
Ann Oper Res (2019) 272:243–272
https://doi.org/10.1007/s10479-017-2576-2

ADVANCES IN THEORETICAL AND APPLIED COMBINATORIAL OPTIMIZATION

A skewed general variable neighborhood search
algorithm with fixed threshold for the heterogeneous
fleet vehicle routing problem

Houda Derbel1 · Bassem Jarboui2 · Rim Bhiri1

Published online: 14 July 2017
© Springer Science+Business Media, LLC 2017

Abstract This article considers the heterogeneous fleet vehicle routing problem, as a vari-
ant of a well-known transportation problem: the vehicle routing problem. In order to solve
this particular routing problem, a variable neighborhood search with a threshold accepting
mechanism is developed and implemented. The performance of the algorithm was compared
to other algorithms and tested on datasets from the available literature. Computational results
show that our proposed algorithm is competitive and generates new best solutions.
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1 Introduction

The Heterogeneous Fleet Vehicle Routing Problem (HFVRP) is an extension of the Vehicle
Routing Problem (VRP). Instead of considering identical vehicles at a central depot, the
HFVRP consists of routing a heterogeneous fleet of vehicles with different capacities and
costs to supply customers. The work of Baldacci et al. (2008) gives a literature review of
the HFVRP and its variants. It reports different solution approches including heuristics and
metaheuristics and their performances. Additionally, the authors draw attention to integer
programming formulation for the HFVRPwhile discussing different lower bounds. Recently,
a survey on HFVRP was provided by Koç et al. (2016).

B Houda Derbel
derbelhouda@yahoo.fr

Bassem Jarboui
bassem_jarboui@yahoo.fr

Rim Bhiri
rimbhiris@gmail.com

1 MODILS, FSEGS, Route de l’aéroport km 4, Sfax 3018, Tunisia

2 Emirates College of Technology, Abu Dhabi, United Arab Emirates

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-017-2576-2&domain=pdf


244 Ann Oper Res (2019) 272:243–272

Two features are considered to classify different variants of the problem in the literature:
the fleet limitation and the type of costs. Most works in the literature tackled five variants.
The different variants are named by using two acronyms: HVRP (Heterogeneous VRP) for
problems with limited number of vehicles for each type and FSM (Fleet Size and Mix) for
variants with unlimited ones followed by : F for problems with fixed costs and V for those
with variable costs. The five variants considered in the literature are as follows:

– HVRPFV: limited fleet with fixed and variable costs
– HVRPV: limited fleet with variable costs but without fixed costs
– FSMFV: unlimited fleet with fixed and variable costs
– FSMF: unlimited fleet with only fixed costs
– FSMV: unlimited fleet with only variable costs

To our knowledge, the first work which dealt with variable neighborhood search (VNS) to
solve the HFVRP was provided in Imran et al. (2009). The VNS was enhanced by different
local search methods including the sweep algorithm (see Gillett and Miller 1974) and the 2-
opt (see Lin 1965) together with the Dijkstra’s algorithm (1959) inorder to obtain the initial
solution. Two VNS variants which are different in the order of use of the diversification
and Dijkstra’s algorithm were developed. The authors make use of existing data for the
implementation. They proposed some modification for large data instances to better suit the
HFVRP particularities. The performance of the VNS algorithm was shown in other domains
such as scheduling problems (see Rahmani and Ramezanian 2016).

The HFVRP is classified as NP-hard problem because it is reduced to a classical VRP
when the provided fleet is homogenous. In this paper, we propose a skewed generalized vari-
able neighborhood search (SGVNS) metaheuristic for the HFVRP due to its computational
complexity. The algorithm is based on the exploration of different neighborhoods introducing
local search procedures. We will deal with the variants with limited fleet discussed above.
The algorithm is tested on instances from the literature and the results are compared with
other existing methods.

The remainder of this paper is organized as follows: Sect. 2 describes some works related
to the HFVRP and its main variants. A formal definition of the problem is presented in
Sect. 3 while Sect. 4 gives a brief review to the VNS and provides an outline of the proposed
metaheuristic. Section 5 contains the results obtained and a comparison with those reported
in the literature and the final conclusions are presented in Sect. 6.

2 Literature review

A HFVRP survey touching upon the five variants aforementioned together with the
approaches to solutions can be found in Baldacci et al. (2008). The FSM was initially pro-
posed by Golden et al. (1984) to optimize the fleet composition whereas the HFVRP was
introduced by Taillard (1999) to determine the optimal set of routes with a fixed fleet. In
Golden et al. (1984), the authors proposed a mathematical formulation for the FSMF and
efficiently compute some lower bounds. They also developed two heuristic algorithms to
solve the FSM. The first one is based on the saving algorithm (see Clarke and Wright 1964)
and the second is a two-phase giant-tour based approach. The giant-tour scheme is used by
Teodorovic et al. (1995) to solve a stochastic HFVRP. Mathematical programming based
methods have been developed by Yaman (2006), Choi and Tcha (2007). In Yaman (2006),
the author described six different formulations based on flow variables and Miller–Tucker–
Zemlin (MTZ) inequalities to model subtour elimination. In Choi and Tcha (2007), lower
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bounds for all variants of FSM are obtained using a column generation algorithm enhanced
by a set covering formulation. A hybrid algorithm composed by an Iterated Local Search
(ILS) based heuristic and a Set Partitioning (SP) formulation was proposed in Subramanian
et al. (2012) to solve FSM variants. SP is also combined with tabu search algorithm (TSA) in
Lee et al. (2008) to solve HFVRP with variable and fixed costs. More recently, a TSA which
strikes a balance between intensification and diversification while using the main concepts of
TS was applied in Brandao (2011). In Lee et al. (2008), a slightly improved solution quality
is provided.

The HFVRP was first introduced by Taillard (1999) and later studied by Tarantilis et al.
(2003, 2004), Li et al. (2007) and Brandao (2011). In Taillard (1999), the authors used a
heuristic column generation method to solve medium and large size problem instances. The
works of Tarantilis et al. (2003) and Tarantilis et al. (2004) developed two algorithms belong-
ing to the stochastic search methods namely, a listed based threshold accepting (LBTA) and
a backtracking adaptive threshold accepting (BATA). The numerical results show that BATA
improves solutions in comparison with LBTA and taillard’s heuristic. A deterministic tabu
search algorithm was proposed by Brandao (2009) to solve the FSMVRP. The author also
adapted this algorithm for the HFVRP Brandao (2011). They have shown that solving the
HFVRP is much more difficult than solving the FSM. A deterministic variant of the simu-
lated annealing metaheuristic: a a record-to-record travel algorithm (HRTR) was considered
in Li et al. (2007). HRTR generated six new best-known solutions in comparison with LBTA
and BATA algorithms. Baldacci and Mingozzi (2009) presented an exact algorithm for the
HVRPFD based on the set partitioning formulation; they used three types of bounding proce-
dures based on the LP-relaxation and the Lagrangean relaxation. Computaional results have
shown that the exact algorithm gives better solutions when it is tested on taillard’s instances
(Taillard 1999). Notwithstanding that, such algorithms are not only time-consuming but they
are not appropriate for solving larger instances. Iterated local search (ILS) was promising in
dealing with HFVRP. The first ILS approach using a variable neighborhood descent (VND)
with random neighborhood ordering (RVND) in the local search was developed by Penna
et al. (2013). Later, Subramanian et al. (2012) proposed a hybrid ILS with a SP formulation
(ILS-RVND-SP). These algorithms have been evaluated on the set of instances of Taillard
(1999). The latter algorithm improves the result of one instance and is equal to the best known
solution (BKS) for the HVRPFD and the FSMFD. Recently, an ILS-based algorithm was
designed to solve a real variant of HFVRP where performing multiple trips and being unable
to serve particular customers (docking constraints) are allowed (Coelho et al. (2016)). In
addition, both HVRPV and HVRPFV problems are tackled in Liu (2013). The author devel-
oped a hybrid population heuristic which yielded competitive results with those existing in
the literature such as Prins (2009).

In practice, different situations could represent both FSMandHFVRP. The FSM is suitable
for strategic decisions when the size and the composition of the vehicle fleet is not yet decided
whereas the HFVRP is more adapted for operational decisions when deciding the vehicles
needed among existing ones in the fleet. A case study involving a heterogeneous vehicle fleet
in the French fourniture industry is presented in Prins (2002). Several real applications can be
found in Li et al. (2007). Examples include FedEx Ground and newspaper delivery because
the need for different types of vehicles. Tarantilis and Kiranoudis (2007) developed a flexible
adaptive memory-based algorithm to solve two case studies from diary and construction
company.

Other variants of HFVRP with some additional constraints are also adressed in the litera-
ture. A multi-level composite heuristic was developed by Salhi and Sari (1997) to solve the
multi-depot vehicle fleet mix problem. A cluster-based optimization approach for the multi-
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depot heterogeneneous fleet vehicle routing problem with time windows was proposed in
Dondo and Cerda (2007). More recently, the vehicle loading problem with a heterogeneous
fleet was modeled and solved in Liu et al. (2016).

Specifically, the main idea of our algorithm is to allow moves toward unfeasible solutions
using an appropriate penality function. In fact, this function uses control parameters in a
dynamic fashion to create a compromise between intensification and diversificaton. When
the capacity constraints are violated, we move towards feasible regions as long as those
parameters are increased (intensification). Those parameters are adequately decreased as
soon as the capacity constraints are respected by the current solution in order to visit new
solution regions (diversification). In addition, the SGVNS process accepts moving to worse
solutions while remaining within the feasible regions. To this end, we introduce a threshold
parameter to accept worse solutions while applying shaking and local search. The way in
which these ideas are implemented are described in the next sections.

3 Problem description

The HFVRP can be defined as follows: Given a directed graph G = (V, E) where V =
{0, 1, . . . , n} is the set of nodes including the depot represented by the vertex 0 and V ′ =
V \ {0} is the set of n customers. E = {(i, j) : i, j ∈ V } is the set of arcs. Each customer
i ∈ V ′ has a demand qi supplied from the depot (q0 = 0) and each arc (i, j) is associated
with a distance di j (dii = 0∀i ∈ V ). The fleet is composed by t different types of vehicles.
For each type k ∈ T = {1, . . . , t}, nk vehicles are located at the depot and each vehicle has
a capacity Qk , a fixed cost cost fk and a variable cost vk . Every arc (i, j) has a non-negative
travelling cost cki j = vkdi j . A route (R, k) is defined by the sequence of visited customers
begining and ending at the depot (R = (i1, i2, . . . , i|R|), i1 = i|R| = 0) using the vehicle of
type k. The HFVRP consists in defining a set of routes while minimizing the total cost such
that the following constraints are satified:

(i) The total demand of the customers in a route (R, k) does not exceed the vehicle capacity
Qk ,

(ii) Each customer is visited exactly by one route,
(iii) The number of routes assigned to a vehicle k does not exceed nk .

4 The variable neighborhood search algorithm

The variable neighborhood search is firstly introduced by Mladenović and Hansen (1997).
The basic idea of the VNS and its variants is the systematic change of the neighborhood
when the search is trapped at a local minimum (see Hansen et al. 2010; Mladenović and
Hansen 1997). The main step of the classical VNS starts from an intial solution followed
by a shaking procedure and a local search. If the solution is improved, one continues with
the first neighborhood; otherwise, a second neighborhood is used and the process is repeated
until an acceptance criterion is reached. The procedure is a descent, first improvementmethod
with randomization in the shaking phase. In addition to its simplicity, VNS does not need
parameters that influence the efficiency of the implementation.

The variable neighborhood descent (VND) is a deterministic variant of the VNS whereas
the reduced variable neighborhood search (RVNS) is a stochastic one. More precisely, let X
be the set of feasible solutions, f (x) be the value of the objective function to beminimized and
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the neighborhood structure N (x), x ∈ X , be the set of solutions obtained from x by applying
some modifications. The VND consists of finding the best neighbor x ′ of an initial solution
x within a neighborhood Nk(x), k = 1...kmax . If the solution is improved, the algorithm
continues the search with the new obtained solution and k = 1, otherwise it iterates with
Nk+1. The last step is referred to Change-Neighborhood(x, x ′, k). Once a local optimum
is found, the possibility of finding promising regions from that will arise. To this end, the
RVNS considers a set of neighborhoods Nk , k = 1...kmax , usually taken in a nested way
(i.e each neighborhood contains the previous one). Rather than exploring neighborhoods to
get the best neighbor as in the VND, the algorithm randomly chooses a point x ′ ∈ N1(x).
If f (x ′) < f (x) then Change-Neighborhood(x, x ′, k) and the procedure is repeated until
k = kmax . The basic VNS consists of three major steps: shaking, local search and changing
neighborhood. After an initial solution is found, a solution x ′ is randomly generated from the
first neighborhood N1(x) during the shaking phase. The local search is then used with x ′ as
an initial solution to obtain a local optimum x ′′. Finally, theChange-Neighborhood(x, x ′′, k)
is applied. Combining the features of VND in the local search phase and RVNS to improve
the initial solution leads to the general VNS (GVNS). Interesting applications of the VNS
metaheuristic could be found in Melian and Mladenović (2007). A GVNS heuristic was
proposed for the multiple travelling salesman problem in (Soylu 2015) where two objectives:
minimizing the longest tour length and minimizing the total length of all tours are taken
into consideration. The heuristic was applied in the traffic signalization network of Kayseri
province in Turkey and gave good results. The work of Armas and Melián-Batista (2015)
considers a variant of VRP with multiple objectives and developed a VNS for a dynamic rich
VRP with time windows.

4.1 Skewed general VNS

The size of neighborhoods while selecting neighborhood structures remains important to
escape the valley containing local optima. Due to the loss of information when considering
larger neighborhoods, VNS turns into multistart. To overcome this problem, the skewed
variable neighborhood search (SVNS) enhances the exploration of the set X by visiting
distant valleys (Mladenović et al. 1997). In this paper, we adress a skewed general variable
neighborhood search (SGVNS). We allow visiting a solution worse than the incumbent, if
this solution is far from it according to a distance function ρ. The different steps of SGVNS
are presented in Algorithm 1.

VNS algorithm and its variants are used efficiently to solve some of location and routing
problems. The first implementation of the VNS algorithm to solve the HFVRP was proposed
by Imran et al. (2009). The computational results show that the approach is competitive in
comparison with the best known results existing in the literature. In the sequel, we describe
the different components of our VNS namely the evaluation function and the neighborhood
structures followed by a description of the main algorithm.

4.1.1 Evaluation function

In order to have a successful algorithm to solve a problem, an overlap between intensification
and diversification is required. The intensification is provided by intensively exploring some
regions of the solution space. More than that, the exploration of different regions of the
search space diversifies the search. We define an evaluation function in a way to ensure both
intensification and diversification. Indeed, in addition to the fixed and varible costs, we added
a penality generated with the violation of the capacity constraints for vehicles. Let S be one
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Algorithm 1: SGVNS general structure
1 Initialization. Select the set of neighborhood structures Nk , for k = 1, ..., kmax , that will be used in the
shaking phase, and the set of neighborhood structures N ′

l for l = 1, ..., lmax that will be used in the
local search; find an initial solution x and improve it by using RVNS; set xopt ← x , fopt ← f (x)
choose a stopping condition and a parameter value θ ;

2 Repeat the following sequence until the stopping condition is met:
1. Set k ← 1;
2. Repeat the following steps until k = kmax :

(a)(a) Shaking. Generate a point x ′ at random from the kth neighborhood Nk (x) of x ;
(b)(b) Local search by VND:

i. b1) Set l ← 1;
ii. b2) Repeat the following steps until l = lmax :;

. Exploration of neighborhood. Find the best neighbor x ′′ of x ′ in N ′
l (x

′);
. Move or not. If f (x

′′
) < fopt set xopt ← x

′′
and l ← 1; otherwise set l ← l + 1;

(c)(c) Move or not. If f (x
′′
) − θρ(x, x

′′
) < f (x) then x ← x

′′
and continue the search with

N1(k ← 1); otherwise, set k ← k + 1;

candidate solution, f (S) be the sum of costs previously described in the Sect. 3 and D(R, k)
the total demand of the customers in a route (R, k), we denote by F(S) the evaluation function
which is calculated as follows:

F(S) = f (S) + pen(S)

where pen(S) is a dynamic penality defined by

α

nk∑

i=0

max(0, D(R, k) − Qk) (1)

and α represents a penality of violating the capacity of a vehicle k. As the evaluation function
is defined, we allow to visit infeasible solutions that exceed the capacity of a vehicle.
The penalitywill increase rapidly if the parameterα is fixed to a constant value. Consequently,
we propose to create an oscilliation between the feasible and infeasible space by changing
α dynamically in the following way: α = α(1 + β) if D(R, k) > Qk otherwise, we set
β = β(1 − ε). We begin by increasing the parameter β to quickly achieve the feasible
solution space. After that, we enlarge the search space by decreasing it when no better
solutions could be found . So, the current region as well as distant regions are thoroughly
explored. This mechanism is also known as strategic oscillation involved in Glover (1977)
and used since then for a variety of Tabu Search procedures.

4.1.2 Neighborhood structures

In this study, we performed neighborhood structures involving inter and intra-routemoves.
The aimwas to enhance the cost of routes.We have considered neighborhood structures based
on insertion, exchange and shift operators (see Penna et al. (2013)). An inter-move involves
two different route R1 and R2 whereas an intra-move is perfomed inside the same route.
The different neighborhoods are depicted in the Figs. (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14) below where one route is represented by a vector beginning and ending with 0 which
indicates the depot and the other components depict customers and are described as follows:

1. 2-opt (N1): A neighbor of a solution is generated by replacing two non adjacent arcs by
two new others within the same route.
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2. Swapmove of a customer (N2): This neighborhood structure corresponds to a permutation
of two customers in the same route or in different routes.

3. Shift move of a customer (N3): A neighbor of a solution is generated by switching a
customer from its position and inserting it into a new one. This move can be intra-route
or inter-route.

4. Extended Or-opt (N4): This neighborhood corresponds to an insertion move but it con-
siders a set of customers rather than only one as with N1. The neighborhood N4 consists
in removing a set of consecutive customers and inserting it between two other nodes.
This move is applied inside the same route or between two different routes. The k-shift
move (Penna et al. 2013) is a special case of N4.
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5. Inverse Extended Or-opt (N5): In this case, we consider a transfer of a set of consecutive
customers (bone) from their current position and then we reinsert them in a reverse order
starting from the last customer and finishing with the first one.

6. k-Swap (N6): A new solution is obtained by applying a permutation between two bones
inside the route or between two different routes. Both bones are reinserted following the
same order of visit of customers.

7. Reverse k-Swap (N7): This neighborhood structure considers a swap of two bones as
within neighborhood N6 but with a rearrangement of the visit order. The extracted bone
is reinserted in such way that the last customer is the first one.

8. Swap move of two routes (N8): This move consists of exchanging two routes between
two vehicles with different capacities.

9. Cross-route (N9): Two arcs, (i, j) and (i ′, j ′) belonging to two routes are removed. After
that, the routes are reconnected by adding the arcs (i, j ′) and (i ′, j). It is reported that
the cross is applied between the closest nodes between routes.

4.2 The SGVNS for the HFVRP

This section describes the SGVNS algorithm for the HFVRP and the ensuing steps. To
implement our algorithm, we essentially outline three procedures: the shaking phase, the
local search phase and the move or not phase. The local search phase corresponds to a
VND where neighborhoods N1,…,N7 are applied in a sequential way. The VND explores
the next neighborhood unless the previous one fails to improve the current solution. In order
to escape from the current local optimal solution, we consider larger neighborhoods in the
shaking phase. The perturbation is applied using neighborhoods N3, N8 and N9 as follows:we
consider three types of shaking; each one according to a probability Pr(Ni ), i ∈ {3, 8, 9}.
The solution space of the third neighborhood is exhaustively explored. Indeed, we apply
the insertion move N3 inter-route, k times for customers in a given route. We denote by
Nk
3 , k = 1, . . . , 5 this particular case. This neighborhood is aiming at generating a new

sequence of customers within a route. The use of the neighborhood N8 is aiming at changing
the assignment of vehicles to routes. In addition, the cross neighborhood N9 is an attempt to
explore other solutions by changing the structure of the routes while exchanging arcs between
routes. In the move or not phase, we accept to visit worse solutions without escaping feasible
regions according to a threshold parameter τ . The pseudocode of the SVNS for the HFVRP
is presented in Algorithm 2.

5 Computational results

Our algorithmwas coded in C++ and executed on a core i7 with 3.00 GHz. For each instance,
the proposed algorithm is excuted 10 times and the result is rounded up to next higher digit.
We test the SGVNS in instances decribed in Sect. 5.1. A comparison with the best known
algorithms performed in the literature is reported in Sect. 5.2. The following notations are
given to manage the computational results and the comparison with existing ones in the
literature. “Inst”, denotes the nameof the instance,n is the number of customers, BK S denotes
the best known solution in the literature, “Best Sol” and “Time” represent, respectively, the
objective value of the best solution and the average computational time associated with to the
corresponding work. “First time” indicates the first time the best solution was found by the
SGVNS. Gap(%) records the percent deviation of an algorithm between its best value and

BKS and is given by the following formula: Bset Sol−BK S
BK S × 100. For Tables 4, 5, 6, and 7,
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Algorithm 2: SGVNS for the HFVRP
1 Initialization. Select the set of neighborhood structures Nk , for k = 1, . . . , 9
2 Find an initial solution S;
3 set Sopt ← S, choose a parameter value α and β;
4 Repeat the following sequence until the stopping condition is met
5 k ← 1;
6 While k ≤ kmax do

7 S′ ← Shaking(S, Nk∈{1,...,5}
3 , N8, N9, Pr(Ni ), i ∈ {3, 8, 9});

8 S
′′ ← Seq-VND(S′, Nk∈{1,...,7});

9 If F(S
′′
) < F(Sopt ) Then

10 Sopt ← S
′′
;

11 If F(S
′′
) < F(S)(1 + τ) Then

12 S ← S
′′
;

13 k ← 1;
14 Else k ← k + 1;
15 Update the parameter α;

the last rows: “Average”, “Avg. deviation” and “computer resource” specifie the average cost
and time for each set of problems, the percent deviation of the average cost to the average of
the BKS costs and the computer resource used for every solution method respectively.

Avg cost and Avg gap(%) denote, respectively the average solution cost of the 10 runs and
the gap between the former value and BKS. We observed on preliminary experiments that
the following calibration for our algorithm, which we adopt in the following experiments,
yield the best results: β is set initially to 0.005, the parameter τ is set to 1

4n with n is the
number of customers and the different probabilities are set to: Pr(N3) = 0.1, Pr(N8) =
0.1, Pr(N9) = 0.8.

5.1 Benchmark instances

We tested our algorithm on benchmark instances generated by (Taillard 1999; Li et al. 2007;
Brandao 2011). There are three types of instances: the first set numbered from 13 to 20
represents instances with customers between 50 et 100 (see Taillard (1999), the second set
contains instances named Hi , i ∈ {1, . . . , 5} with 200–360 customers and are proposed by
Li et al. (2007) and the third set identified as N1-N5 was created by Brandao (2011). The
characteristics of each set of instances are in Tables 1, 2 and 3 respectively. The last column
represents the ratio of total demand and total capacity in percent. For the third set, the authors
assume that this ratio is slightly higher than the two others.

5.2 A comparative study

We perform a comparison of our solution approach with the best heuristics available in
the literature to the best of our knowledge. For the first set of instances and the case of
the HVRPV, we compare our results with those given by a backtracking adaptive threshold
accepting algorithm (BATA), heuristic column generation (HCG), a record-to-record travel
algorithm (HRTR), a hybrid algorithm composed by an Iterated Local Search (ILS) based
heuristic and a Set Partitioning (SP) model (IL-RVND-SP) and a Population heuristic given
by Taillard (1999), Tarantilis et al. (2004), Li et al. (2007), Subramanian et al. (2012) and Liu
(2013) respectively. The best solutions are recorded in blodface and the solution improved
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with the SGVNS are underlined. The results in Table 4 show that the SGVNS find all the
best known solutions except one which is the instance 19. For this instance, we find the same
solution as methods developed since 2007 but the solution cost found by Taillard (1999)
remains the best. However, the SGVNS improves all the results found by Taillard (1999).
Our solution method is as good as or better than BATA, HRTR and ILS-RVNS-SP. When
compared with Population heuristic, the SGVNS produces four better solutions and four
identical. As for the HVRPFV, we compare our results with those given by ILS-RVND-SP,
population heuristic and adaptive memory programming metaheuristic (MAMP) developed
by Li et al. (2010). Table 5 shows that our algorithm finds solution values equal to the best
known solutions and improves the result for the instance 20.

For instances presented in Tables 3 and 6 shows that the SGVNS is able to find best known
solutions or to improve it except for one instance. In particular, the SGVNS outperforms the
TSA of Brandao (2011) and it can be observed that our algorithm is competitive with the
ILS-RVNS-SP heuristic. In fact, it improves one solution, gives three identical ones and is a
slightly worse for the instance N1. For larger instances described in Tables 2 and 7 shows
the performance of our algorithm to find four new best solutions among five. The new best
solutions are introduced in the appendix.

Overall, our algorithm failed to obtain the best known solution of only one instance. Hence
the SGVNS proved to be performant.

In addition, it is worth mentioning that the solution costs in light of reported compuation
times for previous works are not comparative. For example, in the case of the instance H5
it can be observed that the TSA found the BKS in 13321s which is equivalent to 37n while
the ILS-RVND-SP did not after 621.17s. Therefore, we propose to run our algorithm for
three different parameters of time (n, 2n, 4n) to be able to assess the efficiency of our results.
The average results and percent deviations of our algorithm over different times for the
different instances are given in Tables 8, 9, 10 and 11. Our results are summarized in terms
of average gap in Fig. 15. In this figure, the instances from Taillard (1999) are labeled from
13 to 20 followed by the letter F for the case of HVRPFV variant. Firstly, as we can see, the
improvement of results aremeaningful especially for the instances of Li et al. (2007). This can
be interpreted that the increase of time can be proved to provide considerable improvements
when instances are large.

6 Conclusion

The heterogeneous fleet vehicle routing problem (HFVRP) is a more sophisticated variant
of vehicle routing. The problem arises when a set of heterogeneous fleet of vehicles with
different capacities and costs are routed to supply customers from a central depot. In this
paper, we propose a skewed version of variable neighborhood search (SGVNS) and we
have considered the HFVRP variant with limited fleet with fixed and/or variable costs. We
explore different neighborhood structures in an exhaustive way in order to provide a balance
between intensification and diversification of the solution space.After implementing a SVNS,
we provide computational results showing the performance of our algorithm. The SGNS
improves five best known solutions for the large instances, one for the small instances and is
as good as the best algorithms with a reasonable computation time. Our approach is clearly
efficient compared with those cited in this paper. In the future, we propose to study the
mixed fleet variant of the HFVRP including additional characteristics presented in practical
situations.
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Fig. 15 Results for SGVNS for three parameters of time : n, 2n and 4n
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Appendix A

Route
number

Sequence of
customers

Load Vehicle
type

Instance 20 with fixed and variable cost Solution cost=4760.68
1 0-6-84-17-38-14-43-42-0 60 A
2 0-2-57-15-41-67-25-55-0 60 A
3 0-70-63-64-49-36-46-0 60 A
4 0-50-78-34-29-24-54-0 60 A
5 0-89-60-83-45-8-7-0 59 A
6 0-12-80-68-79-3-77-76-28-0 140 B
7 0-62-11-19-47-48-82-18-0 139 B
8 0-52-88-31-10-90-32-30-1-69-27-0 140 B
9 0-33-81-9-35-71-65-66-20-51-0 140 B
10 0-13-95-59-100-91-44-86-16-61-5-0 200 C
11 0-53-58-87-97-92-37-98-85-93-99-96-94-0 200 C
12 0-26-4-39-23-56-75-22-74-72-73-21-40-0 200 C
Instance N2 Solution cost=2856.8125
1 0-144-57-15-43-42-117-0 46 A
2 0-53-149 -26-0 49 A
3 0-132-69-1-176-0 46 A
4 0-156-112-0 48 A
5 0-154-138-0 45 A
6 0-91-38-140-86-113-17-173-84-60-0 100 B
7 0-94-183-6-147-89-0 97 B
8 0-167-31-190-127-0 95 B
9 0-105-180-40-152-58-0 96 B
10 0-126-63-181-64-49-143-36-46-0 98 B
11 0-195-54-134-163-24-29-121-0 97 B
12 0-18-114-8-174-45-125-199-83-166-0 148 C
13 0-12-109-177-150-80-68-116-184-28-0 149 C
14 0-198-197-56-186-23-75-74-72-21-0 148 C
15 0-137-2-178-115-145-41-22-133-171-73-0 148 C
16 0-153-82-124-47-168-48-7-194-106-0 150 C
17 0-51-103-161-71-135-35-136-65-66-188-20-122-0 195 D
18 0-27-162-10-189-108-90-32-131-160-128-30-70-101-0 197 D
19 0-110-4-155-139-187-39-67-170-25-55-165-130-179-0 199 D
20 0-88-148-62-159-11-175-107-19-123-182-52-146-0 194 D
21 0-13-95-97-92-151-98-37-100-193-85-93-59-99-104-96-0 248 E
22 0-118-5-61-16-141-191-44-119-192-14-142-172-87-0 250 E
23 0-76-196-77-3-158-79-129-169-78-

34-164-120-9-81-185-33-157-102-
50-111-0

334 F

Instance H2 Solution cost=10224.6875
1 0-17-16-15-0 50 A
2 0- 40-1-2-0 50 A
3 0-27-28-29-0 50 A
4 0-5-4-3-0 50 A
5 0-24-23-21-0 50 A
6 0-11-12-13-0 50 A
7 0-108-109-110-111-112-113-0 100 B
8 0-6-7-8-10-0 100 B
9 0-34-32-31-30-0 100 B
10 0-35-37-38-39-0 100 B
11 0-18-19-20-22-0 100 B
12 0-151-150-149-148-188-189-190-191-192-193-153-152-0 200 C
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Route
number

Sequence of
customers

Load Vehicle
type

13 0-119-120-121-161-201-240-239-238-237-236-196-156-116-36-0 200 C
14 0-9-51-50-49-48-47-46-45-44-43-0 200 C
15 0-118-158-159-160-200-199-198-197-157-117-0 200 C
16 0-126-127-128-129-169-168-167-166-165-164-124-125-0 200 C
17 0-64-104-144-145-185-184-183-182-

181-180-179-178-177-176-175-
135-136-137-138-139-140-141-
142-143-103-63-0

500 D

18 0-66-107-147-187-227-228-229-230-
231-232-233-234-235-195-194-
154-155-115-114-33-0

500 D

19 0-52-131-130-170-171-172-212-211-
210-209-208-207-206-205-204-
203-202-162-163-123-122-81-0

500 D

20 0-25-65-105-106-146-186-226-225-
224-223-222-221-220-219-218-
217-216-215-214-213-173-174-
134-133-132-53-0

500 D

21 0-26-67-68-69-70-71-72-73-74-75-
76-77-78-79-80-41-42-82-83-84-
85-86-87-88-89-90-91-92-93-94-
95-96-97-98-99-100-101-102-62-
61-60-59-58-57-56-55-54-14-0

1000 E

Instance H3 Solution cost=16229.7109
1 0-36-37-38-0 50 A
2 0-11-12-13-0 50 A
3 0-66-94-93-92-64-65-0 100 B
4 0-149-177-205-233-261-260-232-204-176-148-0 100 B
5 0-14-15-16-18-0 100 B
6 0-168-196-224-252-280-253-225-197-169-141-0 100 B
7 0-19-47-46-17-0 100 B
8 0-42-69-97-125-153-181-209-237-265-264-

236-208-180-152-124-96-68-40-0
200 C

9 0-32-60-88-116-144-172-200-228-256-257-
229-201-173-145-117-89-61-62-0

200 C

10 0-51-80-108-136-164-192-220-248-276-
277-249-221-193-165-137-109-81-53-0

200 C

11 0-43-72-100-128-156-184-212-240-268-
269-241-213-185-157-129-101-73-45-0

200 C

12 0-49-76-104-132-160-188-216-244-272-
273-245-217-189-161-133-105-77-50-0

200 C

13 0-44-71-99-127-155-183-211-239-267-266-
238-210-182-154-126-98-70-41-0

500 D

14 0-28-56-112-111-110-138-166-194-222-
250-278-279-251-223-195-167-139-140-
113-85-29-1-0

500 D

15 0-52-79-107-135-163-191-219-247-275-
274-246-218-190-162-134-106-78-21-0

500 D

16 0-74-102-130-158-186-214-242-270-271-
243-215-187-159-131-103-75-48-20-0

500 D

17 0-22-23-24-25-26-27-55-54-82-83-
84-57-58-86-114-142-170-198-
226-254-255-227-199-171-143-
115-87-59-31-30-2-3-4-6-7-8-9-
10-0

1000 E

123
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Route
number

Sequence of
customers

Load Vehicle
type

18 0-39-67-95-123-151-179-207-235-
263-262-234-206-178-150-122-
121-120-119-147-175-203-231-
259-258-230-202-174-146-118-90-
91-63-35-34-33-5-0

1000 E

Instance H4 Solution cost=17444.9218
1 0-25-24-23-0 50 A
2 0-2-1-40-0 50 A
3 0-84-124-204-244-284-285-245-205-125-85-0 100 B
4 0-36-34-33-32-31-29-0 100 B
5 0-108-148-228-268-308-309-269-229-149-109-0 100 B
6 0-18-19-20-22-0 100 B
7 0-16-55-56-57-58-17-0 100 B
8 0-160-200-240-280-320-281-241-201-161-121-0 100 B
9 0-144-184-224-264-304-305-265-225-185-145-0 100 B
10 0-35-37-38-39-0 100 B
11 0-72-112-152-192-232-272-312-313-

314-274-273-233-193-153-113-73-
0

200 C

12 0-8-48-128-168-208-248-288-289-
249-209-169-170-130-129-49-9-0

200 C

13 0-61-101-141-221-261-301-300-260-
220-258-257-256-216-217-177-
176-136-96-0

200 C

14 0-60-100-140-139-138-137-97-98-99-59-0 200 C
15 0-156-196-236-276-277-278-238-237-197-198-158-157-0 200 C
16 0-74-114-154-155-195-194-234-235-

275-315-316-317-318-319-279-
239-199-159-0

500 D

17 0-53-93-133-173-174-214-213-253-
254-294-293-292-252-251-291-
290-250-210-211-212-172-171-
131-132-92-52-0

500 D

18 0-15-54-95-94-134-135-175-215-
255-295-296-297-298-299-259-
219-218-178-179-180-181-182-
222-262-302-303-263-223-183-
143-142-102-103-104-64-63-62-
21-0

1000 E

19 0-26-27-28-68-67-66-65-105-106-
107-147-146-186-226-266-306-
307-267-227-187-188-189-190-
230-270-310-311-271-231-191-
151-150-110-111-71-70-69-30-0

1000 E

20 0-3-4-5-6-7-47-46-45-44-43-42-41-
80-79-78-77-76-75-115-116-117-
118-119-120-81-82-83-123-122-
162-202-242-282-283-243-203-
163-164-165-166-206-246-286-
287-247-207-167-127-126-86-87-
88-89-90-91-51-50-10-11-12-13-
14-0

1500 F

123
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Route
number

Sequence of
customers

Load Vehicle
type

Instance H5 Solution cost=23112.7382
1 0-204-240-276-312-348-349-313-277-241-205-0 100 B
2 0-213-249-285-321-357-356-320-284-248-212-0 100 B
3 0-209-245-281-317-353-352-316-280-244-208-0 100 B
4 0-49-48-47-46-45-9-0 100 B
5 0-193-229-265-301-337-336-300-264-228-192-0 100 B
6 0-24-60-96-131-132-133-97-61-0 100 B
7 0-85-121-120-119-83-84-0 100 B
8 0-55-92-128-164-200-236-272-308-

344-345-309-273-237-201-165-
129-93-57-0

200 C

9 0-44-80-116-152-188-224-260-296-
332-333-297-261-225-189-153-
117-81-82-0

200 C

10 0-37-73-109-145-181-217-253-289-
325-360-324-288-252-216-179-
144-108-72-0

200 C

11 0-54-89-125-161-197-233-269-305-
341-340-304-268-232-196-160-
124-88-52-0

200 C

12 0-5-41-77-113-149-185-221-257-
293-329-328-292-256-220-184-
148-112-76-40-4-0

200 C

13 0-56-91-127-163-199-235-271-307-
343-342-306-270-234-198-162-
126-90-53-0

500 D

14 0-71-107-143-142-141-140-139-138-
137-136-172-173-174-210-246-
282-318-354-355-319-283-247-
211-175-176-177-178-214-250-
286-322-358-359-323-287-251-
215-180-146-182-218-254-290-
326-327-291-255-219-183-147-
111-110-74-75-39-38-0

1500 E

15 0-42-43-79-78-114-150-186-222-
258-294-330-331-295-259-223-
187-151-115-118-154-190-226-
262-298-334-335-299-263-227-
191-155-156-157-158-194-230-
266-302-338-339-303-267-231-
195-159-123-122-86-87-51-50-13-
0

1500 E

16 0-3-2-1-36-35-34-33-32-31-30-29-
28-27-26-25-62-63-64-65-66-67-
68-69-70-106-105-104-103-102-
101-100-99-98-134-135-171-207-
243-279-315-351-350-314-278-
242-206-170-169-168-167-203-
239-275-311-347-346-310-274-
238-202-166-130-94-95-59-58-23-
22-21-20-19-18-17-16-15-14-12-
11-10-8-7-6-0

2000 F

123
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