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Abstract This research proposes a new multi-objective mathematical model to design effi-
cient and effective blood supply chain network in earthquakes. For the first time in this field
of knowledge, the devastating impact of earthquake destruction radius is considered on blood
supply chain network based on its magnitude. Two different transportation means, with vari-
ant speed and capacity, are employed to carry the blood from blood collection centers to
blood centers. However, the number of available conveyors is limited in each site. To solve
the proposed multi-objective mixed integer linear programming model, five multi-objective
decision making methods as well as the lexicographic weighted Tchebycheff method are
utilized to provide the decision maker with Pareto optimal solutions. Further, the application
of the proposedmulti-objective mathematical model is investigated in a real-world case study
using data from the latest earthquakes in one of the recent activated faults of Iran’s capital,
Tehran, which is considered to be a potential place for a severe earthquake. Using different
solution approaches, various Pareto optimal solutions are obtained for the case study. The
results indicated that the proposed mathematical model is able to design the most cost and
time efficient blood supply chain in a severe earthquake. At the end, sensitivity analyses are
performed to explore the effects of any changes in main parameters of the multi-objective
mathematical model on the objective functions value to demonstrate the most critical param-
eter.
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1 Introduction

Natural disasters such as earthquake, volcano, tsunami and typhoon greatly influence the
human lives. Among these, Earthquake is the most common and destructive one. Earthquake
is the perceptible vibrations in the earth’s crust caused by sudden energy release as a result
of rocks rupture underground which leads to seismic waves. In the last century, earthquakes
have caused a lot of damages, destructions and loss of human lives around the world as
reported in (USGS; Doocy et al. 2013; see “Appendix A”).

A shared vision about the emergency zone and the availability of resources is required for
emergency management to manage emergency situations. One of the most important factors
is support of knowledge-based systems which is essential for managers to help them make
the best decision in emergency situations (De Maio et al. 2011). Many organizations includ-
ing blood transfusion service and Humanitarian Non-Governmental Organizations (NGOs)
have prominent role in emergency situations such as natural disasters (Wang et al. 2016;
Rodríguez et al. 2010). One of the best guidelines for practitioners is the International Feder-
ation of Red Cross and Red Crescent Societies (IFRC) Code of Conduct (CoC) for Disaster
Operations. Which provides qualitative guidelines that are an excellent building block for
operational theory. Due to importance of humanitarian operations during and after disasters,
many researchers aimed to develop applicable models and guidelines (Pyakurel et al. 2017).
For instance, to improve the International Federation of Red Cross and Red Crescent Soci-
eties Code of Conduct, Coles et al. (2017) proposed a framework that can be implemented as
a stand-alone model to help practitioners to make both qualitative and quantitative decisions.
Xiang and Zhuang (2016) proposed a new queueing network to formulate the deterioration
in victims’ health conditions after a sever disaster. For a systematic review of humanitar-
ian operations, humanitarian logistics and humanitarian supply chain performance refer to
Banomyong et al. (2017) and Oloruntoba et al. (2017).

One of the main challenges of any blood transfusion service is managing the blood supply
chain effectively during and after earthquake. A severe earthquake can result in a sudden
increase in blood demand (Hess and Thomas 2003). Therefore, designing an efficient blood
supply chain in an emergency situation is of great importance.

Several researches have been done in the literature to propose new mathematical models
to design blood supply chain in emergency situations. In recent researches, Yang et al. (2016)
developed a decision making programming model utilizing the data envelopment analysis
approach in the construction of reserve network for China Red Cross. They considered three
main factors including utility, cost and risk. Jabbarzadeh et al. (2014) proposed a new math-
ematical model for blood supply in earthquake. In their proposed model, they only aimed to
minimize total supply chain costs which is far from a real-world application in an emergency
situation. Fahimnia et al. (2015) proposed a stochastic bi-objective mathematical model for
blood supply in disasters. They considered delivery time to developmore realisticmathemati-
cal model. Kohneh et al. (2016) proposed a bi-objective mathematical model for the problem.
They aimed to minimize total costs and maximize coverage of the donor groups. Zahiri and
Pishvaee (2017) developed a bi-objective mathematical programming model to minimize the
total supply chain costs and maximize unsatisfied demand. (for more information about the
existing models in the literature see literature review section).

Although, several mathematical models were proposed in the literature to design an effi-
cient blood supply chain network, the existingmodels in the literature can be further improved
to propose more applicable and realistic models. For instance, none of the existing models
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in the literature considered how to transfer blood from collection centers to blood centers.
How the earthquake can cause disruption in the blood supply chain network?

Consider an example which highlights the importance of these two vacuities in the liter-
ature.

On 26 December 2003, a 6.6 MW earthquake destroyed the city of Bam in southeastern
Iran, in which, 26,271 people were killed and 30,000 were injured (USGS). Since, the num-
ber of injured people were enormous, the hospitals called for emergency supply of blood.
Unfortunately, due to an ineffective blood supply chain, from almost 108,000 donated blood
units about only 21,000 units (almost 23%) arrived the hospitals. In the first four days after
the earthquake, only 1231 (1.3%) of the donated blood units reached the disaster area. The
experiences such as Bam disaster revealed the importance of an efficient transportation sys-
tem in the blood supply chain during and after a severe natural disaster. Therefore, a new
mathematical model is needed to fill this vacuity.

This motivated us to extend the mathematical model presented by Jabbarzadeh et al.
(2014) to propose more realistic and applicable model. For this purpose, a new bi-objective
mathematical formulation is proposed to design an efficient blood supply chain during and
after earthquake. The proposed bi-objective mathematical model considers a three-echelon
blood supply chain that consists of donor groups, blood collection facilities and blood cen-
ters. The goal of the mathematical model is to answer decisions related to the location of
permanent and mobile blood collection facilities, allocation of donor groups to the blood
collection facilities, the optimal number of located temporary and permanent blood collec-
tion facilities, blood inventory level at each blood center and the optimal number of required
vehicles and helicopters in each blood collection facility to transfer collected blood to blood
centers. Two objective functions are considered which aim to minimize total blood supply
chain costs as well as total transportation time. To propose more realistic model, different
transportations means are considered in the blood supply chain. Also, the destruction effect
of the earthquake is considered in the model to design a robust and resistant blood supply
chain during earthquake.

The remainder of this paper is organized as follows. Section 2 presents a brief review
of the relevant literature. In the Sect. 3 the problem is defined and the assumptions are
presented. Then, the bi-objective mathematical model of the problem is proposed. In Sect. 3
two multi-objective solution orientations are considered to solve the problem. In Sect. 4, five
multi-objective decisionmaking (MODM) and lexicographicweighted Tchebycheffmethods
are applied to solve a real-world problem. In Sect. 5, the proposed model is implemented a
real-world problem. In Sect. 6 sensitivity analyses are carried out to determine the effects
of changes in the main parameters of the problem on objective functions value. Section 7
concludes the paper.

2 Literature review

Designing an efficient blood supply chain requires many strategic and operational decisions
such as location of the blood collection facilities, transportation of the collected blood from
collection centers to distribution centers and then to hospitals. Since, the blood demand rate
after a disaster may vary over periods (for example within every 24h), designing an efficient
blood supply chain falls within the scope of dynamic network design (Jabbarzadeh et al.
2014).
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In one of the first studies on joint facility location-inventory problems, Daskin et al.
(2002) introduced a distribution center location model considering two types of inventory
costs including working and stock costs. They developed a Non-Linear Integer-Programming
(NLIP) model for the problem. A Lagrangian relaxation solution algorithm was proposed to
solve the problem. In dynamic network design, the location and capacity of the facilities may
vary over different periods of planning horizon to address variations in blood demand rate.
The first study on dynamic facility location was done by Ballou (1968). Even though, the
dynamic facility location has advantages over the static facility location in which the location
of the facilities is fixed over the planning horizon; few researches have been conducted on
dynamic network design of the supply chain. Melo et al. (2006) proposed a mathematical
modeling framework which captures a lot of practical aspects of network design problems.
They considered inventory, dynamic planning horizon aswell as storage constraints. Hinojosa
et al. (2000) studied a dynamic facility location problem with the aim of minimizing the total
cost of the network. They proposed a mixed integer programming (MIP) model for the
problem considering plant and warehouse capacities. In a more recent researches, Correia
et al. (2013) suggested a multi-period two-echelon supply chain, where, the aim was to
determine the optimal location of facilities in order to maximize the total profit. Bozorgi-
Amiri and Asvadi (2015) proposed a decision support system to prioritize Relief Logistic
Center’s locations to simplify emergency helps to disaster zones in natural disasters. They
considered availability, risk, cost and coverage to determine the optimal locations of the
Relief Logistic Centers. All the previous researches showed the applicability of the dynamic
facility location problem in different fields of study.

Beliën and Forcé (2012) presented a literature review on inventory and supply chain man-
agement of blood products and showed that few researches have been carried out in this area,
trying to design an efficient emergency blood supply chain network especially using dynamic
facility location (Galindo and Batta 2013; Altay and Green 2006). Pierskalla (2005) did a
comprehensive study on the blood supply chain network design by answering the following
questions: (1) where to locate blood banks, (2) how to assign donor groups to the blood
collection centers, (3) in which areas blood facilities can be located (4) how the collected
blood in the blood facilities should be transported to the blood banking facilities and hospi-
tals. In other related works, which aimed to design an efficient blood supply chain, Or and
Pierskalla (1979) proposed a transportation location-allocation problem for blood supply in
hospitals and emergency situations. They assumed that the required blood in hospitals is
fulfilled by assigning the hospitals to a near regional blood bank. The aim of their proposed
model was to minimize the total supply chain costs (Mole 1975). In more recent studies,
Duhamel et al. (2016) presented a mathematical model for multi-period location-allocation
problem in post-disaster operations. Their innovation was to consider the impact of distri-
bution over the population. Yadavalli et al. (2015) proposed a continuous review perishable
product disaster inventory model in which an adjustable joint reordering policy for replen-
ishment was adopted. Ülkü et al. (2015) studied behavioral and decision making aspects of
donors by presenting analytical models for how the behavior of donors can be influenced
by soliciting a minimum amount of cash donation. Hosseinifard and Abbasi (2016) studied
the impacts of centralization on sustainability of the blood supply chain. In a case study, the
showed that centralization of hospitals’ inventory is one of the most important factors in the
blood supply chain. The results of their study showed that reducing the number of hospi-
tals that hold inventory can significantly reduce the shortages. Dillon et al. (2017) proposed
a two-stage stochastic programming model for inventory management in the blood supply
chain. By implementing the proposed model on realistic data, they showed that the current
inventory control policies can be revised by reducing current target levels to diminishwastage
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and total cost without compromising the service level. Huang and Song (2016) proposed an
emergency logistics distribution routing model based on uncertainty theory. To solve the
problem, they developed a cellular genetic algorithm. Zhang and Li (2015) proposed a novel
probabilistic model with chance constraints for locating and sizing emergency medical ser-
vice stations. They transformed the model into a conic quadratic mixed-integer program by
employing a conic transformation. Katsaliaki and Brailsford (2016) used discrete-event sim-
ulation to determine ordering policies which can significantly reduce shortages and wastage,
increase service levels, and reduce costs by employing better system coordination. Osorio
et al. (2016) presented a simulation-optimization model for production planning in the blood
supply chain. They showed that the proposed approach can reduce shortages, outdated units
and cost in the blood supply chain network. Cheraghi and Hosseini-Motlagh (2017) proposed
a fuzzy-stochastic mixed integer linear programming model to design blood supply chain
network. Their main contribution was to consider uncertainty of the main parameters of the
mathematical model in the optimization process.

After severe earthquakes in Turkey 1999, Şahin et al. (2007) developed several location-
allocationmodels in regionalizing of blood services. They solved various real world problems
using proposed mathematical models. In another research, Sha and Huang (2012) offered
a multi-period location allocation model for emergency blood supply in disasters as well
as a Lagrangian relaxation based heuristic algorithm to solve a real-world problem. Nagur-
ney et al. (2012) developed a network optimization model for blood supply chain. They
considered a regionalized blood banking system including collection centers, storage facil-
ities, distribution hubs and hospitals. Arvan et al. (2015) introduced a blood supply chain
involving donation or collection sites, processing labs and blood banks. The aim of their
proposed model was to determine the location and allocation of the blood bank components
in the network. Şahinyazan et al. (2015) proposed a selective vehicle routing model for tem-
porary blood collection facilities. In spite of the previous researches, assigning the service
to emergency departments is very important (Leo et al. 2016). For this purpose, Leo et al.
(2016) suggested a mixed-integer programming model to determine service assignment to
emergency departments. They had implemented the proposed model in the Department of
Epidemiology of the Regional Health Service of Lazio, Italy, to show the effectiveness of the
proposed model. Jin et al. (2015) presented a new mathematical model for patient delivery
and medical resource allocation with capacity restrictions considering different injuries and
survival probabilities.

One of the main challenges that blood supply chain optimization faces is handling the
parameters in real world conditions due to their unpredictability (Jabbarzadeh et al. 2014). In
order to develop a robust model to control uncertainty in main parameters. Jabbarzadeh et al.
(2014) suggested a robust supply chain network design model for blood supply in natural
disasters such as earthquake. They showed the applicability of the robust optimizationmethod
in a real case study. Fahimnia et al. (2015) proposed a stochastic bi-objective supply chain
network design model for blood supply in disasters. They used ε-constraint and Lagrangian
relaxation methods to solve the bi-objective model.

Asmentioned earlier, disasters candisrupt the supply chain.Disruptions in the supply chain
may occur due to different reasons such as natural disasters including tsunami, earthquake
and volcano, epidemics or man-made disruptions, for instance, wars and terrorist attacks
(Jabbarzadeh et al. 2012). Disruptions can significantly affect the effectiveness of the blood
supply chain. For instance, Sri Lanka faced an unexpected tsunami in 26December 2004. The
tsunami killed 30,000 people and injured 23,000. The National Blood Transfusion Service
were overburdened with influx of injured people. Therefore, National Blood Transfusion
Service had to design an efficient blood supply chain to handle the catastrophe and manage
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the large number of blood donors (Kuruppu 2010). On March 11, 2011, a great earthquake
stroked east japan and the subsequent tsunami disrupted the blood supply chain on the Pacific
coast of Tohoku (Nollet et al. 2013).

Considering disruption in blood supply chain can significantly increase its efficiency.
Jabbarzadeh et al. (2012) developed a mixed-integer nonlinear programming model for a
supply chain network design problem with the risk of disruptions. The aim of their proposed
modelwas tomaximize the total profit of the entire supply chain.Akgün et al. (2015) proposed
a facility location model to determine the optimal location of facilities for prepositioning
supplies considering disruption risk. The aim of their model was to minimize the response
time in a disaster area. Liang et al. (2012) proposed an optional contract model for relief
material management supply chain considering two steps in delivery where the aim was to
reduce the impact of the disasters. In more recent researches, Kohneh et al. (2016) proposed
a bi-objective mathematical model for blood supply chain network design. The proposed
model aimed to minimize total supply chain costs and maximize coverage of the donor
groups. They implemented the presented model in a case study from Iran and show the
effectiveness of themathematicalmodel. Zahiri and Pishvaee (2017) developed a bi-objective
mathematical programming model to minimize the total supply chain costs and maximize
unsatisfied demand. They implemented the proposed model in a case study from northern
Iran. Salehi et al. (2017) proposed a robust two-stage multi-period stochastic model for the
blood supply network design. Their novelty was in considering the possibility of transfusion
of one blood type as well as its derivatives to other types based on the medical requirements.

A literature comparison between the proposed model in this research and the previous
researches is proposed in Table 1.

As in presented in the Table 1, different models with conflicting objectives and assump-
tions have been proposed in the literature. However; still some vacuities remain in this field
of knowledge. For instance, none of the existing models in the literature considered trans-
portation in their proposed models. While, in real world applications different transportation
means with different capacity, cost and speed can be utilized. Also, the destruction radius of
the earthquake which can significantly affect the blood supply chain efficiency is ignored in
the existing models in the literature.

The proposed model in this article is a direct extension of the model presented by Jab-
barzadeh et al. (2014). The model consists of some assumptions that can be seen in the
literature; however, none of the proposed mathematical models in the literature include trans-
portation decisions and disruption in the blood supply chain.Motivated by the aforementioned
examples of disruptions caused by disasters in real life situations, for the first time in this field
of knowledge, the destruction radius of earthquake is considered in this research while per-
manent blood collection centers can be destroyed by the earthquake. The other main question
in blood supply during disasters is the way of transporting the collected blood to the earth-
quake zone. In this research two transportation means with limited capacities are considered
to carry collected blood to the earthquake area. Besides, there are limited numbers of avail-
able transportation equipment in each blood collection facility. Thus, the optimal number
of needed transportation equipment is determined by solving the proposed multi-objective
mathematical model.

Moreover, in all previous researches the objective is to design a blood supply chain which
aims to minimize the total supply chain costs, however, in an emergency situation such as
a severe earthquake the priority is providing blood as soon as possible far from considering
the costs. Therefore, this research takes a second objective function into account that is
minimizing total transportation time of collected blood from blood collection centers to blood
centers. To solve the multi-objective mathematical model, two optimization orientations are
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considered. The first one is MODM methods which solve the multi-objective mathematical
models with different point of views. The second one is lexicographic weighted Tchebycheff
method that is used to solve the multi-objective mathematical model to obtain efficient Pareto
optimal solutions of the problem. The Pareto optimal solutions can help the decision maker
to choose the most proper solution.

3 Problem definition

In this research, a three-echelon supply chain is made up of blood donors, blood collection
facilities and blood centers which are essential to design the blood supply chain network. Two
types of blood collection facilities include permanent and mobile blood collection facilities.
A schematic view of the proposed blood supply chain is presented in Fig. 1.

Location of the permanent blood collection facilities are fixed while mobile (temporary)
blood collection facilities can move within sites to collect more blood from donor groups in
each period. Table 2 presents the responsibility of each facility in the blood supply chain.

The collected blood in blood collection facilities are transported to blood centers using
blood transportation vehicles and helicopters with fixed and variable cost, speed and capacity.

Fig. 1 A schematic view of the proposed blood supply chain

Table 2 Responsibility of each
facility in the blood supply chain

Facility Responsibility

Blood collection facilities Collecting blood from donors
and make the collected
blood ready for
transportation to blood
centers

Blood centers Testing collected blood from
collection facilities for any
probable disease such as
HIV, storing the collected
blood and distributing to
hospitals and disaster area
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The number of available blood transportation vehicles and helicopters are limited in each site
at each period and the optimal number of required vehicles in each site will be determined
by solving the multi-objective mathematical model. The following assumptions are used in
this research.

1. Maximum blood supply of each donor is known.
2. Number of available transportation equipment in each site is limited.
3. Capacity of the blood collection facilities and blood centers is limited.
4. Demand rate of each blood center is known.

By solving the proposed multi-objective mathematical model, following decisions are
made at each period.

(1) Allocation of donor groups to the blood collection facilities.
(2) The flow of blood from donor groups to blood facilities and to the blood centers.
(3) The optimal number of located temporary and permanent blood collection facilities.
(4) The optimal location of temporary and permanent blood collection facilities.
(5) Blood inventory level at each blood center in specific period.
(6) Optimal number of needed vehicles in each blood collection facility to transfer collected

blood to blood centers.
(7) Amount of transferred blood from each collection center to each blood center by vehi-

cles.

In this study the following parameters are used to develop themulti-objectivemathematical
model of the problem:
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Sets
i Donor groups
j Potential location of blood facilities (permanent and temporary collection centers)
k Blood centers
t Periods of time
v Transportation modes

Parameters
ac jkv Transportation cost of blood from blood collection facility j to blood center k using

transportation mean v
b jt Capacity of temporary blood collection center j at period t
c jt Capacity of the permanent blood collection center j at period t
cav Maximum capacity of transportation mean v to transport collected blood from collection

centers to blood centers
cov Coverage radius of blood collection centers
dkt Demand of blood center k at period t
dis j Distance between blood collection center j and the epicenter of the earthquake
EM Earthquake magnitude
f j Fixed cost of establishment of permanent blood collection centers
hk Blood storing cost at blood center k
mi Maximum blood supply of donor group i
na jv Number of available transportation mean type v at blood collection center j
oi j t Cost of collecting blood from donor group i at blood collection facility j in period t
ri j Distance of donor group i from blood collection center j
t jktv Time needed to transport blood from blood collection facility j to distribution center k at

period t using transportation mode v
tocv Fixed cost of transportation mode v
uk Maximum capacity of blood center k
v jlt Fixed cost of moving temporary blood collection facilities from location l to location j at

period t
α The destruction radius of an earthquake with 5–6 Richter magnitude
β The destruction radius of an earthquake with 6–7 Richter magnitude
η The destruction radius of an earthquake with 7–8 Richter magnitude
ξ The destruction radius of an earthquake with 8–9 Richter magnitude
ψ The destruction radius of an earthquake with 9–10 Richter magnitude

Decision variables
inkt Inventory level of blood at blood center k at period t
n jktv Number of transportation mean v needed at blood collection center j at period t to transport

collected blood to blood center k
Qi jt Amount of blood collected from donor group i at blood collection center j at period t
Qa jktv Amount of transported blood from blood collection center j to blood distribution center k at

period t using transportation mode v
vc jktv Binary variable, equal to 1 if transportation mode v is used to transport collected blood from

blood collection center j to blood center k at period t otherwise 0
x j Binary variable, equal to 1 if permanent blood collection center is established at location j,

otherwise 0
yi j t Binary variable, equal to 1 if donor group i is allocated to blood collection center j at period t,

otherwise 0
z jlt Binary variable, equal to 1 if temporary blood collection center is moved from location l to

location j at period t, otherwise 0
δkt Amount of shortage in blood center k at period t
ω1 Binary variable, equal to 1 if earthquake magnitude is 5–6 Richter, otherwise 0
ω2 Binary variable, equal to 1 if earthquake magnitude is 6–7 Richter, otherwise 0
ω3 Binary variable, equal to 1 if earthquake magnitude is 7–8 Richter, otherwise 0
ω4 Binary variable, equal to 1 if earthquake magnitude is 8–9 Richter, otherwise 0
ω5 Binary variable, equal to 1 if earthquake magnitude is 9–10 Richter, otherwise 0
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∑

k

∑

v

Qa jktv =
∑

i

Qi j t ∀ j, t (17)

Qa jktv ≤ vc jktv ×
∑

i

Qi j t ∀ j, k, t, v (18)

n jktv ≥
(
Qa jktv

cav

)
∀ j, k, t, v (19)

∑

k

n jktv ≤
∑

k

na jvvc jktv ∀ j, t, v (20)

vc jktv ≤ (x j +
∑

l

z jlt ) ∀ j, t (21)

∑

k

∑

v

Qa jktv ≤ (x j +
z jlt∑

l

) ×
∑

i

Qi j t ∀ j, t, v (22)

Qi jt ≥ 0 ∀i, j, t (23)

inkt ≥ 0 ∀k, t (24)

Qa jktv ≥ 0 ∀ j, k, t, v (25)

n jktv ≥ 0, Integer ∀ j, k, t, v (26)

vc jktv ∈ {0, 1} ∀ j, k, t, v (27)

x j ∈ {0, 1} ∀ j (28)

yi j t ∈ {0, 1} ∀i, j, t (29)

z jlt ∈ {0, 1} ∀ j, l, t (30)

ω1, ω2, ω3, ω4, ω5 ∈ {0, 1} (31)

δkt ≥ 0 ∀k, t (32)

The first objective function aims to minimize total supply chain costs including estab-
lishing permanent blood collection centers, moving temporary blood collection facilities,
collecting blood from donor groups, transporting collected blood to blood centers, stor-
ing blood at blood centers, fixed cost of transportation means and a penalty assigned to
amount of blood shortage. The second objective function aims to minimize total transporta-
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tion time of collected blood from blood collection centers to blood centers. Constraint (3)
guarantees that the inventory level in each blood center at previous period plus total trans-
ported blood from collection centers to the blood center minus on-hand inventory in the
blood center at the end of the current period plus blood shortage in the blood center at the
current period is equal to total blood demand in the blood center at the current period. Con-
straint (4) ensures that the on-hand inventory level in the current period is less or equal to
the on-hand blood level in previous period plus amount of collected blood from collection
centers transported to the blood center at the current period. Constraint (5) ensures that in
each location only one blood collection facility can be settled. Constraint (6) handles the
movement of temporary collection centers. Constraint (7) guarantees that each donor group
can be allocated to only one blood collection facility. Constraint (8) shows that to allocate
a donor group to a blood collection facility, the distance between donor group and blood
collection facility should be less or equal to the coverage radius of the blood collection facil-
ity. Constraint (9) affirms that to collect blood from a donor group, the donor group must
be allocated to a blood collection facility. Constraint (10) ensures that the total collected
blood from a donor group in a blood collection facility is less or equal to the maximum
blood supply of the donor group. Constraint (11) presents the capacity constraints of the
blood collection facilities. Constraint (12) shows the capacity constraint of the blood cen-
ters. Constraints (13–16) show the damages caused by the earthquake to the permanent
blood collection centers based on its magnitude. Constraints (17) shows that the collection
facilities send all the collected blood to the blood centers. Constraints (18–21) determine
the number of vehicles to transport collected blood from blood collection centers to blood
centers considering limited number of transportation means. Constraints (22) ensure that
if a blood collection facility is established in a location then blood can be transported to
the blood centers. Constraints (23–32) show the decision variables and their possible val-
ues.

4 Solution methods

The mathematical model developed in the previous section is a constraint bi-objective mixed
integer linear programming (MILP)model. Theoptimal solutionof the developedbi-objective
model is an ideal solution which minimizes both objective functions simultaneously. Since,
the objective functions are in conflict such a solution does not exist (Khalilpourazari and
Khalilpourazary 2017; Khalilpourazari and Pasandideh 2016). In these cases, the multi-
objective solution methods should be utilized to solve the model. There are two types of
solution techniques to solve multi-objective optimization models as follows.

1. Multi-objective decision making (MODM) methods
2. Multi-objective optimization techniques

Multi-objective optimization techniques provide a set of Pareto solutions named Pareto
frontiers. These Pareto optimal solutions provide a variety of alternatives to the decision
maker (Khalilpourazari and Khalilpourazary 2017). In some cases, when the number of
Pareto solutions are enormous, choosing a Pareto optimal solution from Pareto frontier
is a cumbersome work. In these cases, MODM methods, which solve the multi-objective
problems with different views such as minimizing the deviation of each objective func-
tion from its individual optimal point, can be utilized. Considering all the above-mentioned
points, both MODM and Multi-objective optimization techniques have their own advan-
tages.
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4.1 Multi-objective decision making (MODM) methods

According to Hwang and Masud (2012) and Pasandideh et al. (2015) the MODM methods
are classified in four categories. Methods in the first category solve the problem without any
information given by the decision maker, in other words, in these methods the decision maker
only accepts or rejects the obtained solution. Methods in the second category try to find the
most effective optimal point which minimizes both objective functions based on the priority
that is determined by the decision maker. Therefore, in this category the decision maker must
determine the priority of the objective functions based on their importance. Methods in third
category generally called interactive methods which means that in each iteration the decision
maker is asked about preference of the obtained solutions to determine the next solution.
In methods of the fourth category the decision maker needs to choose a solution based on
his/her preference at the end.

In this paper five MODMmethods including Max–Min, utility function, goal attainment,
LP-metric and goal programming are applied to solve the bi-objective mathematical model
of the proposed blood supply chain as presented in Table 3.

To evaluate the performance of the five MODM methods three measures are defined
including first objective function value, second objective function value and CPU-time which
presents the required computation time to solve the multi-objective model.

4.1.1 Numerical examples

In this section the proposed bi-objective mathematical model of the problem is solved in
different sizes using the five aforementioned MODM methods. For each size, five different
test problems with randomly generated parameters are solved using GAMS software imple-
menting the five MODM methods. Table 4 presents the parameters of the model and their
distribution. Note that the following distributions are considered based on the real data which
are provided in the next section.

In each size five different test problems with different parameters are solved. Mathemat-
ically speaking, 175 test problems are solved to evaluate the performance of the MODM
methods to demonstrate the superior method. Table 5 presents the computational results.

To solve the test problems, a laptop with i7 CPU and 8 GB of ram is utilized. Figures 2, 3
and 4 present the average value of the objective functions (Z1 and Z2) and CPU-time of the
MODM methods.

An ideal solution is a solution in which both objective functions are minimized simul-
taneously. Since, the two objective functions are in conflict, we can infer that all obtained
solutions by MODM methods are effective solutions. To compare the efficiency, these five
MCDM methods are compared using single factor ANOVA to determine significant differ-
ences in the average CPU-time among them at 95% confidence level (Khalilpourazari and
Pasandideh 2017; Khalilpourazari et al. 2016; Khalilpourazari and Khalilpourazary 2016).
Table 6 presents the results of the single factor ANOVA.

As is presented in Table 6, the p value is less than 0.05, which means there are significant
differences between average CPU-time of the five solution methods. Therefore, a post hoc
analysis is needed (Khalilpourazari et al. 2016; Pasandideh et al. 2015). To achieve this
aim, Tukey’s multiple comparison test (Tukey’s HSD) is used. Tukey’s HSD simultaneously
compares the means of different treatments to find out which treatments are significantly
different. In this paper, MINITAB software is utilized to perform Tukey’s HSD test. Table 7
presents the results.

123



368 Ann Oper Res (2019) 283:355–393

Table 3 Five MODM methods

Method Solution procedure Formulation

Max–Min Maximizing the minimum amount of
the objective functions divided by
their ideal solutions

Max

(
Min

(
Z1
Z∗
1
,
Z2
Z∗
2

))

LP-metric Obtains a solution which minimizes
the deviation of the objective
functions from their ideal solutions

Min

(
n∑

i=1

(
Z∗
i −Zi
Z∗
i

)r
) 1

r

s.t
h(x) ≤ 0

Utility function A weight is assigned to each
objective function and the Utility
function method minimizes the
total sum of weighted objective
functions, where, the sum of
weights is equal to one

Min
n∑

i=1
wi Zi

Goal attainment The decision maker determines a
goal vector K. The aim is to
minimize weighted deviation from
the determined goals, while, vi is a
weight based on the importance of
the objective functions

Min y
s.t. :
Z1 + v1y ≥ K1
Z2 + v2y ≥ K2

Goal programming The decision maker determines a goal
vector K. The goal is to minimize
negative and positive deviations
from the determined goals

Min
n∑

i=1
yiwi (r

+
i , r−

i )

s.t.
Z1 − r+

1 + r−
1 = K1

Z2 − r+
2 + r−

2 = K2
r+
i ≥ 0, r−

i ≥ 0

Table 4 Parameters and distributions

Parameters Distribution Parameters Distribution Parameters Distribution

f j ∼ U (5000, 9000) b jt ∼ U (800, 1200) t jktv ∼ U (20, 300)

v jlt ∼ U (200, 500) uk ∼ U (7000, 12,000) dkt ∼ U (7000, 9000)

oi j t ∼ U (50, 250) dis j ∼ U (10, 20) ri j ∼ U (7, 15)

ac jkv ∼ U (300, 500) cav ∼ U (250, 1500) mi ∼ U (1000, 2000)

hk ∼ U (20,50) na jv ∼ U (2, 10) c jt ∼ U (3000, 4500)

cov ∼ U (9,11) EM ∼ U (5, 10) ξ ∼ U (10, 11)

tocv ∼ U (3000, 50,000) α ∼ U (3, 5) ψ ∼ U (12, 15)

η ∼ U (7, 9) β ∼ U (5, 7) U → Uni f orm

In Table 7 the p value of the rows which shows the comparison between LP-metric method
and other solution methods, are less than 0.05, which are marked with (*). So, we can infer
that there are significant differences between LP-metric method and other solution methods
in term of average CPU-time. Thus, the solution method with less CPU-time performs better
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Fig. 2 Average first objective function value for five MODM methods

Fig. 3 Average second objective function value for five MODM methods

than other methods. Therefore, the LP-metric method is inefficient in term of CPU-time
measure. Figures 5 and 6 present the results of the Tukey’s test.

The other important point is that, each method produces a different performance in terms
of different predefinedmeasures. For example, theGoal attainmentmethod is the best method
regarding the CPU-time measure, since its computation time is significantly less comparing
to other MODM methods. Contrarily, the Goal attainment method cannot perform well in
minimizing the second objective function value. As a result, each MODM method has its
own priority in terms of different measure. Thus, more analyses are needed to determine the
superior method.
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Fig. 4 Average CPU-time of five MODM methods

Table 6 Single factor ANOVA for CPU-time measure

Source DF Adj SS Adj MS F-value p value

Factor 4 256,327,074 64,081,768 10.26 0.000

Error 170 1,062,087,380 6,247,573

Total 174 1,318,414,453

4.1.2 Performance evaluation

Since determining an accurate weight for each comparing measure is practically impossible,
in this subsection Entropy method is used to assign a weight for each measure. Then Tech-
nique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is applied to
demonstrate the superior MODM method. First of all, a decision matrix is designed based
on the results of Table 5 as presented in Table 8.

The Entropy method estimates the weight of each measure without receiving any infor-
mation from the decision maker for a given decision matrix. It determines weights based on
uncertainty and diversification of the measure vector. In this method, the decision matrix is
normalized in linear form as presented in Eq. 33.

Di j = yi j∑
i yi j

(33)

Then the parameter d j is calculated for each measure using the below formula.

d j = 1 + T
n∑

i=1

Di j ln Di j , T = 1

ln n
, 0 < d j < 1 (34)

Using above calculations, the weight of each measure is obtained using Eq. 35.

WE j = d j∑n
j=1 d j

(35)

Table 9 presents the obtained weights of each measure using Entropy method.

123



Ann Oper Res (2019) 283:355–393 373

Table 7 Tukey simultaneous tests for CPU-time measure

Difference of
levels

Difference of
means

SE of
difference

95% CI T-value Adjusted
p value

lp-metric—
Maxmin

2494 597 (846, 4142) 4.17 0.000*

goalattain—
Maxmin

−989 597 (−2637, 659) −1.66 0.464

utilityfunct—
Maxmin

−572 597 (−2219, 1076) −0.96 0.874

goalprogramm—
Maxmin

87 597 (−1561, 1735) 0.15 1.000

goalattain—lp-
metric

−3483 597 (−5131, −1835) −5.83 0.000*

utilityfunct—lp-
metric

−3065 597 (−4713, −1418) −5.13 0.000*

goalprogramm—
lp-metric

−2407 597 (−4054, −759) −4.03 0.001*

utilityfunct—
goalattain

418 597 (−1230, 2065) 0.70 0.956

goalprogramm—
goalattain

1076 597 (−571, 2724) 1.80 0.376

goalprogramm—
utilityfunct

659 597 (−989, 2306) 1.10 0.805

Individual confidence level=99.35%

Fig. 5 Boxplot of the CPU-times

After assigning a proper weight for each measure, Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) method is used to rank the five MODM methods.
TOPSIS method first proposed by Hwang and Yoon (1981) and it aims to find the best
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Fig. 6 The results of the Tukey’s HSD for CPU-time measure

Table 8 Decision matrix

Method Average Z1 Average Z2 Average CPU-time

Max–Min 11,894,034.3 1124.838 1022.953

LP-metric 11,116,233.01 177.2116 3516.773

Goal attainment 10,260,839.81 7290.999 33.798

Utility function 9,377,958.651 1845.061 451.413

Goal programming 9,377,842.494 1853.855 1110.095

Table 9 Weights determined by
Entropy method

Average Z1 Average Z2 Average CPU-time

WE j 0.005 0.4909 0.5041

Table 10 Results of the TOPSIS
method

MODM methods Similarity ratio Ranking

Max–Min 0.7804 2

LP-metric 0.4947 5

Goal attainment 0.5053 4

Utility function 0.817 1

Goal programming 0.7253 3

alternative with longest distance from the negative ideal solution and shortest distance from
the positive ideal solution. The results of utilizing TOPSIS method is presented in Table 10.
The five MODM methods are ranked based on their similarity ratio.

As in Table 10 the Utility function is the best MODM method to solve the developed
bi-objective mixed integer linear programming (MILP) model.
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Fig. 7 Pareto optimal set source: Khalilpourazari and Pasandideh (2016)

4.2 Multi-objective optimization techniques

Since both of objective functions are in conflict in the proposedmulti-objective mathematical
model of the problem, developing a solution procedure to provide Pareto optimal solution is
important. Because, in some cases the decisionmakers prefer to choose a solution fromagiven
set of Pareto optimal solutions (Khalilpourazari and Khalilpourazary 2017; Khalilpourazari
et al. 2016; Samanlioglu 2013). In this study, the lexicographicweighted Tchebycheffmethod
is used to provide Pareto optimal solutions. Khalilpourazari and Khalilpourazary (2017) and
Steuer (1986) and define the Pareto optimal solution as follows.

DefinitionA decision vector x∗ ∈ S or Pareto optimal solution for a multi objective program
(MOP)is efficient if there does not exist x ∈ S that fi (x) ≤ fi (x∗) where fi (x) < fi (x∗) is
true for at least one index.

For a bi-objective minimization problem Pareto optimal solutions can be presented as in
Fig. 7.

Lexicographic weighted Tchebycheff (LWT) method is first proposed by Steuer (1986).
LWT is one of the most effective methodologies in solvingMulti-objective programs (MOP).
Using dispersed weights, the LWT can provide efficient Pareto optimal solutions of a MOP
(Khalilpourazari and Pasandideh 2016). The formulation of the lexicographic weighted
Tchebycheff method is presented in Eq. 36.

lexmin
{
δ, et ( f (x) − f ∗ (x))

}

subject to

δ ≥ εi
(
fi (x) − f ∗

i (x)
)

(36)

where fi (x) are the objective functions, f ∗ (x) is the vector of the optimal solutions of
objective functions where they are minimized individually satisfying all constraints. εi ≥ 0
are the weights where

∑n
i=1 εi = 1 (Khalilpourazari and Khalilpourazary 2017).
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Table 11 Most destructive earthquakes recorded in Iran

Location Date Deaths Magnitude

Manjil–Rudbar June 20, 1990 40,000–50,000 7.4

Bam December 26, 2003 At least 30,000 6.6

Tabas September 16, 1978 15,000 7.8

Saravan Apr 16, 2013 35 7.8

Ardebil February 28, 1997 1100 6.0

Ghaenat 1997 1700 7.3

5 Model implementation

Iran as one of the most earthquake-prone countries has faced many devastating earthquakes
(Sabzehchian et al. 2006). Table 11 presents some of the most devastating earthquakes
recorded in Iran.

Fast and adequate distribution of blood after severe earthquakes is always a matter of
concern (Abolghasemi et al. 2008). To handle the situation, the proposed bi-objective math-
ematical model for blood supply chain network design in earthquake is implemented on a
real-world data set to evaluate the effectiveness of the proposed bi-objective mathematical
model.

IranianBloodTransfusionOrganization (IBTO) founded in 1974, is a non-profit and public
organization that provides hospitals with blood and blood components free of any charges.
IBTO is the only organization responsible for all activities related to blood collection and
distribution. National laws have banned all other organizations from any activities related
to blood transfusion (Cheraghali 2012). Some major responsibilities of the IBTO are to (1)
modifying standards for collecting, screening, delivery and storage of blood. (2) Designing
blood supply chain network including blood collection centers and distribution centers. (3)
Conducting necessary tests on donated blood to ensure its safety.

One-third of Iran’s blood demand originates from IBTO’s north key blood center (Jab-
barzadeh et al. 2014). This blood demand is collected by permanent and temporary blood
collection facilities such as donation buses. According to (American Association of Blood
banks, 200) blood typeO is the best and themost needed blood type in an emergency situation
such as earthquake because of its compatibility with all other blood types. Therefore, in this
study the proposed multi-objective mathematical model is utilized to design a cost and time
effective blood supply chain network for Type-O RBC.

Tehran is the largest city andurban area of Iran, the 2nd-largest city inWesternAsia, and the
3rd-largest in the Middle East with a population of over 16 million in the wider metropolitan
area. Tehran is located on 13 active faults which make it one of the most probable places for
a potential severe earthquake. The city is divided into 22 municipal districts each with its
own administrative center, as presented in Fig. 8.

In this study 22 donor groups are allocated to their corresponding district (Jabbarzadeh
et al. 2014) and the blood supply of each district is estimated based on districts average
blood donation rate of 22.05 units per thousand people. An average deferral rate of 13% is
considered to show the donors who are rejected due to special reasons including medical
reasons and diseases. The geographical coordination of donor groups in each district and
their corresponding blood supply are presented in Table 12 which is obtained using Google
Map and Google Earth (Jabbarzadeh et al. 2014).
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Fig. 8 Geographical representation of Tehran’s districts

Table 12 Geographical
coordinates of donor groups

Donors Supply (units) Latitude Longitude

D1 166 35.80250 51.45972

D2 399 35.75750 51.36222

D3 198 35.75444 51.44806

D4 543 35.74194 51.49194

D5 500 35.74889 51.30028

D6 145 35.73722 51.40583

D7 195 35.72194 51.44611

D8 238 35.72444 51.49833

D9 99 35.68361 51.31722

D10 191 35.68361 51.36667

D11 182 35.67944 51.39583

D12 151 35.68000 51.42639

D13 174 35.70778 51.51417

D14 305 35.67444 51.47028

D15 402 35.63083 51.47361

D16 181 35.63944 51.40917

D17 156 35.65389 51.36306

D18 246 35.65167 51.29278

D19 154 35.62056 51.36694

D20 214 35.59028 51.44083

D21 102 35.69056 51.25778

D22 81 35.74722 51.20417
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Table 13 The values of main parameters

Parameter Value Parameter Value Parameter Value Parameter Value

hk $1 uk 1500 oi j t $0.0690567 η 30 km

f j $1518.23 v jl1 $322.98 c jt 300 b jt 100

dkt 1086,919 cov 12 EM 7.8 Richter

Table 14 Cost of transportation between candidate facilities and the blood center ($)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

Vehicle 134 53 74 142 65 60 77 147 108 83 92

Helicopter 423 362 394 803 378 377 396 432 417 405 415

F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22

Vehicle 110 245 151 286 173 138 194 256 289 172 275

Helicopter 418 460 444 881 448 426 453 462 490 447 467

The distances are calculated using the following formula as Eq. 37 presents.

ri j = Arccos
(
sin (Latitudei ) × sin

(
Latitude j

) + cos (Latitudei ) × cos
(
Latitude j

)

× cos
(
Longitude j − Longitudei

)) × 6371.1 (37)

where 6371.1 is the earth’s radius and Latitude and Longitude are the geographic coor-
dinates of the donor groups multiplied by π/180. Table 13 presents the real data for the
required parameters to solve the proposed multi-objective mathematical model as presented
in Davoudi-kiakalayeh et al. (2012) and Shen et al. (2003).

The fixed cost of each vehicle used to transfer collected blood from collection centers
to blood center is 3000$ and 35,000$, respectively. The blood capacity of vehicles and
helicopters are 100 and 300 units. Table 14 presents the cost of transportation between
collection centers and the distribution centers for vehicles and helicopters in each district.
Table 15 presents the cost of moving a temporary blood collection facility from one district
to another at the second period (Jabbarzadeh et al. 2014).

The number of available vehicles and helicopters in each district is given in Table 16.
Also, the travel times of vehicles are given in Table 17 which are obtained from Google Map
and Google Earth considering average speed of vehicles.

In recent years designing a reliable blood supply chain network after a catastrophe such
as a major earthquake in Tehran is one of the most important concerns for the government.
Therefore, in this study the proposed multi-objective mathematical model is applied on real
data to design an effective blood supply chain network after a destructive earthquake in
Tehran. Heydari and Babai (2015) performed a risk analysis on Tehran in an area enclosed
between 51◦25′40′′ longitude and 35◦45′30′′ latitude. They showed that in every 475years a
7.5 Richter magnitude earthquake can be expected with 96% probability. Based on the data
from Iranian Seismological Center (ISC) Tehran’s southern fault is activated in recent years
and it is one of the most potential places for an earthquake while no severe earthquake has
occurred for a long time in Tehran. Therefore, in this study we considered that a destructive
earthquake with 7.8 Richter magnitude has occurred in the southern fault that is the most
active one in Tehran with 30 km destruction radius as presented in Fig. 9 Heydari and Babai
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Table 16 Number of available transportation equipment in each district

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

Vehicle 4 5 4 4 9 7 7 4 9 7 5

Helicopter 1 2 2 1 2 3 2 0 2 3 2

F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22

Vehicle 7 6 5 5 5 4 4 6 5 10 10

Helicopter 2 2 3 1 3 0 3 1 2 3 5

Table 17 Travel time from each district center to the blood center (min)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

Vehicle 142 102 119 146 118 103 129 150 139 132 137

Helicopter 14.2 7.1 10.3 17 8.8 8.2 11.5 18.3 13.8 13.3 13.5

F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22

Vehicle 140 171 155 178 164 144 168 173 180 159 175

Helicopter 14 23.6 18.5 33.9 20 14.5 23 27 35 18.9 33.2

Fig. 9 7.8 Richter magnitude Earthquake in South Tehran fault with 30 km destruction radius

(2015). The distance between the earthquake center and the center of each district is presented
in Table 18.

To show that the objective functions are in conflict, each objective function is minimized
individually using the real data of Tehran and the results show that the two objective functions
are not minimized simultaneously. Table 19 presents the results.
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Table 19 The relation between
the two objective functions

z∗1 z∗2
z1 172,890.089 586.900

z2 911,195.899 34.400

Table 20 Results of the five
MODM methods in solving the
real case study

Method Z1 Z2 CPU-time

Max–Min 630,401.379 34.400 467.145

LP-metric 630,401.379 34.400 509.312

Goal attainment 276,716.249 362.600 475.473

Utility function 173,181.379 442.000 475.885

Goal programming 172,890.089 571.000 492.703

Table 21 Pareto optimal
solutions obtained by the
lexicographic weighted
Tchebycheff method

Pareto solutions Z1 Z2 CPU-time

1 176,558.489 442.000 420.421

2 177,437.379 389.000 146.674

3 383,125.379 237.900 101.064

4 630,401.379 34.400 168.045

5 173,297.689 448.000 152.679

To solve the problem five MODMmethods are utilized in order to solve the problem with
different point of views. Table 20 presents the results.

As in Table 20 the solutions obtained by the fiveMODMmethods are completely compet-
itive in terms of the first and second objective function values. In the test problems presented
in previous sections, the utility functionmethod ranked first among the fiveMODMmethods,
as well as an accepted performance in the real-world data by providing a solution which has
a good tradeoff between first and second objective functions value and CPU-time.

In addition, providing Pareto optimal solutions for a multi-objective mathematical model
can help the decision maker to choose the solution he/she prefers. Therefore, lexicographic
weighted Tchebycheff method is applied to obtain effective Pareto solutions of the multi-
objective mathematical model which are presented in Table 21.

Figure 10 presents a schematic view of the obtained Pareto optimal solutions by lex-
icographic weighted Tchebycheff and the five MODM methods in solving the real case
problem. The solutions encircled by green provide a good trade-off between the value of the
two objective functions.

These Pareto optimal solutions help the decisionmaker to choose themost proper solution.
For instance, if the first objective function is prior, the decision maker can choose Max–Min
or LP-metric approaches. Conversely, if the second objective function is prior, the decision
maker can choose Goal programming method to solve the problem. In other cases, when the
decision maker aims to make an appropriate trade-off between the two objective functions,
he/she can use LWT method to obtain various Pareto optimal solutions.

Computation time of the lexicographic weighted Tchebycheff method and five MODM
methods are presented in Fig. 11 which determines that the lexicographic weighted Tcheby-
cheff method requires significantly less computation time comparing to theMODMmethods.
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Fig. 10 Solutions of the Five MODM and lexicographic weighted Tchebycheff methods

Fig. 11 Computation time of the Five MODM and lexicographic weighted Tchebycheff methods

To illustrate the values of the decision variables in the solutions obtained by different
solution methods, the third Pareto optimal solution obtained by lexicographic weighted
Tchebycheff method is illustrated. Table 22 presents the allocation of the donor groups
to the permanent blood collection centers in the first and the second periods, respectively.

Figure 12presents the locationof permanent blood collection centers and the transportation
of the collected blood from collection centers in the first two periods after the 7.8 Richter
earthquake. In addition, the permanent blood collection centers in 9, 10, 11, 12, 15, 16, 17,
18, 19, 20, 21 districts are destroyed by the earthquake.

The results of the model implementation show that in the first period (first 24h), it is
required to transport the collected blood from collection centers to the blood center as fast as
possible due to significant increase in the blood demand in the first 24h. Therefore, based on
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Fig. 12 The third Pareto optimal solution obtained by lexicographic weighted Tchebycheff method

the results, using fast transportation means such as helicopters is essential in blood collection
centers 2 and 5. Also, the results demonstrate that the on-hand inventory level at the blood
centers plays a major role in blood supply chain effectiveness. Since, it can significantly
reduce the increased blood demand at the first 24h.

The other advantage of using the proposed model in this research is that the model deter-
mines which blood collection centers may be destruct by the earthquake, this gives the
decision maker a vision to predict the destruction effect of the earthquake on supply chain
and helps to design an efficient and robust blood supply chain. Since, the proposed model in
this research is a multi-objective optimization model, Pareto optimal solutions, which make a
proper trade-off among conflicting objectives, are of great importance. In this research, sev-
eral multi-objective solution methodologies were utilized to obtain efficient Pareto optimal
solutions, since, the decision maker might have different preferences based on importance of
each objective function. The results of the case study revealed that the lexicographic weighted
Tchebycheff approach is one of the best solutionmethods for the problem, since, it can obtain
efficient Pareto optimal solutions for the problemwhich enables the decisionmaker to choose
the best solution he/she prefers.

In order to design a supply chain network which performs well under different scenarios,
it is essential to study effect of any change in the main parameters of the mathematical model
on objective function value to determine the most critical parameter of the mathematical
model. For this purpose, sensitivity analyses are carried out in the following section.

6 Sensitivity analyses

In this section sensitivity analyses are carried out to show the changes in objective functions
value caused by variation in the main parameters of the multi-objective mathematical model.
It includes changes in each parameter at −50, −25, +25, +50% rates. To do this, the GAMS
software is utilized to solve a medium size test problem. Table 23 presents the results.
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Table 23 Results of sensitivity
analyses

Parameters Change (%) Z1 Z2

dkt −50 3,998,156 84.898

−25 6,050,532 134.713

+25 10,376,360 210.247

+50 Infeasible Infeasible

mi −50 Infeasible Infeasible

−25 8,616,378.00 254.301

+25 6,496,453.80 154.301

+50 6,471,476.36 144.301

EM −50 8,189,934.00 174.304

−25 8,201,972.00 182.094

+25 8,203,210.01 225.989

+50 8,597,874.03 331.091

cov −50 8,356,831.00 177.595

−25 8,261,757.00 177.595

+25 8,074,788.52 174.304

+50 8,033,242.58 174.304

c jt −50 8,766,317 291.673

−25 8,529,548 229.921

+25 8,401,724 189.251

+50 8,401,889 165.825

An increase in dkt increases both objective function values and an increase to +50% rate
makes the problem infeasible. In addition, a small change in dkt results in a significant change
in both objective function values. An increase inmi decreases both objective function values
and a decrease to−50% ratemakes the problem infeasible. An increase in EM increases both
objective function values. It is obvious that the earthquakes with bigger magnitude result in
bigger casualties, thus, most of the permanent collection centers will be destroyed. This result
in a significant increase in supply chain costs and time needed to deliver collected blood to
blood centers. An increase in cov decreases both objective functions value. This means that
more donor groups will be covered and there would be no need to establish new permanent
collection centers to collect blood from donor groups. A schematic view of the effects of
changes in main parameters of the problem on the objective functions value is presented in
Table 24.

Figures 13 and 14 present the radar plot of the results of the sensitivity analyses.
From the results, increasing the parameters c jt and cov can significantly decrease the both

objective functions value. Therefore, by increasing the capacity and coverage of the of the
permanent collection facilities the decision maker can decrease total supply chain costs as
well as total transportation time.

7 Conclusion, limitation and future scope of research

In this study, a multi-objective mathematical model was developed for blood supply chain
network design in earthquake. Themodel consists of some assumptions that can be seen in the
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Table 24 Effect of any change in main parameters on the objective functions value

Parameter Change in Z1 Change in Z2

ktd

im

EM

cov

jtc
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Fig. 13 Radar plot for the results of sensitivity analyses (First objective)

literature; however, none of the proposed mathematical models in the literature considered
transportation decisions and disruption in the blood supply chain. For the first time in this field
of knowledge, the destruction radius of the earthquake was considered in the mathematical
model to design a robust supply chainwhen a severe earthquake occurs. In addition, two blood
transportation means were appointed to transport the collected blood from collection centers
to blood centers. Also, speed, capacity and number of available vehicles were considered to
be different at each site. The aim of this study was to answer questions related to location
of the permanent and mobile blood collection centers, allocation of the donor groups to the
blood collection centers, inventory level at each blood center as well as transportation of
the collected blood from and to these sites, taking into consideration the destruction effect
of the earthquake on supply chain. By nature, the blood supply chain network design is
a multi-criteria decision making problem, since there are conflicting objectives in making
decisions about location of sites and transportation between them. The proposed model in
this research aimed to minimize total transportation time and cost in the blood supply chain
network, simultaneously. In contrast to existing models in the literature, to obtain efficient
Pareto optimal solutions, the lexicographic weighted Tchebycheff and five multi-objective
decision making (MODM) methods were applied. Different Pareto optimal solutions were
attained for the problem, since, the decision maker might have different preferences based
on importance of each objective function.

The model was implemented in Tehran city, the capital of Iran. Although some assump-
tions were made due to lack of information, many real-life aspects of the blood supply chain
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Fig. 14 Radar plot for the results of sensitivity analyses (Second objective)

network design problem were considered and implemented. 22 districts of Tehran city were
considered in the case study. There 22 districts were assumed to be candidate location for
permanent and mobile blood collection centers. Also, Tehran’s north blood center was con-
sidered as the main blood center in the implementation. For each site, different transportation
means with different capacity and speed were considered to transport blood from collection
centers to the blood center. The model was solved using GAMS software using different
multi-objective optimization methods and various Pareto optimal solutions were attained.
The results showed that in the first period (24h), using fast transportation means such as
helicopters are essential due to significant increase in demand parameter. Also, the results
indicated that the initial inventory level at the blood center is of great importance to satisfy
demand in the first 24h. Besides, the mathematical model determined that some blood col-
lection centers were destroyed by the earthquake which helps the decision maker and health
services to design more robust blood supply chain. In addition, sensitivity analyses were
carried out to determine the most critical parameters of the mathematical model. The results
indicated that by increasing the coverage and capacity of the blood collection centers, the
total transportation time and total supply chain costs can be significantly reduced.

Although, the presented mathematical model in this paper considered different real-life
aspects, still some improvements can be considered. For instance, considering different levels
in the blood supply chain can improve the blood transfusion between sites. For this purpose,
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new levels including hospitals and disaster zones can be considered. In addition, considering
some of the main parameters of the proposed model under uncertainty can lead to design
more realistic and robust blood supply chain. Also, based on the preference of the decision
maker and health services, different objective functions such as safety, reliability, equity and
risk can be included in the mathematical model.

Appendix

See Table 25.

Table 25 The most devastating earthquakes in the world

Location Date Deaths Magnitude

Haiti region 2010/01/12 316,000 7.0

Tangshan, China 1976/07/27 242,769 7.5

Sumatra 2004/12/26 227,898 9.1

Haiyuan, Ningxia (Ning-hsia), China 1920/12/16 200,000 7.8

Kanto (Kwanto), Japan 1923/09/01 142,800 7.9

Ashgabat, Turkmenistan 1948/10/05 110,000 7.3

Eastern Sichuan, China 2008/05/12 87,587 7.9

Pakistan 2005/10/08 86,000 7.6

Messina, Italy 1908/12/28 72,000 7.2

Chimbote, Peru 1970/05/31 70,000 7.9

Western Iran 1990/06/20 50,000 7.4

Gulang, Gansu (Kansu), China 1927/05/22 40,900 7.6

Erzincan, Turkey 1939/12/26 32,700 7.8

Avezzano, Italy 1915/01/13 32,610 7.0

Southeastern Iran 2003/12/26 31,000 6.6

Quetta, Pakistan (Baluchistan, India) 1935/05/30 30,000 7.6

Chillan, Chile 1939/01/25 28,000 7.8

Spitak, Armenia 1988/12/07 25,000 6.8

Guatemala 1976/02/04 23,000 7.5

Japan 2011/03/11 20,896 9.0

Gujarat, India 2001/01/26 20,085 7.6
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Şahin, G., Süral, H., &Meral, S. (2007). Locational analysis for regionalization of Turkish Red Crescent blood
services. Computers & Operations Research, 34(3), 692–704.
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