
Ann Oper Res (2018) 269:773–790
https://doi.org/10.1007/s10479-017-2556-6

RAOTA-2016

A multi-release software reliability modeling for open
source software incorporating dependent fault detection
process

Mengmeng Zhu1 · Hoang Pham1

Published online: 24 July 2017
© Springer Science+Business Media, LLC 2017

Abstract The increasing dependence of our modern society on software systems has driven
the development of software products become even more competitive and time-consuming.
Single release software product no longermeets the increasingmarket requirements. Thereby
it is important to releasemultiple version software products in order to add new features in the
next release and fix remaining faults from previous release. In this paper, we develop a multi-
release software reliability model with consideration of the remaining software faults from
previous release and the new introduced-faults (from newly added features). Additionally,
dependent fault detection process is taken into account in this research. In particular, the
detection of a new fault for developing the next release depends on the detection of the
remaining faults from previous release and the detection of the new introduced-faults. The
proposed model is validated on the open source software project datasets with multiple
releases.

Keywords Software reliability growth modeling · Multi-release software · Dependent fault
detection process

Abbreviations

LSE Least square estimation
MLE Maximum likelihood estimate
MSE Mean square error
NHPP Non-homogeneous Poisson process
OSS Open source software
PP Predictive power
PRR Predictive-ratio risk
SGRM Software reliability growth model

B Hoang Pham
AORpham@gmail.com; hoang84pham@gmail.com

1 Rutgers University, Piscataway, NJ, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-017-2556-6&domain=pdf

774 Ann Oper Res (2018) 269:773–790

Notation

a (t) Total fault content function from previous release
b (t) Total fault content function for newly added features
d (t) Fault detection rate function for the next release
m0 Expected number of software failures at t = 0
m (t) Expected number of software failures by time t
N (t) Total number of software failures in the time interval [0, t]
λ (t) Failure intensity function λ (t) = d[m(t)]/dt .

1 Introduction

Software product has been rapidly expanding to a wide array of various real-industry and
service-based application. The increasing dependence of our society on software-driven
system has led the development of software product becomes very competitive and time-
consuming. As the software development moves further away from the rigid and monolithic
model, the importance of softwaremultiple release is brought to the vanguard (Saliu andRuhe
2005). Most of the software organizations release the initial version with sufficient function-
alities to meet the customer requirements and occupy a certain portion of market share at
first. However, it is unlikely to deliver all features that customers wanted in the single release
because of the limited budget, unavailable resource, estimated risk and constrained schedules.

Staying competitive in the market and keep profitable for a software product unlikely hap-
pen in this increasing-innovational society if only has a single release especially when rival
has a new release carryingmore attractive features and satisfyingmore customer requirements
(Saliu and Ruhe 2005). In this point of view, multiple-release planning not only makes soft-
ware organization easily balance the competing stakeholder’s demands and benefits according
to the available resources, but lowers the risk of not satisfying customer requirements (Ruhe
and Momoh 2005; Svahnberg et al. 2010).

On the other hand, large software system continually needs to align with the changing
customer requirements for the sake of market share. In order to get the feedback earlier and
figure out what customer really wants, and assigning a lower software development cost,
with a certain portion of increments on requirement for multiple release product is essential
for the growth of an organization (Maurice et al. 2006; Greer and Ruhe 2004; Missbauer
2002; Mehlawat 2013). Thus, it is plausible for software company to modify the parts of
the existing modules to extend the current functionality, usability, and understandability by
adding new features and correcting the issues from previous release (Al-Emran and Pfahl
2007; Gorschek and Davis 2008).

Since multi-release is critical for modern software product, release planning is becoming
a popular research topic in the past few years. Release planning is a very complex problem.
It has to take into account the consequence of feedback and update from customers, the
demands of potential customers, market feedback, defects from the previous release and
other technical and non-technical constraints (Al-Emran and Pfahl 2007; Ruhe and Momoh
2005). Many researchers have studied software release planning problems (Saliu and Ruhe
2005; Maurice et al. 2006; Al-Emran and Pfahl 2007; Ruhe and Saliu 2005; Svahnberg et al.
2010; Carlshamre et al. 2001; Ho and Ruhe 2013). For instance, Saliu and Ruhe (2005)
presented a more comprehensive approach to characterize the relative impact of integrating
features into an existing system. They extended the former solution approach EVOLVE*

123

Ann Oper Res (2018) 269:773–790 775

and proposed S-EVOLVE* method by taking into account the characteristics of the target
system for feature implementation. Maurice et al. (2006) proposed F-EVOLVE* approach to
determine the desired features based on the financial contribution, which is also the results
of extending EVOLVE* approach. Moreover, Ruhe and Saliu (2005) described the principle
of “art of release planning” and “science of release planning”, respectively. Human intuition,
communication and capabilities to negotiate between conflicting objectives and constraints
referred to the art of releasing planning; while the science of release planning indicated the
emphasizing formalization of the problem and algorithm application optimization.

It is generally considered reliability as a key factor in software quality measurement owing
to the fact that it qualifies software failures and misbehaviors (Febrero et al. 2016). As the
growth of software size and complexity, how to improve software quality and reliability,
control the total cost, and carry adequate and attractive features are critical issues faced
by software organization. Therefore, in the past three decades, a great number of Software
Reliability Growth Models (SRGMs) has been proposed to quantify the quality of software
system.Non-homogeneous PoissonProcess (NHPP) is considered as one of themost effective
models to study software reliability (Goel and Okumoto 1979; Musa 1975; Huang and Kuo
2002; Kapur et al. 2011; Yamada et al. 1986, 1993; Jeske and Zhang 2005; Zhu and Pham
2016). Nevertheless, most of them only can be applied on a single release. How to model
software reliability based on a multiple release perspective just starts gaining researcher’s
attention not very long.

In this paper, we take into account two types of software faults for developing the next
release: (1) Fault from previous release, i.e. remaining faults from previous release since it is
unlikely to detect and remove all faults within limited resources; (2) New introduced-faults,
i.e. new features are added in the next release, which also brings new software faults into
the next release. We also assume that the detection of software fault for the next release’s
development depends on the detection of the remaining faults from previous release and the
new introduced-faults. To the extent of our knowledge, we haven’t seen any research focus on
remaining faults from previous release, new introduced-faults and dependent fault detection
process in multi-release software reliability modeling.

This paper is organized as follows. In Sect. 2, a literature review is presented. Section 3
outlines the proposed multi-release software reliability modeling. The behaviors of software
reliability function illustrated by a theoretical fashion are also discussed. Parameter estimation
by the use of Least Square Estimation (LSE) and the comparison criteria are discussed in
Sect. 4. Section 5 demonstrates the proposedmulti-release software reliability modeling with
two practical Open Source Software (OSS) datasets from Apache. Finally, conclusions and
future research are described in Sect. 6.

2 Literature review

Most software products are not introduced into the market with full capacities at their initial
release, only with sufficient functionalities. New features will be added, and existing features
will be enhanced in the next release. A lot of researches have been done for the single version
software system for the past few decades. Modeling and predicting software failure behavior
are also investigated in those researches. However, most of the existing models developed
for single version software product cannot apply on the multi-release software product due
to different assumptions and applications. Only a few research studied multi-release soft-
ware reliability and introduced some models to illustrate software detection process and

123

776 Ann Oper Res (2018) 269:773–790

fault removal process for multi-release software products. It is thus necessary to investigate
software measurement metrics for multi-release software product.

The optimization for software version planning and release has been studied by many
researchers (Szöke 2011; Naciri et al. 2015; Etgar et al. 2017; Li et al. 2014. For exam-
ple, Szöke (2011) proposed a theoretically method for agile release planning. The proposed
staged-delivery global optimized model gives the main parameters of the typical agile plan-
ning space. Moreover, Naciri et al. (2015) aimed to tackle software release planning problem
for a Third PartyApplicationMaintenance (TPM) context. A strategic release planningmodel
of software defects based on Third Party Application Maintenance (TPM) constraints and
challenges was proposed to produce an effective release planning of software maintenance
in outsourcing context. Etgar et al. (2017) explored several optimization approaches to deter-
mine the content and release date for each release in order to provide optimal net present
value (NPV). Li et al. (2014) and Mehlawat (2013) proposed a multi-objective multi-choice
optimization technique to optimize the requirement choice for the threemain objectives, cost,
revenue, and uncertainty for robust next release problem.

Given the fact that there was lack of attempt to create a release history database of a
large number of projects in the Open source ecosystem, Tsay et al. (2011) created a software
release history database including the tools, techniques and pitfalls, to provide insightful and
sound information for the future researchers and industrial release engineering practices.

In the real application, Leszak (2005) provided a study of several processes on an indus-
trial large-scalemulti-release software system. Sukhwani et al. (2016) performed the software
reliability analysis of the flight software of a recent launches space mission. They also linked
the activities in the major releases with the problems encountered during the development
of those releases. Mahimkar (2016) focused on the detection of software upgrades on smart-
phones and analyzing their service performance impact, for example, smartphone-centric, or
network-centric impact.

In terms of software reliability study, Garmabaki et al. (2011) incorporated different
severities level used to describe the difficulty of correcting faults in the upgrade process
to develop a multi up-gradation software reliability model. Faults are classified into two
categories, simple fault and hard fault. The fault removal for the development of the new
release depends on the fault from previous release and fault generated in that release. Hu
et al. (2011) considered the effect of multiple releases on the fault detection process in
software development. They assumed that there is no gap between the release of previous
version and the development of next version. Optimal release time for each version is also
present in this paper.

Kapur et al. (2012) introduced the combined effect of schedule pressure and resource
limitations by the use of Cobb–Douglas production function in software reliability modeling.
The Cobb–Douglas function illustrates the total production output can be obtained by the
amount of labor input, capital input, and total factor productivity. An optimal release planning
problem is formulated in this paper for software with multiple releases with the solution
obtained by applying genetic algorithm method.

Pachauri et al. (2015) proposed a software reliability growth model by considering fault
reduction factors (FRFs) and extended this idea to multi-release software systems. FRFs is
defined as the ratio of the total number of reduced faults to the total number of failures,
which can be affected by other factors, such as resources allocation, debugging time lag and
imperfect debugging.

Yang et al. (2016) incorporated fault detection and fault correction process inmulti-release
software reliability modeling. There is a time delay in fault repair after detecting faults. The
time delay function is explained by an exponential function or a gamma function. They also

123

Ann Oper Res (2018) 269:773–790 777

assumed the faults in a new version including both undetected faults from last version and
new introduced faults during the development process of the new version.

Ahmadi et al. (2016) incorporated bugs removed from pre-commit test and bugs reported
by parallel debugging test based on software lifecycle development process (SDLC) proposed
by Jørgensen (2001). Additionally, the fault removal of the new release depends on the
reported faults from previous release and the faults generated by the new functionalities.

However, most literature aimed to develop multi-release software reliability model only
by optimizing software cost model to determine software release time except Yang et al.
(2016). Some of them have also incorporated the fault removal of the next release depends
on the reported faults from previous release and the faults generated by the new adding func-
tionalities, like Ahmadi et al. (2016), but they didn’t consider the dependent fault detection
process in the next release. Hence, our research focuses on the dependent fault detection
process for next release’s development along with the consideration of the remaining faults
from previous release and the new introduced-faults (from newly added features); in other
words, the detection of the new faults for the development of next release depends on the
detection of remaining faults from previous release and the new introduced-faults.

3 The multi-release software reliability modeling framework

3.1 Multi-release software reliability modeling

It is unlikely to get bug-free software product within limited resources and tightened sched-
ules. Software detection process still follows anNHPPprocess for developing the next release.
The cumulative number of detected faults N (t) follows Poisson Process.

Pr {N (t) = n} = (m (t))n exp (−m (t))

n! , for n = 0, 1, 2, . . .

where m (t) is the mean value function of the counting process N (t).
Two types of software faultswill be addressed in this paper.Remaining faults fromprevious

release (Part I) and new introduced-faults (Part II) will be both incorporated with the aim of
developing the next release. Fault detection is a dependent process. We assume the detection
of a software fault depends on the fault detected from Part I and Part II.

Thus, the multi-release software reliability modeling can be formulated as follows:

dm (t)

dt
= d (t) [a (t) − m (t)] [b (t) − m (t)]m (t) (1)

where m (t) represents the expected number of software failures by time t, d (t) denotes the
fault detection rate function, a(t) and b(t) represent the total remaining faults from previous
release and the total fault content of the current release, respectively. In this paper, we assume
that

a (t) = a, b (t) = b (2)

Substitute (2) into (1), we can obtain a general solution for the mean value function m(t) by
solving the following equation:

edt+C0 = m (t)
1
ab (m (t) − a)

1
a(a−b) (m (t) − b)−

1
b(a−b) (3)

123

778 Ann Oper Res (2018) 269:773–790

where C0 is a constant. In this study, we consider that the initial solution of the function m(t)
is as follows:

m (t = 0) = m0 (4)

where m0 ≥ 0 is unknown. At time t = 0, the expected number of initial software failures
is m0. Since multiple software releases are considered in this study, the expected number
of software failures at the beginning of next release should be less than or equal to the
expected number of failures at the end of previous release. Additionally, it is unlikely to
remove all the software faults for each release due to the limitation of all available resource,
including software programmer’s domain knowledge and other environmental factors, as
seen in reference Al-Emran and Pfahl (2007), Ruhe andMomoh (2005), Gorschek and Davis
(2008), Kapur et al. (2012), Yang et al. (2016), Pachauri et al. (2015), Zhu et al. (2015).

Substitute (4) into (3), we obtain

eC0 = m
1
ab
0 (m0 − a)

1
a(a−b) (m0 − b)−

1
b(a−b) (5)

Thus, the solution for the function m(t) from the Eq. (1) can be obtained by solving the
following equation:

edt =
(
m (t)

m0

) 1
ab

(
m (t) − a

m0 − a

) 1
a(a−b)

(
m (t) − b

m0 − b

)− 1
b(a−b)

(6)

3.2 Multi-release software reliability function discussion

Let

g (t) = edt+C0 (7)

and

f (x) = x
1
ab (x − a)

1
a(a−b) (x − b)−

1
b(a−b) (8)

We now present the following main results.

Lemma 1 The solution m(t) of Eq. (3) can be obtained by solving the following function

g (t) = f (m (t)) (9)

and,

• If g (0) > max { f (m (t))} then there exists no solution, as shown in Fig. 1a.
• Otherwise, there exists at least one solution for the function m(t), as shown in Fig. 1b.

where the function g(t) and f (x) are given in Eqs. (7) and (8), respectively.
The proof of Lemma 1 is in the Appendix.

4 Parameter estimation and comparison criteria

4.1 Parameter estimation

Most SRGMs use the least square estimate (LSE) or maximum likelihood estimate (MLE)
to estimate the parameters carried in the model. For example, minimizing the Eq. (10) or
maximizing the Eq. (11).

123

Ann Oper Res (2018) 269:773–790 779

(a) (b)

g(t)

f(m(t))

g(t)

f(m(t))

Fig. 1 Illustration of solutions for convex function

f (t) =
n∑

i=1

(m (ti) − yi)
2 (10)

LLF =
n∑

i=1

(yi − yi−1) log
[
m (ti) − m (ti−1)

] − m (tn) −
n∑

i=1

log (yi − yi−1)! (11)

In this paper, we apply LSE to minimize Eq. (12) to estimate the parameters. Since
g (t) = f (m (t)), indeed, log [g (t)] = log [f (m (t))]. The optimization function is given
by

min S (a, b, d) =
∑

a,b,d
(log [f (yi)] − log [[g (ti)])

2 (12)

where yi is the observed number of failures at time ti , g (ti) = edti+C0 . The Lemma 1
presented in Sect. 3 is to show that there exists the solutions and explain the behaviors of the
proposed model. The Genetic Algorithm (GA) is employed in order to solve the optimization
function as given in Eq. 12. The schematic diagram of the algorithm (Kachitvichyanukul
2012) is described in Fig. 2. We use Matlab Optimization Toolbox to solve the optimization
function and estimate parameters.

4.2 Comparison criteria

(1) Mean squared error

MSE =
∑n

i=1

(
m̂ (ti) − yi

)2
n − N

(13)

The mean squared error (MSE) measures the distance of a model estimate from the
observed data where n is the total number of observations and N represents the number
of unknown parameters in each model.

123

780 Ann Oper Res (2018) 269:773–790

Fig. 2 Schematic diagram of
Generic Algorithm Generate initial population

Time to stop?

Evaluate individual fitness

Generate new population

Selection

Crossover

Mutation

STOP
Yes

NO

(2) Predictive-ratio risk and predictive power (Pham 2014)

PRR =
n∑

i=1

(
m̂ (ti) − yi

m̂ (ti)

)2

(14)

PP =
n∑

i=1

(
m̂ (ti) − yi

yi

)2

(15)

The predictive-ratio risk (PRR) and the predictive power (PP) are calculated to compare
the power of different models. PRR measures the distance of the model estimates from
the actual data against the model estimates; while predictive power (PP) measures the
distance of the model estimates from the actual data against the actual data.

(3) Variation
The Variation is defined as (Huang and Kuo 2002):

Variation =
√√√√ 1

n − 1

n∑
i=1

(
yi − m̂ (ti) − Bias

)2 (16)

where

Bias = 1

n

n∑
i=1

(
m̂ (ti) − yi

)
(17)

The smaller the variation, the better of the model should be.

5 Numerical example

In this section, two numerical applications are given to validate the multi-release software
reliability model. We employ two datasets both collected from Open Source software (OSS)
project. Open Source Software (OSS) is a new way to build a global-based large software

123

Ann Oper Res (2018) 269:773–790 781

Table 1 Open source software
Juddi project data

Week Cum. failures Week Cum. failures

1 10 32 210

2 12 33 210

3 20 34 210

4 31 35 211

5 33 36 213

6 41 37 213

7 47 38 214

8 54 39 217

9 64 40 217

10 74 41 217

11 77 42 218

12 99 43 218

13 110 44 218

14 118 45 218

15 120 46 221

16 127 47 221

17 131 48 221

18 136 49 221

19 137 50 234

20 137 51 249

21 139 52 267

22 144 53 273

23 155 54 279

24 160 55 290

25 160 56 297

26 169 57 314

27 170 58 336

28 180 59 345

29 193 60 387

30 194 61 393

31 195 – –

system, which differs in many perspectives with the traditional software engineering (Ray-
mond 2001). The evolution process of OSS is much faster than the traditional close source
software. Widespread OSS projects bring in a great change in terms of software development
paradigms and software architectures (Li et al. 2011; Raymond 2001; Li et al. 2006).

5.1 Juddi project data

Juddi Open Source Software project data is shown in Table 1. Failure dataset from week 1 to
week 31 are considered as Release 1; failure dataset from week 32 to week 49 are considered
as Release 2; failure dataset from week 50 to week 61 are considered as Release 3. We use
Release 2 in this paper to validate our proposed model. The parameter estimate and model
comparison are described in Table 2.

123

782 Ann Oper Res (2018) 269:773–790

Ta
bl
e
2

Pa
ra
m
et
er

es
tim

at
e
an
d
m
od
el
co
m
pa
ri
so
n
fo
r
Ju
dd
id

at
as
et

M
od
el

M
V
F

M
SE

PR
R

PP
V
ar
ia
tio

n
Pa
ra
m
et
er

es
tim

at
e

G
-O

m
od

el
m

(t
)
=

a
(1

−
e−

bt
)

13
1.
84

0
0.
04

1
0.
04

6
4.
79

9
â

=
22

7

b̂
=

2.
42

In
fle
ct
io
n
S-
sh
ap
ed

m
od
el

m
(t

)
=

a(1−
e−

bt
)

1+
β
e−

bt
22

6.
79

3
0.
06

4
0.
07

4
4.
93

5
â

=
23

0

b̂
=

9.
07

β̂
=

83
0.
67

D
el
ay
ed

S-
sh
ap
ed

m
od
el

m
(t

)
=

a
(1

−
(1

+
bt

)
e−

bt
)

93
.6
98

0.
03

0
0.
03

3
4.
30

4
â

=
22

5.
01

b̂
=

4.
33

Y
am

ad
a
im

pe
rf
ec
td

eb
ug

gi
ng

m
od

el
m

(t
)
=

a
[1

−
e−

bt
] [1

−
α b

] +
α
at

25
4.
21

3
0.
07

2
0.
08

3
5.
74

7
â

=
23

1

b̂
=

2.
18

α̂
=

3.
64

×
10

−5

PN
Z
m
od
el

m
(t

)
=

a[(1−
e−

bt
)
(1−

α b

) +α
t]

1+
β
e−

bt
21

1.
03

6
0.
05

6
0.
06

4
4.
78

7
â

=
22

9

b̂
=

6.
38

α̂
=

1
×

10
−6

β̂
=

52
.6
9

Ph
am

–Z
ha
ng

IF
D

m
(t

)
=

a
−
ae

−b
t ×

(1
+

(b
+

d
)
t
+

bd
t2

)
36

8.
63

8
0.
10

1
0.
12

0
5.
60

1
â

=
23

4

b̂
=

9.
20

d̂
=

98
.9
5

D
ep
en
de
nt
-p
ar
am

et
er

m
od

el
m

(t
)
=

α
(1

+
γ
t)

×
(γ

t
+

e−
γ
t
−

1)
23

16
3.
48

85
31

6.
33

8.
15

3
10

8.
37

8
α̂

=
36

4.
85

γ̂
=

0.
06

25

123

Ann Oper Res (2018) 269:773–790 783

Ta
bl
e
2

co
nt
in
ue
d

M
od
el

M
V
F

M
SE

PR
R

PP
V
ar
ia
tio

n
Pa
ra
m
et
er

es
tim

at
e

Pr
op

os
ed

m
od

el
ed

t
=

(
m

(t
)

m
0

)
1 ab

×
(m

(t
)−

a
m
0
−a

)
1

a (
a−

b)

×
(m

(t
)−

b
m
0
−b

) −
1

b (
a−

b)

34
.4
67

0.
01

1
0.
01

1
3.
32

2
â

=
25

4.
84

b̂
=

22
1

m̂
0

=
10

0.
00

d̂
=

2.
36

×
10

−4

123

784 Ann Oper Res (2018) 269:773–790

Fig. 3 Comparison between proposed model and other models for Juddi dataset

Table 3 Open source software
APACHE 2.0

Day Cum. failures Day Cum. failures

1 1 26 35

2 3 28 36

3 5 29 37

4 8 30 39

5 11 31 40

7 13 32 41

8 14 35 44

9 15 38 45

10 16 39 46

11 17 42 47

15 20 43 48

16 22 49 51

17 25 50 52

18 26 51 53

19 27 57 54

22 30 66 55

23 31 70 56

24 32 81 57

25 34 164 58

As shown in Table 2, we can see that the proposedmodel has the best performance in terms
of all criteria present here. Figure 3 illustrates the comparison between model prediction and
observed failure data. All models showing in Table 2 only consider single-release software
product except proposed model. In other words, they didn’t consider the remaining faults
from the previous release since most of models assume all software faults will be removed
before software company release the product.

123

Ann Oper Res (2018) 269:773–790 785

Ta
bl
e
4

Pa
ra
m
et
er

es
tim

at
e
an
d
m
od
el
co
m
pa
ri
so
n
fo
r
A
PA

C
H
E
da
ta
se
t

M
od
el

M
V
F

M
SE

PR
R

PP
V
ar
ia
tio

n
Pa
ra
m
et
er

es
tim

at
e

G
-O

m
od

el
m

(t
)
=

a
(1

−
e−

bt
)

38
.3
17

0.
16

9
0.
26

8
8.
44

9
â

=
82

.9
9

b̂
=

0.
02

2

In
fle
ct
io
n
S-
sh
ap
ed

m
od
el

m
(t

)
=

a(1−
e−

bt
)

1+
β
e−

bt
10

4.
09

6
2.
29

9
1.
30

4
17

.3
80

â
=

75
.0
17

b̂
=

0.
01

9

β̂
=

0.
27

4

D
el
ay
ed

S-
sh
ap
ed

m
od
el

m
(t

)
=

a
(1

−
(1

+
bt

)
e−

bt
)

21
.7
84

0.
23

0
0.
22

3
4.
93

0
â

=
69

b̂
=

0.
06

Y
am

ad
a
im

pe
rf
ec
td

eb
ug

gi
ng

m
od

el
m

(t
)
=

a
[1

−
e−

bt
] [1

−
α b

] +
α
at

26
.6
70

0.
11

7
0.
17

8
5.
24

1
â

=
79

.6
9

b̂
=

0.
02

1

α̂
=

1
×

10
−4

PN
Z
m
od
el

m
(t

)
=

a[(1−
e−

bt
)
(1−

α b

) +α
t]

1+
β
e−

bt
64

.3
02

1.
12

9
0.
75

4
8.
48

4
â

=
65

b̂
=

0.
12

1

α̂
=

1
×

10
−4

β̂
=

26
.1
78

Ph
am

–Z
ha
ng

IF
D

m
(t

)
=

a
−

ae
−b

t ×
(1

+
(b

+
d
)
t
+

bd
t2

)
30

.8
28

0.
30

9
0.
30

0
5.
65

6
â

=
71

.2

b̂
=

0.
05

75

d̂
=

9.
15

×
10

−5

123

786 Ann Oper Res (2018) 269:773–790

Ta
bl
e
4

co
nt
in
ue
d

M
od
el

M
V
F

M
SE

PR
R

PP
V
ar
ia
tio

n
Pa
ra
m
et
er

es
tim

at
e

D
ep
en
de
nt
-p
ar
am

et
er

m
od

el
m

(t
)
=

α
(1

+
γ
t)

×
(γ

t
+

e−
γ
t
−

1)
15

87
.3
46

38
43

.2
89

18
.7
19

71
.1
69

α̂
=

10
1.
11

γ̂
=

0.
00

7

Pr
op

os
ed

m
od

el
ed

t
=

(
m

(t
)

m
0

)
1 ab

×
(m

(t
)−

a
m
0
−a

)
1

a (
a−

b)

×
(m

(t
)−

b
m
0
−b

) −
1

b (
a−

b)

13
.1
97

0.
15

5
0.
17

1
3.
63

0
â

=
90

.0
38

b̂
=

61
.0
01

m̂
0

=
20

d̂
=

1.
16

5
×

10
−5

123

Ann Oper Res (2018) 269:773–790 787

Fig. 4 Comparison between proposed model and other models for Apache 2.0 dataset

5.2 Apache 2.0

Apache 2.01 is available on the website since 2002. The first two releases are employed to
verify the proposed model, as shown in Table 3. The failure data from day 1 to day 18 is taken
into account as Release 1; failure data from day 19 to day 164 is considered as Release 2.

We can see that the proposedmodel provides the smallestMSE, PP, andVariation as shown
in Table 4. The PRR value even though is not the smaller one, however, 0.155 is just slightly
higher than 0.117. It is thus considering the proposed model presents the best performance
to model this dataset. Figure 4 also plots the comparison between the predicted values and
the observed values.

In summary, the proposed model has considered a dependent fault detection process.
Specifically, the newly detected faults depend on the detection of remaining faults from
previous release and new introduced faults. In order to detect a new fault, we need to detect
corresponded faults from remaining faults from previous release and new introduced faults
first. Therefore, there is only a small portion of software faults detected for developing the
next release.

6 Conclusion remark and future research

It is unlikely to deliver all the features in a single release for themodern software products. The
proposed software reliability model provides a new paradigm to integrate the dependent fault
detection process and different types of software faults in multiple software release. Due to
the resource limitation, there also exists a portion of undetected software faults for the current
release. Thus, how to incorporate the faults from previous release into the development for
next release becomes an important issue.

As an effort to reflect the development of multi-release software, remaining faults from
previous release, new introduced-faults, and dependent fault detection process are discussed

1 https://www.apache.org/.

123

https://www.apache.org/

788 Ann Oper Res (2018) 269:773–790

in this paper. In order to accurately illustrate the performance of the proposed model, we
employ two datasets both collected from Open Source Software (OSS) project to validate the
usage of the model. The behavior of software reliability function is studied as well. We are
currently investigating the new features adding in the next release and the remaining faults
from previous release as fixed numbers in this study, which can be extended as a random
number or as a time-dependent function corresponding to its optimal profit and release time
for the organization. The impact of environmental factors (Zhu et al. 2015) during the software
development process can be considered into the future research as well.

Appendix

Proof of Lemma 1 We need to show that: (a) the function g (t) in Eq. (7) is convex, and (b)
the function f (x) in Eq. (8) is concave.

(a) Since d is non-negative and g′′(t) = d2edt+C0 > 0, thus function g(t) is convex.

(b) f (x) = x
1
ab (x − a)

1
a(a−b) (x − b)−

1
b(a−b)

f ′ (x) = 1

ab
x

1
ab −1 (x − a)

1
a(a−b) (x − b)−

1
b(a−b) + 1

a (a − b)
x

1
ab (x − a)

1
a(a−b) −1

(x − b)−
1

b(a−b)

− 1

b (a − b)
x

1
ab (x − a)

1
a(a−b) (x − b)−

1
b(a−b) −1

= x
1
ab (x − a)

1
a(a−b) (x − b)−

1
b(a−b)

(
1

abx
+ 1

a (a − b) (x − a)
− 1

b (a − b) (x − b)

)

= x
1
ab (x − a)

1
a(a−b) (x − b)−

1
b(a−b)

(ab + a + b) − (a + b) x

abx (x − a) (x − b)

= f (x)
(ab + a + b) − (a + b) x

abx (x − a) (x − b)

= [f (x)]−1 (ab + a + b) − (a + b) x

ab

f ′′ (x) = −[f (x)]−2 f ′ (x) (ab + a + b) − (a + b) x

ab
− [f (x)]−1 a + b

ab

= −
f ′ (x)

{
[f (x)]−1 (ab+a+b)−(a+b)x

ab

}
f (x)

− [f (x)]−1 a + b

ab

= −
[
f

′(x)
]2

f (x)
−

a+b
ab

f (x)
< 0

Note that f (x) = g (t) > 0 in Eq. (3), a > 0 and b > 0, therefore, function f (x) in
Eq. (8) is concave.
Since the function g (t) is convex, and f (x) is concave, the results in Lemma 1 follow
accordingly. ��

References

Ahmadi, M., Mahdavi, I., & Garmabaki, A. H. S. (2016). Multi up-gradation reliability model for open
source software. In U. Kumar, A. Ahmadi, A. K. Verma, & P. Varde (Eds.), Current trends in reliability,
availability, maintainability and safety (pp. 691–702). Berlin: Springer.

123

Ann Oper Res (2018) 269:773–790 789

Al-Emran, A., & Pfahl, D. (2007). Operational planning, re-planning and risk analysis for software releases.
In: International conference on product focused software process improvement (pp. 315–329). Berlin:
Springer.

Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., & och Dag, J. N. (2001). An industrial survey of
requirements interdependencies in software product release planning. In Proceedings of the fifth IEEE
international symposium onrequirements engineering (pp. 84–91).

Etgar, R., Gelbard, R., & Cohen, Y. (2017). Optimizing version release dates of research and development
long-term processes. European Journal of Operational Research, 259(2), 642–653.

Febrero, F., Calero, C., & Moraga, M. Á. (2016). Software reliability modeling based on ISO/IEC SQuaRE.
Information and Software Technology, 70, 18–29.

Garmabaki, A. H., Aggarwal, A. G., & Kapur, P. K. (2011). Multi up-gradation software reliability growth
model with faults of different severity. In 2011 IEEE international conference on industrial engineering
and engineering management (IEEM) (pp. 1539–1543).

Goel, A. L., & Okumoto, K. (1979). Time-dependent error-detection rate model for software reliability and
other performance measures. IEEE Transactions on Reliability, 28(3), 206–211.

Gorschek, T., & Davis, A. M. (2008). Requirements engineering: in search of the dependent variables. Infor-
mation and Software Technology, 50(1), 67–75.

Greer, D., & Ruhe, G. (2004). Software release planning: An evolutionary and iterative approach. Information
and Software Technology, 46(4), 243–253.

Ho, J., & Ruhe, G. (2013). Releasing sooner or later: An optimization approach and its case study evaluation.
In Proceedings of the 1st international workshop on release engineering (pp. 21–24). IEEE Press.

Hu, Q. P., Peng, R., Xie, M., Ng, S. H., & Levitin, G. (2011). Software reliability modelling and optimization
for multi-release software development processes. In 2011 IEEE international conference onindustrial
engineering and engineering management (pp. 1534–1538).

Huang, C. Y., & Kuo, S. Y. (2002). Analysis of incorporating logistic testing-effort function into software
reliability modeling. IEEE Transactions on Reliability, 51(3), 261–270.

Jeske, D. R., & Zhang, X. (2005). Some successful approaches to software reliability modeling in industry.
Journal of Systems and Software, 74(1), 85–99.

Jørgensen, N. (2001). Putting it all in the trunk: Incremental software development in the FreeBSD open source
project. Information Systems Journal, 11(4), 321–336.

Kachitvichyanukul, V. (2012). Comparison of three evolutionary algorithms: GA, PSO, and DE. Industrial
Engineering and Management Systems, 11(3), 215–223.

Kapur, P. K., Pham,H., Aggarwal, A.G.,&Kaur, G. (2012). Two dimensionalmulti-release software reliability
modeling and optimal release planning. IEEE Transactions on Reliability, 61(3), 758–768.

Kapur, P. K., Pham, H., Anand, S., & Yadav, K. (2011). A unified approach for developing software reliability
growth models in the presence of imperfect debugging and error generation. IEEE Transactions on
Reliability, 60(1), 331–340.

Leszak, M. (2005). Software defect analysis of a multi-release telecommunications system. In International
conference on product focused software process improvement (pp. 98-114). Berlin: Springer.

Li, L., Harman, M., Letier, E., & Zhang, Y. (2014). Robust next release problem: Handling uncertainty
during optimization. In Proceedings of the ACM 2014 annual Conference on Genetic and Evolutionary
Computation (pp. 1247–1254).

Li, X., Li, Y. F., Xie, M., &Ng, S. H. (2011). Reliability analysis and optimal version-updating for open source
software. Information and Software Technology, 53(9), 929–936.

Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., & Zhai, C. (2006). Have things changed now?: An empirical study
of bug characteristics in modern open source software. In Proceedings of the ACM 1st workshop on
architectural and system support for improving software dependability (pp. 25–33).

Mahimkar, A. (2016). Detecting and diagnosing performance impact of smartphone software upgrades. In
2016 IEEE 12th international conference on network and service management (CNSM) (pp. 188–194).

Maurice, S., Ruhe, G., & Saliu, O. (2006). Decision support for value-based software release planning. In S.
Biffl, A. Aurum, B. Boehm, H. Erdogmus, & P. Grünbacher (Eds.), Value-based software engineering
(pp. 247–261). Berlin: Springer.

Mehlawat, M. K. (2013). Amulti-choice goal programming approach for COTS products selection of modular
software systems. International Journal of Reliability, Quality and Safety Engineering, 20(6), 1350026-
1-18.

Missbauer, H. (2002). Aggregate order release planning for time-varying demand. International Journal of
Production Research, 40(3), 699–718.

Musa, J. D. (1975). A theory of software reliability and its application. IEEE Transactions on Software
Engineering, 3, 312–327.

123

790 Ann Oper Res (2018) 269:773–790

Naciri, S., Idrissi, M. A. J., & Kerzazi, N. (2015). A strategic release planning model from TPM point of view.
In 2015 10th international conference on IEEE intelligent systems: Theories and applications (SITA)
(pp. 1–9).

Pachauri, B., Dhar, J., & Kumar, A. (2015). Incorporating inflection S-shaped fault reduction factor to enhance
software reliability growth. Applied Mathematical Modelling, 39(5), 1463–1469.

Pham, H. (2014). A new software reliability model with Vtub-shaped fault-detection rate and the uncertainty
of operating environments. Optimization - A Journal of Mathematical Programming and Operations
Research, 63(10), 1481–1490.

Raymond, E. S. (2001). The cathedral and the bazaar: Musings on Linux and open source by an accidental
revolutionary. Sebastopol: O’Reilly Media Inc.

Ruhe,G.,&Momoh, J. (2005). Strategic release planning and evaluation of operational feasibility. InHICSS’05
proceedings of the 38th IEEE annual Hawaii international conference on system sciences (p. 313b).

Ruhe, G., & Saliu, M. O. (2005). The art and science of software release planning. IEEE Software, 22(6),
47–53.

Saliu, O., & Ruhe, G. (2005). Software release planning for evolving systems. Innovations in Systems and
Software Engineering, 1(2), 189–204.

Sukhwani, H., Alonso, J., Trivedi, K. S., & Mcginnis, I. (2016). Software reliability analysis of NASA space
flight software: A practical experience. In 2016 IEEE international conference on software quality,
reliability and security (pp. 386–397).

Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S. B., & Shafique, M. U. (2010). A systematic
review on strategic release planning models. Information and Software Technology, 52(3), 237–248.

Szöke, Á. (2011). Conceptual scheduling model and optimized release scheduling for agile environments.
Information and Software Technology, 53(6), 574–591.

Tsay, J.,Wright, H.K.,&Perry, D. E. (2011). Experiencesmining open source release histories. InProceedings
of the ACM 2011 international conference on software and systems process (pp. 208–212).

Yamada, S., Hishitani, J., & Osaki, S. (1993). Software-reliability growth with a Weibull test-effort: A model
and application. IEEE Transactions on Reliability, 42(1), 100–106.

Yamada, S., Ohtera, H., & Narihisa, H. (1986). Software reliability growth models with testing-effort. IEEE
Transactions on Reliability, 35(1), 19–23.

Yang, J., Liu, Y., Xie, M., & Zhao,M. (2016). Modeling and analysis of reliability of multi-release open source
software incorporating both fault detection and correction processes. Journal of Systems and Software,
115, 102–110.

Zhu, M., & Pham, H. (2016). A software reliability model with time-dependent fault detection and fault
removal. Vietnam Journal of Computer Science, 3(2), 71–79.

Zhu, M., Zhang, X., & Pham, H. (2015). A comparison analysis of environmental factors affecting software
reliability. Journal of Systems and Software, 109, 150–160.

123

	A multi-release software reliability modeling for open source software incorporating dependent fault detection process
	Abstract
	1 Introduction
	2 Literature review
	3 The multi-release software reliability modeling framework
	3.1 Multi-release software reliability modeling
	3.2 Multi-release software reliability function discussion

	4 Parameter estimation and comparison criteria
	4.1 Parameter estimation
	4.2 Comparison criteria

	5 Numerical example
	5.1 Juddi project data
	5.2 Apache 2.0

	6 Conclusion remark and future research
	Appendix
	References

