3 customers is 20 and there are 12 nurses and 8 doctors
in the system. Then 8 doctor/nurse teams can be sent to Queue 3, which leaves 4 nurses to
be assigned to the lower priority Queue 1. It is important to note that the CQ3 rule only tries
to clear the customers who are present at the beginning of a period; customers who arrive at
random during the period are not taken into account. This is perhaps a limitation of the CQ3
rule which we attempt to improve upon with the next heuristic.
ClearQueue 3withBuffer rule (CQ3B)This policy extends theCQ3 rule by assigning extra
servers toQueue3 in anticipation of critical patientswhomight arrive later in the period.These
extra servers form a buffer of excess capacity to hedge against the uncertainty of additional
critical patient arrivals. The size of the buffer, denoted b, is the number of additional server
teams assigned to Queue 3 beyond the total number of servers teams needed there. That is,
b = min

i
(xi3t −w3t)

+. We only consider b a buffer if it is at the expense of serving customers

at Queue 1 or Queue 2. Otherwise, CQ3B is equivalent to CQ3 because CQ3 assigns excess
servers to Queue 3 by default. Also, note that b does not change with t ; for each individual
problem instance solved later in this study, the buffer size will remain the same throughout
the finite horizon. Lastly, we will use the CQ3B rule to find the best buffer size and examine
how it changes under a variety of experimental scenarios. This will be done by enumerating
all buffer sizes between zero and the minimum of w3t and Nt , the latter of which is the total
number of server teams in the system at the beginning of each period t .
Clear Queue j rule (CQj) As mentioned previously, the CQ3 policy described above is a
special case of the cμ rule with c j = 1 for all queues j and Queue 3 is prioritized. Similarly,
policy CQ j prioritizes one of the queues j 	= 3, that is, either Queue 1 or Queue 2 has the
highest priority under this policy. The reason for the distinction is that the algorithms for
these two policies are quite different, which is evident from their pseudocodes shown in the
“Appendix”.
Clear Queue j with Buffer rule (CQjB) This rule adds a buffer of size b to the CQj rule
in exactly the same way that the CQ3B policy adds a buffer to the CQ3 rule. In fact, b is
calculated the same way (see the above commentary on the CQ3B rule for the equation), and
we will also find the best buffer size by enumerating different values for b.

These four rules can be thought of as four different policies, or alternatively, as distinct
pieces of the cμ rule. To see this, consider (again) that the CQ3 and CQ j rule are imple-
mentations of the cμ rule when Queue 3 and Queue j 	= 3, respectively, are prioritized. So
if the largest c jμ j comes from Queue 3, the cμ rule is the CQ3 rule. Otherwise if Queue 1
or Queue 2 yields the largest c jμ j value, then rule CQ j must be implemented in order to
apply the cμ rule. In either case, both are the cμ rule. The relationship between the CQ3 and
CQ3B rules, and the CQ j and CQ jB rules are even more obvious. In particular, the CQ3
and CQ j policies are special cases of the CQ3B and CQ jB policies, respectively, with the
buffer size b set to zero. The general structure of the algorithm for applying the cμ rule to the
MCE queuing control problem is shown as Algorithm 1, with more details described in the
“Appendix”. The steps for finding the best buffer size b∗ within this context is also shown in
the “Appendix”.

5.3 Research questions

Since the cμ rules with buffer capacity (CQ3B and CQ jB) include the standard cμ rules
(CQ3 and CQ j) as special cases, the former policies will obviously outperform the latter. So
instead of designing a computational study to identify which heuristic policies perform best
under different experimental conditions, our simulation analysis will be guided by questions

123

424 Ann Oper Res (2019) 283:411–442

Input : r,w, h, μ, b
Output: x

1 Compute j = argmax
j

h jμ j

2 if j = 3 then
3 Implement Procedure CQ3B
4 else
5 Implement Procedure CQ jB
6 end

Algorithm 1: General structure of cμ rule at epoch t with buffer capacity b.

related to the size of the buffer. Specifically, we look for insights into the following research
questions:

Question 1 Under which conditions is the buffer most and least beneficial?

As mentioned earlier, the cμ is an optimal policy for several different queuing control
problems, including the N-network which, similar to this study, concerns the assignment
of heterogeneous servers in a priority parallel queuing system. Up to this point, we have
subtlety deduced that the cμ rule is not optimal for the MCE queuing network addressed in
this paper; we think it can be improved upon by adding a buffer of additional server capac-
ity at higher priority queues to anticipate the random arrival of higher priority customers.
However, this may or may not be the case; if the cμ rule is an optimal policy for our MCE
queuing control problem, then the buffer would never be beneficial. If on the other hand our
findings reveal at least one scenario in which a buffer leads to a lower expected cost, we can
conclude that the cμ rule is not an optimal server assignment policy within the context of
MCE queuing network considered in this study.

Question 2 What effects do changes in model parameters have on buffer size?

Sensitivity analysis will be used to explore what happens to the best buffer size b∗ as model
parameters change. Although a limitation of the sensitivity analysis approach is that the effect
of each parameter is examined one at a time, our hope is that the results lead to practical
insights. On the other hand, the previous research questions lends itself to a response that
requires an experimental design where the effects of changing multiple parameters simulta-
neously can be assessed.

Question 3 Is the difference in expected cost between the heuristic policies with the buffer
and those without one more pronounced as b∗ increases?

b∗ represents the pseudo-optimal buffer size resulting from the process of enumerating all
feasible buffer sizes for the CQ3B and CQ jB policies. We refer to b∗ as “pseudo-optimal”
because even though all possible buffer sizes are considered, the entire analysis takes places
in a simulation environment; thus no rigorous claim of optimality can be made. Nonetheless,
intuition suggests that the heuristic policieswith buffer aremore different than those that don’t
have a buffer when the buffer size that serves as a basis for comparison is large. Therefore
we would expect the answer to Question 3 to be “yes”.

5.4 Simulation analysis

To address the research questions posed in Sect. 5.3, we randomly generate sample paths
using Monte Carlo simulation. A sample path through the network over a finite horizon of

123

Ann Oper Res (2019) 283:411–442 425

length T is a sequence of random variates (ã1t , ã2t , ξ̃1t , ξ̃2t , ξ̃3t) for t = 1, . . . , T sampled
from the distributions of the random variables

(A1t , A2t , D1t , D2t , D3t).

For the purposes of this study, it is assumed that the stochastic process

(A1t , A2t , D1t , D2t , D3t)

is homogenous and stationary, thus independent of t . Consequently, the random variates
generated each period are drawn from the same distributions. The performance metrics of
interest are (i) the total expected weighted holding cost over the finite horizon and (ii) the
best buffer size b∗. In order to derive an estimate of the total expected holding cost, let c̃tk(·)
denote the one period cost in period t associated with the sample path from the kth replication
of a simulation run, where k ∈ {1, . . . , ρ} and ρ is the total number of simulated replications.
Also let xπ represent the assignment of servers to queues based on an assignment policy
π : (r,w) �→ x, where π is one of the heuristic policies from Sect. 5.2. Then similar to the
single period expected cost given by Eq. (4), we have

c̃tk
(
rtk,wtk, ξ̃ tk, ãtk, x

π
t

)
=

2∑

j=1

h j

(
w j tk + ξ̃ j tk − μ j x

π
j j tk

)+
(14)

+ h3

(
w3tk + ξ̃3tk − μ3 min

i∈{1,2} x
π
i j tk

)+
, (15)

and the total cost of one replication k from one sample path is

˜tck =
T∑

t=1

c̃tk
(
rtk,wtk, ξ̃ tk, ãtk, x

π
t

)
. (16)

To go from one period t to the next in Eq. (16), the transition equations are very similar to
(7), (8), and (9). For t = 1, . . . , T and k = 1, . . . , ρ, they are

ri,t+1,k = ritk + ãi tk i = 1, 2; (17)

w j,t+1,k =
[
w j tk + ξ̃ j tk − μ j x

π
j j t

]+
, j = 1, 2; (18)

w j,t+1,k =
[
w j tk + ξ̃ j tk − μ j min

i∈{1,2} x
π
i j tk

]+
, j = 3. (19)

An estimate of the total expected cost, which is one of our metrics of interest, is then

˜TC = 1

ρ

ρ∑

k=1

˜tck . (20)

The expected cost will be estimated using Eq. (20) over a range of admissible buffer sizes,
and b∗ is the buffer size that yields the lowest estimated average cost within this range.

All of the problem instances described later in Sects. 5.6 and 5.5 are based on ρ = 1000
replications and T = 32 decision periods. The 1000 replications will achieve sufficient
statistical significance for the results, and T = 32 represents 15 min intervals over the course
of a MCE that lasts 8 h. All numerical examples also assume a Poisson distribution for each
of the random variables A1t , A2t , D1t , D2t , and D3t in each period t = 1, . . . , T , where the
rate of each Poisson variable is varied according to the experimental design and sensitivity
analyses defined in Sects. 5.5 and 5.6, respectively.

123

426 Ann Oper Res (2019) 283:411–442

5.5 Experimental design

The above Monte Carlo framework for estimating expected cost and the pseudo-optimal
buffer size will be used to generate problem instances according to the experimental design
shown in Table 2, then solved using the heuristic policies described in Sect. 5.2. The scenarios
in Table 2 constitute a series of experiments inwhich the effects of changingmultiple problem
parameters at once can be examined, and are based on a modified 2k factorial design. There
are four parameters; three of them to be examined at two levels, and the other at three. Thus the
number of problem instances is (23)(3) = 24.At Level 1, we set valueswithin each parameter
class equal to each other. Parameter values are taken to be different at Level 2 and are functions
of the base values shown in Table 2. The reason for a third level of customer arrivals is that we
want to consider scenarios where customer arrival rates differ from each other in two ways,
namely λ1 > λ2 > λ3 and λ1 < λ2 < λ3. The first inequality represents the scenario in
which the majority of customers have minor injuries, while the second inequality means that
most customers have critical injuries. We believe that both scenarios are possible depending
on the nature of the mass casualty event, and that each will have different effects on the
system’s performance metrics. So the three levels of customer arrival rates considered in the
experimental design are λ1 = λ2 = λ3, λ1 > λ2 > λ3, and λ1 < λ2 < λ3.

5.6 Sensitivity analysis

Additional problem instanceswill be generated in order to conduct sensitivity analysis around
model parameters. These parameters include (i) server arrival rates, (ii) customer arrival rates,
(iii) customer service rates, and (iv) customer holding costs. Since there are two categories
of servers and three classes of customers, each of the four above-mentioned parameters
actually represent classes of parameters. So not only should the effects of varying entire
parameter classes be taken into account, but changes within each parameter class should
also be considered. For example, increasing the overall arrival rate of servers may effect
performance metrics in a certain way, but increasing the arrival rate of one type of server but
not the other is likely to have a different effect.

The range of values for each parameter considered in this study for the purpose of sensi-
tivity analysis is shown in Tables 3 and 4. For the 11 experiments in Table 3, the customer
arrivals rates satisfy λ1 > λ2 > λ3, which means that are most are patients with minor
injuries. In Table 4, patients with critical injuries are the most prevalent and the arrival rates
are such that λ1 < λ2 < λ3. We believe that both scenarios are possible depending on the
nature of the mass casualty event, and that each will have different effects on the system’s
performance metrics.

Table 2 Experimental design for simulation study

Parameter Base Value Level 1 Level 2 Level 3

Server arrival
rates

γ2 = 1 γ1 = γ2 γ1 = 2γ2 –

Customer
arrival rates

λ3 = 1 λ1 = λ2 = λ3 λ1 = 5λ3, λ2 = 2λ3 –

λ1 = 1 λ1 = λ2 = λ3 – λ3 = 5λ1, λ2 = 2λ1
Service rates μ3 = 1 μ1 = μ2 = μ3 μ1 = 5μ3, μ2 = 2μ3 –

Holding costs h1 = 1 h1 = h2 = h3 h3 = 5h1, h2 = 2h1 –

123

Ann Oper Res (2019) 283:411–442 427

Table 3 Sensitivity analysis experiments where most patients have minor injuries

Experiment Parameter Notation Base Range

1 Server arrival rates γ1, γ2 γ2 = 1 γ2 ∈ {1, 2, . . . , 2max(λ1, λ3)}
2 γ1 = 2γ2 γ1 ∈ {2γ2, . . . , 10γ2}
3 Customer arrival

rates
λ1, λ2, λ3 λ3 = 1 λ3 ∈ {1, 2, . . . , 5γ1}

4 λ2 = 2λ3 λ2 ∈ {2λ3, . . . , 5λ3}
5 λ1 = 5λ3 λ1 ∈ {5λ3, . . . , 10λ3}
6 Service rates μ1, μ2, μ3 μ3 = 1 μ3 ∈ {1, 2, . . . ,max(λ1, λ3)}
7 μ2 = 2μ3 μ2 ∈ {2μ3, . . . , 5μ3}
8 μ1 = 5μ3 μ1 ∈ {5μ3, . . . , 10μ3}
9 Holding costs h1, h2, h3 h1 = 1 h1 ∈ {1, . . . , 5}
10 h2 = 2h1 h2 ∈ {2h1 . . . , 5h1}
11 h3 = 5h1 h3 ∈ {5h1, . . . , 10h1}

Table 4 Sensitivity analysis experiments where most patients have critical injuries

Experiment(s) Parameter Base Range

12, 13 Server arrival rates Same as Table 3 Same as Table 3

14 Customer arrival rates λ1 = 1 λ1 ∈ {1, 2, . . . , 5γ1}
15 λ2 = 2λ1 λ2 ∈ {2λ1, . . . , 5λ1}
16 λ3 = 5λ1 λ3 ∈ {5λ1, . . . , 10λ1}
17, 18, 19 Service rates Same as Table 3 Same as Table 3

20, 21, 22 Holding costs Same as Table 3 Same as Table 3

The 22 sensitivity analysis experiments will be carried out by varying each of the param-
eters shown in Tables 3 and 4 one by one within their respective ranges, while holding the
other parameters to their base values. In Experiment 1 for example, γ2 is varied from 1 to
10, and the other 10 parameters are fixed at values shown in the “Base” column of Table 3.
Notice how both γ1 and γ2 vary in Experiment 1 since γ1 is defined as a function of γ2. Gen-
erally, experiments 1, 3, 6, and 9 (Table 3) and 12, 14, 17, and 20 (Table 4) reflect changes
in parameter classes. For example, Experiment 1 captures the effects of varying the overall
server arrival rate since both γ1 and γ2 are varied. The other 14 experiments represent changes
within each parameter class.

6 Results

In this section, findings with regard to the research questions posed in Sect. 5.3 are provided.

Question 1 Under which conditions is the buffer most and least beneficial?

All of the possible “conditions” considered in this study are defined by the experimental
design shown in Table 2 of Sect. 5.5, and the results pertaining to these experiments are
presented in Table 5. The details of the simulation environment in which the values in Table 5

123

428 Ann Oper Res (2019) 283:411–442

are obtained, including how the average costs are computed, are given in Sect. 5.4. Before
discussing the results, we first explain the meaning of each column heading in Table 5. The
first column heading is the experiment number, which ranges from 1 to 24. The other column
headings are

γ = (γ1, γ2): Arrival rates for Type 1 and Type 2 servers, with two levels
each considered.

λ = (λ1, λ2, λ3): Arrival rates for class 1, 2, and 3 customers, each at three
levels.

μ = (μ1, μ2, μ3): Service rates for class 1, 2, and 3 customers, each at two levels.
h = (h1, h2, h3): Holding cost for class 1, 2, and 3 customers, each at two levels.
Priority Sequence: is a list of the queues from the highest priority to the low-

est. For example, the sequence 3–2–1 means that Queue 3
has the highest priority, Queue 2 is next, and Queue 1 has
the lowest priority. Each queue’s priority is determined by the
product of h and μ—the queue with the largest value of hμ

is the highest priority, and the queue with the smallest value
is the lowest. For several of the experiments, the product of h
and μ is the same for all three queues, which means that all
sequences have the same priority. This is indicated by “All” in
the Priority Sequence column of Table 5, where the sequence
in parentheses gives the lowest average cost for that experi-
ment. There are also several experiments in which two of the
three queues (Queue 1 and Queue 3) tie for having the high-
est priority because they have equal hμ values that are larger
than that of Queue 2. For each such case, the priority sequence
is either 3–2–1 or 1–3–2. One final comment regarding the
Priority Sequence column before moving on to explaining the
subsequent columns of Table 5: the sequences 3–2–1 and 3–1–
2 are equivalent. In both, all that matters is that Queue 3 has the
highest priority relative to queues 1 and 2, and is assigned all
available servers that can collectively clear the current demand
at Queue 3 as soon as possible. The remaining servers are
assigned to queues 1 and 2, but it doesn’t matter which of the
two have the higher priority because all Type 1 servers not
assigned to Queue 3 can only be assigned to Queue 1, and all
Type 2 servers not assigned to Queue 3 can only go to Queue 2.

b∗: is the best buffer size. The b∗ in Column 7 is the best buffer size
associated with the cμ rule, and Column 11 is the best buffer
size based on the CQ3B rule. Similarly, the values in columns
8 through 10 pertain to the cμ rule, and those in columns 12
through 14 to the CQ3B rule.

b = 0 is average cost of the heuristic policies (cμ rule in Column 8
and CQ3B rule in Column 12) with buffer b = 0.

b = b∗ is the average cost of the above-mentioned heuristic policies
using a buffer of size b∗.

%Δ Cost: is percentage increase in the average cost from using b = 0
instead of b = b∗.

123

Ann Oper Res (2019) 283:411–442 429

cμ versus CQ3 %Δ at b∗: This is the percentage increase in average cost when using the
cμ rule instead of the CQ3B rule, both at their respective best
buffer sizes b∗. A negative value indicates that the cμ rule
produces an average cost that is lower than the average cost
of the CQ3B policy; otherwise, the CQ3B policy is at least as
good as the cμ policy.

The results derived from Table 5 that pertain to Question 1 also require the following
preliminary discussion. The first point is that we tested two different implementations of the
CQ3B rule. In one, servers are assigned to Queue 3 in an attempt to clear it. If enough servers
are present in the system to clear Queue 3, then Queue 3 is cleared using the minimum
number of servers required (plus the buffer b), and the rest are assigned to queues 1 and
2. If not, all Type 1/Type 2 server teams are assigned to Queue 3 with servers only being
assigned to Queue 1 or Queue 2 if there is an imbalance in the number of servers of each
type in the system. The other implementation, like the first, attempts to clear Queue 3. In
fact, the two implementations are equivalent if there is more work at Queue 3 than there
is capacity to complete it. However, the two implementations diverge when there is server
excess capacity in the system. Instead of assigning all additional servers to queues 1 and 2,
our alternative implementation of CQ3B assigns only enough servers to queues 1 and 2 that
would clear each of those queues, while the others that can be combined to form teams are
assigned to Queue 3. The latter implementation truly prioritizes Queue 3 because all excess
capacity that can form complete server teams is assigned to Queue 3, whereas in the former
implementation, excess capacity beyond the buffer size b is assigned to queues 1 and 2.

Our preliminary discussion regarding the results in Table 5 continues by pointing out
that we tested each of the five possible priority sequences4 against each other at various
buffer sizes in order to find the best sequence/buffer size combination. This approach led
to the discovery that the CQ3B policy generally outperformed the cμ rule, in 21 of the 24
experimental conditions to be exact. This is the reason that the performance of both the cμ
rule and the CQ3B policy are reported, and compared, in Table 5.

The following observations are derived from the results shown in Table 5, which are based
on the experimental design presented in Sect. 5.5. Observation O.1 is perhaps one of this
paper’s most important findings, while observations O.2, O.3, and O.4 address Question 1
directly.

O.1 The cμ rule is not an optimal policy. There are several experimental scenarios where
the cμ and CQ3B rules do not coincide, and CQ3B outperforms cμ (experiments 3, 11,
15, 19, and 23). Consequently, the cμ rule cannot be an optimal policy. Furthermore,
whenever Queue 3 is the highest priority (i.e., the cμ and CQ3B rules are one in the
same), a nonzero buffer at Queue 3 improves upon the performance of the cμ rule,
which also confirms that the cμ policy is not an optimal one.

O.2 The buffer is most beneficial when Queue 3 is prioritized. Column 11 in Table 5 shows
that b∗ > 0 in 22 of the 24 experimental conditions, which suggests that the buffer adds
value in the majority of cases.5 Moreover, the benefit is often quite substantial; it can

4 The five possible sequences in which the three queues can be prioritized are 3–2–1, 2–3–1, 2–1–3, 1–3–2,
and 1–2–3. Recall that 3–2–1 and 3–1–2 are equivalent as described in the explanation of thePriority Sequence
column of Table 5.
5 Technically, b∗ > 0 for 21 of the 24 experiments. Although the best buffer size for the CQ3B rule is
b∗ = 1 for experiment 17, the resulting average cost only improves upon the b = 0 solution by 0.43%. Also,
the average costs are statistically equivalent (at 99% confidence level), which means that b = 0 is also a
pseudo-optimal buffer size.

123

430 Ann Oper Res (2019) 283:411–442

Ta
bl
e
5

E
xp
er
im

en
ta
ld

es
ig
n
re
su
lts

E
xp

γ
λ

μ
h

Pr
io
ri
ty

cμ
ru
le

Pr
io
ri
tiz

e
qu

eu
e
3

cμ
ve
rs
us

C
Q
3

L
ev
el
s

1,
2

1,
2,

3
1,
2

1,
2

Se
qu

en
ce

b∗
(b

=
0)

(b
=

b∗
)

%
Δ

b∗
(b

=
0)

(b
=

b∗
)

%
Δ

%
Δ

at
b∗

1
1

1
1

1
A
ll
(3
–2

–1
)

2
40

.4
9

25
.5
6

58
.4
1

2
40

.4
9

25
.5
6

58
.4
1

0.
00

2
1

1
1

2
3–

2–
1

2
17

6.
61

54
.4
7

22
4.
23

2
17

6.
61

54
.4
7

22
4.
23

0.
00

3
1

1
2

1
1–

2–
3

0
35

.5
9

35
.5
9

0.
00

2
36

.0
2

17
.5
5

10
5.
24

10
2.
79

4
1

1
2

2
3–

2–
1
or

1–
3–

2
0

17
1.
41

17
1.
41

0.
00

3
17

0.
22

40
.0
4

32
5.
12

32
8.
10

5
1

2
1

1
A
ll
(2
–1

–3
)

1
18

7.
78

18
7.
65

0.
07

0
19

4.
29

19
4.
29

0.
00

−3
.4
2

6
1

2
1

2
3–

2–
1

1
34

1.
34

28
8.
44

18
.3
4

1
34

1.
34

28
8.
44

18
.3
4

0.
00

7
1

2
2

1
1–

2–
3

1
45

.1
3

43
.4
0

3.
99

0
52

.2
1

52
.2
1

0.
00

−1
6.
87

8
1

2
2

2
3–

2–
1
or

1–
3–

2
0

19
3.
64

19
3.
64

0.
00

2
19

0.
49

11
0.
67

72
.1
2

74
.9
7

9
1

3
1

1
A
ll
(3
–2

–1
)

5
38

7.
49

32
4.
9

19
.2
6

5
38

7.
49

32
4.
9

19
.2
6

0.
00

10
1

3
1

2
3–

2–
1

7
14

73
.6
1

10
12

.5
4

45
.5
4

7
14

73
.6
1

10
12

.5
4

45
.5
4

0.
00

11
1

3
2

1
1–

2–
3

0
31

2.
46

31
2.
46

0.
00

6
34

1.
07

27
1.
36

25
.6
9

15
.1
5

12
1

3
2

2
3–

2–
1
or

1–
3–

2
0

14
42

.8
5

14
42

.8
5

0.
00

7
13

93
.8
4

91
0.
51

53
.0
8

58
.4
7

13
2

2
1

1
A
ll
(3
–2

–1
)

2
38

.1
1

19
.3
5

96
.9
5

2
38

.1
1

19
.3
5

96
.9
5

0.
00

14
2

2
1

2
3–

2–
1

3
17

2.
97

48
.0
2

26
0.
20

3
17

2.
97

48
.0
2

26
0.
20

0.
00

15
2

2
2

1
1–

2–
3

0
34

.7
34

.7
0.
00

2
35

.1
1

14
.5
6

14
1.
14

13
8.
32

16
2

2
2

2
3–

2–
1
or

1–
3–

2
0

16
8.
22

16
8.
22

0.
00

3
16

7.
97

37
.2
9

35
0.
44

35
1.
11

17
2

1
1

1
A
ll
(1
–2

–3
)

2
87

.7
9

87
.6
7

0.
14

1
91

.4
4

91
.0
5

0.
43

−3
.7
1

18
2

1
1

2
3–

2–
1

2
23

7.
48

15
9.
3

49
.0
8

2
23

7.
48

15
9.
3

49
.0
8

0.
00

19
2

1
2

1
1–

2–
3

1
40

.1
5

39
.6
4

1.
29

1
42

.4
2

37
.5
6

12
.9
4

5.
54

20
2

1
2

2
3–

2–
1
or

1–
3–

2
0

18
0.
21

18
0.
21

0.
00

2
17

9.
18

80
.3
1

12
3.
11

12
4.
39

21
2

3
1

1
A
ll
(3
–2

–1
)

5
34

5.
92

27
7.
27

24
.7
6

5
34

5.
92

27
7.
27

24
.7
6

0.
00

22
2

3
1

2
3–

2–
1

6
13

40
.7
1

86
3.
25

55
.3
1

6
13

40
.7
1

86
3.
25

55
.3
1

0.
00

23
2

3
2

1
1–

2–
3

0
28

0.
74

28
0.
74

0.
00

6
31

1.
86

24
0.
29

29
.7
8

16
.8
3

24
2

3
2

2
3–

2–
1
or

1–
3–

2
0

12
81

.4
8

12
81

.4
8

0.
00

7
12

75
.2
7

78
1.
3

63
.2
2

64
.0
2

123

Ann Oper Res (2019) 283:411–442 431

be deduced from the next to last column of Table 5 that on average, the expected cost
increases by just under 90% if no buffer is used compared to using the pseudo-optimal
buffer. In some cases (experiments 4 and 16), the increase is well over 300%.

O.3 The buffer is least beneficial when Queue 3 is not prioritized. Column 7 of Table 5
shows that the pseudo-optimal buffer sizes is b∗ = 0 for all but one experiment where
Queue 3 is not prioritized. This occurs when Queue 1 has the highest priority, i.e., when
the Priority Sequence column of Table 5 is 1–2–3, or when 3–2–1 and 1–3–2 tie for
having the highest priority.

O.4 For the few scenarios in which the cμ and CQ3B rules do not coincide and cμ is the
better policy, the best buffer size associated with the CQ3B policy is always b∗ = 0.
Put another way, the cμ rule outperforms the CQ3B policy only when the best buffer
size associated with the CQ3B policy is b∗ = 0 (experiments 5, 7, and 17). On average,
CQ3B improves upon the cμ rule by 52.32%, which is the average of the percentages
shown in the last column of Table 5 (note that this percentage difference includes the
cases where the 3–2–1 priority sequence ties with 1–3–2 in terms of having the highest
priority, in which case the percentage difference is based on comparing the average
costs of 3–2–1 and 1–3–2). For all of the experiments where CQ3B is equivalent to or
better than cμ, the pseudo-optimal buffer at Queue 3 is nonzero. It is only the three
experiments where CQ3B has b∗ = 0 that it is outperformed by cμ.

O.5 While one implementation of the CQ3B rule produces the best results overall, the other
consistently leads to the highest average cost of all the heuristic rules examined in this
study. Although the results pertaining to Observation O.5 are not presented in Table 5,
we mentioned earlier in this section two implementations of the CQ3B rule. In both,
servers are first assigned to Queue 3 in an attempt to clear the current demand there,
with extra servers assigned in anticipation of future customers according to a given
buffer size b. The two approaches differ in the way they assign servers to the two
lower priority queues, Queue 1 and Queue 2. The first approach (Implementation 1
hereafter) disperses all remaining servers among queues 1 and 2. The other, which will
be referred to as Implementation 2, assigns only enough servers to clear the current
demands at queues 1 and 2 (if the number of servers in the system is sufficient to do so),
and any additional servers beyond that who can form teams are assigned to Queue 3.
Referring to Algorithm 2 in the “Appendix”, Implementation 1 of CQ3B is represented
by lines 1 through 8 and 19 through 22, and Implementation 2 by lines 1 through 12.
By default, Implementation 1 includes buffers at queues 1 and 2; so in addition to a
buffer of size b at Queue 3, Implementation 1 of CQ3B also has a built in buffer at
queues 1 and 2. This perhaps explains why CQ3B (Implementation 1) performs so
well; there is potentially a buffer at all three queues that can handle random customer
arrivals in each period. Implementation 2, on the other hand, essentially starves queues
1 and 2 and never processes customers during their arrival periods, which may explain
its poor performance. In summary, the best policy is to assign servers in a way that
clears Queue 3, with a few extras to anticipate the random arrival of additional Class 3
customers. The worst policy is to assign just enough capacity to clear queues 1 and 2,
and assign the rest to Queue 3.

Question 2 What effects do changes in model parameters have on buffer size?

To addressQuestion 2, we turn to the 22 sensitivity analysis experiments presented in Tables 3
and 4 of Sect. 5.6. Representative results from these experiments are displayed in Figs. 3, 4,
5, 6, 7, 8, 9 and 10, and the details of the simulation environment in which these results were
generated are discussed in Sect. 5.4. It is important to note that our entire analysis is based

123

432 Ann Oper Res (2019) 283:411–442

γ2 γ2

Fig. 3 Effect of overall server arrival rate on the best buffer size b∗

γ1 γ1

Fig. 4 Effect of Type 1 server arrival rate on the best buffer size, b∗

on prioritizing Queue 3, i.e., the CQ3B priority rule. More specifically, all buffer sizes shown
in Figs. 3, 4, 5, 6, 7, 8, 9 and 10 were evaluated within the context of only the CQ3B rule; no
attempt was made to ascertain the best buffer size/priority rule combination resulting in the
lowest average cost. Although this approach can be construed as a limitation of the analysis,
our rationale for doing so is based on the CQ3B rule’s superior performance (compared to the
cμ rule in general) in nearly all of the scenarios examined in the experimental design study
whose results are shown in Table 5. Furthermore, the buffer is likely to affect different priority
rules in different ways, and we already have evidence that suggests it does (see observations
O.2 and O.3). So for consistency, the effect that each parameter has on the best buffer size
should be examined within the context on a single priority rule, and it makes sense to do so
using the most robust heuristic policy.

We also point out that Figs. 3, 4, 5, 6, 7, 8, 9 and 10 each show the range of buffer sizes
for each parameter value that produce the lowest average costs that do not differ from one
another statistically at the 95% confidence level. So for example, the best buffer sizes in
Experiment 12 (Fig. 3) are b∗ = 5, 6, 7, 8, and 9 for γ2 = 1 because the average costs
associated with these buffer sizes are statistically equivalent at the 95% confidence level.

123

Ann Oper Res (2019) 283:411–442 433

λ1λ1

Fig. 5 Effect of Class 1 customer arrival rate on the best buffer size, b∗

Fig. 6 Effect of Class 2
customer arrival rate on the best
buffer size, b∗

λ2 λ2

Observations O.6 through O.9 below appeal to Figs. 3, 4, 5, 6, 7, 8, 9 and 10 to address
Question 2, while Observation O.10 identifies an important property of the model.

O.6 The best buffer size appears to be an increasing function of γ2, λ3, and h3. The graph
in Fig. 3 shows how b∗ changes as a function of γ2 for experiments 1 and 12, where
γ2 represents the arrival rate of Type 2 servers into the system. For the purposes of this
discussion, it is convenient to think of Type 2 servers as doctors and Type 1 servers
as nurses. Thus it is reasonable to assume γ1 > γ2 because doctors are presumably
more scarce than nurses. In order to preserve this relationship as γ2 increases, experi-
ments 1 and 12 also have γ1 increase proportionately to γ2. So increasing γ2 effectively
increases the total number of server arrivals during a finite horizon. From this perspec-
tive, Observation O.6 says that the buffer size increases as the number of servers in the
system increases. This relationship agrees with intuition; since more servers are in the

123

434 Ann Oper Res (2019) 283:411–442

λ3 λ3

Fig. 7 Effect of overall customer arrival rate on the best buffer size, b∗

Fig. 8 Effect of service rate on
the best buffer size, b∗

μ3 μ3

system, more servers are available for anticipating future customer arrivals as opposed
to only processing existing customers.

Fig. 7 shows how the best buffer size is affected byλ3, the arrival rate of critically injured
patients who are all routed to Queue 3. In Experiment 3, λ3 < λ2 < λ1 whereas for
Experiment 16, λ3 > λ2 > λ1. In each case, varying λ3 affects the system in different
ways. Similar to γ1 and γ2 in experiments 1 and 12, changes in λ3 represents changes
to the overall customer arrival rate in Experiment 3 in order to preserve the inequality
among the λ values. On the other hand, increasing λ3 in Experiment 16 only increases
the arrival rate of one class of customers; the arrival rates of the other two customer
classes remain constant throughout. Because of the differing effects of λ3 in these two

123

Ann Oper Res (2019) 283:411–442 435

Fig. 9 Effect of holding costs on the best buffer size, b∗

Fig. 10 Effect of service rates on
the best buffer size, b∗

μ2 μ1

scenarios, it seems quite odd that b∗ is affected in almost the same way. However, a
closer look suggests that the effects are somewhat different. Not only does the range
of b∗ values increase in Experiment 3, it also decreases. Thus as λ3 increases, the b∗
range expands in both directions. The reasons for this can be explained as follows. First,
observe in lines 6, 7, and 8 of Algorithm 2 in the “Appendix” that the number of servers
of each Type i assigned to Queue 3 initially is the minimum of the current demand at
Queue 3 (plus the buffer b) and the number of server teams in the system. If the number
of servers is small relative to the number of customers, then all available server teams
are assigned to Queue 3 in which case the buffer b has no effect. In Experiment 16,
on the other hand, the b∗ range expands in one direction. Since only the arrival rate of
Class 3 customers increases, there are enough servers in the system available to satisfy
demand at Queue 3 by increasing its buffer size because the pool of servers is not as
occupied with customers at queues 1 and 2 as they are in Experiment 3. Finally, Fig. 9
shows a slight upward trend as h3 increases, which also agrees with intuition. As h3,
the penalty for unsatisfied demand at Queue 3, increases while the penalties at queues
1 and 2 stay the same, more servers should be assigned to the Queue 3 buffer to avoid
the increasingly higher holding costs there.

123

436 Ann Oper Res (2019) 283:411–442

O.7 The best buffer size appears to be a decreasing function of λ2, μ3, and h2. Figs. 6, 8 and
9 show respectively how b∗ is impacted by λ2, the arrival rate of Class 2 customers;μ3,
the service rate per server at Queue 3; and h3, the holding cost per customer, per period
at Queue 3. All demonstrate decreasing trends, with the trend being more pronounced
whenClass 3 customers are themost prevalent (experiments 15, 17, and 22). For each of
λ2, μ3, and h3, the results are intuitive. In the case of λ2, the best buffer size at Queue 3
decreases because more servers are assigned to Queue 2 to accommodate the increased
arrival of Class 2 customers, which means fewer are needed for the steady arrival of
Class 3 customers at Queue 3. On the other hand, the reason fewer servers (including
the buffer) are needed at Queue 3 as μ3 increases is that the overall service rate at
Queue 3 can be maintained with fewer servers since each individual server team there
becomes increasingly productive. Lastly, the growing unit holding cost at Queue 2, h2,
means that more servers are required there at the expense of fewer servers at Queue 3.

O.8 The best buffer size is not sensitive to changes in γ1, λ1, h1, μ1, nor μ2. For γ1 (Fig. 4)
and h1 (figure not shown), there is no effect; but forμ1 andμ2 (not shown), the effects are
minimal. Recall that γi represents the arrival rate of Type i servers, and that γ1 > γ2
is assumed in all experiments. Thus for experiments 2 and 13 (Fig. 4), γ1 increases
while γ2 remains constant. Since assignments to Queue 3 are restricted to only Type 1
and Type 2 server pairs, server assignments to Queue 3, including the buffer, are only
affected by min{γ1, γ2} = γ2. Hence γ1 does not influence b∗ because γ1 > γ2. As
for holding costs, experiments 9 and 20 (figure not shown, but is the same as Fig. 4
with 1 ≤ h1 ≤ 5 on the horizontal axis) examine the effects of h1, the holding cost per
customer per period at Queue 1. Since h1 < h2 < h3 is assumed, h2 and h3 increase
as h1 increases in order to maintain the inequality. Experiments 9 and 20 are designed
such that the ratio among h1, h2, and h3 remain the same, which perhaps explains why
the b∗ range does not change as h1 increases.

The service rates at queues 1 and 2 effect b∗ differently, and less dramatically, than the
service rate at Queue 3. Experiments 7 and 18 are designed to examine the effects of
μ2, and Experiments 8 and 19 the effects ofμ1. Graphs for Experiments 7 and 8, where
customer arrival rates satisfy λ1 > λ2 > λ3, are not included in the paper because they
are practically identical to the graph for Experiment 2 shown in Fig. 4. On the other
hand, Fig. 10 shows that the graphs associated with Experiments 18 and 19, which
have λ1 < λ2 < λ3, exhibit slight departures from the rectangular shape shown on
the Experiment 13 side of Fig. 4. We first discuss why μ1 and μ2 do not affect b∗ for
the λ1 > λ2 > λ3 case. As described above regarding γ1, assignments to the Queue 3
buffer are driven by the number of Type 2 servers in the system because Type 2 servers
are assumed to be scarce relative to Type 1 servers. So changes to the characteristics
of Type 1 servers such as γ1 above and μ1 here do not affect b∗ at Queue 3. However
based on these arguments, it would seem that larger values of μ2 would cause b∗ to
decrease as the productivity at Queue 2 could be maintained with fewer Type 2 servers
who could in turn be assigned to the Queue 3 buffer. But keep in mind that μ2 does
not increase beyond μ3 in Experiment 7; the goal is to examine what happens to b∗
as μ2 approaches μ3 (the effect of increasing values of μ3 is considered separately
in Experiments 6 and 17). Furthermore, it is unlikely in practice that the service rate
for patients with serious injuries (μ2) would exceed that of the most critically injured
patients (μ3). Thus because μ2 < μ3 and Queue 2 is busier than Queue 3, the buffer
at Queue 3 is not influenced by μ2.

123

Ann Oper Res (2019) 283:411–442 437

Table 6 Average cost of CQ3B
policy as a function of λ2 in
Experiment 4

λ3 1 1 1 1
λ2 2 3 4 5
λ1 5 5 5 5

b = 0 179.18 197.78 221.78 261.98

b = 1 99.45 127.44 164.33 217.31

b = 2 80.31 120.25 174.23 246.76

b = 3 94.22 151.08 227.24 325.49

b = 4 123.32 200.94 303.56 432.43

b = 5 160.32 262.44 395.96 559.79

b = 6 201.81 332.03 499.31 700.73

b = 7 249.09 410.65 613.84 855.42

When λ1 < λ2 < λ3, b∗ essentially does not change as μ1 increases, except for an
immediate and slight decrease in the range of b∗ values, which remains constant there-
after (Fig. 10, Experiment 19). Experiment 18 (Fig. 10) reveals that μ2 has somewhat
an opposite effect: the range of b∗ values is the same throughout except that the lower
bound increases by one unit at the two values of μ2 that are closest to μ3. Even though
μ2 < μ3, larger buffers are beneficial at Queue 3 because it is the busiest of all the
queues when λ1 < λ2 < λ3.

O.9 The range of b∗ values for the Experiments 12 through 22, which have λ1 < λ2 < λ3,
is generally wider than the ranges associated with Experiments 1 through 11, where
λ1 > λ2 > λ3. One of the reasons for this is that when λ1 < λ2 < λ3, the average
holding cost is generally much larger then that of the experiments with λ1 > λ2 >

λ3. For example, the expected holding costs used to produce the graphs shown in
Fig. 6 are shown in Tables 6 and 7. For Experiment 4, the average of the expected
holding costs in Table 6 is 287.20 whereas the corresponding average from Table 7 is
1293.34. Statistically significant differences are more difficult to achieve with larger
values compared to smaller ones (e.g., 1 and 2 differ by 1 unit, and so do 1001 and 1002;
but the latter values are much more likely to be statistically equivalent than the former).
However, the wide range of b∗ values in Experiment 14 (Fig. 5), which depicts b∗ as a
function of λ1 for λ1 < λ2 < λ3, occurs for this reason and another. As described in the
exposition that follows Observation O.6 regarding the effect of λ3, when the number of
customers in the system far exceeds the number of servers, all server teams are assigned
to Queue 3 in which case no buffer is possible and b has no effect on the assignments.

O.10 Average cost appears to be convex in b. For each of the eight experimental conditions
presented in Tables 6 and 7, the average cost decreases for b < b∗ (b∗ is bold in
Tables 6, 7), then steadily increases for b > b∗. This property was consistent across
all 22 sensitivity analysis experiments; Tables 6 and 7 are representative. This finding
has important implications for future analytical work. While the cμ rule is not optimal,
perhaps there exists an optimal buffer size b∗ associated with the CQ3B heuristic that
produces an optimal policy, at least under certain conditions.

Question 3 Is the difference in expected cost between the heuristic policies with the buffer
and those without more pronounced as b∗ increases?

123

438 Ann Oper Res (2019) 283:411–442

Table 7 Average cost of CQ3B
policy as a function of λ2 in
Experiment 15

λ3 5 5 5 5
λ2 2 3 4 5
λ1 1 1 1 1

b = 0 1275.27 1414.41 1593.71 1809.56

b = 1 1145.50 1295.61 1482.65 1705.17

b = 2 1040.44 1195.53 1387.24 1615.44

b = 3 947.17 1107.84 1305.20 1540.91

b = 4 871.46 1038.57 1243.55 1489.72

b = 5 818.41 994.27 1210.07 1470.73

b = 6 788.68 976.68 1207.26 1486.65

b = 7 781.30 985.05 1235.67 1538.93

b = 8 792.65 1017.67 1292.96 1626.49

b = 9 819.43 1070.61 1376.84 1744.30

b = 10 859.51 1142.10 1485.12 1891.93

b = 11 910.83 1229.50 1613.71 2064.91

b = 12 970.96 1328.98 1758.53 2258.12

Let EC(b) denote the expected cost of applying the CQ3B priority rule with buffer size b. If

the answer toQuestion 3 is “yes”, then%Δ(b∗) = EC(0) − EC(b∗)
EC(b∗)

should be an increasing

function. This, however, is not the case. Several counterexamples can be extracted from
Table 5; here,we identify one.Consider experiments 2 and24 inTable 5withb∗ values of 2 and
7, and %Δ(b∗) values of 224.23 and 63.22%, respectively. Since %Δ(2) > %Δ(7), %Δ(b∗)
is not an increasing function, which shows that condition needed to answer Question 3
affirmatively is false. Therefore, the answer to Question 3 is “no”.

7 Conclusion

In this paper, we study the dynamic allocation of medical staff to casualties who have been
assigned to triage categories after amass casualty event.Wemodel this queueing networkwith
flexible resources as a discrete-time finite horizon stochastic dynamic programming problem.
Our research contribution is twofold: first, we consider the collaboration of heterogeneous
teams. While nurses attend to patients in the minor category, and doctors do the same for
patients in the delayed category, the casualties in the immediate category need a team of one
nurse and one doctor to serve them. Our second contribution lies in the fact that there is very
little research that considers random server arrivals and their subsequent service assignments
in queuing systems.Mostly, it has been assumed in the literature that the serverswill be already
in place when casualties (customers) arrive to the system. However, in MCE scenarios more
resources may need to be pulled from other jurisdictions or systems to enhance capacity.

We first approach the problem with dynamic programming but end up developing heuris-
tics due to the excessive computational times and tremendous demand for computational
resources. We examine the performance of heuristic policies based on the well-known cμ
rule. We specifically develop two heuristics each of which have two options, with or without
a buffer of additional server capacity, resulting in four heuristic policies. Our experimental
results aim to answer three questions: (1) Under which conditions is the buffer most and least

123

Ann Oper Res (2019) 283:411–442 439

beneficial? (2) how do changes in model parameters affect buffer size? and (3) Is the differ-
ence in expected cost between the heuristic policies more pronounced as the pseudo-optimal
buffer size resulting from the process of enumerating all feasible buffer sizes increases?

Our results indicate that the cμ rule is not an optimal policy, and that prioritizing Queue 3
(the queue that serves critical patients, each of which requires one doctor and one nurse for
service) is the best option in most circumstances. Buffer capacity is most beneficial whenever
Queue 3 is prioritized, and least beneficial when it is not. In fact, the best buffer size is zero
when a queue other than Queue 3 is prioritized. We find that the best buffer sizes increases
as (i) the number of servers in the system, (ii) number of critical patients, or (iii) holding cost
at Queue 3 increase; and also that the best buffer size decreases when either (i) the arrival
rate of serious patients, (ii) holding cost at Queue 2 (for serious patients), or (iii) service rate
at Queue 3 increase. In addition, the best buffer size is not affected by parameters related
to Queue 1 nor the service rate at Queue 2. Finally, we show that the answer to Question 3
above is no.

Our research can be taken further by including switching costs/times into the model. We
assumed that reallocation or switching cost is zero because our focus was treating casualties
in one hospital. However, if doctors are being sent from one system to another then travel
timeswill play a significant role in reallocation decisions. Furthermore, the problemmodelled
in this paper can be extended into resource allocations in disaster response and recovery. For
example, in disaster recovery one problem is debris removal. If we consider debris collection
points as queues, a central decision maker can send heavy equipment and operators as server
teams (e.g. a bulldozer plus its operator) to these queues. The assumption in such scenarios
generally is that the equipment comes with its own operator but that may not always be
true. This work can also be extended in a more technical direction by exploring issues
related to optimality. Given the computational challenges we encountered even for small
problem instances, the analysis would require an analytical approach. A promising effort
in this direction would be to examine the CQ3B policy in which Queue 3 is prioritized
and additional servers are assigned there as a buffer to anticipate uncertain demand. Our
computational results suggest that the expected cost function associatedwith CQ3B is convex
in the buffer size b, so it is likely that this result can be shown analytically and perhaps lead
to a closed form expression for the optimal buffer size. More generally, the conditions under
which the CQ3B policy is optimal could be identified.

Appendix A

123

440 Ann Oper Res (2019) 283:411–442

1 Procedure CQ3B Rule:
Input : r,w, b
Output : x

2 Compute number of server teams in the system: Nt = min
i

ri t ;

3 Preliminary assignments:
4 for k = 3, 2, 1 do
5 if k = 3 then
6 for i = 1, 2 do
7 x̂i3t = min{w3t + b, Nt };
8 end
9 else

10 x̂kkt = min{wkt , rkt − x̂k3t };
11 end
12 end
13 Permanent assignments (adds remaining servers after preliminary assignments):
14 for k = 3, 2, 1 do
15 if k = 3 then
16 for i = 1, 2 do
17 xi3t = x̂i3t = min

i
(rit − x̂i i t);

18 end
19 else
20 xkkt = rkt − xk3t ;
21 end
22 end

Algorithm 2: If Queue 3 is highest priority, then CQ3B is the cμ rule with buffer
capacity.

1 Procedure CQ jB Rule:
Input : r,w, b
Output : x

2 Determine queue priorities:
3 Highest priority: i = arg max

i∈{1,2} hiμi ;

4 2nd highest priority: j = arg max
j∈{1,2,3}

j 	=i

h jμ j ;

5 Lowest priority: k 	= i 	= j.

6 Preliminary assignments to Queue i:
7 x̂i i t = min{wi t + b, rit }
8 Assignments to queues j and k:
9 if j 	= 3 then

10 Initial assignments to j : x̂ j j t = min{w j t , rrt };
11 Actual assignments to Queue 3:
12 Nt = min{rit − x̂i i t , r j t − x̂ j j t };
13 xi3t = min{w3t , Nt }
14 else
15 Initial assignments to Queue 3:
16 Nt = min{rit − x̂i i t , r j t }
17 x̂i3t = min{w3t , Nt }
18 Actual assignments to Queue j : x j j t = min{w j t , r j t − x̂ j3t }
19 end
20 Assign remaining servers to queues i and j:
21 xii t = rit − xi3t
22 x j j t = r j t − x j3t .

Algorithm 3: If Queue 1 or 2 is highest priority, then CQ jB is the cμ rule with buffer.

123

Ann Oper Res (2019) 283:411–442 441

Input : r,w
Output : b∗ (estimate of the optimal buffer size); c∗ (estimate of optimal cost).
Initialize: c∗ = RAND_MAX

1 Compute j = argmax
j

c jμ j ;

2 Compute Nt = min
i

ri t ;

3 if j = 3 then
4 for b = 0, . . .min{w3t , Nt } do
5 Implement Procedure CQ3B;
6 if Cost(b) < b∗ then
7 b∗ = b and c∗ =Cost(b)
8 end
9 end

10 else
11 for b = 0, . . .min{w j t , Nt } do
12 Implement Procedure CQ jB;
13 if Cost(b) < b∗ then
14 b∗ = b and c∗ =Cost(b)
15 end
16 end
17 end

Algorithm 4: Steps for finding the best buffer size within context of expanded cμ rule.

References

Ahn, H. S., & Righter, R. (2006). Dynamic load balancing with flexible workers. Advances in Applied Prob-
ability, 38(3), 621–642.

Altay, N., & Green, W. G. (2006). OR/MS research in disaster operations management. European Journal of
Operational Research, 175(1), 475–493.

Anaya-Arenas, A.M., Renaud, J., &Ruiz, A. (2014). Relief distribution networks: A systematic review.Annals
of Operations Research, 223(1), 53–79.

Andradóttir, S., Ayhan, H., & Down, D. G. (2001). Server assignment policies for maximizing the steady-state
throughput of finite queueing systems. Management Science, 47(10), 1421–1439.

Andradóttir, S., Ayhan, H., & Down, D. G. (2003). Dynamic server allocation for queueing networks with
flexible servers. Operations Research, 51(6), 952–968.

Andradóttir, S., Ayhan, H., & Down, D. G. (2011). Technical notequeueing systems with synergistic servers.
Operations Research, 59(3), 772–780.

Argon, N. T., Ding, L., Glazebrook, K. D., & Ziya, S. (2009). Dynamic routing of customers with general
delay costs in a multiserver queuing system. Probability in the Engineering and Informational Sciences,
23(02), 175–203.

Arumugam, R., Mayorga, M. E., & Taaffe, K. M. (2009). Inventory based allocation policies for flexible
servers in serial systems. Annals of Operations Research, 172(1), 1–23.

Bassamboo, A., Randhawa, R. S., & Mieghem, J. A. V. (2012). A little flexibility is all you need: On the
asymptotic value of flexible capacity in parallel queuing systems. Operations Research, 60(6), 1423–
1435.

Bell, S. L., Williams, R. J., et al. (2001). Dynamic scheduling of a system with two parallel servers in
heavy traffic with resource pooling: Asymptotic optimality of a threshold policy. The Annals of Applied
Probability, 11(3), 608–649.

Bostick, N. A., Subbarao, I., Burkle, F. M., Hsu, E. B., Armstrong, J. H., & James, J. J. (2008). Disaster triage
systems for large-scale catastrophic events. Disaster Medicine and Public Health Preparedness, 2(S1),
S35–S39.

Cohen, I., Mandelbaum, A., & Zychlinski, N. (2014). Minimizing mortality in a mass casualty event: Fluid
networks in support of modeling and staffing. IIE Transactions, 46(7), 728–741.

Elsharkawi, H., Jaeger, T., Christensen, L., Rose, E., Giroux, K., & Ystgaard, B. (2010). Mobile field hospitals
in the Haiti earthquake response: A red cross model. Humanitarian Exchange Magazine, 48, 10–13.

Fine, C. H., & Freund, R. M. (1990). Optimal investment in product-flexible manufacturing capacity. Man-
agement Science, 36(4), 449–466.

123

442 Ann Oper Res (2019) 283:411–442

Gaver, D. P., & Jacobs, P. A. (1999). Servicing impatient tasks that have uncertain outcomes. Tech. rep., DTIC
Document.

Glazebrook, K., Ansell, P., Dunn, R. T., & Lumley, R. R. (2004). On the optimal allocation of service to
impatient tasks. Journal of Applied Probability, 41(01), 51–72.

Gong, Q., & Batta, R. (2006). A queue-length cutoff model for a preemptive two-priority m/m/1 system. SIAM
Journal on Applied Mathematics, 67(1), 99–115.

Gupta, S., Starr, M. K., Farahani, R. Z., &Matinrad, N. (2016). Disaster management from a POMperspective:
Mapping a new domain. Production and Operations Management, 25(10), 1611–1637.

Hick, J. L., Barbera, J. A., & Kelen, G. D. (2009). Refining surge capacity: Conventional, contingency, and
crisis capacity. Disaster Medicine and Public Health Preparedness, 3(S1), S59–S67.

Hirshberg, A., Stein, M., & Walden, R. (1999). Surgical resource utilization in urban terrorist bombing: A
computer simulation. Journal of Trauma and Acute Care Surgery, 47(3), 545–550.

Holguín-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L. N., & Aros-Vera, F. (2013). On the appropriate
objective function for post-disaster humanitarian logistics models. Journal of Operations Management,
31(5), 262–280.

Jacobson, E. U., Argon, N. T., & Ziya, S. (2012). Priority assignment in emergency response. Operations
Research, 60(4), 813–832.

Kilic, A., Dincer, M. C., & Gokce, M. A. (2014). Determining optimal treatment rate after a disaster. Journal
of the Operational Research Society, 65(7), 1053–1067.

Lerner, E. B., Schwartz, R. B., Coule, P. L., Weinstein, E. S., Cone, D. C., Hunt, R. C., et al. (2008). Mass
casualty triage: An evaluation of the data and development of a proposed national guideline. Disaster
Medicine and Public Health Preparedness, 2(S1), S25–S34.

Mayorga, M., Lodree, E. J., & Wolczynski, J. (2017). The optimal assignment of spontaneous volunteers.
Journal of the Operational Research Society, 68(9), 1106–1116.

Mayorga, M. E., Taaffe, K. M., & Arumugam, R. (2009). Allocating exible servers in serial systems with
switching costs. Annals of Operations Research, 172(1), 231–242.

Merin, O., Ash, N., Levy, G., Schwaber, M. J., & Kreiss, Y. (2010). The israeli field hospital in Haiti—Ethical
dilemmas in early disaster response. New England Journal of Medicine, 362(11), e38.

Mills, A. F. (2012). Patient prioritization and resource allocation in mass casualty incidents. Chapel Hill:
University of North Carolina at Chapel Hill.

Sacco,W. J., Navin,D.M., Fiedler, K. E.,Waddell, I., Robert, K., Long,W.B., et al. (2005). Precise formulation
and evidence-based application of resource-constrained triage. Academic Emergency Medicine, 12(8),
759–770.

Saghafian, S., Van Oyen, M. P., & Kolfal, B. (2011). The W network and the dynamic control of unreliable
flexible servers. IIE Transactions, 43(12), 893–907.

Sethi, A. K., & Sethi, S. P. (1990). Flexibility in manufacturing: A survey. International Journal of Flexible
Manufacturing Systems, 2(4), 289–328.

Van Mieghem, J. A. (2008). Operations strategy: Practices and principles. Belmont, MA: Dynamic Ideas.
Wang,X.,Andradóttir, S.,&Ayhan,H. (2015).Dynamic server assignmentwith task-dependent server synergy.

IEEE Transactions on Automatic Control, 60(2), 570–575.
Xiang, Y., & Zhuang, J. (2016). A medical resource allocation model for serving emergency victims with

deteriorating health conditions. Annals of Operations Research, 236(1), 177–196.
Yang, R., Bhulai, S., & Van der Mei, R. (2011). Optimal resource allocation for multiqueue systems with a

shared server pool. Queueing Systems, 68(2), 133–163.
Yang, R., Bhulai, S., & van der Mei, R. (2013). Structural properties of the optimal resource allocation policy

for single-queue systems. Annals of Operations Research, 202(1), 211–233.
Zayas-Caban, G., & Lodree, E. J. (2017). Optimal control of volunteer convergence. Working paper.

123

	Staff assignment policies for a mass casualty event queuing network
	Abstract
	1 Introduction
	2 Problem description
	3 Literature review
	4 Model formulation
	4.1 Sequence of events in each period
	4.2 Model assumptions
	4.3 Single period cost and optimality equations

	5 Methodology
	5.1 Illustrating the curse of dimensionality
	5.2 Heuristic policies
	5.3 Research questions
	5.4 Simulation analysis
	5.5 Experimental design
	5.6 Sensitivity analysis

	6 Results
	7 Conclusion
	Appendix A
	References

