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Abstract Measuring efficiency in service-producing industries is challenging, because out-
put quality may have to be considered in addition to output quantity. Previous studies have
relied on different nonparametric methods to model the relationship between efficiency and
quality; however, limited work has been done so far to compare and integrate these meth-
ods. Our literature search identified the following popular methods: a one-stage approach,
a congestion analysis, and a two-stage approach. The first two methods treat quality as an
additional output (or input) of the production process, whereas the two-stage approach first
estimates efficiency without considering quality and then regresses the efficiency estimates
on quality in the second stage. In this study, we compare the performance of these three
conventional methods to a fairly novel method, the so-called conditional approach, that can
also be used to incorporate quality into the analysis of efficiency. We simulate data using
eight data generating processes that reflect potential relationships between efficiency and
quality in empirical settings. Our simulation exercise illustrates the dominance of the condi-
tional approach over the conventional methods in terms of both predicting the true efficiency
scores and capturing the original relationship between efficiency and quality. The conditional
approach represents a powerful and flexible tool that can be used when the theoretical link
between efficiency and quality is unclear.
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1 Introduction

Frontier techniques measure the efficiency of decision-making units in transforming inputs
into outputs against the best-practice benchmarks.Measuring efficiency in service-producing
industries is more challenging than in manufacturing, because output quality needs to be con-
sidered in addition to output quantity (Becker et al. 2011). An organization producing higher
levels of output quantity but of low quality may be efficient compared to other organizations
at the same resource level. However, by compromising the quality of produced outputs this
organization could leave the customers dissatisfied. Quality concerns are critical to many
service industries, such as banking, education, hospitality, or health care. For instance, in
the health care sector, low quality of provided health care services may compromise health
outcomes or even the lives of patients. Because quality plays an important role in the relation
between inputs and outputs, neglecting to control for quality in determining the best-practice
frontier may distort the efficiency estimates.

The theoretical relationship between efficiency and quality is ambiguous. On the one hand,
producing higher levels of quality may require sacrificing input resources and thereby reduce
efficiency (Newhouse 1970; Olesen and Petersen 1995). On the other hand, the proponents
of total quality management (TQM) argue that an increase in quality may lead to an increase
in efficiency (Prior 2006). Likewise, the bad management hypothesis suggests that poor
management can lead to both low efficiency and low quality (Berger and DeYoung 1997).

Several methods have been suggested to integrate quality into the analysis of efficiency;
however, these methods differ regarding their underlying assumptions. There is a lack of
methodological guidance on which models are appropriate or inappropriate both to obtain
efficiency scores corrected for quality and to investigate the underlying relationship between
efficiency and quality. Our study contributes to the existing literature dealing with the inte-
gration of external variables into efficiency analysis and explaining their influence on the
production process. While there are two main streams of thought in the efficiency litera-
ture: parametric and nonparametric, this study will pursue only the nonparametric routes of
integrating quality into the analysis.

The objective of this study is, therefore, to compare the available nonparametric methods
that allow integrating quality into the analysis of efficiency. To accomplish this objective, we
first provide an overview of the nonparametric methods used in previous studies to integrate
quality into efficiency analysis. We subsequently compare the performance of the three most
commonly used methods–the one-stage approach, the congestion analysis, and the two-stage
approach–to a rather novel method, namely, the conditional approach (Bădin et al. 2012).
To evaluate the performance of these four methods, we simulate data using eight different
data generating processes (DGPs) that capture potential relationships between efficiency
and quality. Using simulated datasets is convenient because we know both the true value of
the simulated inefficiencies and the underlying relationship between quality and efficiency.
Thus, we are able to examine how precisely the comparedmethods capture the true efficiency
and which conclusion they reach regarding the relationship between efficiency and quality.
To enhance the understanding of the strengths and limitations of the available methods we
present the results in a simple and intuitive way using graphical illustrations.

2 Previous literature

We conducted a systematic search of studies published in peer-reviewed journals through
June 2016 that integrated quality into a nonparametric analysis of the efficiency of service
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providers. The electronic search was performed in the following databases: Business Source
Complete, EconLit, and Web of Science. We complemented the search results by going
through the references listed in the relevant articles.

Table 1 summarizes 57 reviewed studies in view of the utilized quality measures and
methods to integrate quality into efficiency analysis. The majority of reviewed studies (33 of
57) are in the health care sector, and the remaining 24 studies are in other sectors, including
banking, education, electricity, government, and hospitality sectors. The reviewed studies
used, on average, 3 quality indicators (median 1, range 1–41). In the health care sector, the
measures of quality were selected along the Donabedian dimensions of structure, process,
and outcome quality (Donabedian 1966) with themost frequent measure beingmortality rate.
Some examples of quality measures utilized in other sectors included service quality score
and problem loans (banking), student grades (education), energy loss (electricity), crime rate
(government), and star rating (hospitality).

The most commonly used methods to integrate quality into efficiency analysis can be
categorized into the one-stage approach, the congestion analysis, and the two-stage approach.
The one-stage approach includes an external variable as an additional freely disposable input
or output into the production function (Banker andMorey 1986). If the hypothesized influence
of an external variable on the production is positive then it is treated as another input variable,
and if the influence is negative then the variable is treated as another output variable. Several
studies treated quality as another output in the model on the assumption that producing
quality binds additional input resources and thus has a negative effect on the production
(Chang et al. 2011; Lee et al. 2009; Mark et al. 2009; Navarro-Espigares and Torres 2011;
Nayar andOzcan 2008; Varabyova and Schreyögg 2013; Yang and Zeng 2014; Du et al. 2014;
Garavaglia et al. 2011; Tiemann and Schreyögg 2009; Ray andMukherjee 1998; Guccio et al.
2016; Jablonsky 2016; McMillan and Chan 2006). Alternatively, some studies used a reverse
measure of quality, the lack of quality, as an additional input in the model (Giannakis et al.
2005; Growitsch et al. 2010; Jamasb and Pollitt 2003; Miguéis et al. 2012; Prior 2006; Von
Hirschhausen et al. 2006; Yu et al. 2009; Drake and Hall 2003; Drake et al. 2006). In either
case, the major methodological difficulty in using the one-stage approach is the need to know
a priori whether the influence of quality on the production process is positive or negative.
Moreover, the one-stage approach does not allow a non-monotonic (e.g.,U -shaped) influence
of the external variable. Additionally, the assumptions of convexity and returns to scale are
imposed on the production set augmented by quality measures if data envelopment analysis
(DEA) is used. The fact that the one-stage approach makes a lot of restrictive assumptions
about the production set augmented by the quality measures makes it unsuitable for situations
when there exists ambiguity in the effect of quality on the production process (Bădin et al.
2010).

In contrast to the one-stage approach, which adds external variables to the production
model under the assumption of free (strong) disposability, the congestion analysis relaxes
this assumption to allow for weak disposability. The concept of congestion has been first
applied to the joint production of electric power and pollution, whereby pollution represents
a “bad” output of the production process (Färe andGrosskopf 1983). Under the assumption of
strong disposability, a production unit could dispose of pollution at no cost; therefore, weak
disposability is assumed to impose an opportunity cost on the disposal of “bad” outputs
(Fare et al. 1994). The measure of congestion is defined as the output loss due to non-
disposability (Färe and Grosskopf 1983). The idea to treat the lack of quality as a “bad”
output of the production process has found appeal in a range of studies (Bilsel and Davutyan
2014; Clement et al. 2008; Davutyan et al. 2014; Prior 2006; Valdmanis et al. 2008; Mutter
et al. 2010;Wu et al. 2013; Olesen and Petersen 1995;Matranga and Sapienza 2015; Dismuke

123



368 Ann Oper Res (2018) 261:365–392

Table 1 Studies that integrated quality into the nonparametric analysis of efficiency in different service sectors

Study Measures of quality Methods

Health care

Anderson et al. (2003) Multidimensional score of
quality of care

Two-stage approach

Bates et al. (2006) Mortality rate Two-stage approach

Bilsel and Davutyan (2014) Risk adjusted mortality Congestion analysis

Chang et al. (2011) Inverse mortality rate One-stage approach

Clement et al. (2008) 15 risk-adjusted mortality
inpatients quality indicators

Congestion analysis

Davutyan et al. (2014) Mortality rate Congestion analysis

Dismuke and Sena (2001) Dead discharges Congestion analysis

Du et al. (2014) In-hospital survival rate One-stage approach

Ferrier and Trivitt (2013) Four outcome quality
measures (e.g., AMI
mortality rate), eight
process quality measures

One-stage approach,
output adjustment

Ferrier and Valdmanis (1996) Ratio of predicted to actual
mortality rate

Two-stage approach

Garavaglia et al. (2011) Structure quality measures
(extra nursing hours, daily
case-mix), residential
charges

One-stage approach

Gok and Sezen (2013) Structural quality index,
patient satisfaction index

Two-stage approach

Kooreman (1994) Four process quality
measures (e.g., the presence
of a patients’ council)

Two-stage approach

Laine et al. (2005) 38 outcome and process
quality measures and 3
structure quality measures

Two-stage approach

Lee et al. (2009) Seven care planning
deficiencies (e.g., failures to
do comprehensive
assessments)

Two-stage approach

Lenard and Shimshak (2009) Residents with a catheter,
physical restraints, pressure
sores

Separate DEA models

Mark et al. (2009) Patient satisfaction, the
numbers of reported
medication errors and
patient falls

One-stage approach

Matranga and Sapienza (2015) Inappropriate discharges,
inappropriate day hospitals

Congestion analysis

Mutter et al. (2010) Four patient safety indicators
(e.g., infection due to
medical care)

Congestion analysis
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Table 1 continued

Study Measures of quality Methods

Navarro-Espigares and Torres
(2011)

Four process indicators,
surgical performance, % of
caesareans to assisted
births, collection of
information, satisfaction by
the users

One-stage approach

Nayar and Ozcan (2008) Three process indicators (e.g.,
% of patients given initial
antibiotic timing)

One-stage approach

Nyman and Bricker (1989) Process quality (the numbers
of deficiencies respect to
the federally imposed
standard), structure quality

Two-stage approach

Prior (2006) Nosocomial infections Congestion analysis,
one-stage-approach

Shimshak et al. (2009) Three process and outcome
measures (e.g., number of
residents without a catheter)

Separate DEA models,
weight restrictions,
multiple objectives
DEA

Thanassoulis et al. (1995) Satisfaction with care,
survival rates

Weight restrictions

Tiemann and Schreyögg (2009) Inverse mortality rate One-stage approach

Valdmanis et al. (2008) Four patient safety events
(e.g., failure to rescue,
infection due to medical
care)

Congestion analysis

van Ineveld et al. (2015) Decubitus ulcers prevalence Output adjustment

Varabyova and Schreyögg
(2013)

Inverse mortality rate One-stage approach

Varabyova et al. (2016) Patient satisfaction, mortality
rate, radiation exposure

Conditional approach

Wu et al. (2013) Readmissions Congestion analysis

Yang and Zeng (2014) Mortality rate, average length
of stay

One-stage approach

Zhang et al. (2008) Summation of all deficiency
citations: clinical,
administrative, resident
rights, physical
environment

Output adjustment

Banking

Das and Ghosh (2006) The ratio of operating
expenses to total assets

Two-stage approach,
output adjustment

Drake and Hall (2003) Problem loans One-stage approach

Drake et al. (2006) Loan loss provisions One-stage approach

Isik and Hassan (2003) Problem loans Two-stage approach
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Table 1 continued

Study Measures of quality Methods

Kamakura et al. (2002) Service quality perception of
customers

Separate DEA models

Kenjegalieva et al. (2009) Loan loss provisions Congestion analysis

Kyj and Isik (2008) Nonperforming loans Output adjustment

Özkan-Günay et al. (2013) Nonperforming loans Congestion analysis

Park and Weber (2006) Nonperforming loans Congestion analysis

Sherman and Zhu (2006) Service quality score Separate DEA models

Education

Guccio et al. (2016) Regular graduates, degree
classification

One-stage approach,
output adjustment

Jablonsky (2016) Quality of publications One-stage approach

McMillan and Chan (2006) Success at obtaining research
grants in two areas

One-stage approach,
Two-stage approach

Olesen and Petersen (1995) Distribution of grades Congestion analysis

Ray and Mukherjee (1998) Average test score in an
equivalency exam,
percentage of graduating
students pursuing further
education

One-stage approach

Elictricity

Cambini et al. (2014) Regulatory rewards and
penalties for meeting
quality targets, cost of
energy not served

Input adjustment

Giannakis et al. (2005) Number of minutes lost,
number of interruptions

One-stage approach

Growitsch et al. (2010) Cost of energy not served One-stage approach

Jamasb and Pollitt (2003) Energy losses One-stage approach

Miguéis et al. (2012) Cost of energy not served One-stage approach

Von Hirschhausen et al. (2006) Energy losses One-stage approach

Yu et al. (2009) Customer minutes lost,
customer’s WTP for
avoiding power interruption

One-stage approach

Government

lo Storto (2016) Six variables that measure
public service effectiveness
(e.g., micro-crimes, urban
waste, etc.)

Two-stage approach

Hospitality

Poldrugovac et al. (2016) Hotel star rating Two-stage approach

and Sena 2001; Park and Weber 2006; Kenjegalieva et al. 2009; Özkan-Günay et al. 2013).
By relaxing the assumption of strong disposability, the congestion analysis allows, in contrast
to the one-stage approach, for a non-monotonic relationship between efficiency and quality.
However, the convexity and returns to scale assumptions of the resulting augmented set are
still required to be compatible with the quality measures. Moreover, the congestion analysis
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has been criticized because the efficiency of production units may improve with an increase
in a “bad” output (Chen 2013).

The investigation of the relationship between efficiency and quality has also been accom-
plished in a two-stage approach (Anderson et al. 2003; Bates et al. 2006; Gok and Sezen
2013; Kooreman 1994; Nyman and Bricker 1989; Laine et al. 2005; Ferrier and Valdmanis
1996; lo Storto 2016; Poldrugovac et al. 2016; McMillan and Chan 2006; Isik and Hassan
2003; Das and Ghosh 2006). The idea of the two-stage approach is to estimate efficiency
using the information on input and output quantities in the first stage and then to regress
the obtained efficiency estimates on quality indicators in the second stage. The fundamental
difference between the two-stage approach and the two methods described above is the treat-
ment of quality as an external variable, which is not directly related to either the inputs or the
outputs of the production process. The reviewed studies used correlation analysis, analysis
of variance, ordinary least squares (OLS), and Tobit regression to examine the relationship
between the obtained efficiency scores and quality. The seminal work of Simar and Wilson
(2007) compared the performance of different regression methods in the second stage of the
two-stage analysis and showed that the truncated regression with double bootstrap outper-
formed other conventionally used methods. The work of Simar and Wilson (2007) assumed
a situation, in which external factors analyzed in the second stage did not have an effect on
the attainable input–output set. This situation requires the verification of a so-called separa-
bility condition between external variables (such as quality) and the set of inputs and outputs
(Simar and Wilson 2011). The assumption of separability may be quite restrictive, because,
in some situations, pursuing the objective of maintaining high quality standard may compro-
mise other production objectives (Sherman and Zhu 2006) and thereby shift the production
possibility frontier.

Other methods to integrate quality into efficiency analysis are less frequently used. Thus,
some studies adjusted the quantity of outputs or inputs for quality. The concept of output
adjustment is quite familiar in the health care sector because output quantity (e.g., number of
treated patients) is commonly adjusted for case-mix on the basis of diagnosis-related groups
(DRGs). The adjustment of output for case-mix is justified by the fact that the treatment
of some DRGs requires much more labor and capital resources than the treatment of other
DRGs. Extending this concept, some studies suggested adjusting health care output for qual-
ity indicators (Ferrier and Trivitt 2013; Zhang et al. 2008; van Ineveld et al. 2015). However,
in contrast to theDRG-based adjustmentweights, which are resource-based, no unambiguous
relationship exists between health care quality and input resources,whichmay lead to a distor-
tion in the obtained findings. Similarly, in the education sector, Guccio et al. (2016) weighted
the number of graduates by degree classification. Other studies subtracted quality-related
costs from inputs or the value of undesirable outputs from total outputs (Cambini et al. 2014;
Park and Weber 2006; Kyj and Isik 2008). Yet other studies integrated quality by estimating
separate DEA models for quality efficiency and operating efficiency, by using a DEA model
with weight restrictions, or by considering a DEA model with multiple objectives (Lenard
and Shimshak 2009; Shimshak et al. 2009; Thanassoulis et al. 1995; Kamakura et al. 2002;
Sherman and Zhu 2006). The method involving separate DEA models generates separate
scores for quality efficiency and operating efficiency, which complicates the interpretation
and application of this method in managerial practice. The weight restrictions method yields
a single efficiency score; however, the analyst must decide on the level of restrictions, which
introduces arbitrariness into the model. The method based on the DEA model with multiple
objectives uses the sum of the objectives for individual models while restricting the weights
assigned to measures appearing in more than one individual model. Similar to the weight
restrictions method, the multiple-objectives DEA model requires the value judgment of the
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analyst to determine the weight preference for the utilized measures. Finally, one study relied
on the innovative conditional approach to integrate quality into efficiency analysis without
making a priori assumptions on quality measures and showed the different ways in which
quality indicators may affect the production process (Varabyova et al. 2016).

In the next sections, we will focus on the one-stage approach, the congestion analysis, and
the two-stage approach and compare the performance of these three popular methods to the
recently introduced conditional approach.

3 Methodology of the conditional approach

The analysis of efficiency typically contains two parts: one is the estimation of a benchmark
frontier and the other involves the investigation of the influence of external factors on the
production process. Simar and Wilson (2015) provided an excellent guide of the definitions
and assumptions that are important to understand the differences between the nonparametric
methods compared in this study: the one-stage approach, the congestion analysis, the two-
stage approach, and the conditional approach. Because the former three methods have been
described extensively in previous literature we will focus on providing a brief description of
the methodology of the conditional approach along the lines of Bădin et al. (2014) and the
references therein.

3.1 Conditional estimator

Let x ∈ R
p
+ characterize a vector of p inputs and y ∈ R

q
+ characterize a vector of q outputs.

The production set describes the set of physically attainable points (x, y) and is defined by

� = {(x, y) |x can produce y} . (3.1)

Cazals et al. (2002) suggested characterizing the production process by the joint probability
measure on (X, Y ). In terms of the joint probability measure, the output-oriented efficiency
under free disposability is given by

λ (x, y) = sup
{
λ|SY |X (λy|x) > 0

}
, (3.2)

where SY |X (λy|x) = Pr (Y ≥ y|X ≤ x).
The probabilistic interpretation of the production process provides a convenient means to

incorporate external factors Z ∈ R
r into the estimation, whereby the attainable set is adjusted

for the condition Z = z:

� Z = {(x, y) |Z = z, x can produce y} . (3.3)

The conditional output-oriented efficiency measure is adapted to the condition Z = z:

λ (x, y|z) = sup
{
λ|SY |X,Z (λy|x, z) > 0

}
, (3.4)

where SY |X,Z (λy|x, z) = Pr (Y ≥ y|X ≤ x, Z = z).
The empirical estimators are obtained from a sample of n observations Sn =

{(Xi , Yi , Zi )}n
i=1. The unconditional estimator, which does not take Z into account, is given

by

ŜY |X (y|x) =
∑n

i=1 I (Yi ≥ y, Xi ≤ x)
∑n

i=1 I (Xi ≤ x)
, (3.5)
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where I (·) is an indicator function that takes the value of one if the argument is true and zero
otherwise. The corresponding conditional output-oriented estimator, which accounts for a
univariate Z , is obtained using nonparametric kernel smoothing:

ŜY |X,Z (y|x, z) =
∑n

i=1 I (Yi ≥ y, Xi ≤ x) K ((Zi − z) /h)
∑n

i=1 I (Xi ≤ x) K ((Zi − z) /h)
, (3.6)

where K (·) is some kernel with compact support (e.g., Epachenikov) and h is the bandwidth.
The value of h determines the comparison group whereby large values of h allow identifying
the non-influence of Z by oversmoothing. Bădin et al. (2010) described themethod of optimal
bandwidth selection using a data-driven approach based on Least Squares Cross Validation
(LSCV) procedure. The authors also provided a MATLAB routine to estimate the LSCV
criterion.

The resulting unconditional estimator λ̂ (x, y) based on probabilistic theory is obtained
by plugging ŜY |X (y|x) into Eq. (3.2):

λ̂ (x, y) = sup
{
λ|ŜY |X (λy|x) > 0

}
. (3.7)

This estimator for the firm operating at level (x, y) coincides with the conventional Free Dis-

posalHull (FDH) estimator for nonconvex functions: λ̂F DH (x, y)= max
i |Xi ≤x

{
min

j=1,...,q

(
Y j

i
y j

)}
.

Thus, obtaining the unconditional efficiency estimator using health care data is equivalent to
the estimation of technical efficiency based on a FDH model using only the information on
health care inputs and outputs.

The corresponding conditional estimator is derived by using ŜY |X,Z (y|x, z) in formula
(3.4):

λ̂ (x, y|z) = sup
{
λ|ŜY |X,Z (λy|x, z) > 0

}
= λ̂(x, y|z)

= max
i |Xi ≤x,||Zi −z||≤h

{

min
j=1,...,q

(
Y j

i

y j

)}

. (3.8)

In contrast to the unconditional estimator, which does not account for Z , the conditional
estimator is based on a benchmark frontier of production units with similar values of Z (the
comparison group is limited by the size of h). It is, therefore, a localized version (by h) of
the FDH estimator.

An external variable Z may represent the value of output quality. In contrast to the uncon-
ditional efficiency estimator, obtaining the conditional efficiency estimator is equivalent to
analyzing technical efficiency only across service providers with similar levels of quality.
In other words, high-quality providers are benchmarked against other high-quality providers
whereas low-quality providers are benchmarked against other low-quality providers.

3.2 Investigating the influence of external factors

The analysis of the unconditional and conditional estimates allows disentangling the influence
of the external factor Z on the production process. The influence may be twofold: first, Z
may influence the shape of the attainable frontier, and, second, Z may affect the distribution
of inefficiencies inside the production set. The first type of influence suggests that the support
of (X, Y ) depends on Z , and thus, � Z �= �. In the second case, the shape of the attainable
frontier is not affected, � Z = �, but the distribution of inefficiencies inside � Z is changed
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because of Z . Note that if� Z = � for all Z ∈ R
r then the “separability” condition described

in Simar and Wilson (2007) holds.
To investigate the effect of Z on the shape of the attainable frontier, the individual ratios of

conditional to unconditional estimates, R̂ (x, y|z) = λ̂ (x, y|z) /λ̂ (x, y) ≤ 1, are regressed
on Z :

R̂ (x, y|z) = g (z) + ε, (3.9)

where ε is the error term and g is the mean regression function. Daraio and Simar (2005)
suggested examining the scatterplot of the ratios R̂ (x, y|z) against Z and the smoothed
regression line to detect the influence of Z on the attainable frontier. In the output-oriented
framework, an increasing regression line indicates a positive influence of Z on the production
process, whereas a decreasing line indicates a negative influence of Z on the production
process.

To analyze the effect of Z on the distribution of inefficiencies, Bădin et al. (2012) pro-
posed regressing the conditional efficiency estimates on Z . Note that this is similar to the
conventional two-stage analysis, in which the values of unconditional efficiency estimates are
regressed on external factors. However, Bădin et al. (2012) suggested exploring the average
behavior of the conditional estimator instead of the unconditional estimator as a function of
Z using a flexible regression model:

λ̂ (x, y|z) = μ (z) + σ (z) ε, (3.10)

whereμ (z)measures the average effect of Z on efficiency and σ (z) is the variance function,
which provides the information on the dispersion of the inefficiencies. The scatterplot of
λ̂ (x, y|z) against Z and the smoothed regression line allow detecting the influence of Z on
the distribution of inefficiencies.

An additional benefit of this approach is the derivation of the values of managerial effi-
ciency, which allows benchmarking the production units facing different levels of z. The
managerial efficiencies are obtained by analyzing the residual, ε, from Eq. (3.10). The
estimation of ε̂ is accomplished in two steps. In the first step, μ̂ (z) is estimated using a
nonparametric regression. In the second step, the estimate of the variance function σ̂ (z) is
obtained by using standard procedures, for example, regressing the logarithm of the squares
of the residuals obtained in the first step on Z (Wasserman 2006). The managerial efficiency
of a production unit is derived by rearranging Eq. (3.10):

ε̂ = λ̂ (x, y|z) − μ̂ (z)

σ̂ (z)
. (3.11)

All analyses in this study were performed using R software. To encourage future research,
we will provide the estimation code to interested researchers on request.

4 Simulation design

To illustrate how quality can be related to the production process, we introduce eight sim-
ulated examples along the lines of Bădin et al. (2012, 2014) and Varabyova et al. (2016).
To keep the analysis simple and to enable the graphical presentation of results, we use two-
dimensional models; however, the extension to a higher number of dimensions is possible
(Bădin et al. 2014). In all eight simulation scenarios, we consider the case of a univariate
frontier, in which the amount of input is set to equal one (X ≡ 1). The inefficiency term is
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Fig. 1 The scatterplots of Z against Y using simulated data (n = 200). Black dots represent the most efficient
observations U ≤ Q1. The solid line denotes the true attainable frontier. In DGP 1–DGP 3, Z shifts the
attainable frontier. In DGP 4–DGP 6, Z affects the distribution of the inefficiencies. In DGP 7, Z affects both
the distribution of the inefficiencies and the attainable frontier. In DGP 8, Z has no effect on the production
process

half-normally distributed, U ∼ N+ (
0, σ 2

U

)
with σ 2

U = 3, and the measure of quality is
uniformly distributed, Z ∼ uni f (0, 10). Suppose that Z represents an undesirable mea-
sure of quality, for instance, in-hospital mortality, with higher values of Z representing worse
quality, because higher mortality values are undesirable. Suppose further that the amount of
output Y denotes the quantity of produced output.

Figure 1 provides the scatterplots of Y against Z using observations (n = 200) simulated
according to eight different DGPs described below. In all subsequent illustrations, the most
efficient units (with the values of inefficiency, U , smaller than the first quartile value Q1)

are highlighted in black. Obviously, the most efficient observations (with small values of U )
should be located at the attainable efficient frontier (solid black line).

The upper panel of Fig. 1 illustrates three DGPs, for which the separability condition
is violated, resulting in a shift of the attainable frontier due to the effect of Z on Y . The
observations depicted in the upper panel of Fig. 1 are simulated according to the three
following DGPs:
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Y1 = 28I (Z ≤ 5) + (
28 − 51.3 + Z1.3) I (Z > 5) − 2U, (4.1)

Y2 = 40I (Z ≤ 5) + (
40 + 51.3 − Z1.3) I (Z > 5) − 2U, (4.2)

Y3 = 40 − |Z − 5|1.5 − 2U, (4.3)

where I (·) is an indicator function that takes the value of one if the argument is true and zero
otherwise.

In DGP 1 (4.1), Z has no effect on Y for Z ≤ 5, but Z has a positive impact on Y for
Z > 5. In DGP 2 (4.2), Z has no effect on Y for Z ≤ 5, but Z has a negative impact on
Y for Z > 5, shifting the boundary of the attainable frontier. In DGP 3 (4.3), there is an
inverted U -shaped relationship between Z and Y , the shift of the attainable frontier is more
pronounced when |Z − 5| increases.

The middle panel of Fig. 1 shows three DGPs for which the boundaries of the attainable
frontier are not affected by Z (i.e., the separability condition is verified). In these DGPs, Z
has an effect only on the distribution of the inefficiencies inside the production set. In DGP
4–DGP 6, the output is generated by the following expressions:

Y4 = 40 − 7U (Z + 1)−0.8 , (4.4)

Y5 = 40 − 0.5U Z , (4.5)

Y6 = 40 − U |Z − 5| . (4.6)

DGP 4 (4.4) reflects a positive effect of Z on the production, because for higher levels of Z
the output is higher. In DGP 5 (4.5), Z is negatively associated with the production of output.
In DGP 6 (4.6), there is a higher probability of being inefficient when |Z − 5| increases.

Finally, the lower panel of Fig. 1 displays two following situations: a situation in which
Z has an effect on both the production frontier and the distribution of the inefficiencies, and
a situation, in which Z has no effect on the production process:

Y7 = (
40 − 7U (Z + 1)−0.8) I (Z ≤ 5) + (

40 + 51.3 − Z1.3) I (Z > 5) − 2U, (4.7)

Y8 = 28 − 2U. (4.8)

In DGP 7 (4.7), Z positively affects the production for Z ≤ 5 but has a negative effect on
the production frontier for Z > 5. In DGP 8 (4.8), Z is not a part of the production process.

5 Results

We compare the performance of the four methods in terms of how precisely they capture the
true efficiency estimates and which conclusion they reach regarding the relationship between
efficiency and quality. The precision in capturing the true efficiencies is measured using
correlation analyses and the mean squared error (MSE). Pearson linear correlation evaluates
the linear relationship between the true and estimated efficiencies, whereas Spearman rank
correlation evaluates the monotonic relationship between the true and estimated efficiencies.
TheMSEmeasures the average of the squares of the errors—that is, the difference between the
simulated and estimated inefficiency.We use the standardizedmeasures of both the simulated
and estimated inefficiency (mean of zero and a standard deviation of one) to account for the
scaling effects. The MSE is a non-negative measure, and values closer to zero are better. The
underlying relationships between quality and efficiency are examined according to the typical
procedure used in eachmethod. The one-stage approach and the congestion analysis compare
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the sets of efficiency estimates derived using different assumptions on quality, whereas the
two-stage approach and the conditional approach rely on regression analyses.

5.1 One-stage approach

Following the majority of the reviewed studies relying on the one-stage approach, we use a
DEA model with VRS (Banker et al. 1984). The estimation model includes one input (X)

and two outputs (Y, Z̃). In the simulation exercise, we denoted Z an undesirable measure of
quality. To redefine it in a favorable way, we apply a linear transformation Z̃ = 100−Z . Now,

the expansion of both outputs
(

Y, Z̃
)
in the DEAmodel is desirable. The efficiency estimates

from the one-stage approach, λ̂V RS (x, y, z̃), are obtained using an output-oriented model.
The values of λ̂V RS (x, y, z̃) equal to 1 denote efficient units and the values of λ̂V RS (x, y, z̃)
greater than 1 represent inefficient units.

Figure 2 shows eight scatterplots of Z̃ against Y , which slightly differ from Fig. 1 due to
the transformation of Z . The graphical illustration of the first three DGPs (the upper panel of
Fig. 2) makes evident that the one-stage approach does not fully capture the true efficiency,
because the most efficient black points (i.e., λ̂V RS (x, y, z̃) smaller than the first quartile
value) are not always located close on the true efficient frontier. The Pearson correlations
between the true values of inefficiency,U , and λ̂V RS (x, y, z̃) are rather low and equal to 0.54,
0.11, and 0.17 for DGP 1, DGP 2, and DGP 3, respectively. The corresponding Spearman
correlations are 0.50, 0.13, and 0.29. The MSE are equal to 0.92, 1.77, and 1.66. In DGP 1,
the resulting frontier is non-convex, and the DEAmodel does not capture the true inefficiency
values, because it assumes convexity. In DGP 2, the external variable Z̃ has a positive effect
on production, and should be used not as an extra output, but rather as an extra input. In
DGP 3, the relationship between quality and efficiency is non-monotonic and, therefore,
the DEA model assuming free (strong) disposability of outputs fails to capture the true
frontier.

In DGP 4–6 (the middle panel of Fig. 2), Z does not affect Y directly (the separabil-
ity condition holds), but it affects the distribution of the inefficiencies U . In this situation,
including Z̃ as another output is inappropriate, because it means adding a variable, which is
not part of the production process. The introduction of an additional variable increases the
number of constraints, and therefore increases the average measured efficiency. However,
the new constraint is most likely to be binding only for the production units with relatively
high value of Z̃ in relation to input (Smith 1997). The Pearson correlations between U and
λ̂V RS (x, y, z̃) are equal to 0.62, 0.38, and 0.35 for DGP 4, DGP 5, and DGP 6, respectively.
The corresponding Spearman correlations are 0.69, 0.45, and 0.43. The MSE are equal to
0.66, 1.24, and 1.30. The low correlation values and high MSE values are due to the fact that
the effect of Z on the distribution of efficiencies is not accounted for.

The Pearson correlations for DGP 7 and DGP 8 are equal to 0.11 and 0.46, whereas
the corresponding Spearman correlations are equal to 0.14 and 0.51. The MSE are equal
to 1.78 and 1.08 for DGP 7 and DGP 8, respectively. In DGP 7, the low correlation values
and the MSE quite different from zero are due to the fact that the assumptions of the one-
stage approach are violated. In DGP 8, the inclusion of a variable, which is not part of the
production process, is inappropriate.

To examine the underlying relationship efficiency and quality, some studies relying on the
one-stage approach (Navarro-Espigares and Torres 2011; Nayar and Ozcan 2008; Tiemann
and Schreyögg 2009) compared the DEA estimates obtained using only input and output
quantities with the efficiency estimates obtained after a quality measure was added. Adding
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Fig. 2 The results of the one-stage approach using the transformed quality variable, Z̃ . Black dots represent
the most efficient observations, λ̂V RS (x, y, z̃) ≤ Q1. The solid line denotes the true attainable frontier. In
DGP 1–DGP 3, Z shifts the attainable frontier. InDGP 4–DGP 6, Z affects the distribution of the inefficiencies.
In DGP 7, Z affects both the distribution of the inefficiencies and the attainable frontier. In DGP 8, Z has no
effect on the production process

an additional variable improves the average efficiency through improving the efficiency esti-
mates of the observations with high values of quality. The more dimensions of quality are
added to the model the higher is the increase of the average efficiency. However, the interpre-
tation of results may be difficult. For instance, consider a comparison of DGP 1 (a negative
relationship between efficiency and quality) and DGP 2 (a positive relationship between
efficiency and quality). The average efficiency of 200 production units in the model without
quality, λ̂V RS (x, y), equals 1.40 and 1.19 for DGP 1 and DGP 2, respectively. When quality
Z̃ is added to the model, λ̂V RS (x, y, z̃), the average efficiency efficiency among 200 units
equals 1.03 and 1.05 for DGP 1 and DGP 2, respectively. Thus, in both cases there has been
a substantial increase in the average efficiency; however, only in DGP 1 there is a negative
relationship between efficiency and quality. Without a clear picture of the underlying DGP,
making conclusions about the relationship between quality and efficiency on the basis of the
average efficiency score is problematic.
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5.2 Congestion analysis

To conduct the congestion analysis, we relax the strong disposability assumption in the DEA
model with VRS to allow for the weak disposability of the “bad” output using the model
of Fare et al. (1994). The estimation model includes one input (X) and two outputs (Y, Z),
where Z represents the “bad” output (the lack of quality). We denote the efficiency estimates
obtained under the weak disposability assumption as λ̂W E AK (x, y, z) and the efficiency
estimates obtained under the strong disposability assumption as λ̂V RS (x, y, z).

The scatterplots illustrated in the upper panel of Fig. 3 suggest that the models including
Z as a bad output under weak disposability provide a better fit than the one-stage approach
in DGP 2 and DGP 3, because the most efficient observations, λ̂W E AK (x, y, z), are located
closer to the true efficient frontier. The improved estimates are due to the relaxation of
the assumption of strong disposability. The Pearson correlations between the true values of
inefficiency, U , and λ̂W E AK (x, y, z) are equal to 0.70, 0.93, and 0.87 for DGP 1, DGP 2,

Fig. 3 The results of congestion analysis under weak disposability of outputs. Black dots represent the most
efficient observations, λ̂W E AK (x, y, z) ≤ Q1. The solid line denotes the true attainable frontier. In DGP
1–DGP 3, Z shifts the attainable frontier. In DGP 4–DGP 6, Z affects the distribution of the inefficiencies.
In DGP 7, Z affects both the distribution of the inefficiencies and the attainable frontier. In DGP 8, Z has no
effect on the production process
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and DGP 3, respectively. The corresponding Spearman rank correlations are 0.62, 0.92, and
0.90. The MSE are equal to 0.59, 0.15, and 0.26. In DGP 1, the estimates are rather poor
because the assumption of convexity is violated.

The middle panel of Fig. 3 presents the DGPs where Z only affects the distribution of
U . As discussed above when addressing the results of the one-stage approach, Z should
not be included as an output. Although the inclusion of Z does not affect the efficiency
of production units with low values of Z , it leads to the improvement of efficiency for the
production units with relatively high values of Z . This may seem particularly problematic
from the managerial perspective, because Z represents an undesirable measure of quality.
The Pearson correlations between U and λ̂W E AK (x, y, z) equal to 0.67, 0.75, and 0.60 for
DGP 4, DGP 5, and DGP 6, respectively. The corresponding Spearman correlations are 0.85,
0.74, and 0.68. The MSE are equal to 0.65, 0.49, and 0.80 for DGP 4, DGP 5, and DGP 6,
respectively.

The lower panel of Fig. 3 contains results for DGP 7 and DGP 8. The Pearson correlations
are equal to 0.68 and 0.92 for DGP 7 and DGP 8, respectively. The corresponding Spearman
correlations are equal to 0.87 and 0.91. The MSE are equal to 0.63 and 0.15. In DGP 7, the
effect of Z on the distribution of the inefficiencies is not captured. In DGP 8, Z wrongly
affects the efficiency estimates with high and low values of Z.

The measure of output congestion, C , is obtained by taking the ratio λ̂V RS (x, y, z) /

λ̂W E AK (x, y, z). C represents the output loss due to non-disposability. Note that in the
output-oriented framework, λ̂V RS (x, y, z) ≥ λ̂W E AK (x, y, z) and thus C ≥ 1. Looking at
the first three DGPs, the mean value of C equals 1.14, 1.00, and 1.06 for DGP 1, DGP 2,
and DGP 3, respectively. Thus, there is no congestion in case of DGP 2, but there is some
congestion between efficiency and quality outputs in DGP 1 and DGP 3. The results are
as we expect from the simulation exercise. On the other hand, the mean value of C equals
1.00 for all three DGPs in which Z has an effect on the distribution of inefficiencies (i.e.,
DGP 4–6). Thus, in this situation the congestion approach fails to identify the relationship
between quality and efficiency for DGP 4 and DGP 6. Moreover, the analysis of congestion
ratio doesn’t allow identifying the inverted U -shaped relationship between efficiency and
quality in DGP 3 or DGP 6. The values of C for DGP 7 and DGP 8 are equal to 1.01 and
1.00. Thus, DGP 7 identifies some congestion and DGP 8 correctly identifies no underlying
relationship between efficiency and quality.

5.3 Two-stage approach

To obtain the efficiency estimates in the first stage of the two-stage approach, we estimate
a DEA model with VRS. The output-oriented estimation model includes one input, X , and
one output, Y . We denote the obtained efficiency estimates as λ̂V RS (x, y). As before, the
values of efficiency estimates equal to 1 represent efficient units, and the values greater than
1 represent inefficient units.

The upper panel of Fig. 4 shows the obtained DEA estimates in the DGPs, where the effect
of Z causes a shift in the attainable efficient frontier. Figure 4 confirms that the fit of the
efficient frontier is very poor in these situations, because only observations with large Y are
deemed efficient. The Pearson correlations between the true values of inefficiency, U , and
λ̂V RS (x, y) are equal to 0.58, 0.39, and 0.42 for DGP 1, DGP 2, and DGP 3, respectively.
The corresponding Spearman correlations are 0.55, 0.48, and 0.43 and the MSE are 0.83,
1.21, and 1.16.

The middle panel of Fig. 4 shows the obtained DEA estimates in the DGPs, where the
influence of Z leads to a change in the distribution of inefficiencies. The most efficient
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Fig. 4 The efficiency estimates from the first stage of the two-stage analysis. Black dots represent the most
efficient observations, λ̂V RS (x, y) ≤ Q1. The solid line denotes the true attainable frontier. In DGP 1–DGP
3, Z shifts the attainable frontier. In DGP 4–DGP 6, Z affects the distribution of the inefficiencies. In DGP 7,
Z affects both the distribution of the inefficiencies and the attainable frontier. In DGP 8, Z has no effect on
the production process

observations are indeed located at the true efficient frontier. However, the Pearson correlations
between the true values of inefficiency, U , and λ̂V RS (x, y) are rather low and equal to 0.63,
0.73, and 0.59 for DGP 4, DGP 5, and DGP 6, respectively. The corresponding Spearman
correlations are 0.88, 0.76, and 0.67. These weak correlations are due to the fact that the
effect of Z on the distribution of inefficiencies is not taken into account. The MSE are equal
to 0.73, 0.53, and 0.81 for DGP 4, DGP 5, and DGP 6, respectively.

The lower panel of Fig. 4 shows the results for DGP 7 andDGP 8. The Pearson correlations
equal 0.47 and 1.00 for DGP 7 and DGP 8, respectively. The corresponding Spearman
correlations equal 0.52 and 1.00, and the MSE equal 1.06 and 0.01. The results for DGP 7
are rather poor, because the effects of Z both on the distribution of the inefficiencies and on
the shift of the frontier are not considered. The results for DGP 8 are very good because Z
is not included into the estimation.

In the second stage, the efficiencies estimates obtained in the first stage, λ̂V RS (x, y),
are regressed on Z using a Tobit regression censored at 1. Simar and Wilson (2011) do not
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Fig. 5 The scatterplots and the Tobit regression of the efficiency scores λ̂V RS (x, y) on Z

recommend using a Tobit regression in the second stage analysis; however, we apply this
model for illustration purposes following the majority of the reviewed studies (e.g., Bates
et al. 2006; Kooreman 1994). In DGP 3 andDGP 6, we add a quadratic term to account for the
non-linear influence of Z . The scatterplot of Z against λ̂V RS (x, y) and the fitted regression
lines are shown in Fig. 5. The fitted lines roughly correspond to the simulated direction of the
relationship between quality and efficiency for all DGPs except DGP 7. However, in DGP
1 and DGP2, the parametrically fitted line does not identify the area of non-influence of Z
on Y for Z ≤ 5. In DGP 7, the complex underlying effect of Z both on the shift of the
frontier and the distribution of inefficiencies is not captured correctly. Note that Simar and
Wilson (2011) recommend using a two-stage approach only in case when the separability
condition is verified (DGP 4–DGP 6). In order to make valid inference, they recommend
using a truncated regression of the bootstrapped efficiency estimates.

5.4 Conditional approach

To obtain the values of managerial efficiency, ε̂, whitened from the effect of Z , we use a
two-step procedure described in Sect. 3 and derive ε̂ from Eq. (3.11). Higher values of the

123



Ann Oper Res (2018) 261:365–392 383

Fig. 6 Managerial efficiencies obtained using the conditional approach.Black dots represent themost efficient
observations, ε̂ ≤ Q1. The solid line denotes the true attainable frontier. In DGP 1–DGP 3, Z shifts the
attainable frontier. In DGP 4–DGP 6, Z affects the distribution of the inefficiencies. In DGP 7, Z affects both
the distribution of the inefficiencies and the attainable frontier. In DGP 8, Z has no effect on the production
process

residual ε̂ represent higher inefficiency of the production units. Figure 6 displays the estimates
of managerial efficiencies for the eight DGPs. The estimates of most efficient observations
correspond closely to the true most efficient units in Fig. 1. The Pearson correlations between
U and ε̂ are equal to 0.98, 0.98, and 0.97 for DGP 1, DGP 2, and DGP 3, respectively. The
corresponding Spearman correlations are 0.98, 0.98, and 0.97. The corresponding MSE are
equal to 0.03, 0.03, and 0.07. High correlations with true values and low values of MSE
confirm that the effect of Z on the attainable frontier has been effectively whitened from the
estimates of managerial efficiency.

In the middle panel, the effect of Z is on the distribution of the inefficiencies. The Pearson
correlations between U and managerial efficiencies are equal to 0.97, 0.97, and 0.86 for
DGP 4, DGP 5, and DGP 6, respectively. The corresponding Spearman correlations are 0.98,
0.97, and 0.87. The MSE are equal to 0.05, 0.05, and 0.31 for DGP 4, DGP 5, and DGP
6, respectively. Therefore, the effect of Z on the distribution of inefficiencies has also been
whitened from the estimates of managerial efficiency.
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Fig. 7 The scatterplots and smoothed nonparametric regression of the ratios R̂ (x, y|z) = λ̂ (x, y|z) /λ̂ (x, y)

on Z

In the lower panel, the results forDPG7 andDGP8 are displayed. ThePearson correlations
for these DGPs equal 0.97 and 0.98, whereas the Spearman correlations equal 0.98 and 0.99.
The MSE are equal to 0.07 and 0.03 for DGP 7 and DGP 8, respectively. Thus, in DGP 7,
the effects of Z on the shift of the frontier and the distribution of the inefficiencies have been
correctly accounted for. In DGP 8, the fact that Z is unrelated to the production process has
also been correctly identified.

The conditional analysis allows differentiating between two possible effects of Z on the
production process. First, we uncover the effect of Z on the shift in the attainable frontier by
nonparametrically regressing the ratios of conditional to unconditional estimates R(x, y|z) =
λ̂ (x, y|z) /λ̂ (x, y) on Z (Fig. 7). Second, the effect of Z on the distribution of inefficiencies
is analyzed by nonparametrically regressing the conditional estimates λ̂(x, y|z) on Z (Fig. 8).

The upper panel of Fig. 7 presents the scatterplot of the ratios R̂(x, y|z) against Z and the
nonparametrically fitted regression line. Remember that in the output-oriented framework,
an increasing regression line corresponds to a positive influence of Z on the production
process, whereas a decreasing regression line corresponds to a negative influence of Z on the
production process. The displayed results suggest that in DGP 1 there is a positive effect of Z
on the attainable frontier for Z > 5, which exactly corresponds to the simulated relationship.
In DGP 2, there is a negative effect of Z on the attainable frontier for Z > 5, which again
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Fig. 8 The scatterplots and smoothed nonparametric regression of the conditional efficiencies λ̂ (x, y|z) on
Z

confirms the simulated relationship. The area of non-influence of Z on Y for Z ≤ 5 is also
clearly discernible for both DGP1 and DGP 2. In DGP 3, an invertedU -shaped effect of Z on
the attainable frontier is exactly as we expect from the simulated data. The fitted regression
lines of R̂ (x, y|z) on Z for DGP 4–DGP 6 presented in the middle panel are flat, because
Z does not affect the attainable frontier in these DGPs. The results for DGP 7 and DGP 8
are presented in the lower panel. In DGP 7, there is a negative effect of Z on the frontier for
Z > 5. In DGP 8, the fitted regression line is flat, because Z has no effect on the production
process.

Figure 8 presents the scatterplot of λ̂(x, y|z) against Z and the nonparametrically fitted
regression line. Recall that higher values of output-oriented efficiency estimates, λ̂(x, y|z),
represent higher inefficiency. Therefore, an increasing regression line in this case corresponds
to a negative influence of Z on efficiency, whereas a decreasing regression line corresponds
to a positive influence of Z on efficiency. The fitted lines in DGP 1–DGP 3 are flat because
Z does not influence the distribution of inefficiencies in the first three DGPs. The fitted lines
in DGP 4–DGP 6 correspond to the simulated relationship between quality and efficiency.
The fitted line for DGP 7 correctly displays a positive effect of Z on the distribution of the
inefficiencies for Z ≤ 5. In DGP 8, the scatterplot confirms the fact that Z has no effect on
the production process.
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5.5 Comparison of the four methods

To compare the four methods, we first examine how precisely they capture the true efficiency
estimates. Table 2 provides the summary of the mean Pearson and Spearman correlations
between the inefficiency estimates and the true values of inefficiency, U , and the mean of the
MSE based on 100 Monte Carlo simulations of the corresponding DGPs. The managerial
efficiency estimates derived using the conditional approach provide the strongest prediction
of the true values of efficiency in all eight DGPs (mean Pearson correlations are in the range
0.91–0.98, mean Spearman correlations are in the range 0.92–0.98, and mean MSE are in
the range 0.04–0.18). The performance of the other three methods, namely, the one-stage
approach, the congestion analysis, and the two-stage approach, depends on the compatibility
of the underlying assumptions with the generated production sets and on the mechanism of
how quality influences efficiency. In situations, when quality influences the attainable frontier
(DGP 1–DGP 3), the performance of the three popular methods is highly dependent on the
assumptions on the augmented production set, such as strong disposability, monotonicity, and
convexity. For instance, the non-convexity of the augmented production set in DGP 1 leads
to poor predictions of the true inefficiency when the one-stage approach or the congestion
analysis is used. In the situations, when quality influences distribution of inefficiencies inside
the production set (DGP 4 –DGP 6) the three approaches perform rather poorly, because none
of the three approaches takes the effect of Z on the distribution of inefficiencies into account.
For DGP 7, the performance of the one-stage approach and the two-stage approach is quite
poor, because these approaches do not accommodate for the effects both on the distribution
of the inefficiencies and the shift of the frontier. The congestion analysis performs quite well
in this situation, because it captures the effect on the shift of the frontier; however, it does not
account for the effect on the distribution of the inefficiencies. For DGP 8, the results of the
two-stage approach are the best, because it correctly does not include the external variable
in the estimation.

Next, we examine the ability of the four methods to identify the underlying relationship
between efficiency and quality. The four methods differ considerably in their approach to
make inferences about this relationship. In the one-stage approach, comparing the efficiency
scores obtained without considering quality, λ̂V RS (x, y), and the efficiency scores includ-
ing quality measures, λ̂V RS (x, y, z̃), is problematic because adding an additional dimension

Table 2 Comparison of the four methods

Method One-stage approach Congestion analysis Two-stage approach Conditional approach

DGP P S MSE P S MSE P S MSE P S MSE

DGP 1 0.47 0.44 1.06 0.65 0.59 0.70 0.54 0.49 0.92 0.97 0.96 0.06

DGP 2 0.07 0.09 1.85 0.91 0.92 0.17 0.47 0.50 1.05 0.97 0.96 0.06

DGP 3 0.19 0.28 1.61 0.85 0.90 0.29 0.57 0.53 0.86 0.96 0.95 0.07

DGP 4 0.63 0.66 0.74 0.78 0.87 0.45 0.79 0.92 0.41 0.98 0.98 0.05

DGP 5 0.31 0.38 1.38 0.75 0.78 2.02 0.74 0.83 0.51 0.98 0.98 0.05

DGP 6 0.36 0.46 1.26 0.67 0.72 0.65 0.69 0.73 0.62 0.91 0.92 0.18

DGP 7 0.08 0.10 1.84 0.80 0.89 0.40 0.52 0.53 0.95 0.96 0.96 0.08

DGP 8 0.39 0.46 1.21 0.90 0.90 0.21 0.99 1.00 0.02 0.98 0.98 0.04

Average results using 100 Monte Carlo simulations (n = 200)
DGP data generating process, MSE mean standard error, P Pearson correlation, S Spearman correlation
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always results in an increase in average efficiency. The congestion analysis compares the
efficiency estimates, which include the lack of quality as a “bad” output, obtained under the
assumption of strong disposability, λ̂V RS (x, y, z), with the estimates obtained under weak
disposability, λ̂W E AK (x, y, z). The ratio of the two estimates provides the congestion score,
which signals the negative relationship between quality and efficiency. In our simulation
exercise, the congestion approach correctly identifies the negative relationship between effi-
ciency and quality when quality causes the shift of the attainable frontier, but it does not
identify this relationship in the DGPs, where the influence of quality is on the distribution
of inefficiencies. Moreover, the congestion analysis does not identify the inverted U -shaped
relationship between quality and efficiency. Both the two-stage approach and the conditional
approach rely on regressions to make an inference about the relationship between efficiency
and quality. In our simulation exercise, both approaches correctly identify the direction of the
associationbetween efficiency andquality.However, in contrast to the two-stage approach, the
conditional approach allows differentiating between the influence of quality on the attainable
efficient frontier from its influence on the distribution of inefficiencies inside the production
set. Additionally, because the conditional approach makes use of a nonparametric regression,
it provides a better fit in case of non-linear relationships than parametric regressions without
the need to test additional model specifications (such as a quadratic function).

6 Discussion

While the earliest analyses of efficiency in the service sector have been mostly concerned
with comparing input to output quantities, subsequent studies have tried to integrate output
quality using various methods. Our objective was to compare the available nonparametric
methods that allow integrating quality into the analysis of efficiency and to provide guidance
on the strengths and limitations on the existing approaches. The four compared methods
include three commonly used methods, namely, the one-stage approach, the congestion anal-
ysis, and the two-stage approach, and one innovative method based on new developments
in the nonparametric methodology—the conditional approach. To compare these methods,
we simulated data in eight scenarios that reflect potential relationships between efficiency
and quality and evaluated the performance of the compared methods in terms of their ability
to estimate the true values of efficiency and to identify the underlying relationship between
efficiency and quality. The simulation exercise revealed that the conditional approach out-
performed the three popular methods in terms of both predicting the true efficiency scores
and capturing the original relationship between efficiency and quality.

The theoretical relationship between efficiency and quality is ambiguous in two aspects:
the direction of the relationship between efficiency and quality and the mechanism by which
quality enters the production process. Identifying the direction of the relationship between
efficiency and quality is often pursued in the empirical applications; however, some meth-
ods implicitly require that this relationship is known a priori; for instance, in the one-stage
approach, quality should be added to the inputs if the relationship is positive but it should be
added to the outputs if the relationship is negative. Failing to identify this relationship and the
inappropriate use of the quality measure in the production model leads to a major bias in the
estimated efficiencies. The aspect of recognizing the mechanism by which quality enters the
production process—that is, by shifting the attainable frontier or by changing the distribution
of inefficiencies within the production set—is imperative to identify the appropriateness of
using a particular method. Thus, the two-stage approach should not be used if quality shifts
the attainable frontier, whereas the one-stage approach and the congestion analysis should
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not be used if quality only changes the distribution of inefficiencies within the production set.
Moreover, the analyst needs to keep in mind that the methods that augment the production
set by quality measures, such as the one-stage approach and the congestion analysis, require
imposing additional assumptions on the measures of quality, such as free disposability (or
monotonicity), convexity, and returns to scale, that may be quite restrictive in real-life appli-
cations. Furthermore, in situations when a quality measure is included inappropriately, its
inclusion will affect efficiency estimates for units with extreme values of this measure. As a
consequence, in the congestion analysis, production units with extreme values of the “bad”
output may be identified as fully efficient.

The conditional approach overcomes the limitations of the conventional methods, because
it does not require making a priori assumptions about the relationship between quality and
efficiency and it accounts for the potential influence of quality both on the attainable frontier
and on the distribution of inefficiencies. The conditional efficiency estimates are obtained by
benchmarking operational units with similar quality levels and thereby account for the fact
that quality may shift the attainable frontier. The residuals from the regression of conditional
efficiency measures on quality account for the influence of quality on the distribution of
inefficiency and represent the value of themanagerial efficiency,which canbeused to compare
and rank organizations. A recent empirical application of the conditional approach has shown
that depending on the utilized quality measure different effects on the production function
can be observed (Varabyova et al. 2016). In the study by Varabyova et al. (2016) analyzing
the efficiency of cardiology departments, patient satisfaction had no effect on the attainable
frontier but affected the distribution of the inefficiencies, whereas mortality rate did not
affect the distribution of the inefficiencies but was instead responsible for the shift in the
attainable frontier. Further empirical applications of the conditional approach have confirmed
the possibility that an external variable can have an effect on either the shift of the frontier
or the distribution of the inefficiencies (Bădin et al. 2014).

Identifying the underlying mechanism whereby quality enters the production process
amounts to the need of testing the separability condition between the measure of quality and
the set of input and output factors. The formal test of the separability condition was described
by Daraio et al. (2015). Moreover, Bădin et al. (2012) showed how to use partial frontier
analysis to disentangle the influence of the external factor on the attainable frontier from its
influence on the distribution of the inefficiencies. The use partial frontier measures of order-m
or order-α provides an additional benefit of being robust to extreme values, which are not
uncommon to empirical data. Partial frontier measures also benefit from better convergence
rates of the estimators than full frontier measures. In our analysis, we used full frontier
measures to keep the analysis simple. Because we do not allow for random variation in the
simulated data, the current results would be very similar if we used partial frontier measures.
However, empirical applications should rely on partial frontier measures to derive efficiency
measures robust to outliers and random variation.

Future empirical applications should provide graphical illustrations of their results, which
enhances transparency and provides an indication to the reader that the results are robust and
not an artifact of chance. In the two-stage analysis, the relationship between efficiency and
quality should be plotted in order to verify whether this relationship is linear and whether the
utilized model specification is appropriate. In the methods relying on augmented production
set, the graphical illustration needs to encompass inputs, outputs, and quality measures.
Bădin et al. (2014) demonstrated a fully graphical solution to three-dimensional and four-
dimensional problems. However, because many empirical studies rely on more than four
dimensions, the graphical examination of the results may become complicated. To reduce
the number of dimensions, inputs and outputs could be aggregated without much loss of
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information using the procedure described in Daraio and Simar (2007). The aggregation of
inputs, outputs, and quality measures is also useful for avoiding the convergence problems
of most nonparametric methods, known as the curse of dimensionality. In fact, a number
of reviewed studies considered multiple measures of quality (up to 41). Because the studies
relying on the one-stage approach or the congestion analysis integrate quality measures
directly into the production model, an increase in the number of model dimensions may lead
to low rates of convergence of the estimator (i.e., curse of dimensionality). Moreover, the
assumptions made on the production set augmented by multiple quality measures apply for
each additional quality measure and may thus affect the results in an unpredictable manner.
The development of appropriate quality measures should be targeted in future research in
regard to different service sectors.

7 Conclusions

External factors may affect an organizational production process by either shifting the attain-
able frontier or changing the distribution of inefficiencies within the attainable set, or both.
In particular, the need to reach multiple and at times conflicting objectives, such as providing
high quantity but also high quality of services, necessitates an extension of classical efficiency
models. There has been a rapid expansion in empirical studies that attempted to integrate
quality into the nonparametric analysis of efficiency. However, little work has been done so
far to evaluate and compare the nonparametric methods that allow the integration of quality.
Hence, the user faces the challenge of selecting the most appropriate method from among
several feasible alternatives.

The present study provides an overview of existing methods to integrate quality into the
analysis of efficiency in various service sectors.We showan application of three popularmeth-
ods, namely, the one-stage approach, the congestion analysis, and the two-stage approach.
Due to the fact that these methods require making very restrictive assumptions about the
production process, their usefulness is quite limited when there is uncertainty about the
underlying relationship between efficiency and quality. However, the use of conventional
methods is justified in situations, when the theoretical relationships are straightforward and
the underlying assumptions are verified.

We further demonstrate the benefits of using the conditional approach to integrate quality
in the analysis of health care efficiency in a flexible and non-restrictive way. The comparison
of the four methods in a simple two-dimensional framework shows the clear dominance of
the conditional approach over the three conventional methods in terms of both predicting
the true values of efficiency and examining the influence of quality on the production pro-
cess. The conditional approach allows differentiating between the influence of quality on the
attainable frontier and the influence of quality on the distribution of inefficiencies within the
production set.

We believe that considerable progress in our understanding of the relationship between
efficiency and quality in service sectors can occur if scholars apply methods that allow
testing the underlying assumptions and adjust their estimation strategy accordingly.While the
nonparametric literature witnesses a growth in the computationally complex methodological
advances, their added value may be diminished to the extent that the basic assumptions are
violated. The conditional approach represents a powerful and simple tool that can be used
when the theoretical link between efficiency and quality is unclear. Future research should
elaborate on the theory of the relationship between efficiency and quality in the service-
producing sectors. A wide variety of different measures to account for quality need to be
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classified and linked to a sound theory. Finally, empirical applications based on nonrestrictive
models should deliver further evidence about the relationship between the different measures
of quality and efficiency.
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